
VU Research Portal

AB=A: execution equivalence as a new type of testing oracle.

Elyasov, A.; Prasetya, W.; Hage, J.; Rueda, U.; Vos, T.; Condori-Fernandez, O.N.

published in
Proceedings of the 30th Annual ACM Symposium on Applied Computing
2015

DOI (link to publisher)
10.1145/2695664.2695877

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Elyasov, A., Prasetya, W., Hage, J., Rueda, U., Vos, T., & Condori-Fernandez, O. N. (2015). AB=A: execution
equivalence as a new type of testing oracle. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing (pp. 1559-1566). ACM. https://doi.org/10.1145/2695664.2695877

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303541893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2695664.2695877
https://research.vu.nl/en/publications/6b2ba6b7-6f11-4f31-960f-619406a383af
https://doi.org/10.1145/2695664.2695877

AB= BA: Execution Equivalence as a New Type of Testing
Oracle∗

A. Elyasov, W. Prasetya, J. Hage
Utrecht University

Utrecht , The Netherlands
{a.elyasov,s.w.b.prasetya,j.hage}@uu.nl

U. Rueda, T. Vos, N. Condori-Fernández
Universitat Politècnica de València

Valencia, Spain
{urueda, tvos}@pros.upv.es,
n.condori-fernandez@vu.nl

ABSTRACT
This paper introduces a new type of automated testing ora-
cle, called the execution equivalence (EE) invariants. These
invariants can be mined from application logs that capture
both application events and application states. The EE-
invariants express an equivalence relation on the sequences
of application events in terms of equality of respective ini-
tial and final states, which these sequences leave in the logs
during the run-time. We claim that even equivalences up to
a length of four events already provide useful testing oracle.
We extended our tool LOPI (LOg-based Pattern Inferencer)
with the algorithm for mining EE-invariants, and evaluated
the effectiveness of these invariants on a case-study — the
web application Flex Store. The evaluation is carried out
based on two parameters: the false positive rate and the
fault finding capability. Moreover, we compared the strength
of LOPI’s execution equivalences with Daikon’s data invari-
ants. This comparison has shown that Daikon was slightly
more effective than LOPI in testing Flex Store. However,
we have found a suitable confidence level for LOPI which
allows to outperform Daikon.

Categories and Subject Descriptors
F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]:
Specifying and Verifying and Reasoning about Programs —
Assertions, Invariants, Specification techniques

General Terms
Experimentation, Measurement, Reliability

Keywords
regression testing, automated oracles, Daikon, inference, logs

∗This work was financed by the FITTEST (Future Internet
Testing) project, ICT-2009.1.2, no 257574.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM ACM 978-1-4503-3196-8/15/04$15.00
http://dx.doi.org/10.1145/2695664.2695877

1. INTRODUCTION

Testing shows the presence, not the absence of bugs.

—Edsger W. Dijkstra, 1969

The laconic definition of testing given by Dijkstra more
than 40 years ago still strikes by its profundity. But it does
not prescribe a recipe to distinguish a bug from a normal
behavior. Observing an application failure immediately in-
dicates the presence of an error in the program. But not
all errors result in evident failures. Some errors just infect
the program state while the program still executes normally.
The infected state can be identified by contrasting it with
an expected valid state of the program. Usually, the descrip-
tion of the expected state is informal, and mostly relies on
the user’s understanding of the program behavior. There-
fore, it practically becomes difficult to almost impossible to
distinguish erroneous states from valid ones without user
intervention. The problem of acquiring the expected states
is known in the literature as the oracle problem [17]. The
purpose of an oracle is to qualify tests as passing or failing.

Most approaches to the construction of automated ora-
cles are based on learning generic properties from a set of
trustable executions. Then, these properties are assumed to
also hold for new executions of the same program. Thus,
the properties can be used for identifying abnormal behav-
iors of the program. The behavior is considered abnormal if
it violates one of the properties previously mined from the
set of executions observed so far.

Orso and Rothermel in their recent travelogue on advances
in software testing for the past 14 years have acknowledged
the lack of success in the automated construction of ora-
cles [12]. Despite significant progress in the automation of
test generation, the human tester is still the best testing or-
acle available. Nguyen et al. [11] have evaluated the cost
and effectiveness of three state-of-the-art automated oracle
techniques: Data Invariants (Daikon) [7], Temporal Invari-
ants (Synoptic) [2], and Finite State Automata (KLFA) [10].
The effectiveness of oracles was defined as a combination of
two parameters: the rate of false positives (FP) and the fault
finding (FF) capability. They found that despite the ability
to reveal faults automatically, all three techniques are suf-
fering from a high FP rate (on average 30%). Such an FP
rate in addition to a limited FF capability strongly suggests
the infeasibility of the existing automated oracle techniques
to be successfully adopted in practice.

The problem of effectiveness of automated oracles moti-
vates us to propose a new class of software oracles, that we

1559

call execution equivalence invariants (EE-invariants). Two
executions are considered equivalent if they start in the same
initial state, and result in the same final state. We propose
to infer EE-invariants from application logs that are repre-
sented as alternations of application events and states logged
in coordination. The main contributions of this work are the
following:

1. We introduce EE-invariants — a new type of auto-
mated oracle that can be mined from application logs.

2. The inference algorithm is implemented in the tool
called LOPI, which, as our evaluation has shown, can
efficiently learn EE-invariants up to length four.

3. We perform a preliminary evaluation of the effective-
ness of EE-invariants by measuring their false posi-
tives (FP) rate and fault finding (FF) capability. The
evaluation has shown that the FP rate lies between
2-30%, whereas FF capability is around 70%. The
comparison with Daikon revealed that the effectiveness
of EE-invariants is competitive with the ones found
by Daikon. We have also found an initial configura-
tion that allows to maximize the effectiveness of EE-
invariant and, finally, outperform Daikon.

The paper is structured as follows: The EE-invariants and
their inference procedure are presented in Section 2. Sec-
tion 3 describes the design of our experimental evaluation.
Research questions are addressed in Section 4. Future work
and threats to validity are discussed in Section 5. Related
work is summarized in Section 6. Section 7 concludes the
paper.

2. EXECUTION EQUIVALENCE
This section formally defines execution equivalence (EE),

introduces EE-invariants, and also describes the inference
procedure for the EE-invariants. But, first, we illustrate the
concept of EE-invariants by an example.

2.1 Motivating Example
Let us consider a simplified version of the calculator appli-

cation that can only divide two natural numbers. The appli-
cation has two editable fields X and Y , where the operands
of division are entered, another field to display the result,
the button div to perform the division, and one extra button
clear to erase all fields. Figure 1 shows an example log gen-
erated by the calculator during one user session. Each row
in the log records an application event and the state of the
application after the execution of the event. We recognize
two event sequences as equivalent if they always end up in
the same final state, whenever they start in the same initial
state. Invariants on the right in Figure 1 are constructed
according to the aforementioned definition of equivalence,
based on the information in the log on the left. For in-
stance, the first invariant states the commutativity of two
events editX and editY , which can be established by observ-
ing the occurrences of these two events in the sample log.
The following section formally treats all concepts illustrated
here such as events, logs and invariants.

2.2 Definitions
As is the case for many types of automated oracles, the

EE-invariants are inferred from execution logs. Each log en-
try records an event that occurred in the application, and

Log X=? Y=?
editX 5 ?
clear ? ?
editX 6 ?
editY 6 1
clear ? ?
clear ? ?
editY ? 1
editX 6 1
div 6 1

EE-invariants:
[editX; editY] ≡ [editY ; editX]
[editX; clear] ≡ [clear]
[div] ≡ []

Figure 1: Log File and EE-invariants

the application state after the event has been successfully ex-
ecuted. Events are derived from a finite alphabet E , whereas
states result from applying a projection over concrete states
of the application. An execution sequence or execution is
a sequence of application events τ = e1, . . . , en executed in
sequence. We say that τ has length n (|τ | = n), as it con-
sists of n events. There is a special event ε ∈ E that when
executed never produces any affect on the application state;
its length is zero, i.e. |ε| = 0. In response to user actions,
the application generates log files.

Definition 1 (Log). Given an application A in a state
s0, the log file produced by A in response to the execution se-
quence τ = e1, . . . , en is the following sequence:

L = [(ε, s0), (e1, s1), . . . , (en, sn)],

where ei ∈ E is an application event, and si ∈ S is the
application state sampled right after the event was executed.

To sample the initial state of an execution sequence, we
assume that the ε event always precedes every actual ex-
ecution. L(A) is the set of all possible logs produced by
the application A in response to all possible execution se-
quences drawn from the event alphabet E . We can define an
equivalence relation on the executions produced by the ap-
plication A. Two event sequences are equivalent, if starting
from equal initial states they end up in equal final states, or
more formally:

Definition 2 (Execution Equivalence). Given
an application A and the set of application logs L(A), two
execution sequences τ1 = e1, . . . , el and τ2 = d1, . . . , dk are
equivalent, denoted as τ1 ≡ τ2, if ∀L1, L2 ∈ L(A) :

L1 = [. . . , (ai, s
1
i),

τ1

(e1, s
1
i+1), . . . , (en, s

1
i+l), . . .]

L2 = [. . . , (bj , s
2
j), (d1, s

2
j+1), . . . , (dk, s

2
j+k)

τ2

, . . .]

the following condition holds: s1i = s2j implies s1i+l = s2j+k.

The length of an execution equivalence is equal to the sum
of the lengths of both sides: |τ1 ≡ τ2| = |τ1|+ |τ2|.

2.3 Inference Procedure
Given a set of application events E and some n ∈ N, we

can generate all possible equivalences between execution se-
quences up to length n.

{(τ1, τ2) | τ1, τ2 ∈ E∗, |E| > 1, max(|τ1|, |τ2|) ≤ n},

where each pair in the set is an equivalence candidate τ1 ≡
τ2. The number of elements in this set grows exponentially
in n. Moreover, with the increase of the length τ1 or τ2, the

1560

Algorithm 1: inferEE(L,n,W): inference procedure

Input : L is a set of application logs
n is the maximal length of execution sequence
W = [(1, i1), . . . , (2n, i2n)] is a witness table

Output : set of valid invariants I justified on L
1 I ←− ∅
2 E ←− CollectExecutions(L, n) // E = [(τ, l, p, sI , sF)]

3 Eτ ←− GroupAndSort(E) // Eτ = [(τ, [(l, p, sI , sF)])]
4 for k ← 1 to |Eτ | do
5 for j ← k to |Eτ | do
6 (τk, wk)←− Eτ [k]
7 (τj , wj)←− Eτ [j]
8 l←− |τk|+ |τj |
9 c←− CountWitness(wk, wj)

10 if c ≥ W (l) then I ←− I ∪ (τk ≡ τj)

11 return I

12 Function CountWitness(w1, w2)
13 c←− 0
14 for i← 1 to |w1| do
15 for j ← 1 to |w2| do
16 (l1, p1, s

I
1, s

F
1)←− w1[i]

17 (l2, p2, s
I
2, s

F
2)←− w2[j]

18 if sI1 = sI2 then

19 if sF1 = sF2 then c←− c+ 1 else return -1

20 return c

likelihood of observing equivalence decreases. Therefore, it
is practically desirable to keep the value of n small. For
example, we suggest to focus on executions up to length two
events.

The inference procedure is sketched in Algorithm 1. The
procedure takes a set of application logs, an upper bound on
execution length, and a witness table, and it returns a set
of invariants justified by the logs. The witness table defines
a mapping between the equivalence length and the num-
ber of times the equivalence is expected to be witnessed in
the logs. That is, the equivalence of length k is accepted
by the algorithm, if it is observed at least i times for some
(k, i) in the witness table. This allows us to avoid acci-
dental equivalences. Initially, the set of invariants is empty
(line 1). We start by scanning the set of logs L and col-
lecting all occurrences of executions up to length n (line 2).
Each occurrence is represented by a 5-tuple (τ, l, p, sI , sF),
where τ is an execution that occurred in the log l at a posi-
tion p, sI is an initial state preceding the execution τ , and
sF is a final state following τ . Then, we group occurrences
based on equal executions and sort them in the shortlex or-
der (line 3). Given the set of executions Eτ , the purpose of
the two nested for-loops on lines 4–10 is to form all possible
equivalence candidates and check them for validity on the
set of logs L.

For an equivalence candidate, the function CountWitness
(line 9) returns the total number of witnesses of that equiva-
lence. The code of CountWitness is presented below in the
same listing (lines 12–20). A pair of occurrences (lines 16,
17) with equal initial and final states increase the number of
witnesses; an occurrences pair with equal initial states but
unequal final states terminate the counting function for this
pair with the exit code −1; and if no pairs of occurrences
with equal initial states are found, zero is returned. Finally,
if the number of observed witnesses is greater than or equal
to the respective value for that equivalence in the witness ta-
ble W , we accept the equivalence as a valid oracle and add it
to the set O, line 10. Otherwise, the equivalence is rejected

Table 1: User Logs

logs: # 1 2 3 4 5 6 7* 8 9 10 11 12

total events 5 5 40 43 48 79 106 109 149 153 158 230
unique events 4 4 21 15 19 27 68 52 78 51 58 57
event variability 3.2 3.2 11 5.2 7.5 9.2 43.6 24.8 40.8 17 21.3 14.1

total length in events: 1125

and the next equivalence candidate should be considered.

3. EXPERIMENTAL EVALUATION
Nguyen et al. [11] in their recent study (2013) on cost

and effectiveness of automated oracles identified the follow-
ing four key parameters that determine the practicality of
the oracles obtained as result of dynamic log analysis: false
positive (FP) rate, fault finding (FF) capability, training
cost, and checking cost. Evaluation of our automated oracle,
which is represented by EE-invariants, is mostly focused on
the first two metrics, namely FP and FF. Though, the ques-
tions of inference and checking cost are also addressed. In
addition those questions, we discuss the comparative effec-
tiveness of the EE-invariants and Daikon [7] invariants used
independently or together. The inference of EE-invariants
is implemented in a tool called LOPI (LOg-based Pattern
Inferencer), which is available for download1 together with
all experimental data2.

3.1 Experiment Design
For the experimental evaluation of the EE-invariants, we

chose the web application Flex Store3. It is a prototype of
a web shop for online purchasing of mobile phones. The
application has been developed by Adobe to demonstrate
the facilities of the Flex Framework, which provides an ex-
tensive collection of highly customizable GUI components.
The application consists of 20 source files with a total of
2620 lines of code. We instrumented all GUI elements such
that each user action emits the respective message into the
log. The FITTEST Automation Framework4 provides con-
venient means to enable GUI logging for Adobe Flex appli-
cations. It is supplied with an extensive collection of log-
ging delegates for clickable GUI elements. We only had to
manually specify the application state — a collection of vari-
ables sampled after a GUI event is triggered. The applica-
tion state was characterized by seven variables representing
different aspects of the application such as the number of
phones in the shopping cart, and the number of currently
visible phones in the catalog. As a result, all user activities
such as browsing and filtering were traced in the log together
with the respective application states.

Twelve different participants were requested to explore
the functionality of Flex Store within a fixed period of time.
In total we have obtained twelve different logs of lengths
from 5 to 230 events, Table 1. The logs were stored in the
FITTEST Logging Format [13] that captures information
about both the application events and states. The FITTEST
toolset provides a utility called (haslog) with the follow-
ing functionalities: conversion of the “raw” FITTEST log
(.log) to XML,“raw”log compression, conversion to Daikon’s
traces (.dtrace) etc. LOPI directly operates on the logs

1 https://github.com/aelyasov/LOPI
2https://github.com/aelyasov/LopiOracleEvaluation
3http://www.adobe.com/devnet/flex/samples/flex_
store_v2.html
4https://code.google.com/p/fittest/

1561

produced in the FITTEST format, whereas in the case of
Daikon, logs have to be converted to dtraces.

Conversion to Daikon The translation of FITTEST
logs to the Daikon format is a complex procedure. Some rele-
vant details of this procedure are exposed below. First, each
variable in a dtrace should be declared in advance, together
with its attributes such as its type. Conveniently, all dtrace
logging points (ppt) have exactly the same set of declarations
because the application states in the FITTEST logs consist
of the same set of variables. Second, states and events in
the FITTEST logs should be mapped to their counterparts
in the dtraces. This way each variable in a FITTEST log
is mapped to the corresponding variable of the dtrace. Ev-
ery dtrace event consists of two components: ENTER and
EXIT. During the conversion, the state preceding the event
is associated with the ENTRY ppt, while the current state
is coupled with the EXIT ppt.

4. RESEARCH QUESTIONS
The invariants (oracles) are valuable artifacts in software

testing even though they neither sound nor complete [15].
But the level of“imperfection”should be precisely estimated,
and possibly minimized. The practicality of invariants is
defined by the rate of spurious warnings they give rise to
and the number of real faults that the invariants are able to
catch. Considered together these two parameters constitute
the accumulated effectiveness of the invariants. Below is the
list of research questions that should be addressed for EE-
invariants in order to evaluate their potential for software
testing.

RQ1 What is the rate of false positives?

RQ2 What is the fault finding capability?

RQ3 How to maximize the accumulated effectiveness?

RQ4 Which invariants are more effective: Daikon or LOPI?
Can we combine them to achieve better effectiveness?

RQ5 What is the inference and checking cost?

In the rest of this section, we will try to answer all of these
questions for EE-invariants.

It is evident that the quality of invariants depends on the
set of logs used in the inference. Poor and non representative
logs supplied for the inference can cause a high FP rate and
low FF capability. To infer EE-invariants, we have exploited
the complete set of logs collected in the experiment described
in Section 3.1, which provides almost 100% line coverage of
the Flex Store source code. We assume that satisfying this
coverage criterion is a reasonable starting point to proceed
with the evaluation.

4.1 FP Rate
Given an application and a set of invariants for this ap-

plication, the FP rate is the percentage of false alarms that
have been raised by the invariants on a set of logs produced
by perfectly valid executions. Given a set of invariants I,
the absolute false positive rate of I is the percentage of all
possible valid logs rejected by I:

FPabs(I) =
|all possible logs rejected by I|

|all possible logs| .

Since the number of executions is infinite (or just huge),
practical treatment of the FP rate requires to define a rel-
ative FP rate (with respect to some set of validation logs
L):

FPrel(I, L) =
|logs from L rejected by I|

|L| .

In place of L in the definition of FPrel, we substitute the
test cases logs, that is the logs that result from the execu-
tion of the Flex Store test cases generated by the FITTEST
ITE [16]. The ITE supports several techniques for test
case generation. We chose the state-based test case gen-
eration [9]. This technique was applied to the original user
logs, and it produced 6317 executable test cases with an av-
erage length of 10 events. These test cases exhibited a lot
of new executions not originally covered in the user logs.

Results: The level of the FP rate is presented by the
columns #FP and FP% in Table 2. The first column says
how many traces out of 6317 valid ones were rejected by the
invariants, when the second is their respective percentage.
We can see that LOPI (first row) has raised 30% FP rate.
The invariants with such a high FP rate are often considered
to be difficult to deal with in practice. In Section 4.3 we
discuss how to handle this problem. The top part of Table 3
presents how the FP rate varies for the EE-invariants of
different length (n = i, i ∈ [1, 4]). It is clear that the value
of FP rate decreases with the length (n) of the invariant.
For instance, the invariant of length one have contributed
to the FP rate by 22%, whereas those of length four gave
only 0.4% of FPs.

4.2 FF Rate
The capability to detect faults characterizes the potential

of invariants to discover errors in the programs. But how can
this potential be measured? Program mutations provide an
effective way to compare the power of test suites. Given a
program and a set of mutations of the program, one test
suite is considered more powerful than the other, if it kills
more mutations. The so-called mutation coverage is a useful
measure for the quality of test suites.

In a similar way, mutations can be exploited for estab-
lishing of the invariant’s power. Given a program, a set of
mutations on the program, and a test suite, invariants that
are able to kill a larger number of mutations for the given
test suite are more suitable for testing that program than
others. The usual way to estimate fault detection capability
of invariants requires the following three steps:

1. inject a number of different faults into the application
code, one at a time (the more faults the better);

2. drive the application to trigger the faults, consequently
leaving some footprints in the corresponding log files;

3. check the generated logs for violation of any invariant.

It is clear that one set of invariants is more powerful than
another, if it reveals more injected faults. In our case, imple-
mentation of the first two steps above meets some difficul-
ties. First, we have to have access to the history of real faults
in Flex Store, which is not the case for us. Moreover, such a
history often is incomplete due to the limitations of testing.
Second, each fault should have a test case exposing it to
the outside world. And finally, this test should leave some

1562

Table 2: Summary of Evaluation Results

Invariants
Mutation Operators

#FF #FP FF% FP% P R F1 F2 F0.5ABS DAR DEC EAR EPS INC MIN RAR RLE RVS SEV SLE SST ZER

LOPI 56 186 2019 186 184 2019 1929 182 8 92 2014 4558 4925 1929 20287 1936 75.9 30.6 0.694 0.759 0.725 0.745 0.706
LOPI* (optimal) 56 180 1959 180 180 1959 1869 176 7 90 1587 4300 4897 1869 19309 139 72.3 2.2 0.978 0.723 0.831 0.763 0.914
Daikon 44 142 1525 143 206 1498 1897 143 16 70 4272 4655 4752 1840 21203 1718 79.4 27.2 0.728 0.794 0.76 0.78 0.74
LOPI ∩ Daikon 42 114 1345 117 179 1305 1685 122 4 60 1766 4181 4663 1639 17222 822 64.5 13 0.87 0.645 0.741 0.68 0.813
LOPI ∪ Daikon 58 214 2199 212 211 2212 2141 203 20 102 4520 5032 5014 2130 24268 2832 90.8 44.8 0.552 0.908 0.687 0.804 0.599
LOPI* ∩ Daikon 42 114 1345 117 179 1305 1685 122 4 60 1766 4181 4663 1639 17222 67 64.5 1.1 0.989 0.645 0.781 0.693 0.894
LOPI* ∪ Daikon 58 214 2199 212 211 2212 2141 203 20 102 4520 5032 5014 2130 24268 1790 90.8 28.3 0.717 0.908 0.801 0.862 0.748
Synoptic 0 0 0 0 0 0 0 0 67 0 5270 5270 0 0 10607 6286 39.7 99.5 0.005 0.397 0.01 0.024 0.006
KLFA 0 0 0 0 0 0 0 0 99 0 5493 5494 0 0 11086 6305 41.5 99.8 0.002 0.415 0.004 0.01 0.002

Total Mutants 58 221 2269 221 212 2269 2172 214 106 106 5565 5565 5565 2172 26715 6317

Table 3: Evaluation of LOPI EE-invariants

Length #W FP% FF% P R F1 F2 F0.5

n = 1 1 22.3 60.9 0.777 0.609 0.683 0.637 0.736
n = 2 1 6.3 57.6 0.937 0.576 0.713 0.624 0.833
n = 3 1 3.4 62.3 0.966 0.623 0.757 0.671 0.87
n = 4 1 0.4 14.1 0.996 0.141 0.247 0.17 0.45

n = 1 3 0.2 54.5 0.998 0.545 0.705 0.744 0.856
n = 2 2 1.6 53.3 0.984 0.533 0.691 0.613 0.842
n = 3 2 0.5 55.8 0.995 0.558 0.715 0.628 0.86
n = 4 1 0.4 50.9 0.996 0.509 0.674 0.564 0.836

evidence in the log file. Otherwise, the invariants would be
blind to the introduced faults.

Since the faults are detected based exclusively on the in-
formation present in the logs, we propose to inject faults
explicitly in the logs instead of the application code. This
decision, of course, has its own pros and cons. On the one
hand, it solves all issues with the mutation-based approach
concerning real fault injection. On the other hand, some of
the log mutations may have no associated faults, i.e. they
will be infeasible program errors.

The log-based mutation approach requires some ground
string to be used in place of a mutation object. The ground
string could be chosen among twelve user logs. Applying mu-
tations to all logs in turn is infeasible since each log produces
thousands of mutants. Therefore, we decided to select one
representative log file out of the 12 available and apply mu-
tation operators to it. We have chosen log #7 from Table 1
to play the role of the ground string because it has the high-

est event variability, defined as |unique events|2
|total events| . Analogous to

the traditional program mutations [1], we introduced a set
of mutation operators, mutators, on logs in Table 4. These
mutators describe structural log transformations, which are
driven by the abstract syntax of the logs [13]. A log is a list
of event-state entries. There are two types of values stored
in states: primitive and object. A primitive value is one of
the primitive types such as integer and string. An object
value is a collection of different values that together define
the type of the object. An array is a special type of objects
that consists of values of a uniform type.

To systematically describe log transformations, we grouped
them into three categories in Table 4: 1) log entry mutators
(RLS–SST); 2) primitive mutators (INC–RVS); and 3) ar-
ray mutators (EAR–DAR). Each operator was exhaustively
applied to the ground string (log #7). This process derived
a total of 26715 mutants. The FF capability in this settings
has been measured as the number of mutants killed by the
invariants.

Results: In Table 2, the columns #FF and FF% indi-
cate respectively the number of killed mutants (out of 26715)
and their percentage rate. LOPI identified almost 76% of
all mutations. In Table 2, we can also see the number of
killed mutants per mutation category, where the bottom row

Table 4: Log Mutation Operators

Oper. Description initial log mutated log

RLE remove a log entry l;m;n l;n
SLE swap two log entries l;m;n n;m; l
SEV swap two events e〈p〉; f〈q〉; d〈r〉 d〈p〉; f〈q〉; e〈r〉
SST swap two states e〈p〉; f〈q〉; d〈r〉 e〈r〉; f〈q〉; d〈p〉

INC increase by one an integer var e〈v = 2〉; f e〈v = 3〉; f
DEC decrease by one an integer var e〈v = 2〉; f e〈v = 1〉; f
ABS absolute value of an integer var e〈v = −2〉; f e〈v = 2〉; f
ZER assign zero to an integer var e〈v = 2〉; f e〈v = 0〉; f
MIN negate an ineteger var e〈v = 2〉; f e〈v = −2〉; f
EPS assign empty to a string var e〈v = “a“〉; f e〈v = ““〉; f
RVS reverse a string var e〈v = “ab“〉; f e〈v = “ba“〉; f

EAR empty an array var e〈v = [1, 2]〉; f e〈v = []〉; f
RAR reverse an array e〈v = [1, 2]〉; f e〈v = [2, 1]〉; f
DAR drop the last elem. of an array e〈v = [1, 2]〉; f e〈v = [1]〉; f

shows the total number of mutation in each category. The
killing rate of LOPI in all categories except two (RLE and
SEV) is close to 90%. RLE and SEV are outliers because
the ground string (initial log) has a high density of skip-like
events. When an entry with such event is removed or two
skip events are swapped, the effects of the corresponding mu-
tations are unnoticeable for the most of the EE-invariants.
Another consequence of having a large number of skip events
is almost 60% FF capability of the invariant of lengths 1–3
in Table 3. For instance, if a and b are both skip events, i.e
a ≡ b ≡ ε, then the following invariants also hold: ab ≡ ε,
a ≡ b, ab ≡ b, etc.

4.3 Accumulated Effectiveness
There is a duality between FP rate and FF capability. To

measure the former we assume that the invariants are com-
plete, provide an additional set of valid traces, and count
how many of them are rejected by the invariants. The
smaller this number is, the lower the FP rate of the invari-
ants. To measure the latter, we assume that the invariants
are sound, provide an additional set of invalid traces, and
count how many of them are spotted by the invariants. The
greater this number is the higher the FF capability of the
invariants. The cumulative effectiveness of invariants is com-
posed of both the FP rate and the FF capability. Making
inference more precise, we decrease the FP rate, but this
often also reduces the FF capability. Inversely, increasing
the FF capability of invariants typically increases the FP
rate. This tight correlation requires to make compromises
selecting the invariants for testing.

We use the Fβ score — a measure of a test’s accuracy
taken from information retrieval [14] — to measure the cu-
mulative effectiveness of invariants, which depends on both
the FP rate and FF capability. It is defined in terms of the
precision P and recall R according to the formula:

Fβ = (1 + β2) · P ·R
(β2 · P) +R

The value of the F1-score is the harmonic mean of the pre-
cision and recall, i.e. they are both equally weighted. Op-

1563

Table 5: Evaluation of Daikon Invariants

Invariants FP% FF% P R F1 F2 F0.5

EltLowerBound 0.8 10.2 0.992 0.102 0.185 0.124 0.361
EltOneOf 4.1 14 0.959 0.14 0.244 0.169 0.442
EltwiseIntGreaterThan 0 3.6 1 0.036 0.069 0.045 0.157
EltwiseIntLessThan 0.8 1.7 0.992 0.017 0.033 0.021 0.08
IntEqual 6.2 42.9 0.938 0.429 0.589 0.481 0.758
IntGreaterEqual 0.4 4.4 0.996 0.044 0.084 0.054 0.187
IntGreaterThan 2 2.9 0.98 0.029 0.056 0.036 0.13
IntLessEqual 3.9 3.5 0.961 0.035 0.068 0.043 0.153
IntLessThan 5.7 7.9 0.943 0.079 0.146 0.097 0.296
IntNonEqual 3 16.5 0.97 0.165 0.282 0.198 0.491
LinearBinary 0 0.8 1 0.008 0.016 0.01 0.039
LowerBound 1.2 2.6 0.988 0.026 0.051 0.032 0.118
NumericInt$Divides 1 4.1 0.99 0.041 0.079 0.051 0.176
OneOfScalar 17 44.6 0.83 0.446 0.58 0.491 0.708
OneOfSequence 18.3 50.6 0.817 0.506 0.625 0.548 0.728
OneOfString 6.3 27.4 0.937 0.274 0.424 0.319 0.631
SeqSeqIntEqual 3 51.7 0.97 0.517 0.674 0.57 0.825
SeqSeqIntGreaterEqual 0 4.5 1 0.045 0.086 0.056 0.191
SeqSeqIntGreaterThan 0 1.3 1 0.013 0.026 0.016 0.062
SeqSeqIntLessEqual 0.1 1 0.999 0.01 0.02 0.012 0.048
StringEqual 0 23.4 1 0.234 0.379 0.276 0.604
StringLessThan 0 0.7 1 0.007 0.014 0.009 0.034

positely, the F2 and F0.5 scores prioritize either higher recall
or higher precision respectively.

Results: We calculated the values of P , R, F1, F2 and
F0.5 for LOPI; they are presented in Table 2. The recall
(R) corresponds to the FF rate, whereas the precision (P)
is the value complimentary to the FP rate (1 − FP rate).
The value of F -score should lie between 0 and 1; a higher
value corresponds to more effective invariants.

One of the input parameters for the inference algorithm
inferEE is the invariant’s witness table W, which specifies
the number of witnesses required for the invariant of a cer-
tain length in order to be accepted by the algorithm. The
second row in Table 2 (LOPI*) corresponds to the witness
table that maximizes the value of F1-score (0.831). The
number of required witnesses per invariant is shown in the
column #W of Table 3. The bottom part of the table shows
the number of witnesses maximizing F1. For instance, by
increasing the limit from 1 to 3 witnesses, we reduce the
FP-rate by 22% for the EE-invariants of length one. As re-
sult, instead of the initial 30% FP rate of LOPI, we got only
2.2% of FPs. But, it comes at the price of decreased FF
capability (72.3% instead of the original 75.9%).

4.4 Comparison with Daikon
Daikon [7] is one of the most representative tools in the

field of automated oracle inference. Daikon expresses data
invariants over program variables. During the inference,
the values of program variables sampled at various pro-
gram points are consolidated together and substituted for
the variable placeholders into the invariant templates from
the Daikon’s catalog. Daikon is shipped with an extensive
collection of invariant templates which result in a large set
of concrete invariants. The inference process consists of the
cross checking of the invariant templates against the consol-
idated values. Those invariants that can stay valid and pass
the confidence level check are reported to the user. In the
experiment we used Daikon 5.1.05 with default configura-
tions to infer invariants from user logs translated to dtraces.
The log translation process is described is Section 3.1.

Results: All measurements related to Daikon are pre-
sented in the third row of Table 2. The rate of FPs for
Daikon is almost as high as for LOPI (27% vs. 30%). Never-
theless, Daikon discovered 79% of mutants, which is higher
than the corresponding value of LOPI and LOPI*. Com-

5http://plse.cs.washington.edu/daikon/

Table 6: Inference and Checking Cost of the Invariants

Invariants
Inference Checking

Time (sec.) Space (MB) Time (sec.) Space (MB)

LOPI 223 61 1.5 128
Daikon 7 398 3 184

paring the values of F1-score of LOPI and Daikon, we can
deduce that generally Daikon invariants are slightly more ef-
fective for testing than LOPI : 0.76 vs. 0.725. Nevertheless,
Daikon was beaten by LOPI*: 0.76 vs 0.831.

Table 5 presents the effectiveness of the particular Daikon
invariants. In total there were 22 types of Daikon invari-
ants involved in the evaluation. The invariants of the types
OneOfSequence and OneOfScalar triggered the highest FP
rate: 18.3% and 17% respectively. They describe the prop-
erty stating that an array or a scalar variable of type long
“takes on only a few distinct values” [6]. But at the same
time, these invariants have a relatively high FF capability,
50% and 45% respectively. The invariants OneOfString and
IntEqual with the FP (FF) rates of 6.3% (27%) and 6.2%
(43%) respectively are in the second place. The OneOf-

String invariant is similar to those two examples of OneOf-
invariants seen above, except that the variable’s type should
be String. The IntEqual invariant express “an equality be-
tween two long scalars“ [6]. All other invariants have an FP
rate lower than 6% and will not be discussed separately.

The second reasonable question to ask when comparing
two types of invariants is: can the invariants be combined
together to improve the value of the F1-score? We investi-
gated this question by calculating the F -scores for the in-
tersection and union of Daikon and LOPI (LOPI*) invari-
ants respectively. In theory, unification of invariants should
potentially increase the mutation killing rate, because the
mutants killed by any invariant in the union are reported
together. At the same time, this process also increases the
rate of FPs since both invariants produce false positives.
The situation with the invariant’s intersection is inverse:
less mutants can be killed but FP rate is also lower. The
summary of results is presented in Table 2 (last four rows).
Among all available combinations LOPI* still has the high-
est values of F1 and F0.5 (0.831 and 0.914 respectively). Its
extremely high precision (0.978) together with a reasonable
recall (0.723) provided the success. Whereas, if the recall
is more important, then the union of LOPI* and Daikon
outstrips the other combinations with a value of F2 = 0.862.

4.5 Inference and Checking Cost
We have not yet discussed the inference and checking cost

of the EE-invariants. The cost of invariant inference is the
time (wall-clock time) and space (Resident Set Size) that
is required for the inference procedure to complete. Analo-
gously, we define the cost of invariant checking, where each
inferred invariant is examined on a newly provided data set.
Our tool LOPI supports both of those features. The infer-
ence cost was measured on 12 user logs, which were passed
to LOPI as one input argument. The resulted invariants
were used for measuring checking cost. Since all generated
mutants have similar checking cost we have just randomly
selected one to be used in the current experiment. All ex-
periments presented in this section were carried out on an
Intel i5 (2.4 GHz) machine with 6GB of RAM under control
of Ubuntu 14.04 OS.

Even though we only considered executions up to maxi-

1564

mum two events, the inference reported 6878 oracles out of
about 2.5 ∗ 105 equivalence candidates. The inference algo-
rithm is implemented in Haskell, which allows us to lazily
deal with hundreds of thousands of candidates consuming
little space. Table 6 summarizes the results of all experi-
ments for both LOPI and Daikon. The inference time of
Daikon is almost 30 times faster than LOPI (7 sec vs. 3.41
min). However, LOPI consumes much less memory. Im-
proving LOPI’s run-time is future work that we discuss in
Section 5. Invariant checking time for LOPI and Daikon is
equal to 1.5 and 3 seconds respectively.

5. DISCUSSION AND FUTURE WORK
The new type of oracle introduced in this paper — EE-

invariants — as well as many other oracles dynamically in-
ferred from the application logs suffer from a lack of pre-
cision. To alleviate this problem, the inference procedure
should be augmented with some threshold values for invari-
ants of different types. Our evaluation has shown that the
threshold values of the EE-invariants are inversely propor-
tional to the lengths of the invariants. In the algorithm
inferEE, the threshold values correspond to the rows of the
witness table W . The experiment for maximization of the
F1-score in Section 4.3 suggests that the witness table cor-
responding to LOPI* could be used as the default value for
the respective parameter (W) in inferEE.

Our tool LOPI allows to pass the witness table as a com-
mand line parameter. Similarly Daikon lets users alter the
confidence level. We found that changing this parameter
does not decrease the FP rate for Daikon. The problem is
that the confidence is not defined in terms of the number
of witnesses of a given invariant. However, there exists an
option for redefining the confidence by modifying the re-
spective method in the source code. We saw in Table 5
that Daikon invariants have different strengths. Therefore,
we believe it should be possible to find a combination of
invariant types that maximizes the value of F1-score. For
example, in our case study the OneOfSequence invariant can
be completely replaced by SeqSeqIntEqual since the latter
has lower FP rate but still identifies a comparable number
of mutants.

To improve the run-time of LOPI we need to shrink the
number of potential candidates to be the invariant. The
following heuristics could significantly help there: 1) only
skip-like invariants are inferred, and then 2) corresponding
skip events are used to simplify all other equivalence can-
didates. For applications such as Flex Store, which have a
large number of skip-like events, these heuristics should be
especially effective. Moreover, by making the inference con-
current we can also speed up the run-time of our algorithm.

In our study of the EE-invariants we have limited our-
selves to only executions up to length two. In the future, we
would like to go beyond that limit.

Threats to Validity: Our comparative study of invari-
ant effectiveness has several threats to validity. The main
threat is external validity since there was only one subject
application involved. Thus, our findings about the FP rate
and FF capability of LOPI should be generalized with cau-
tion. At the same time, the findings about the FP rate of
Daikon are trustworthy since they do not contradict with
the previously reported results [11]. An internal threat to
validity is the set of logs used in the evaluation. There are
two sources for this threat. First, we had only one set of

logs consisting of 12 executions. Second, there was only one
state abstraction in use.

6. RELATED WORK
In 2013 Harman et al. completed a survey on software

testing oracles [8]. Despite the number of reported tech-
niques, the problem of how to generate effective automated
oracles with a low level of false positives is still not com-
pletely addressed. This conclusion is confirmed by the em-
pirical validation of automated oracles carried by Nguyen
et al. [11]. They compared the effectiveness of the three
state-of-the-art oracles represented by Daikon [7] (data in-
variants), Synoptic [2] (temporal invariants) and KLFA [10]
(finite state automata). For both Daikon and Synoptic the
FP rate was on average 30%, whereas KLFA showed a rate
of 90%. The evaluation of Daikon on the Flex Store logs in
our study has also confirmed the expected 30% rate of FPs.
We believe our approach of measuring FF capability based
on log mutations provides a statistically more confident re-
sult in contrast with [11], which was limited to only seven
faults seeded into the subject application.

We have also evaluated Synoptic and KLFA on the Flex
Store logs; the results are shown in Table 2. Both types of
oracles were inferred only based on the underlying sequences
of events, i.e. states were thrown away. As result, the oracles
were not able to detect mutations in the states, and the FP
rates were higher than 90%.

Elyasov et al. [5] introduced three types of equivalence
patterns that correspond to a subset of the EE-invariants of
length four. The EE-invariants are reminiscent of the cross-
checking oracles introduced by Carzanga et al. [3]. These
oracles represent pairs of the method calls sequences that
are observationally equivalent. To obtain the equivalences,
it was suggested to adapt the previous work of Carzanga
et al. [4] on automatic workarounds, which essentially are
equivalent executions. They proposed three generic types of
workarounds, but the approach still relies on manual specifi-
cation of concrete workarounds. Whereas, the EE-invariants
can be automatically inferred from logs.

7. CONCLUSION
In this paper, we introduced a new type of oracle, namely

EE-invariants, which describe the equivalences of executions.
These invariants can be used for in-house testing or runtime
monitoring. The preliminary evaluation has shown that the
EE-invariants give rise to approximately 30% of false posi-
tives, but this rate can be pushed down to 2% by choosing
suitable initial parameters for the inference procedure.

Applying extensive mutation analysis, we have experi-
mentally justified that the EE-invariants are competitive
to Daikon invariants for detecting faults. But at the same
time, we have discovered several hindrances of our invari-
ants. First, as do most of automated oracles, EE-invariants
trigger a high rate of false positives. However, we found
an optimal witness table that reduces the FP rate to just
few percent. Second, the inference time indicates a poten-
tial issue with the scalability of LOPI to handle inference of
the EE-invariants of length greater than two, as well as to
sustain the increase in the number of events. Nevertheless,
current inference time seems reasonable for applications of
scale similar to Flex Store.

1565

8. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software

Testing. Cambridge University Press, New York, NY,
USA, 1 edition, 2008.

[2] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and
M. D. Ernst. Leveraging existing instrumentation to
automatically infer invariant-constrained models. In
ESEC/FSE, pages 267–277, 2011.

[3] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè. Cross-checking oracles from intrinsic
software redundancy. In Proceedings of ICSE, pages
931–942, 2014.

[4] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè.
Automatic workarounds for web applications. In
Proceedings of FSE, pages 237–246, 2010.

[5] A. Elyasov, I. W. B. Prasetya, and J. Hage. Guided
algebraic specification mining for failure simplification.
In Testing Software and Systems, pages 223–238. 2013.

[6] M. Ernst, J. Perkins, P. Guo, S. McCamant,
C. Pacheco, M. Tschantz, and C. Xiao. The daikon
invariant detector user manual, 2007.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[8] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A
comprehensive survey of trends in oracles for software
testing. Technical report, Tech. Rep. CS-13-01, 2013.

[9] A. Marchetto, P. Tonella, and F. Ricca. State-based
testing of ajax web applications. In Procedding of
ICST, pages 121–130, 2008.

[10] L. Mariani and F. Pastore. Automated identification
of failure causes in system logs. In Proceedings of
ISSRE, pages 117–126, 2008.

[11] C. D. Nguyen, A. Marchetto, and P. Tonella.
Automated oracles: an empirical study on cost and
effectiveness. In Proceedings of FSE, pages 136–146,
2013.

[12] A. Orso and G. Rothermel. Software testing: a
research travelogue (2000–2014). In Proceedings of
ICSE, FOSE, 2014.

[13] I. Prasetya, A. Elyasov, A. Middelkoop, and J. Hage.
Fittest log format (version 1.1). Tech. Rep.
UU-CS-2012-014, 2012.

[14] C. J. V. Rijsbergen. Information Retrieval.
Butterworth-Heinemann, Newton, MA, USA, 2nd
edition, 1979.

[15] M. Staats, M. W. Whalen, and M. P. E. Heimdahl.
Programs, tests, and oracles: the foundations of
testing revisited. In ICSE, pages 391–400, 2011.

[16] T. Vos, P. Tonella, J. Wegener, M. Harman,
W. Prasetya, E. Puoskari, and Y. Nir-Buchbinder.
Future internet testing with fittest. In Proceedings of
CSMR, pages 355–358, 2011.

[17] E. J. Weyuker. On testing non-testable programs. The
Computer Journal, 25(4):465–470, 1982.

1566

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

