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Abstract—The MONEE framework endows collective adaptive
robotic systems with the ability to combine environment- and
task-driven selection pressures: it enables distributed online
algorithms for learning behaviours that ensure both survival
and accomplishment of user-defined tasks. This paper explores
the trade-off between these two requirements that evolution must
establish when the task is detrimental to survival. To this end, we
investigate experiments with populations of 100 simulated robots
in a foraging task scenario where successfully collecting resources
negatively impacts an individual’s remaining lifetime. We find
that the population remains effective at the task of collecting
pucks even when the negative impact of collecting a puck is as
bad as halving the remaining lifetime. A quantitative analysis of
the selection pressures reveals that the task-based selection exerts
a higher pressure than the environment.

I. INTRODUCTION

Imagine a collective of robots that is released in an un-

charted, possibly changing, environment. The robots have to

learn to operate in that environment, of which the particulars

are unknown at design time. Thus, the robots have to adapt to

circumstances as they find them. Of course, the robot collec-

tives must also serve the purpose of its designers, and so must

satisfy their preferences and tasks as well. Typical examples

for such scenarios include monitoring, patrolling, surveying,

mining or harvesting in remote, inaccessible and possibly

hostile environments where human oversight is unfeasible like

space, deep mining or undersea [1]. We envision such robot

collectives that autonomously adapt through evolution: they

evolve controllers that enable them to survive and to perform

their tasks.

The environment in which robots operate indirectly circum-

scribes goals for the population of robots to survive and evolve,

but does so without specifying objective functions. Robots

must, for instance, move about to spread their genomes, or

they must maintain their energy levels by regularly visiting

charging stations, but these goals need not be defined explic-

itly: it is just that robots that display this behaviour get more

opportunities to procreate. By virtue of its similarly unbounded

nature, biological evolution has resulted in the high levels

of adaptability and robustness that we see in natural living

organisms. To exploit this creative potential in a system of

evolving robots (or robot controllers), we would want to give

evolution as much freedom as possible, pushing for open-

ended, unbounded adaptivity, unconstrained by user-defined

objective functions.

On the other hand, if the system is to be of any practical

relevance, the robots must of course also perform user-defined

tasks, pushing for specific, crisply defined task-related objec-

tives.

Evolution has been employed to achieve both of these

facets. Artificial Life research abounds with examples of

objective-free evolutionary systems since the 1980s [2], [3]. In

such experiments, evolution serves as a force for adaptation.

Evolutionary robotics research typically employs evolution as

a force for optimisation when it focusses on the task-driven

aspect [4].

Balancing these two aspects of evolution –environment-

driven adaptation and task-driven optimisation– represents a

vital step towards implementing our vision of autonomous,

functional, responsive and self-sufficient robot collectives.

The autonomy that our vision implies prohibits centrally

orchestrated evolution, so genomes and performance must be

assessed, exchanged and used for selection locally, by the

robots themselves.

Earlier work presented the MONEE (Multi-Objective aNd

open-Ended Evolution) to solve the problem of combining

objective-free and task-driven evolution in a single algorith-

mic framework [5]. The principal idea behind MONEE is to

employ concurrently two selection mechanisms in different

roles: environmental selection for open-ended evolution and

parent (or mate) selection for task-driven adaptation, both

operating solely at local level. The results reported there show

that the strategy of adding explicit task-based selection to

an environment-driven evolutionary system yields a system

where robots evolve behaviour that allows them to procreate

in the environment as well as perform their tasks. These results

were based in a scenario where the task (resource gather-

ing) did not interfere with the demands of the environment.

Environmentally optimal behaviour required moving around

the arena as much as possible, and this aligned with optimal

task behaviour, which involved seeking and collecting pucks

strewn throughout the environment: movement was commonly

beneficial behaviour without need for compensation.

This paper investigates the effects of a scenario where

the task requirements oppose those of the environment. In

particular, cases where executing the task is detrimental to a

robots life expectancy, e.g., because it implies a physical risk



or simply drains batteries rapidly. The environment and task

are essentially the same as in [5], but in this case, picking up

a puck incurs a penalty and the robot’s remaining lifetime is

reduced by some percentage – the pucks are poisonous. This

causes a complex interaction between the requirements posed

by task and environment. Disregarding the task, the robots

would avoid the pucks to maximise their lifetime and so have

more opportunities to spread their genome. However, robots

that perform the task well are more likely to be selected as

parents once they have spread their genomes.

We conduct a series of simulation experiments with popu-

lations of 100 robots and varying poison levels to investigate

what balance evolution strikes between these conflicting de-

mands.In the following, we show that the explicit task-based

parent selection outweighs the implicit environmental survivor

selection until the penalty of performing the task becomes very

high.

II. RELATED WORK

Evolutionary Robotics has been widely studied since the

early 1990s as a tool to design the morphology and control of

robots through evolutionary algorithms [4]. Initially, research

focussed on individual robots, but since then substantial effort

has been directed at evolution in larger numbers of interacting

autonomous robots in swarms [6], research projects include for

instance the Swarmanoid project [7]) or modular robots (e.g.

M-tran [8]). Bongard [9] provides an overview of this vein of

evolutionary robotics research. Evolutionary robotics research

encompasses evolutionary algorithms to develop straightfor-

ward tasks such as obstacle avoidance for differential drive

robots [4] to Bongard et al’s artificial ontogeny [10] that

develops morphology and control in concert and from evolving

diverse behaviours [11] to self-modelling [12]. What almost

all these contributions to the field have in common is that the

evolutionary process is employed to optimise robots to achieve

some fixed user-defined objective at design time. They employ

the classical evaluate-select loop of evolutionary computing

and in that sense differ little from non-robotic evolutionary

algorithms.

Watson et al. [13] coined the phrase ‘embodied evolution’

in a depart from this paradigm to one of distributed on-line

evolution that enables adaptivity at run time. With embodied

evolution, the robots autonomously find mates and exchange

genetic material without central oversight: evolution occurs

continuously, asynchronously and at run time through robot

interactions rather than at design time by virtue of a central

control loop. Selection is based on local assessment of task

performance, so it shares the task-driven focus of more main-

stream evolutionary robotics. Embodied evolution -on-line

evolution in general- implies some environmental selection:

robots that do not meet the requirements of the environment

and end up stuck or with empty batteries effectively remove

themselves from the gene pool. The implications of this

environmental pressure are not considered, however, nor are

they separately researched. In many cases, embodied evolution

implementations employ task-related (virtual) energy to deter-

mine parent as well as survivor selection [13], [14]. In these

cases, there is no clear distinction between selection based

on task performance and based on environmental aptitude and

task and environment are necessarily aligned.

Objective-free evolution as well as self-replication have

been studied in Artificial Life since Rasmussen’s [15] and

Ray’s [16] work. Such research primarily investigates evo-

lutionary dynamics in the absence of tasks, but as a result

of implicit or environmental criteria that impact the ability

to spread genomes through the population. Such open-ended

approaches have gained interest from the evolutionary robotics

community, for instance in Bianco and Nolfi’s experiments

with self-assembling organisms [17], Schwarzer et al’s work

on artificial sexuality [18] and more recently in the mEDEA

algorithm [19].

Bredeche et al. describe mEDEA [19], an open-ended evo-

lutionary algorithm where autonomous robots move around

an arena while continually broadcasting their genome over

a short range. Meanwhile, they also receive genomes from

other robots that come in communication range. When a

robot’s lifetime expires, it randomly selects one of the received

genomes, modifies that using mutation and starts a new life

of broadcasting this new genome. This set-up promotes, with

only environmental selection, robot movement through the

environment: genomes that cause the robot to move around a

lot are spread at a much higher rate than genomes that cause

their host to stand still.

In the Avida Artificial Life system [20], organisms –

‘Avidians’, virtual machine code programs– face a combina-

tion selection pressures. One derives from the environment

and considers only efficient replication. The other source

of pressure is a task: Avidians that correctly solve some

computational problem are rewarded through an increased rate

of execution. Task-based selection is implicit: faster execution

implies more opportunities to procreate.

MONEE extends objective-free approaches with a system

where an individual can accumulate credits through task per-

formance – the better a robot performs a task, the more credits

it earns [5]. When an individual puts its genome forward as

a potential parent, it also passes information on its earnings

as an indication of its worth. The genomes with the highest

associated credits are then selected to produce new offspring

(inspired by [18], but there an individual’s capital was fixed

and did not reflect proficiency at any task).

The MONEE scheme is reminiscent of parental investment,

which has been investigated in ALife settings, including ex-

periments with robots [18], [21], [22]. In artificial life parental

investment is often used to give the offspring a starting value of

(virtual) energy [23]–[26] and a parent’s energy level is often

linked to task performance (e.g., agents tasked with eating

grass to gather energy [25]). The MONEE scheme differs subtly

but crucially from such parental investment schemes: a parent

does not actually invest when impregnating an egg because the

credits aren’t transferred but copied; there is no cost involved.



III. MONEE: MULTI-OBJECTIVE & OPEN-ENDED

EVOLUTION

A. Environmental Selection

The robot controller lifecycle in our experiments consists

of two phases: life and rebirth. The robot controllers have a

limited, fixed, lifetime during which they perform their actions;

moving about, foraging, et cetera (this lifetime may be reduced

by picking up pucks as described below). When their lifetime

ends, they enter a rebirth phase and become ‘eggs’: stationary

receptacles for genomes that are transmitted by passing live

robots.

The rebirth phase also lasts a fixed amount of time, and

once this has passed, the egg selects parents from the received

genomes to create a new controller. The robot then reverts to

the ‘life’ role with this new controller. Thus, robot controllers

can procreate by transmitting their genome to eggs, and the

more eggs a robot inseminates, the more chances it has for pro-

creation. Because the transmission of genomes is continuous

and at close range (e.g. through infrared), the more a robot

moves about the arena, the better its chances of producing

offspring.

This defines the environmental part of selection that pro-

motes movement and is based on the experiments with mEDEA

by Bredèche et al. [19]. This aspect of the set-up is open-ended

in the sense that it is objective-free: there is no calculated

performance measure that defines the chances of being se-

lected as parent, there is no task. Only the interaction between

environment and robot behaviour dictates which individuals

may or may not become parents.

B. Task-based Selection

To add task-driven parent selection to this basic evolutionary

process, the robots can, during their lifetime, amass credits by

performing tasks. For instance, a robot could get one credit for

every piece of ore it collects, one for successfully solving some

puzzle, and so on. When a robot passes its genome to an egg,

it passes the current credit count along with it and the egg uses

that information to select parents when it revives. The credits

relate task performance to reproductive success: besides the

open-ended goal of ‘merely’ transmitting genomes to eggs,

robots must also become proficient at the defined tasks for

these genomes to be selected. The more proficient a robot is

at a task, the higher its chances of procreating, but only when

it also successfully negotiates the environment.

Thus, we define two stages of selection: the first is implicit

and derives from the definition of the environment and its

rules for genome transfer. In the set-up of our experiments, it

promotes movement, just as in mEDEA. The second selection

stage explicitly considers the awards amassed by the individual

when selecting from genomes that each egg collected.

IV. EXPERIMENTAL SET-UP

A. Environment and Task

We implemented the MONEE algorithm in a simple 2D

simulator called RoboRobo [27], simulating 100 e-puck robots

Fig. 1. Experiment screenshot. Robots are shown as small circles with sensor
beams indicated. Pucks are shown as small green squares (the blue squares
show a second puck type that is disregarded in the experiments in this paper).
The shaded orange rectangles indicate arena walls and obstacles.

in an environment that contains obstacles and pucks. 1 The

sides of the square arena are roughly 330 robot body lengths

long (1024 pixels in the simulator), and it contains a number

of obstacles (see Fig. 1) and pucks. The pucks are spread

throughout the arena, and they are immediately replaced in

a random location when picked up. The robots move around

the arena, spreading their genome as they encounter eggs and

dying when their allotted time has passed.

Robots collect pucks simply by driving over them; the

more pucks they gather, the more likely their genome is to

be selected once an egg they impregnated revives. To detect

pucks, the robots have 8 special sensors, laid out in the same

manner as the standard e-puck infrared sensors: 6 face forward,

2 face to the rear. Each robot is controlled by a single-layer

feed forward neural network which controls its left and right

wheels. The inputs for the neural network are the robot’s puck

and obstacle sensors as well as two bias nodes. The robot’s

genome directly encodes the neural network’s weights as an

array of reals.

As mentioned, the robots alternate between periods of active

puck gathering (life phase) and motionless genome reception

(egg phase). The egg phase lasts 200 time steps, the life phase

is initialised at 2,000 time steps, but to prevent synchronised

cycles among the robots, we add a small random number

to each robot’s fixed lifetime. This desynchronises switching

between life and rebirth even though our runs start with all

robots in sync at the first time-step of their lifetime.

1Code for the experiments and analysis scripts is available from https://
github.com/ci-group/monee.git.



At the end of the egg phase, a parent is selected from the

received genomes using binary selection on the basis of the

number of pucks collected (i.e., on their task performance).

Offspring is created by and mutating the parent weights using

gaussian perturbation with a single, fixed mutation step size

σ = 1. This single-parent, mutation-only scheme is common

in evolution strategies that are known to perform well on

problems with continuous-valued genomes [28].

B. Poisonous Pucks

To juxtapose the task and environmental requirements, col-

lecting a puck incurs a penalty: the robot’s remaining lifetime

is reduced by a set percentage – the poison level. Suppose, for

instance, that some robot has a remaining lifetime of 1,000

time steps as it picks up a puck in an experiment where the

poison level is set to 10%. It’s remaining lifetime is then

immediately reduced to 900 time steps. If this robot were

to immediately pick up another puck, its remaining lifetime

would again be reduced by 10%, this time to 810 time steps. In

absolute numbers, this penalises ‘young’ individuals more than

it does ‘old’ ones, but the robots have no concept of time or

age and so cannot take this into account, for instance, to start

gathering pucks later in life. We run a series of experiments

with poison levels fixed at 0, 2, 5, 10, 20 or 50%.

As control, we also run experiments where no task is defined

and parent selection within an egg is random, disregarding

the number of pucks collected. We run 32 repetitions of each

experiment.

C. Quantifying Selection Pressure

To facilitate a quantitative comparison of the selection

pressure exerted by the environment and by the task, we

use Kendall’s τ coefficient [29] to quantify the correlation

between behaviour and number of offspring in a population.

High values for τ indicate a strong correlation and therefore a

high selection pressure, allowing us to quantitatively compare

the selection pressure between different scenarios.

Because the robots change controllers asynchronously, the

definition of a population is not entirely straightforward. In

this case, we define a population as all the controllers that ran

to completion within a certain timeframe (intervals of 5000

time steps).

When parent selection is based on the number of pucks

collected, we calculate τ for a population to determine the

correlation between the number of pucks collected to the num-

ber of children for each individual. The control experiments

require another measure of relevant behaviour as the number of

collected pucks is explicitly disregarded in these experiments.

The rules for genome exchange create a pressure towards

movement in this case, so the most relevant behavioural

measure is the total distance an individual has covered during

its life. Again, we measure the correlation, this time between

distance covered and offspring.

V. RESULTS

To assess the take-up of the tasks, we need to establish

whether the robots learn to gather pucks when the task is

in force. Figure 2 shows the number of pucks collected over

time for different poison levels with and without the task.

The left-hand panel shows a clear trend towards collecting

increasing numbers of pucks as evolution progresses. The grey

line shows the number of pucks collected when the pucks are

not poisonous, the blue lines show the same for increasing

poison levels.

Figure 2b shows that the robots collect far fewer pucks in the

control experiments. Even when the pucks are not poisonous

(grey line), the number of pucks collected is much lower than

for the highest poison level with the task. For increasing poison

levels the robots learn to avoid the pucks so as to maximise

their lifetime (blue lines).

Clearly, even when collecting pucks has a substantial impact

on lifetime, the evolutionary balance still favours the task. The

number of pucks collected does decrease as the poison level

rises. This is at least in part due to the fact that the reduction

in lifespan that results from collecting poisonous pucks. The

shorter lifespan causes a larger amount of time to be spent in

egg state, when no collecting takes place.

To correct for this phenomenon, we also consider the num-

ber of pucks collected normalised for lifetime by calculating

the ratio of pucks collected to lifetime: an individual that lived

for T time steps and collected N pucks has a ratio of N

T
;

the number of pucks collected per tick of activity. Figure 3

plots this ratio over time. This shows that the robots, in fact,

barely reduce their puck-collecting efforts - the rate at which

robots pick up pucks while they are active develops almost

identically, or at least reaches identical levels, for poison levels

up to 20% as it does when the pucks are not poisonous at all.

Only when the poison level reaches 50%, i.e., when picking up

a puck halves the remaining lifespan, do we see an appreciable

effect.

It appears that the evolutionary equilibrium between task

and environment is very biased to favour the task, at least for

the range of poison levels we considered. We were surprised

by this finding: the robots spread their genomes at a much

lower rate when their lifetime is shortened, and if an individ-

ual’s genome isn’t collected by eggs, what would the benefit

of a higher puck count be?

To understand why the task is so much more important

for evolution, we compare the pressure exerted by the two

selection mechanisms. To this end, we quantify the selection

pressure for as described in Section IV-C. We divide the

experiment into slices of 5,000 ticks and then consider the

robots that complete their lifetime during each interval as a

population where we quantify selection pressure in terms of

distance covered or pucks collected as described above.

Figure 4 shows the results of this analysis. The trend for the

experiments with the task of an initially low selection pressure

that peaks and then levels off once the required behaviour is

well established in the population is similar to that reported

in [5]. The selection pressure in the control experiment (red

line) that derives from the environment’s push for movement

hovers around τ = 0.1 – if there is a similar trend, it is much

less pronounced.



(a) Puck collecting task (b) No task defined

Fig. 2. The median (N=32) number of pucks collected by the population per 1,000 time-steps for poison levels ranging from a 0 (grey) to 50 (dark blue)
percent lifetime penalty. The left-hand graph shows results when parent selection is based on the number of pucks collected. The right-hand panel shows the
number of pucks collected when parent selection is random (i.e., when there is only environmental selection pressure). When the task is in effect, the number
of pucks collected does not drop substantially even though collecting pucks impacts the robots’ lifetime. When parent selection is random, far fewer pucks
are collected, particularly for higher poison levels.

Fig. 3. The median (N=32) number of pucks collected, normalised for
lifetime, per 1,000 time-steps for poison levels ranging from a 0 (grey) to 50
(dark blue) percent lifetime penalty. This highlights the fact that the poison
level has only limited influence on the balance between survival and task.

It seems that the disparity in selection pressure from en-

vironment and task results in the bias towards behaviour

that is effective for the task, but detrimental in terms of

survival. At a poison level of 50% the magnitude of task-

based selection pressure is very close to the selection pressure

exerted by the environment. Even such a small difference

causes substantial bias towards task performance: the decrease

in pucks to lifetime ratio between 20 and 50% is clear in

Figure 3, and it contrasts with the almost overlapping curves

for lower poison levels, but the drop is not dramatic.

VI. CONCLUSION

This paper investigated the problem of combining task-

directed optimisation and environment-driven adaptation in

situations where task and environment conflict. Specifically,

the robots in our experiments were tasked with collecting

pucks while this very act reduced their lifespan.

We found that, even when the penalty of collecting a puck

amounts to halving an individual’s lifetime, the populations

collect substantial amounts of pucks, many more than they

do in the control experiments where collecting pucks has

no adverse effect nor any benefit. The obvious, if somewhat

surprising, conclusion is that the benefit of collecting pucks

an increasing one’s chances in the second stage of selection

which considers task performance outweighs the benefit of

longevity when pucks are avoided.

We quantitatively analysed the selection pressure due to



Fig. 4. Quantitative analysis of selection pressure over time. Selection
pressure is quantified as the correlation between task performance (when
there is no task defined: distance covered during the individual’s lifetime)
and number of offspring per individual. The selection pressure that derives
from the environment (red) is clearly lower than that from task-based
parent selection for poison levels up to 20%. For a 50% poison level, the
selection pressure from puck collection is still, albeit slightly, higher than the
environmental selection pressure.

environment-driven survivor selection and that due to task-

based parent selection to better understand the cause of this

proclivity for task-based behaviour. The analyses showed that

explicitly selecting for task performance (using binary tourna-

ment in these experiments) yields a selection pressure that is

substantially higher than the selection pressure implied by the

environment. The task-based selection pressure does decrease

for higher poison levels, but even the small difference in the

magnitude of selection pressure we see for a very high poison

level (halving the remaining lifetime for every puck collected,

or a 50% poison level) is enough to warrant substantial task

performance.

This leads to the conclusion that the effect of combining se-

lection mechanisms depends strongly on the relative strengths

of the selection pressure these mechanisms exert. Even small

differences in the magnitude of selection pressures may cause

one selection mechanism to outweigh another when they are

combined.

This finding may have implications beyond the current

case of environment-driven and task-based selection to other

combinations of selection, for instance when selection is

partly interactive or in memetic systems where social learning

and evolution interleave. We will investigate the effects of

juxtaposed requirements further, for instance also consider-

ing conflicting tasks (where selection pressure should be of

comparable magnitude).
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