
VU Research Portal

Publishing without Publishers: a Decentralized Approach to Dissemination, Retrieval,
and Archiving of Data
Kuhn, T.; Chichester, C.; Krauthammer, M.; Dumontier, M.

published in
Proceedings of the 14th International Semantic Web Conference (ISWC 2015)
2015

document version
Early version, also known as pre-print

Link to publication in VU Research Portal

citation for published version (APA)
Kuhn, T., Chichester, C., Krauthammer, M., & Dumontier, M. (2015). Publishing without Publishers: a
Decentralized Approach to Dissemination, Retrieval, and Archiving of Data. In Proceedings of the 14th
International Semantic Web Conference (ISWC 2015) http://arxiv.org/abs/1411.2749

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

https://research.vu.nl/en/publications/364b53ac-8839-49a6-95d3-dce4e1013e19
http://arxiv.org/abs/1411.2749

Publishing without Publishers:
a Decentralized Approach to Dissemination,

Retrieval, and Archiving of Data

Tobias Kuhn1,2, Christine Chichester3, Michael Krauthammer4, and
Michel Dumontier5

1 Department of Humanities, Social and Political Sciences, ETH Zurich, Switzerland
2 Department of Computer Science, VU University Amsterdam, Netherlands

3 Swiss Institute of Bioinformatics, Geneva, Switzerland
4 Yale University School of Medicine, New Haven, CT, USA

5 Stanford Center for Biomedical Informatics Research,
Stanford University, CA, USA

tokuhn@ethz.ch, christine.chichester@isb-sib.ch,
michael.krauthammer@yale.edu, michel.dumontier@stanford.edu

Abstract. Making available and archiving scientific results is for the
most part still considered the task of classical publishing companies, de-
spite the fact that classical forms of publishing centered around printed
narrative articles no longer seem well-suited in the digital age. In partic-
ular, there exist currently no efficient, reliable, and agreed-upon methods
for publishing scientific datasets, which have become increasingly impor-
tant for science. Here we propose to design scientific data publishing
as a Web-based bottom-up process, without top-down control of central
authorities such as publishing companies. Based on a novel combina-
tion of existing concepts and technologies, we present a server network
to decentrally store and archive data in the form of nanopublications,
an RDF-based format to represent scientific data. We show how this
approach allows researchers to publish, retrieve, verify, and recombine
datasets of nanopublications in a reliable and trustworthy manner, and
we argue that this architecture could be used for the Semantic Web in
general. Evaluation of the current small network shows that this system
is efficient and reliable.

1 Introduction

Modern science increasingly depends on datasets, which however are left out in
the classical way of publishing, i.e. through narrative (printed or online) articles
in journals or conference proceedings. This means that the publications that
describe scientific findings get disconnected from the data they are based on,
which can seriously impair the verifiability and reproducibility of their results.
Addressing this issue raises a number of practical problems: How should one
publish scientific datasets and how can one refer to them in the respective sci-
entific publications? How can we be sure that the data will remain available in

the future and how can we be sure that data we find on the Web have not been
corrupted or tampered with? Moreover, how can we refer to specific entries or
subsets from large datasets?

To address some of these problems, a number of scientific data repositories
have appeared, such as Figshare and Dryad.6 Furthermore, Digital Object Iden-
tifiers (DOI) have been advocated to be used not only for articles but also for
scientific data [22]. While these services certainly improve the situation of sci-
entific data, in particular when combined with Semantic Web techniques, they
have nevertheless a number of drawbacks: They have centralized architectures,
they give us no possibility to check whether the data have been (deliberately or
accidentally) modified, and they do not support access or referencing on a more
granular level than entire datasets (such as individual data entries).

Even if we put aside worst-case scenarios of organizations going bankrupt or
becoming uninterested in sustaining their services, their websites have typically
not a perfect uptime and might be down for a few minutes or even hours every
once in a while. This is certainly acceptable for most use cases involving a human
user accessing the data, but it can quickly become a problem in the case of
automated access embedded in a larger service. Furthermore, it is possible that
somebody gains access to their database and silently modifies part of the data,
or that the data get corrupted during the transfer from the server to the client.

Below we present an approach to tackle these problems, building upon ex-
isting Semantic Web technologies, in particular RDF and nanopublications, and
adhering to accepted Web principles, such as decentralization and REST APIs.
Specifically, our research question is: Can we create a decentralized, reliable,
trustworthy, and scalable system for publishing, retrieving, and archiving data-
sets in the form of sets of nanopublications based on existing Web standards and
infrastructure?

2 Background

Nanopublications [11] are a relatively recent proposal for improving the effi-
ciency of finding, connecting, and curating scientific findings in a manner that
takes attribution, quality levels, and provenance into account. While narrative
articles would still have their place in the academic landscape, small formal data
snippets in the form of nanopublications should take their central position in
scholarly communication [21]. Most importantly, nanopublications can be au-
tomatically interpreted and aggregated and they allow for fine-grained citation
metrics on the level of individual claims. On the technical level, nanopublica-
tions use the RDF language with named graphs [4] to represent assertions, as
well as their provenance and metadata. Conceptually, the approach boils down
to the ideas of subdividing scientific results into atomic assertions, representing
these assertions in RDF, attaching provenance information in RDF on the level
of individual assertions, and treating each of these tiny entities as an individ-
ual publication. Nanopublications have been applied to a number of domains,

6 http://figshare.com, http://datadryad.org

http://figshare.com
http://datadryad.org

so far mostly from the life sciences including pharmacology [28], genomics [23],
and proteomics [6]. An increasing number of datasets formatted as nanopublica-
tions are openly available, including neXtProt [5] and DisGeNET [25], and the
nanopublication concept has been combined with and integrated into existing
frameworks for data discovery and integration, such as CKAN [19].

Research Objects are a related proposal to establish “self-contained units of
knowledge” [1], and they constitute in a sense the antipode approach to nanopub-
lications. We could call them “megapublications,” as they contain much more
than a typical narrative publication, namely resources like input and output
data, workflow definitions, log files, and presentation slides. We demonstrate in
this paper, however, that bundling all resources of scientific studies in large pack-
ages is not a necessity to ensure reproducibility and trust, but we can achieve
these properties also with strong identifiers and a decentralized server network.

SPARQL endpoints, i.e. query APIs to RDF triple stores, are a widely used
technique for making linked data available on the Web in a flexible manner.
While off-the-shelf triple stores can nowadays handle billions of triples or more,
they require a significant amount of resources in the form of memory and proces-
sor time to do so, at least if the full expressive power of the SPARQL language
is supported. A recent study found that more than half of the publicly acces-
sible SPARQL endpoints are available less than 95% of the time [3], posing a
major problem to services depending on them, in particular to those that de-
pend on several endpoints at the same time. To solve these problems, alternative
approaches and platforms — such as Linked Data Fragments [27], the Linked
Data Platform [26], and CumulusRDF [17] — have been proposed, providing
less powerful query interfaces and thereby shifting the workload from the server
to the client.

Fully reliable services, however, can only be achieved with distributed archi-
tectures, which have been proposed by a number of existing approaches related
to data publishing. For example, distributed file systems that are based on cryp-
tographic methods have been designed for data that are public [10] or private
[7]. In contrast to the design principles of the Semantic Web, these approaches
implement their own internet protocols and follow the hierarchical organization
of file systems. Other approaches build upon the existing BitTorrent protocol
and apply it to data publishing [18,8], and there is interesting work on repur-
posing the proof-of-work tasks of Bitcoin for data preservation [20]. There exist
furthermore a number of approaches to applying peer-to-peer networks for RDF
data [9], but they do not allow for the kind of permanent and provenance-aware
publishing that we propose below. Moreover, only for the centralized and closed-
world setting of database systems, approaches exist that allow for robust and
granular references to subsets of dynamic datasets [24].

Our approach is based on previous work, in which we proposed trusty URIs to
make nanopublications and their entire reference trees verifiable and immutable
by the use of cryptographic hash values [15,16]. This is an example of such a
trusty URI:

http://example.org/r1.RA5AbXdpz5DcaYXCh9l3eI9ruBosiL5XDU3rxBbBaUO70

The last 45 characters of this URI (i.e. everything after “.”) is what we call the
artifact code. It contains a hash value that is calculated on the RDF content it
represents, such as the RDF graphs of a nanopublication. Because this hash is
part of the URI, any link to such an artifact comes with the possibility to verify
its content, including other trusty URI links it might contain. In this way, the
range of verifiability extends to the entire reference tree.

Furthermore, we argued in previous work that the assertion of a nanopublica-
tion need not be fully formalized, but we can allow for informal or underspecified
assertions [14]. We also sketched how “science bots” could autonomously pro-
duce and publish nanopublications, and how algorithms could thereby be tightly
linked to their generated data [13], which requires the existence of a reliable and
trustworthy publishing system, such as the one we present here.

3 Approach

Our approach builds upon the existing concept of nanopublications and our
previously introduced method of trusty URIs. It is a proposal of a reliable im-
plementation of accepted Semantic Web principles, in particular of what has
become known as the follow-your-nose principle: Looking up a URI should re-
turn relevant data and links to other URIs, which allows one (i.e. humans as well
as machines) to discover things by navigating through this data space [2]. We
argue that approaches following this principle can only be reliable and efficient if
we have some sort of guarantee that the resolution and processing of any single
identifier will succeed in one way or another and only takes up a small amount
of time and resources. This requires (1) that RDF representations are made
available on several distributed servers, so the chance that they all happen to be
inaccessible at the same time is negligible, and that (2) these representations are
reasonably small, so that downloading them is a matter of fractions of a second,
and so that one has to process only a reasonable amount of data to decide which
links to follow. We address the first requirement by proposing a distributed server
network and the second one by building upon the concept of nanopublications.
Below we explain the general architecture, the functioning and the interaction
of the nanopublication servers, and the concept of nanopublication indexes.

3.1 Architecture

There are currently at least three possible architectures for Semantic Web appli-
cations (and mixtures thereof), as shown in a simplified manner in Figure 1. The
first option is the use of plain HTTP GET requests. Applying the follow-your-
nose principle, resolvable URIs provide the data based on which the application
performs the tasks of finding relevant resources, running queries, analyzing and
aggregating the results, and using them for the purpose of the application. If
SPARQL endpoints are used, as a second option, most of the workload is shifted
from the application to the server via the expressive power of the SPARQL query
language. A more reasonable approach, in our view, is the third option of Linked

current solution with plain HTTP requests
and follow-your-nose principle:

applications (find/query/analyze/use data)

resolvable URIs (provide data)

current solution with SPARQL endpoints:
applications (analyze/use data)

SPARQL endpoints (provide/find/query/analyze data)

current solution with Linked Data Fragments:
applications (query/analyze/use data)

LDF servers (provide/find/query data)

proposed architecture:

applications (analyze/use data)

advanced services (query/analyze data)

core services (find data)

nanopublication server network (provide data)

1Fig. 1. Illustration of current architectures of Semantic Web applications and our pro-
posed approach

Data Fragments, where servers provide only limited query features and where the
tasks are distributed between servers and applications in more balanced fashion.
However, all these current solutions are based on two-layer architectures, and
have moreover no inherent replication mechanisms. A single point of failure can
cause applications to be unable to complete their tasks: A single URI that does
not resolve or a single server that does not respond can break the entire process.

We argue here that we need distributed and decentralized services to allow
for robust and reliable applications that consume linked data. At the same time,
the most low-level task of providing linked data is essential for all other tasks
at higher levels, and therefore needs to be the most stable and robust one. We
argue that this can be best achieved if we free this lowest layer from all tasks
except the provision and archiving of data entries (nanopublications in our case)
and decouple it from the tasks of providing services for finding, querying, or
analyzing the data. This makes us advocate a multi-layer architecture, a possible
realization of which is shown at the bottom of Figure 1.

Below we present a concrete proposal of such a low-level data provision in-
frastructure in the form of a nanopublication server network. Based on such an
infrastructure, one can then build different kinds of services operating on a sub-
set of the nanopublications they find in the underlying network. “Core services”
could involve things like resolving backwards references (i.e. “which nanopublica-
tions refer to the given one?”) and the retrieval of the nanopublications published
by a given person or containing a particular URI. Based on such core services
for finding nanopublications, one could then provide “advanced services” that
allow us to run queries on subsets of the data and ask for aggregated output.
(These higher layers could of course make use of existing techniques such as
SPARQL endpoints and Linked Data Fragments.) While the lowest layer would

necessarily be accessible to everybody, some of the services on the higher level
could be private or limited to a small (possibly paying) user group. We have in
particular scientific data in mind, but we think that an architecture of this kind
could also be used for Semantic Web content in general.

3.2 Nanopublication Servers

As a concrete proposal of a low-level data provision layer, as explained above,
we present here a decentralized nanopublication server network with a REST
API to provide and propagate nanopublications identified by trusty URIs.7 The
nanopublication servers of such a network connect to each other to retrieve and
replicate their nanopublications, and they allow users to upload new nanopubli-
cations, which are then automatically distributed through the network.

Basing the content of this network on nanopublications with trusty URIs has
a number of positive consequences for its design: The first benefit is that the
fact that nanopublications are all similar in size and always small makes it easy
to estimate how much time is needed to process an entity (such as validating
its hash) and how much space to store it (e.g. as a serialized RDF string in
a database). Moreover it ensures that these processing times remain mostly
in the fraction-of-a-second range, guaranteeing quick responses, and that these
entities are never too large to be analyzed in memory. The second benefit is that
servers do not have to deal with identifier management, as the nanopublications
already come with trusty URIs, which are guaranteed to be unique and universal.
The third and possibly most important benefit is that nanopublications with
trusty URIs are immutable and verifiable. This means that servers only have to
deal with adding new entries but not with updating or correcting any of them,
which eliminates the hard problems of concurrency control and data integrity
in distributed systems. Together, these aspects significantly simplify the design
of such a network and its synchronization protocol, and make it reliable and
efficient even with limited resources.

Specifically, a nanopublication server of the current network has the following
components:

– A key-value store of its nanopublications (with the trusty URI as the key)
– A journal consisting of a journal identifier and a list of the identifiers of all

loaded nanopublications, subdivided into pages of a fixed size.
– Optionally, a cache of gzipped packages containing all nanopublications

for a given journal page (but they can also be generated on the fly)
– A list of known peers, i.e. the URLs of other nanopublication servers
– Information about each known peer, including the journal identifier

and the total number of nanopublications at the time it was last visited

Based on these components, the servers respond to the following request (in the
form of HTTP GET):

7 https://github.com/tkuhn/nanopub-server

https://github.com/tkuhn/nanopub-server

– Each server needs to return general server information, including the jour-
nal identifier and the number of stored nanopublications

– Given an artifact code (i.e. the final part of a trusty URI) of a known nano-
publication, the server returns the given nanopublication in a format like
TriG, TriX, or N-Quads (depending on content negotiation).

– A journal page can be requested by page number as a list of trusty URIs.
– For every journal page (except for incomplete last pages), a gzipped package

can be requested containing the respective nanopublications.
– The list of known peers can be requested as a list of URLs.

In addition, a server can optionally support the following two actions (in the
form of HTTP POST requests):

– A server may accept requests to add a given individual nanopublication
to its database.

– A server may also accept requests to add the URL of a new nanopub-
lication server to its peer list.

Server administrators have the additional possibility to load nanopublications
from the local file system. Together, these server components and their possible
interactions allow for efficient decentralized distribution of published nanopub-
lications.

The current system can be seen as an unstructured peer-to-peer network,
where each node can freely decide which other nodes to connect to and which
nanopublications to replicate. As the network is still very small, the present five
nodes connect to all other nodes and replicate all nanopublications they can
find. The current implementation is furthermore designed to be run on normal
Web servers alongside with other applications, with economic use of the server’s
resources in terms of memory and processing time. In order to avoid overload of
the server or the network connection, we restrict outgoing connections to other
servers to one at a time. The current system and its protocol are not set in stone
but, if successful, will have to evolve in the future — in particular with respect
to network topology and partial replication — to accommodate a network of
possibly thousands of servers and billions of nanopublications.

3.3 Nanopublication Indexes

To make the infrastructure described above practically useful, we have to intro-
duce the concept of indexes. One of the core ideas behind nanopublications is
that each of them is a tiny atomic piece of data. This implies that analyses will
mostly involve more than just one nanopublication and typically a large number
of them. Similarly, most processes will generate more than just one nanopubli-
cation, possibly thousands or even millions of them. Therefore, we need to be
able to group nanopublications and to identify and use large collections of them.

Given the versatility of the nanopublication standard, it seems straightfor-
ward to represent such collections as nanopublications themselves. However, if
we let such “collection nanopublications” contain other nanopublications, then

(a) (b)

(c) (f)

(d) (e)
has element

has sub-index

appends to

Fig. 2. Schematic example of nanopublication indexes

the former would become very large for large collections and would quickly lose
their property of being nano. We can solve part of that problem by applying
a principle that we can call reference instead of containment : nanopublications
cannot contain but only refer to other nanopublications, and trusty URIs al-
low us to make these reference links almost as strong as containment links. To
emphasize this principle, we call them indexes and not collections.

However, even by only containing references and not the complete nanopubli-
cations, these indexes can still become quite large. To ensure that all such index
nanopublications remain nano in size, we need to put some limit on the number
of references, and to support sets of arbitrary size, we can allow indexes to be
appended by other indexes. We set 1000 nanopublication references as the upper
limit any single index can directly contain. This limit is admittedly arbitrary,
but it seems to be a reasonable compromise between ensuring that nanopublica-
tions remain small on the one hand and limiting the number of nanopublications
needed to define large indexes on the other. A set of 100,000 nanopublications,
for example, can therefore be defined by a sequence of 100 indexes, where the
first one stands for the first 1000 nanopublications, the second one appends to
the first and adds another 1000 nanopublications (thereby representing 2000 of
them), and so on up to the last index, which appends to the second to last
and thereby stands for the entire set. In addition, to allow datasets to be orga-
nized in hierarchies, we define that the references of an index can also point to
sub-indexes. In this way we end up with three types of relations: an index can
append to another index, it can contain other indexes as sub-indexes, and it can
contain nanopublications as elements. These relations defining the structure of
nanopublication indexes are shown schematically in Figure 2. Index (a) in the
shown example contains five nanopublications, three of them via sub-index (c).
The latter is also part of index (b), which additionally contains eight nanopub-
lications via sub-index (f). Two of these eight nanopublications belong directly
to (f), whereas the remaining six come from appending to index (e). Index (e)
in turn gets half of its nanopublications by appending to index (d). We see that
some nanopublications may not be referenced by any index at all, while others
may belong to several indexes at the same time.

Below we show how this general concept of indexes can be used to define sets
of new or existing nanopublications, and how such index nanopublications can
be published and their nanopublications retrieved.

3.4 Trusty Publishing

Let us consider two simple exemplary scenarios to illustrate and motivate the
general concepts, using the np command from the nanopub-java library8. Given,
for example, a file nanopubs.trig with three nanopublications, we have to assign
them trusty URIs before they can be published:

$ np mktrusty -v nanopubs.trig
Nanopub URI: http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Nanopub URI: http://example.org/np2#RAT5swlSLyMbuD03KzJsYHVV2oM1wRhluRxMrvpkZCDUQ
Nanopub URI: http://example.org/np3#RAkvUpysi9Ql3itlc6-iIJMG7YSt3-PI8dAJXcmafU71s

This gives us the file trusty.nanopubs.trig, which contains transformed versions
of the three nanopublications, now having trusty URIs as identifiers. We can now
publish these nanopublications to the network:

$ np publish trusty.nanopubs.trig
3 nanopubs published at http://np.inn.ac/

We can check the publication status of the given nanopublications:

$ np status -a http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Found on 1 nanopub server.

This is what we see immediately after publication, but only a few minutes later
the given nanopublication is found on several servers:

$ np status -a http://example.org/np1#RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://np.inn.ac/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://ristretto.med.yale.edu:8080/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeGs...
URL: http://nanopub-server.ops.labs.vu.nl/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
URL: http://nanopubs.stanford.edu/nanopub-server/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5Afq...
URL: http://nanopubs.semanticscience.org/RAQoZlp22LHIvtYqHCosPbUtX8yeGs1Y5AfqcjMneLQ2I
Found on 5 nanopub servers.

Next, we can make an index pointing to these three nanopublications:

$ np mkindex -o index.nanopubs.trig trusty.nanopubs.trig
Index URI: http://np.inn.ac/RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14

This creates a local file index.nanopubs.trig containing the index, identified by
the URI shown above. As this index is itself a nanopublication, we can publish
it in the same way as described above, and then everybody can conveniently and
reliably retrieve the given set of nanopublications:

$ np get -c http://np.inn.ac/RAXsXUhY8iDbfDdY6sm64hRFPr7eAwYXRlSsqQAz1LE14

This command downloads the content of the given index, i.e. the three nano-
publications we just created and published.

As another exemplary scenario, let us imagine a researcher in the biomedical
domain who is interested in the protein CDKN2A and who has derived some

8 https://github.com/Nanopublication/nanopub-java

https://github.com/Nanopublication/nanopub-java

conclusion based on the data found in existing nanopublications. Specifically, let
us suppose this researcher analyzed five nanopublications from different sources,
specified by the following artifact codes (they can be viewed online by appending
the artifact code to the URL http://np.inn.ac/):

RAEoxLTy4pEJYbZwA9FuBJ6ogSquJobFitoFMbUmkBJh0
RAoMW0xMemwKEjCNWLFt8CgRmg_TGjfVSsh15hGfEmcz4
RA3BH_GncwEK_UXFGTvHcMVZ1hW775eupAccDdho5Tiow
RA3HvJ69nO0mD5d4m4u-Oc4bpXlxIWYN6L3wvB9jntTXk
RASx-fnzWJzluqRDe6GVMWFEyWLok8S6nTNkyElwapwno

These nanopublications can be downloaded from the network with the np get

command and stored in a file, which we name here cdkn2a-nanopubs.trig. In
order to be able to refer to such a collection of nanopublications with a single
identifier, a new index is needed that refers to just these five nanopublications.
This time we give the index a title (which is optional):

$ np mkindex -t "Data about CDKN2A from BEL2nanopub & neXtProt" \
-o index.cdkn2a-nanopubs.trig cdkn2a-nanopubs.trig

Index URI: http://np.inn.ac/RA6jrrPL2NxxFWlo6HFWas1ufp0OdZzS_XKwQDXpJg3CY

The generated index is stored in the file index.cdkn2a-nanopubs.trig, and our
exemplary researcher can now publish this index to let others know about it:

$ np publish index.cdkn2a-nanopubs.trig
1 nanopub published at http://np.inn.ac/

There is no need to publish the five nanopublications this index is referring to,
because they are already public (this is how we got them in the first place). The
index URI can be used to refer to this new collection of existing nanopublications
in an unambiguous and reliable manner, for example as a reference in a paper,
as we do it for the datasets of this article [29,31,32,33,30].

4 Evaluation

To evaluate our approach, we want to find out whether a small server network
run on normal Web servers, without dedicated infrastructure, is able to handle
the amount of nanopublications we can expect to become publicly available
in the next few years. At the time the evaluation was performed, the server
network consisted of three servers in Zurich, New Haven, and Ottawa. Two
new servers in Amsterdam and Stanford have joined the network since. The
current network of five servers is shown in Figure 3, which is a screenshot of
a nanopublication monitor that we have implemented. Such monitors regularly
check the nanopublication server network, register changes (currently once per
minute), and test the response times and the correct operation of the servers by
requesting a random nanopublication and verifying the returned data.

4.1 Evaluation Design

Table 1 shows the existing datasets that we use for the first part of the evaluation.
This includes all datasets we are aware of that use trusty URIs, with a total of

Fig. 3. This screenshot of the nanopublication monitor interface (http://npmonitor.i
nn.ac) showing the current server network.

nanopubs # triples initial location
dataset index content index content for evaluation

GeneRIF/AIDA [29] 157 156,026 157,909 2,340,390 New Haven
OpenBEL 1.0 [31] 53 50,707 51,448 1,502,574 New Haven
OpenBEL 20131211 [32] 76 74,173 75,236 2,186,874 New Haven
DisGeNET v2.1.0.0 [33] 941 940,034 951,325 31,961,156 Zurich
neXtProt [30] 4,026 4,025,981 4,078,318 156,263,513 Ottawa

total 5,253 5,246,921 5,314,236 194,254,507

Table 1. Existing datasets in the nanopublication format that were used for the first
part of the evaluation.

more than 5 million nanopublications and close to 200 million RDF triples,
including nanopublication indexes that we generated for each dataset. The total
size of these datasets when stored as uncompressed TriG files amounts to 15.6
GB. Each of the datasets is assigned to one of the three servers, where it is
loaded from the local file systems. The first nanopublications start spreading
to the other servers, while others are still being loaded from the file system.
We therefore test the reliability and capacity of the network under constant
streams of new nanopublications coming from different servers, and we use two
nanopublication monitors (in Zurich and Ottawa) to evaluate the responsiveness
of the network.

In the second part of the evaluation we expose a server to heavy load from
clients to test its retrieval capacity. For this we use a service called Load Impact9

to let up to 100 clients access a nanopublication server in parallel. We test

9 https://loadimpact.com

http://npmonitor.inn.ac
http://npmonitor.inn.ac
https://loadimpact.com

Zurich:

New Haven:

Ottawa:

loaded locally
from New Haven

from Ottawa

loaded locally
from Zurich
from Ottawa

loaded locally
from Zurich

from New Haven

0 1 2 3 4 5 6 7 8 9 10 11 12 13
time from start of evaluation in hours

Fig. 4. The flow of nanopublications during the time of the evaluation. The colors
indicate the original location of the respective nanopublications, and the brightness
stands for the rate at which they are loaded (bright meaning high rate).

the server in Zurich over a time of five minutes under the load from a linearly
increasing number of clients (from 0 to 100) located in Dublin. These clients
are programmed to request a randomly chosen journal page, then to go though
the entries of that page one by one, requesting the respective nanopublication
with a probability of 10%, and starting over again with a different page. As
a comparison, we run a second session, for which we load the same data into
a Virtuoso SPARQL endpoint on the same server in Zurich (with 16 GB of
memory given to Virtuoso and two 2.40 GHz Intel Xeon processors). Then,
we perform exactly the same stress test on the SPARQL endpoint, requesting
the nanopublications in the form of SPARQL queries instead of requests to the
nanopublication server interface. This comparison is admittedly not a fair one,
as SPARQL endpoints are much more powerful and are not tailor-made for the
retrieval of nanopublications, but they provide nevertheless a valuable and well-
established reference point to evaluate the performance of our system.

4.2 Evaluation Results

The first part of the evaluation lasted 13 hours and 21 minutes, at which point
all nanopublications were replicated on all three servers, and therefore the nano-
publication traffic came to an end. Figure 4 shows the type and intensity of
the data flow (i.e. the transfer of nanopublications) between the three servers
over the time of the evaluation. The network was able to handle an average of
about 400,000 new nanopublications per hour, which corresponds to more than
100 new nanopublications per second. This includes the time needed for load-
ing each nanopublication once from the local file system (at the first server),
transferring it through the network two times (to the other two servers), and for
verifying it three times (once when loaded and twice when received by the other
two servers). Figure 5 shows the response times of the three servers as measured
by the two nanopublication monitors in Zurich (top) and Ottawa (bottom) from
the start of the evaluation until 24 hours later, therefore covering the entire eval-
uation plus an additional 10 hours and 39 minutes after its end. We see that the

re
sp
on

se
ti
m
es

in
m
ill
is
ec
on

d
s:

Fig. 5. Server response times as recorded during and after the first evaluation, which
ended at 13 hours and 21 minutes, as indicated by the black vertical line.

time from start of test in seconds

re
sp

on
se

 ti
m

e
in

 s
ec

on
ds

0 50 100 150 200 250 3000 50 100 150 200 250 300

0.1

1

10

100

0 20 40 60 80 100

number of clients accessing the service in parallel

Virtuoso triple store with SPARQL endpoint
nanopublication server

Fig. 6. Results of the evaluation of the retrieval capacity of a nanopublication server
as compared to a general SPARQL endpoint (note the logarithmic y-axis)

observed latency is mostly due to the geographical distance between the servers
and the monitors. The response time was always less than 0.25 seconds when the
server was on the same continent as the measuring monitor. In 99.86% of all cases
(including those across continents) the response time was below 0.5 seconds, and
it was always below 1.1 seconds. Not a single one of the 8636 individual HTTP
requests timed out, led to an error, or received a nanopublication that could not
be successfully verified. We see that the load put onto the network did not have
much of an impact on the response times. Except for a handful of spikes, one
barely notices the difference between the heavy-load and zero-load situations.

Figure 6 shows the result of the second part of the evaluation. The nanopub-
lication server was able to handle 113,178 requests in total (i.e. an average of 377
requests per second) with an average response time of 0.12 seconds. In contrast,
the SPARQL endpoint answering the same kind of requests needed 100 times
longer to process them (13 seconds on average), consequently handled about 100

times fewer requests (1267), and started to hit the timeout of 60 seconds for
some requests when more than 40 client accessed it in parallel. In the case of the
nanopublication server, the majority of the requests were answered within less
than 0.1 seconds for up to around 50 parallel clients, and this value remained
below 0.17 seconds all the way up to 100 clients. As the round-trip network la-
tency alone between Ireland and Zurich amounts to around 0.03 to 0.04 seconds,
further improvements can be achieved for a denser network due to the reduced
distance to the nearest server.

The first part of the evaluation shows that the overall replication capacity
of the current server network is around 9.4 million new nanopublications per
day or 3.4 billion per year. The results of the second part show that the load
on a server when measured as response times is barely noticeable for up to 50
parallel clients, and therefore the network can easily handle 50 · x parallel client
connections or more, where x is the number of servers in the network (currently
x = 5). The second part thereby also shows that the restriction of avoiding
parallel outgoing connections for the replication between servers is actually a
very conservative measure that could be relaxed, if needed, to allow for a higher
replication capacity.

5 Discussion and Conclusion

We have presented here a low-level infrastructure for data sharing, which is
just one piece of a bigger ecosystem to be established. The implementation of
components that rely on this low-level data sharing infrastructure is ongoing and
future work. This includes the development of “core services” (see Section 3.1) on
top of the server network to allow people to find nanopublications and “advanced
services” to query and analyze the content of nanopublications. In addition, we
need to establish standards and best practices of how to use existing ontologies
(and to define new ones where necessary) to describe properties and relations of
nanopublications, such as referring to earlier versions, marking nanopublications
as retracted, and reviewing of nanopublications.

Apart from that, we also have to scale up the current small network. As our
protocol only allows for simple key-based lookup, the time complexity for all
types of requests is sublinear and therefore scales up well. The main limiting
factor is disk space, which is relatively cheap and easy to add. Still, the serv-
ers will have to specialize, i.e. replicate only a part of all nanopublications, in
order to handle really large amounts of data, which can be done in a number
of ways: Servers can restrict themselves to nanopublications from a certain in-
ternet domain, or to particular types of nanopublications, e.g. to specific topics
or authors, and communicate this to the network; inspired by the Bitcoin sys-
tem, certain servers could only accept nanopublications whose hash starts with
a given number of zero bits, which makes it costly to publish; and some servers
could be specialized to new nanopublications, providing fast access but only for
a restricted time, while others could take care of archiving old nanopublications,
possibly on tape and with considerable delays between request and delivery.

Lastly, there could also emerge interesting synergies with novel approaches to
internet networking, such as Content-Centric Networking [12], with which —
consistent with our proposal — requests are based on content rather than hosts.

We argue that data publishing and archiving can and should be done in a
decentralized manner. We believe that the presented server network can serve
as a solid basis for semantic publishing, and possibly also for the Semantic Web
in general. It could contribute to improve the availability and reproducibility
of scientific results and put a reliable and trustworthy layer underneath the
Semantic Web.

References

1. K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier, D. Newman, R. Palma,
S. Bechhofer, E. Garcıa, J. M. G.-P. Cuesta, et al. Workflow-centric research
objects: First class citizens in scholarly discourse. In Proceedings of SePublica
2012. CEUR-WS, 2012.

2. T. Berners-Lee. Linked data — design issues. http://www.w3.org/DesignIssues/
LinkedData.html, 2006.

3. C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. SPARQL web-
querying infrastructure: Ready for action? In The Semantic Web–ISWC 2013,
pages 277–293. Springer, 2013.

4. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In Proceedings of WWW ’05, pages 613–622. ACM, 2005.

5. C. Chichester, P. Gaudet, O. Karch, P. Groth, L. Lane, A. Bairoch, B. Mons, and
A. Loizou. Querying nextprot nanopublications and their value for insights on
sequence variants and tissue expression. Web Semantics: Science, Services and
Agents on the World Wide Web, 2014.

6. C. Chichester, O. Karch, P. Gaudet, L. Lane, B. Mons, and A. Bairoch. Converting
neXtProt into linked data and nanopublications. Semantic Web, 2014, to appear.

7. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Designing Privacy Enhancing
Technologies, pages 46–66. Springer, 2001.

8. J. P. Cohen and H. Z. Lo. Academic torrents: A community-maintained distributed
repository. In Proceedings of XSEDE ’14, page 2. ACM, 2014.

9. I. Filali, F. Bongiovanni, F. Huet, and F. Baude. A survey of structured P2P
systems for RDF data storage and retrieval. In Transactions on large-scale data-
and knowledge-centered systems III, pages 20–55. Springer, 2011.

10. K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure distributed read-only
file system. ACM Transactions on Computer Systems, 20(1):1–24, 2002.

11. P. Groth, A. Gibson, and J. Velterop. The anatomy of a nano-publication. Infor-
mation Services and Use, 30(1):51–56, 2010.

12. V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and R. Braynard.
Networking named content. Commun. ACM, 55(1):117–124, Jan. 2012.

13. T. Kuhn. Science bots: A model for the future of scientific computation? In WWW
2015 Companion Proceedings, pages 1061–1062. ACM, 2015.

14. T. Kuhn, P. E. Barbano, M. L. Nagy, and M. Krauthammer. Broadening the scope
of nanopublications. In Proceedings of ESWC 2013, pages 487–501. Springer, 2013.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

15. T. Kuhn and M. Dumontier. Trusty URIs: Verifiable, immutable, and permanent
digital artifacts for linked data. In Proceedings of ESWC 2014, pages 395–410.
Springer, 2014.

16. T. Kuhn and M. Dumontier. Making digital artifacts on the web verifiable and
reliable. IEEE Transactions on Knowledge and Data Engineering, 2015.

17. G. Ladwig and A. Harth. CumulusRDF: linked data management on nested key-
value stores. In Proceedings of SSWS 2011, 2011.

18. C. Markman and C. Zavras. BitTorrent and libraries: Cooperative data publishing,
management and discovery. D-Lib Magazine, 20(3):5, 2014.

19. J. P. McCusker, T. Lebo, M. Krauthammer, and D. L. McGuinness. Next genera-
tion cancer data discovery, access, and integration using prizms and nanopublica-
tions. In Proceedings of DILS 2013, pages 105–112. Springer, 2013.

20. A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing Bitcoin
work for data preservation. In Proceedings of the IEEE Symposium on Security
and Privacy (SP), pages 475–490. IEEE, 2014.

21. B. Mons, H. van Haagen, C. Chichester, J. T. den Dunnen, G. van Ommen, E. van
Mulligen, B. Singh, R. Hooft, M. Roos, J. Hammond, et al. The value of data.
Nature genetics, 43(4):281–283, 2011.

22. N. Paskin. Digital object identifiers for scientific data. Data Science Journal,
4:12–20, 2005.

23. G. P. Patrinos, D. N. Cooper, E. van Mulligen, V. Gkantouna, G. Tzimas,
Z. Tatum, E. Schultes, M. Roos, and B. Mons. Microattribution and nanopub-
lication as means to incentivize the placement of human genome variation data
into the public domain. Human mutation, 33(11):1503–1512, 2012.

24. S. Proell and A. Rauber. A scalable framework for dynamic data citation of
arbitrary structured data. In 3rd International Conference on Data Management
Technologies and Applications (DATA2014), 8 2014.

25. N. Queralt-Rosinach, T. Kuhn, C. Chichester, M. Dumontier, F. Sanz, and L. I.
Furlong. Publishing DisGeNET as nanopublications. Semantic Web — Interoper-
ability, Usability, Applicability, 2015, to appear.

26. S. Speicher, J. Arwe, and A. Malhotra. Linked data platform 1.0. Recommendation,
W3C, 26 February 2015.

27. R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens, E. Mannens, and
R. Van de Walle. Web-scale querying through linked data fragments. In Pro-
ceedings of LDOW 2014, 2014.

28. A. J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E. L. Willighagen,
C. T. Evelo, N. Blomberg, G. Ecker, C. Goble, et al. Open PHACTS: semantic
interoperability for drug discovery. Drug discovery today, 17(21):1188–1198, 2012.

29. AIDA Nanopubs extracted from GeneRIF. Nanopublication index http://np.inn
.ac/RAY lQruuagCYtAcKAPptkY7EpITwZeUilGHsWGm9ZWNI, 4 March 2015.

30. Nanopubs converted from neXtProt protein data (preliminary). Nanopublication
index http://np.inn.ac/RAXFlG04YMi1A5su7oF6emA8mSp6HwyS3mFTVYreDeZRg, 10
March 2015.

31. Nanopubs converted from OpenBEL’s Small and Large Corpus 1.0. Nanopubli-
cation index http://np.inn.ac/RACy0I4f wr62Ol7BhnD5EkJU6Glf-wp0oPbDbyve7P

6o, 4 March 2015.
32. Nanopubs converted from OpenBEL’s Small and Large Corpus 20131211. Nano-

publication index http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN 8BW1Jjx

wFZINHw, 4 March 2015.
33. Nanopubs extracted from DisGeNET v2.1.0.0. Nanopublication index http://np

.inn.ac/RAXy332hxqHPKpmvPc-wqJA7kgWiWa-QA0DIpr29LIG0Q, 5 March 2015.

http://np.inn.ac/RAY_lQruuagCYtAcKAPptkY7EpITwZeUilGHsWGm9ZWNI
http://np.inn.ac/RAY_lQruuagCYtAcKAPptkY7EpITwZeUilGHsWGm9ZWNI
http://np.inn.ac/RAXFlG04YMi1A5su7oF6emA8mSp6HwyS3mFTVYreDeZRg
http://np.inn.ac/RACy0I4f_wr62Ol7BhnD5EkJU6Glf-wp0oPbDbyve7P6o
http://np.inn.ac/RACy0I4f_wr62Ol7BhnD5EkJU6Glf-wp0oPbDbyve7P6o
http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN_8BW1JjxwFZINHw
http://np.inn.ac/RAR5dwELYLKGSfrOclnWhjOj-2nGZN_8BW1JjxwFZINHw
http://np.inn.ac/RAXy332hxqHPKpmvPc-wqJA7kgWiWa-QA0DIpr29LIG0Q
http://np.inn.ac/RAXy332hxqHPKpmvPc-wqJA7kgWiWa-QA0DIpr29LIG0Q

	Publishing without Publishers:a Decentralized Approach to Dissemination,Retrieval, and Archiving of Data

