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Time series of ground reaction forces following a single leg drop jump
landing in elite youth soccer players consist of four distinct phases
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A B S T R A C T

The single leg drop jump landing test may assess dynamic and static balance abilities in different phases
of the landing. However objective definitions of different phases following landing and associated
reliability are lacking.
Therefore, we determined the existence of possible distinct phases of single leg drop jump landing on a

force plate in 82 elite youth soccer players. Three outcome measures were calculated over moving
windows of five sizes: center of pressure (COP) speed, COP sway and horizontal ground reaction force
(GRF).
Per outcome measure, a Factor Analysis was employed with all windows as input variables. It showed

that four factors (patterns of variance) largely (>75%) explained the variance across subjects/trials along
the 12 s time series. Each factor was highly associated with a distinct phase of the time series signal:
dynamic (0.4–2.7 s), late dynamic (2.5–5.0 s), static 1 (5.0–8.3 s) and static 2 (8.1–11.7 s).
Intra-class correlations (ICC) between trials were lower for the dynamic phases (0.45–0.68) than for the

static phases (0.60–0.86). The COP speed showed higher ICC’s (0.63–0.86) than COP sway (0.45–0.61) and
GRF (0.57–0.71) for all four phases.
In conclusion, following a drop jump landing unique information is available in four distinct phases.

The COP speed is most reliable, with higher reliability in the static phases compared to the dynamic
phases. Future studies should assess the sensitivity of information from dynamic, late dynamic and static
phases.

ã 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Gait & Posture

journal homepage: www.else vie r .com/locate /gai t post
1. Introduction

Single leg balance performance has been significantly related to
functional performance [1–3] and injuries, such as ankle sprains
[4] and anterior cruciate ligament (ACL) deficiency [5]. However, it
has been suggested that single leg jump landing tasks may better
detect differences in sensorimotor function than static single leg
stance, since they are more challenging and sport specific [6–8]. A
jump landing test is a dynamic task where subjects jump either
from a box or to a certain height, land upon a force plate on one
foot, and stabilize as quickly as possible [9].
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The most commonly applied outcome measures to quantify
performance of the jump landing task are the ‘time to stabilization’
(TTS) and the ‘dynamic postural stability index’ (DPSI). The TTS
aims to quantify the transition from an instable situation to a stable
situation. Large differences exist in TTS calculation methods,
therefore studies should be interpreted and compared with
caution [10,11]. Calculation of the DPSI is straightforward and
quantifies the fluctuation of the resultant ground reaction forces
(GRF) around the origin (mean value) for 3 s following impact [12].
Since impact forces are high, DPSI emphasizes more the landing
rather than the stabilizing phase [13]. Both TTS and DPSI have
shown higher outcome values for subjects with chronic ankle
instability [14–16], or with ACL reconstruction [17,18], compared to
healthy controls. However, their applicability with regard to injury
risk and monitoring of rehabilitation still needs to be elucidated
[6,13,19,20].
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Center of pressure (COP) derivatives, such as ‘COP speed’ and
‘COP sway’, have been shown to be highly reliable and valid in
single leg balance performance [15,21,22]. The COP speed has been
able to discriminate between subjects with functional ankle
instability and healthy controls [15]. Moreover, COP speed was
significantly larger for subjects with chronic ankle instability, than
for copers and healthy controls [22]. Surprisingly, however, TTS
and DPSI based on jump landing tests appeared to be uncorrelated
with these COP derivatives of static single leg stance [8,23,24].
Moreover, no correlations were found between static and dynamic
performance using the same outcome measures, i.e. ‘COP speed’ or
‘SD of GRF’ [8,25]. Therefore, one could suggest that static and
dynamic tests reflect different aspects of total body sensorimotor
function, implying an expanded perspective with regard to injury
risk prediction, preventive actions and rehabilitation management.

Moreover, depending on the calculation method, TTS targets
different time frames of the GRF following landing. This resulted in
large variation in outcome values (0.5–6 s) and low correlations
between calculation methods applied to the same measurement
[10,11]. Therefore, distinct information may be available within the
dynamic phases as well. An interesting characteristic of the jump
landing task is that the landing itself, the stabilizing phase and
static balance performance can be evaluated [26]. To date, a
thorough and systematic evaluation of the complete COP and GRF
time series following landing has not been addressed. Such an
assessment will give insights in the information available in the
data collected in a jump landing task, and will reveal which time
frames best reflect this information. In order to facilitate the
sensitivity, it is important to optimize the precision of the outcome
measure (i.e. reliability or reproducibility). Both the starting point
and window size applied to calculate the outcome measures may
affect the reliability.

Therefore, the aim of the current study was to determine (1) the
existence of possible distinct phases following a single leg drop
jump landing task by means of Factor Analysis, (2) the effect of
window selection on the reliability of mean COP speed, mean
absolute COP sway, and mean absolute horizontal GRF, and (3) the
correlation between these outcome measures.
Fig. 1. The experimental setup showing one of the players during
2. Methods

2.1. Participants

The current data set was acquired at the youth academy of AFC
Ajax at the start of the 2013–2014 season. We included the data of
82 players between 11 and 18 years old (mean � SD; age
14.10 � 1.86 years; height 1.68 � 0.12 m; body weight
56.70 � 13.20 kg), for whom six valid trials were available. At the
time of measurements, all players were fit to perform at the
highest standard of competitive soccer matches. The local ethics
committee approved the research protocol and all players or
parents/guardians (depending on the age of the participant) were
informed in advance of the procedures involved in the testing
program and provided written informed consent.

2.2. Instrumentation

Ground reaction forces (GRF) were recorded at 1000 samples/s,
using a 40 � 60 cm AMTI force plate (type BP400600HF, Advanced
Medical Technologies Inc., Watertown, MA, USA). The center of
pressure (COP) calculations were based on vertical and horizontal
forces in accordance with the manufacturer’s manual.

2.3. Procedures

The players were asked to jump from an aerobic step of 20 cm
height, which was placed 5 cm posterior to the force plate, located
at 4 m from the wall. Players took off by means of a small jump with
two feet, landed on the testing leg at the center of the force plate,
and stabilized as quickly as possible. They had to balance for 15 s
with their hands on their hips, whilst keeping all other movement
to a minimum (Fig.1). Before actual testing commenced, all players
completed the regular warm-up, as accustomed before a training
session, and performed one practice trial per leg. Both legs were
tested thrice; the left leg was appointed the initial testing leg. All
trials were performed without shoes. A trial was considered invalid
if a player touched the floor with the contralateral leg or if arm
movement was used to regain balance.
 the stance phase following the single leg drop jump landing.
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2.4. Data processing

A custom MATLAB for Mac (The Mathworks Inc., version
R2014a, Natick, RI, USA) program was written for data processing.
Data were cropped from time of impact (vertical GRF > 10 N) to 12 s
post-impact and low pass filtered at 12 Hz with a bidirectional
second order Butterworth filter [27].

2.5. Data analysis

For each trial, three outcome measures were calculated:

(1) The mean COP speed (‘COP speed’), which is the total COP path
length divided by trial time [2,28–30].

(2) The mean absolute COP sway (‘COP sway’), which is the mean
absolute distance of the COP trajectory to the average COP
position [3,31].

(3) The mean absolute horizontal GRF (‘Hor GRF’), which is the
mean length of the GRF vector in the horizontal plane [15,29].

We varied the window size of the moving window over which
the outcome measures were calculated (0.5, 1.0, 2.0, 3.0, and 5.0 s).
For Factor Analyses, the window was moved along the time series
from 0 to 12 s with 0.1 s per step, resulting in a total of 485
windows. For reliability analyses, windows were moved with
0.001 s per step. This was done for each trial (3), for each leg (2), for
each outcome measure (3) and for each window size (5).
Fig. 2. The correlation (r) between the four factors and the outcome measures: mean 

pressure (COP sway) (E to H) and mean resultant horizontal ground reaction force (Hor G
point for each window size is half the length of the window, in order to facilitate com
The three outcome measures showed a comparable non normal
distribution for all the calculated windows, particularly showing a
low and long tail to the right in the histograms.

2.6. Statistical analysis

Both limbs were grouped together, resulting in six trials per
player, assuming that postural stability is predominately an
indicator of whole body sensorimotor function [4].

2.6.1. Factor analysis
To examine which of the windows held unique information, we

employed a Factor Analysis in IBM SPSS Statistics for Mac (IBM
Corp., version 21.0, Armonk, NY, USA). The extraction method was
set as principal components. This statistical technique is an elegant
procedure to elucidate patterns of co-variation between the input
variables (i.e. outcome measures for each window) across the
subjects and trials. Each pattern of co-variation is called a ‘factor’
whereby the first factor explains as much of the variance in the
data as possible, the second factor for the residual variance and so
on for the subsequent factors. The constraint is that each factor is
orthogonal to the preceding factors, ensuring that each factor holds
unique information [32].

The input variables for the Factor Analysis were the outcome
values calculated for all window sizes (0.5, 1.0, 2.0, 3.0 and 5.0 s)
and for all starting points between 0 s and 12 s. All input variables
contained the outcome values for each trial (82 players � 3
resultant center of pressure speed (COP speed) (A to D), mean resultant center of
RF) (I to L) for each of the five window sizes (0.5, 1.0, 2.0, 3.0 and 5.0 s). The starting
parison.
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trials � 2 legs). The Factor Analysis was performed for each
outcome measure (COP speed, COP sway and Hor GRF) separately.

The first step of the Factor Analysis was to assess the
appropriate number of factors. A cumulative explained variance
above 75% was set as cut off. The second step of the Factor Analysis
was the orthogonal (‘varimax’) rotation of the data, resulting in a so
called ‘rotation matrix’. This matrix holds the correlation between
each factor and each input variable (i.e. outcome measure for each
window).

This allowed the identification of groups of windows that were
strongly associated with the factors; hence phases in the time
series could be determined. The window with the highest
correlation with the factor was considered as the most valid
window to represent the distinct phase. In addition and as
confirmation, the inter-correlation between the identified win-
dows (i.e. phases) was assessed for the three outcome measures.

2.6.2. Reliability analysis
An absolute agreement two-way random model (average

measures) was applied to calculate intra-class correlation coef-
ficients (ICC) in order to assess the reliability over trials (6 trials per
subject) for each outcome measure in each individual window
[33].

2.6.3. Correlation between outcome measures
Across all trials, inter-item Pearson correlations were calculated

between the three outcome measures: COP speed, COP sway and
Hor GRF. Possible redundancy between outcome measures was
considered if the coefficient of correlation was above 0.70.
Fig. 2. (Con
3. Results

3.1. Factor analysis

The first part of the Factor Analysis showed that the data were to
a large extent explained by four factors. For the COP speed, COP
sway and Hor GRF these first four factors explained 79.8%, 77.3%
and 75.3% of the total variance, respectively. A possible fifth factor
would have added only 3.2%, 4.8% and 3.0%, respectively (see
Supplementary data 1), hence the ‘rotation matrix’ was built with
four factors. Fig. 2 illustrates the ‘rotation matrix’ as it shows the
correlation (r) between the factor and the outcome measures for
each window. Each factor showed a consistent and distinct high
correlation for a specific range of windows. This indicates the
existence of four distinct phases in time, each containing unique
information. This was consistent for all window sizes and outcome
measures (COP speed, COP sway and Hor GRF). The four factors will
henceforward be referred to as representing the four phases:
dynamic phase (DP) (Fig. 2d, h and l), late dynamic phase (LDP)
(Figs. 2b, g and j), static phase 1 (SP1) (Figs. 2c, e and i) and static
phase 2 (SP2) (Figs. 2a, f and k). Furthermore, within each phase,
the outcomes of the window sizes of 2 or 3 s showed the strongest
association with the factor. For each factor and outcome measure,
we selected the window with the highest correlation with that
factor to represent that factor. These highest correlations were
always >0.90 (Table 1). To illustrate the independence of outcome
values between phases, we calculated the correlations of outcomes
between the windows best representing the four factors. These
correlations were all positive, ranging from 0.19 to 0.57 (Table 2).
tinued)



Table 1
An overview of the identified phases, in relation to the factors and their correlation; the identified windows that were most representative for a given phase and the mean
resultant center of pressure speed (COP speed), mean resultant center of pressure sway (COP sway) and mean resultant horizontal ground reaction force (Hor GRF); intraclass
correlation coefficients (ICC) are shown with 95% confidence interval (95% ci).

Dynamic phase Late dynamic phase Static phase 1 Static phase 2

COP speed (mm/s) factor 4 2 3 1
correlation 0.92 0.93 0.90 0.92
window 0.4–2.4 s 2.6–4.6 s 5.5–7.5 s 8.3–11.3 s
mean � SD 130.9 � 71.6 60.9 � 33.8 49.3 � 18.3 47.3 � 15.5
ICC [95% ci] 0.63 [0.49–0.74] 0.68 [0.55–0.77] 0.77 [0.68–0.84] 0.86 [0.81–0.90]

COP sway (mm) factor 4 3 1 2
correlation 0.90 0.90 0.92 0.92
window 0.7–2.7 s 3.0–5.0 s 5.0–8.0 s 8.1–11.1 s
mean � SD 19.2 � 9.1 11.0 � 5.1 9.5 � 3.4 9.9 � 3.6
ICC [95% ci] 0.45 [0.23–0.61] 0.53 [0.35–0.67] 0.60 [0.45–0.72] 0.61 [0.47–0.73]

Hor GRF (N) factor 4 2 1 3
correlation 0.93 0.93 0.91 0.92
window 0.4–2.4 s 3.0–5.0 s 5.3–8.3 s 8.7–11.7 s
mean � SD 15.4 � 6.6 7.9 � 2.9 7.1 � 1.6 7.0 � 1.4
ICC [95% ci] 0.57 [0.40–0.70] 0.66 [0.52–0.76] 0.71 [0.60–0.80] 0.67 [0.55–0.77]

Table 2
shows the correlation (r) between phases (dynamic phase (DP), late dynamic phase
(LDP), static phase 1 (SP1) and static phase 2 (SP2)) for the mean resultant center of
pressure speed (COP speed), mean resultant center of pressure sway (COP sway) and
mean resultant horizontal ground reaction force (Hor GRF).

COP speed COP sway Hor GRF

DP vs LDP 0.44 0.48 0.42
DP vs SP1 0.19 0.41 0.21
DP vs SP2 0.17 0.44 0.18
LDP vs SP1 0.37 0.42 0.41
LDP vs SP2 0.38 0.43 0.29
SP1 vs SP2 0.57 0.47 0.56
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The highest correlations were found between the static phases
(0.47–0.57) (i.e. SP1 and SP2).”

3.2. Reliability analysis

Fig. 3 shows the mean outcome (Figs. 3a, c and e) and ICC values
(Figs. 3b, d and f) as calculated for the different window sizes, as
the window moved along the time series. The ICC values were
profoundly influenced by window size and timing. A consistent
pattern showed initially high ICC values for the smallest window
(0.5 s) directly following impact of the landing, where after a sharp
drop of ICC values resulted in lowest values around 1–2 s.
Subsequently, for the 0.5 s window size, ICC values tended to be
higher after 5 s for COP speed and COP sway, however not for Hor
GRF. Furthermore, in general a larger window size resulted in
higher ICC values.

The dynamic phases showed lower reliability (ICC 0.45–0.68)
compared to the static phases (ICC 0.60–0.86) (Table 1). The ICC
values were highest for COP speed, ranging from 0.63 (DP) to 0.86
(SP2), somewhat lower for Hor GRF, ranging from 0.57 (DP) to 0.71
(SP1), and lowest for COP sway, where it ranged from 0.45 (DP) to
0.61 (SP2).

3.3. Correlation between outcome measures

The outcome measures COP speed and Hor GRF were highly
inter-correlated (r > 0.70) in each phase, with higher correlation for
dynamic phases (0.86) compared to the static phases (0.71–0.73).
The COP sway also showed higher correlations with COP speed and
Hor GRF for dynamic phases (0.60–0.69) than for the static phases
(0.36–0.46).
4. Discussion

Our main finding is that the time series following a single leg
drop jump landing consists of four distinct phases with unique
information. These phases can be classified as dynamic (0.4–2.7 s),
late dynamic (2.5–5.0 s), static 1 (5.0–8.3 s) and static 2 (8.1–11.7 s).
Across these phases, the highest reliability was found for the COP
speed (ICC ranging from 0.63 for the DP to 0.86 for the SP2). The
present results are in agreement with previous studies that
showed lower correlation of similar outcome measures after a
jump landing task compared to a static single leg stance task [8,25].

The Factor Analysis identified four patterns of variation (factors)
along the time series, which represented the four phases. As each
phase was highly correlated with only one factor, it is safe to
assume that the four phases truly hold unique information. The
results indicated that the four phases were best represented by a
window size of 2 or 3 s. As these window sizes showed distinct and
very high (r > 0.90) peak correlations with each of the four factors,
these will include most of the available information following a
single leg drop jump landing. On the other hand, it still needs to be
clarified whether the four phases are truly caused by differences in
sensorimotor function. For instance, the two static phases revealed
similar outcome values (Table 1), indicating that a static situation
of balance was reached after 5 s. However, both phases showed
additive explanation of the variance between subjects, which
might be related to the focus of attention, rather than to balance
ability.

Based on the current results, future research should explore the
additive value of the dynamic, late dynamic and static phase to
detect impairments and predict injury risk. This may increase
sensitivity and allow for better prevention and rehabilitation
management.

The dynamic phases showed lower reliability (ICC 0.45–0.68)
compared to the static phases (ICC 0.60–0.86) (Table 1, and Figs. 3b,
d and f). The relatively low reliability may limit sensitivity to detect
differences. On the other hand, despite lower reliability, outcomes
of the dynamic phase may still detect impairments, due to higher
effect sizes [6]. This is illustrated by the findings of Wikstrom et al.,
who showed that the mediolateral stability index had higher
accuracy to differentiate between ‘copers’ and individuals with
chronic ankle instability than the other stability indices, whilst
having a ‘poor’ reliability [12,34].

In accordance with previous studies [26], COP speed showed
consistently higher reliability compared to COP sway and Hor GRF.



Fig. 3. The mean outcome values and intraclass correlation coefficient (ICC) for the mean resultant center of pressure speed (COP speed) (A and B), mean resultant center of
pressure sway (COP sway) (C and D) and mean resultant horizontal ground reaction force (Hor GRF) (E and F), with regard to the five window sizes (0.5, 1.0, 2.0, 3.0 and 5.0 s).
The starting point for each window size is half the length of the window, in order to facilitate comparison.
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Table 3
shows the correlation (r) between the mean resultant center of pressure speed (COP
speed), mean resultant center of pressure sway (COP sway) and mean resultant
horizontal ground reaction force (Hor GRF) for each of the identified phases
(dynamic phase (DP), late dynamic phase (LDP), static phase 1 (SP1) and static
phase 2 (SP2)).

DP LDP SP1 SP2

COP speed vs COP sway 0.60 0.63 0.40 0.41
COP speed vs Hor GRF 0.86 0.86 0.73 0.71
COP sway vs Hor GRF 0.69 0.68 0.46 0.36
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The very high correlations between COP speed and Hor GRF (0.86)
in the dynamic phases underline the validity of both measures for
the dynamic phases (Table 3). Furthermore, it suggests that the
lower reliability in the dynamic domain of both outcome measures
is due to real variability of balance performance, rather than to
error of measurement.

We studied a group of elite youth soccer players who practice
and compete at the highest standard of competitive soccer.
Therefore, the presented window selection may not be generaliz-
able to other populations. In addition, the jump landing test is
subject to methodological variation, which can alter the degree of
difficulty [9]. Therefore, exact application of the presented
windows may not be appropriate for other dynamic tests.

Furthermore, we opted to group both legs together for the
statistical analyses. This was done since static and dynamic balance
is assumed to reflect, to a large extent, total body sensorimotor
function [4]. Therefore, combining both legs may improve the
outcome estimate, as it increases number of measurements and
thereby the reliability of whole body sensorimotor function
estimates. However, it has been argued that injury risk may not
be fully bilateral, especially with regard to recurrence of injury
[35]. To verify that pooling of the left and right leg for the present
analysis is justified, we performed a separate analysis on the left
and right legs (three trials per leg). These analyses showed
comparable results (see Supplementary data 2) to those reported
in Table 1. However, probably as a consequence of the reduced
number of repetitions per subject, the ICC values were lower in
most cases. Clearly, if unilateral testing is deemed necessary, as in
case of follow-up after a unilateral injury, more repetitions per leg
are needed to achieve similar reliability.

Finally, we did not include the vertical GRF in our outcome
measures to avoid disproportionately interference of the vertical
impact of the landing on outcome values for the ‘Hor GRF’.
However, vertical impact forces have shown potentially indepen-
dent relevance in injury assessment [9]. Therefore, in addition to
the current four phases following landing, we advise to include
impact forces when clinical relevance of the jump landing task is
evaluated.

In conclusion, for elite youth soccer players, in a single leg drop
jump landing, four distinct phases in time, the dynamic phase, late
dynamic phase, and two static phases provide unique information.
Reliability was higher in the static phases compared to dynamic
phases, with the best reliability for COP speed.
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