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ScienceDirect
Communication has played a key role in organismal evolution. If

sender and receiver have a shared interest in propagating

reliable information, such as when they are kin relatives, then

effective communication can bring large fitness benefits.

However, interspecific communication (among different

species) is more prone to dishonesty. Over the last decade,

plants and their microbial root symbionts have become a model

system for studying interspecific molecular crosstalk.

However, less is known about the evolutionary stability of

plant–microbe communication. What prevents partners from

hijacking or manipulating information to their own benefit?

Here, we focus on communication between arbuscular

mycorrhizal fungi and their host plants. We ask how partners

use directed signals to convey specific information, and

highlight research on the problem of dishonest signaling.
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Introduction
From quorum sensing bacteria [1] to singing whales [2],

organisms across the tree of life rely on communication

systems to convey information. Broadly defined as the

‘completion of corresponding signals and reactions’ [3],

communication plays a key role in the evolution of

organisms and the complexity of life [4]. On an individual

level, communication affects behavioral responses, which

affects the fitness of both sender and receiver. From an

evolutionary vantage point, this is important because

organisms can engage in ‘honest’ communication or they

can manipulate information for their benefit [5].

Theory predicts honest signaling to be favored when (i)

individuals share a common interest, such as when they

are kin and (ii) when signals carry reliable information
www.sciencedirect.com 
that is correlated with something useful to the receiver

[6��]. However, when communication occurs outside

related kin, for example among different species in sym-

biotic partnerships, communication systems can be vul-

nerable to exploitation [5]. Effective crosstalk is

necessary to form the partnership, but partners may

coerce each other to behave differently by manipulating

information to their benefit.

In recent years, there has been an increasing interest in

communication among plants and microbial root symbionts

[7–9]. Plant roots are surrounded by a multitude of soil

organisms, whose diversity covers tens of thousands spe-

cies [10]. How can pathogen invasion be prevented while

beneficial partners are encouraged? While work in the last

decade has led to a detailed knowledge of molecular cross-

talk in the rhizosphere [11], we do not understand the

evolutionary origins and stability of rhizosphere commu-

nication. This is a major point of interest because deceptive

organisms, such as those that mimic signals to gain host

resources [12], or those that interfere with plant signaling to

increase their own fitness at the expense of the plant’s

[13,14], are predicted to spread throughout populations of

cooperators [15��]. What prevents the hijacking or manip-

ulation of communication systems?

Our aim is to explore evolutionary aspects of plant–
microbe communication, specifically asking: when are

communications systems vulnerable to exploitation?

We will focus on the symbiosis between arbuscular my-

corrhizal (AM) fungi and their plant hosts, where plant

carbon is exchanged for soil nutrients from the fungus.

This symbiosis is among the most widespread (utilized by

�70% of all vascular plants), and estimated to have

evolved roughly 450 MYA [16]. Evidence is accumulating

that signaling pathways initiating the AM symbiosis are

ubiquitous across extant land plant lineages [17], and are

so successful that the components have been recruited

by plants to evolve other symbioses, such as rhizobial

N2-fixation [18].

Signal versus cue: why does it matter?
To understand the potential for exploitation in plant–
microbe communication systems, it is important to define

the differences between signals and cues [19]. A signal is a

behavior that has evolved to convey information about

the signaler or its environment. In turn, the transferred

information changes the behavior of the receiver

(Figure 1). This implies that a behavior change is positive,

and provides a fitness benefit to both sender and receiver.
Current Opinion in Plant Biology 2016, 32:47–52
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Differences between signals and cues.

Source: Adapted from Ref. [19] with close-up of arbuscular mycorrhizal fungi connecting roots of plant hosts (photo credit: Y. Kobae) and parasitic

plant Striga gesnerioides (photo: wiki commons).
Signals can be robust to some dishonesty, but this

depends on the costs and benefits for the sender and

receiver, and the reliability of the signal [22].

In contrast, cues rely on the eves-dropping of information

and can lead to inadvertent communication (Figure 1).

Cues benefit the receiver exclusively, with the receiver

evolving to respond to their presence, much like a preda-

tor responds to the rustling sounds of unseen prey. For

example, plants use cues, like airborne volatile organic

compounds (VOCs), emitted from other plants to upreg-

ulate their own defenses [23]. The majority of these cases

involve eves-dropping, although cases of cooperative

signaling among plant kin have been demonstrated

[24]. Some plants have evolved mechanisms to detect

nanomolar concentrations of bacterial quorum sensing

compounds produced by pathogenic and symbiotic part-

ners [25]. Plants eavesdrop on quorum sensing com-

pounds, using them as cues to upregulate responses,

and even to stimulate the secretion of their own ‘sig-

nal-mimic’ substances to actively manipulate bacterial

behaviors [25].

A long-standing hypothesis suggests that cues are pre-

cursors to signals [26]. Studying the evolutionary origins
Current Opinion in Plant Biology 2016, 32:47–52 
of signals helps us understand how microbes and plants

may manipulate and co-opt molecules [27,28]. For exam-

ple, endophytes in the genus Colletotrichum are generally

pathogens, but the species C. tofieldiae is beneficial, pro-

viding phosphorus to hosts based on the hosts’ phosphate

starvation response [29]. This behavior, and the evolution

from pathogenic to symbiotic lifestyle, likely evolved

based on host cues, but now operates using interspecific

signaling.

Extensive crosstalk between plant and fungi
Plants and microbes use signals to convey information

about their environment and their readiness for coloniza-

tion, but how can these reach the desired recipients, and

not others [30]? Theoretically, effective communication

is needed at two levels: (i) a wide screen, to distinguish

among broad groups of microbes, stimulating mutualists

rather than root-pathogens and (ii) a finer screen, to

distinguish high and low-quality strains (from within a

mutualist population) [31]. In the arbuscular mycorrhizal

symbiosis, strigolactones (terpenoid lactones derived

from the carotenoid metabolism) are key plant signaling

molecules [20��]. While strigolactones are primarily plant

hormones that regulate plant growth, their presence has

been co-opted for the secondary function of attracting
www.sciencedirect.com
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AM fungi [reviewed in 32]. It has been hypothesized that

initially mycorrhizal fungi relied on strigolactones as

passive cues to indicate host presence, but host-derived

compounds evolved into signaling molecules used to

actively recruit mycorrhizal fungi [20��]. Strigolactones

are defined as ‘integrative signaling molecules’ because

they couple phosphorus availability (environmental sig-

naling) with microbial recruitment (symbiosis signaling)

to mediate architecture and productivity [33]. Strigolac-

tones activate the metabolism of the AM fungus, promot-

ing growth towards the roots (Figure 2) [34]. The

strigolactone receptors of mycorrhizal fungi have yet to

be discovered [35], but are likely different from plants,

suggesting that they evolved independently and specifi-

cally to detect host presence [20��]. Strigolactones emit-

ted by plants differ from host to host, and these profiles

may help hosts attract certain fungal species or strains, but

this is an open area of research [36�].

The current idea is that a host plant relies on the signaling

molecules exuded by the AM fungi to prime itself for

colonization (Figure 2), but also to distinguish mutualists

and pathogens [20��]. However, as is expected in inter-

species signaling systems, an evolutionary arms race exists,

with parasites evolving ways to mimic cooperative signals.

For example, recent work suggests that pathogenic oomy-

cetes have recruited mycorrhizal signaling components,
Figure 2
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Schematic overview of crosstalk between AM fungi and root required

to form the symbiosis. (1) Root-derived strigolactones are sensed by a

germinating AM fungal spore, which (2) exudes a series of signaling

molecules such as lipochitooligosaccharides (LCOs) and

chitooligosaccharides (COs). These molecules (3) trigger a series of

reactions in the plant root: the cytosol calcium concentration

increases, activating AM fungal induced gene expression, which leads

to the formation of the pre-penetration apparatus. The reacting root

will (4) secrete cutin monomers, signaling the fungi to form a (5)

hypopodium and (6) initiate arbuscular growth [20��].

www.sciencedirect.com 
using cutin monomers as cues to recognize plant surfaces

and promote infection structures [37].

While in the majority of cases, AM fungi and the host

plants are both the senders and receivers of information,

there are rare examples when this symmetry is skewed.

AM fungi may use cues to initiate colonization and obtain

resources from non-hosts, such as Arabidopsis, when their

network is simultaneously supported by a host plant [38].

Fungal cues may also be used among AM fungi them-

selves. Because spores can germinate in the absence of

hosts, they are likely triggered from fungal cues emanat-

ing from the hyphal network, such that hyphae from

spores connect into larger compatible fungal networks

(via anastomosis) [39]. Whether these are passive cues or

active signals to recruit germinating spores require more

research.

How parasitic and myco-heterotrophic plants
use microbial signals as cues
Once signals are released into the rhizosphere, they

become public goods. This means other organisms can

eves-drop and use signals that are not directed at them, as

cues. For example, strigolactones were first discovered in

their capacity to attract parasitic plants of the genera

Striga and Orobanche (Figure 1) [40]. Strigolactones are

used by these parasites (which extract nutrients by pene-

trating host tissues) as a cue for host presence [36�,41].

Why plants would emit molecules that directly stimulate

plants parasitizing them was an open question, but now

this research has become a perfect illustration of how

signals directed at symbiotic organisms are used as cues

for parasitic organisms.

In other cases, parasitic plants use the fungal network

itself to gain resources. Myco-heterotrophs are small

(non-chlorophyllous) parasitic plants that tap directly into

fungal networks, extracting carbon and nutrients [42].

While little is known about the chemical communication

between myco-heterotrophs and AM fungi, seeds are

thought to require some cue of fungal host presence

for germination [43]. How have these myco-heterotrophs

plants co-opted signaling molecules to tap undetected

into the hyphal network, and what prevents this decep-

tive strategy from further spread [42]? One idea to explain

their evolutionary persistence is that the cost of myco-

heterotrophs and partial mycoheterophs (i.e. chlorophyl-

lous at later development stages) on host plants is low

[44], such that there is less selection against these para-

sites.

Plant–plant communication via common AM
networks
Communication among plants may also be facilitated via

underground fungal networks [45]. The induction of

systematic changes in plant defenses in herbivore-free

hosts when connected by a common mycorrhizal network
Current Opinion in Plant Biology 2016, 32:47–52
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to an herbivore-exposed host has been demonstrated;

when the hyphal network was severed, no upregulation

of the neighbor was found [21] (Figure 3). While these

experiments, and others showing similar patterns

[47�,48], are well-designed and robust, the use of the

word ‘signal’ may be inappropriate, and researchers need

to remain cautious in interrupting these results as being

an adaptive ‘warning system’. This is because it has yet to

be convincingly demonstrated that the shared informa-

tion results in a fitness benefit to both sender and receiver,

and evolved to convey information about the signaler

(Figure 1). The outstanding question is: what benefit

does a sender plant gain from warning a competing

neighbor against herbivores? Hypotheses have been

put forward that the fungus benefits from the transfer

of defense-related compounds, such that ‘signals’ are
Figure 3
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preferentially allocated to plants providing more carbon

to the fungus [50], similar to the way nutrients are

preferentially allocated [31]. However, this has been

difficult to test because of issues in measuring fungal

fitness and tracking defense compounds.

There is evidence of measurable benefits shared among

plant kin (siblings compared to strangers) when incorpo-

rated in a common mycorrhizal network [51], and this

type of kin selection can have clear evolutionary advan-

tages. However, benefits to non-relatives [e.g. 46,48,52]

are more likely explained by the fungal network acting as

a conduit for chemical cues detected by other hosts. It is

also possible that ‘signaling plants’ are favored by the

network, since these plants may be providing more car-

bon (via ‘signals’) to the hyphae, thus creating a feedback
pea aphid

parasitic wasp

ith aphids) No hyphal connection

(b) (c)
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loop [46]. To delineate a signal from a cue, more evidence

is needed to accurately quantify costs and benefits, for

example determining if compounds are expensive to

produce [53], and if they move actively or passively. Until

more experiments unequivocally show advantages gained

by sender plants of ‘signaling’ to their neighbors, it is safer

to use term ‘infochemicals’ as advocated by Barto

et al. [54], a neutral term that does not specifying evolved

benefits to senders and receivers.

Conclusion
While we continue to develop tools to decode the molec-

ular basis of plant and microbial cross-talk, more attention

needs to be paid to the evolutionary origins and exploita-

tion of signals and cues [22]. In rhizosphere mutualisms,

relatively robust mechanisms exist that allow hosts to

broadly distinguish among pathogens and mutualists

[20��]. However, we know little about the next level of

specificity, namely how selection for quality (rather than

just identity) can evolve [55]. In general, discriminating

partners based on actual resources received, rather than

signals, is evolutionarily more robust. Other possible

solutions are to impose a cost, such that the host envi-

ronment is toxic for organisms without the correct physi-

ology, such as in the squid-light symbiotic organ (Vibrio
fischeri–Euprymna scolopes) [56] or to directly couple the

transfer of nutrients from one partner to the other [52]. As

we understand more about these ‘rules of engagement’,

we can begin to manipulate communication to our bene-

fit, enhancing positive associations, and decreasing nega-

tive ones [27].
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