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ABSTRACT
Adapting the control systems of robots on the fly is im-
portant in robotic systems of the future. In this paper we
present and investigate a three-fold adaptive system based
on evolution, individual and social learning in a group of
robots and report on a proof-of-concept study based on e-
pucks. We distinguish inheritable and learnable components
in the robots’ makeup, specify and implement operators for
evolution, learning and social learning, and test the system
in an arena where the task is to learn to avoid obstacles.
In particular, we make the sensory layout evolvable, the lo-
comotion control system learnable and investigate the ef-
fects of including social learning in the ‘adaptation engine’.
Our simulation experiments demonstrate that the full mix
of three adaptive mechanisms is practicable and that adding
social learning leads to better controllers faster.

Keywords
Evolutionary robotics; on-line evolution; individual learning;
social learning; obstacle avoidance; neural networks

1. INTRODUCTION
The importance of adapting the control systems of robots

on the fly in robotic systems of the future has been empha-
sised in for example [16] and [20]. Robots with adaptive
controllers are able to adjust to circumstances not (fully)
known in advance during their design time and/or when
the circumstances, e.g. the environment or user preferences,
change.

In this paper we adopt the conceptual framework pre-
sented in [13], distinguishing three types of adaption within
population-based adaptive systems in general: evolution,
lifetime learning and social learning. The differences be-
tween these mechanisms are based on distinguishing inher-
itable and learnable features of the individuals and postu-
lating that inheritable properties do not change during an
individuals lifetime, while learnable properties do. Conse-
quently, we distinguish evolutionary operators that act on
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inheritable features and learning operators adjusting the
learnable properties. Furthermore, we distinguish individ-
ual learning that can be done by a single individual alone
and social learning that requires the exchange of knowledge
between more individuals.

Obviously, the difference between inheritable and learn-
able properties depends on the application and the feasibility
of implementing reproduction. This latter one is non-trivial
when using real robots as the technology for truly embodied
evolution is just emerging [8, 9, 22]. The motivation behind
this paper is grounded in real robotics, envisioning robot
populations that can adapt by all three mechanisms men-
tioned above. Therefore, we chose to base our experiments
on real robots (e-puck), where we designate the sensory ap-
paratus as inheritable/evolvable. This is technically feasible,
because all robots actually do have all sensors, but depend-
ing on their ‘genome’ they may use only some of them. This
makes the hardware makeup flexible enough for experimen-
tation. In the meanwhile, this is also a sound design, where
the minds of the robots (learnable controllers) must match
their bodies (the evolvable sensory layout).

Given such a population of e-pucks we investigate the fea-
sibility of integrating evolution, individual learning, and so-
cial learning in a global ‘adaptation engine’ and look more
closely into social learning. In particular, we include a social
learning mechanism that allows robots to share their indi-
vidually learned controllers and test whether social learning
works if the hardware of the robots (here: sensory layout) is
different. In robot populations with homogeneous hardware
we expect that sharing individually learned knowledge will
improve adaptation. However, in populations with hetero-
geneous hardware this is not so obvious, because the learned
controllers are, in principle, hardware specific. Thus, our ex-
periments will seek answers to the following three questions:

1. What is the effect of social learning on the quality and
speed of learning in a robot population with homoge-
neous sensory layout (no evolution)?

2. What is the effect of social learning on the quality and
speed of learning in a robot population with heteroge-
neous sensory layout (no evolution)?

3. What is the effect of social learning on the quality and
speed of learning in a robot population with evolving
sensory layout?
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2. RELATED WORK
Evolutionary Robotics (ER) is a successful field with a

history of a decade and a half [3, 12, 17, 7, 19]. The majority
of work in ER employs a rather conventional evolutionary
algorithm to evolve controllers, morphologies, or both for
robots in some environment(s) in an off-line fashion. That
is to say, the design time and the operational time of the
robots are separated and evolution only takes place in the
design stage. After deployment the robots are not evolving
anymore.

In this paper we follow an alternative approach, that of
on-line adaption as we will have evolution, individual learn-
ing, and social learning all take place during the operational
period of the robots. On-line evolution in a population of
robots has been first demonstrated in [21]. In this paper
physical robots broadcast parameter values from the robot’s
control specification at a rate proportional to their fitness.
Since then, multiple distributed setups have been proposed
with and without the use of an explicit fitness function, see
for example [5], [10], [15], and adding maturation time [24].

The main difference between existing work and the cur-
rent paper is the use of a three-fold adaptation mechanism.
Technically this means a separation between inheritable and
learnable features and the corresponding evolutionary and
learning operators, as explained in the Introduction. This
distinction is not new per se, a distinction between genes
and memes and genotypes and memotypes has been made
earlier, for instance, in [14], [11], and [23]. It is interesting
to note that social learning can be perceived as a Darwinian
process in the memotype space with selection (of memes to
send/receive) and recombination (of memes of the sender
and the recipient). Individual learning can then be con-
sidered the informed mutation operator that changes the
memotype of one individual.

Another cluster of related works concerns the evolvability
of sensory layout, typically related to finding the best sen-
sory layout to increase autonomy, adaptivity and a better
understanding of how sensors evolve in nature [6]. Restrict-
ing the sensory layout to only the important sensors, results
in a smaller search space and thus a faster learning process
[1]. To our best knowledge, investigating the effect of social
learning in this setup has not been done.

3. SYSTEM DESCRIPTION
We use e-puck robots as shown in Figure 1 in an arena

with the task being obstacle avoidance. The performance of
a robot measured over an evaluation time T is defined after
[4] as follows:

f =

T∑
t=0

strans × (1 − srot) × (1 − vsens),

where strans is the translational speed (not normalised) and
srot the rotational speed (between 0 and 1). vsens is the
minimal distance to the nearest obstacle (between 0 and 1).
In other words, the fitness is maximized when there is a
straight movement and minimal sensory input.

3.1 Inheritable and learnable features
The e-puck is a small (7 cm) differential wheeled mobile

robot that is equipped with 8 Infra-Red (IR) proximity sen-
sors to be able to detect obstacles. We designate the sensory

Figure 1: The e-puck robot developed at the École Poly-
thechnique Fédérale de Lausanne (EPFL).

apparatus as inheritable/evolvable. Therefore, the genotype
is an array with length 8 where gi is 0 when sensor i is dis-
abled and 1 if it is used. By definition, a genotype does not
change during lifetime. Therefore, a genome can be seen as
the ID of an individual and we consider the same e-puck with
another genome another individual from the perspective of
evolution. This implies that the lifetime of an individual is
the period of having the same genome, i.e., the same sensory
layout. Imposing another layout on a given e-puck will make
it another individual for the evolutionary process.

The learnable controller of the robots, the memotype is a
neural network (NN) with a variable number of input nodes
depending on the genome, no hidden nodes, and two out-
put nodes (motor speed values). This results in a maximum
neural network size of 18 weights (including the bias node).
The motors are activated based on a hyperbolic tangent ac-
tivation function. A meme consists of information about the
neural network structure and corresponding weights. Again
by definition, learnable features can change during the life-
time of a given individual, but they are re-initialized if the
genotype changes (assuming non-Lamarckian evolution).

3.2 Adaptive mechanisms
The general idea behind the integrated adaptation mech-

anism is as follows. Each individual –that is, a robot with a
particular sensory layout as specified by its genotype– has a
maximum lifetime, allocated at birth. This maximum life-
time can vary between the robots. This results in overlap-
ping generations where the young robots can learn from the
more experienced ones through the social learning mecha-
nism. Time for learning and evolution is measured by the
number of controller evaluations; the age of a robot is in-
creased by one after every evaluation until the maximum
lifetime is reached. Then a new genotype –hence, a new
robot individual with a new sensory layout– is created. Dur-
ing a robots life several controllers are created and evaluated
by the learning mechanisms.

The whole mechanism is outlined in Algorithm 1, the three
adaptive mechanisms that form the components of the sys-
tem are described in the subsequent subsections.
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Algorithm 1 Pseudocode of the 3-fold adaptation method

1: while current evaluation < max. no. of evaluations
2: for every generation
3: set maximum lifetime of individual randomly
4: if first generation or no genotypes collected
5: initialize genotype randomly
6: else
7: select a mate from collected genotypes
8: create child from mate and current genotype
9: end if
10: initialize memotype randomly
11: while individual age < maximum lifetime
12: choose action: individual learning /

social learning / reevaluate champion
13: broadcast genotype and fitness
14: broadcast memotype if exceeding threshold
15: receive genotypes and memotypes
16: end while
17: end for
18: end while

3.2.1 Evolution.
Genotypes are broadcasted to all other robots after ev-

ery controller evaluation together with the fitness value.
Robots are collecting these genotypes in their genotype stor-
age. Only unique genes are stored here together with the
corresponding fitness value. When the genome is already
in storage, the fitness value will be replaced by the last ob-
tained fitness value. When a robot’s lifetime expires it picks
a new genome through tournament selection from the geno-
type storage. Uniform crossover and mutation are performed
on the genome of the tournament winner and the current
genome of the robot. When a new genome is established,
the genotype storage is cleaned an a new memotype is cre-
ated where the weights of the neural network are uniform
random initialized.

3.2.2 Individual Learning.
The method for individual learning can be any algorithm

that can optimize neural networks efficiently. In our system
it is a (1+1) Evolutionary Strategy based on [4]. The fitness
function for this ES is the f defined in the beginning of this
section. The algorithm works on the weights of the neural
network that are mutated with a Gaussian noise N(0, σ)
whose σ value is doubled when the mutated controller (the
so-called challenger) is not better than the current controller
(the so-called champion). Before a controller is evaluated a
recovery period is introduced. During this period, the robot
can move, but the fitness is not being measured, so that the
robot is able to recover from a difficult starting position.
When a challenger has a higher fitness than the champion,
the weights of the neural network are replaced resulting in
a new controller.

3.2.3 Social Learning.
Memotypes are broadcasted to all other robots after ev-

ery controller evaluation, provided that a minimum fitness
threshold is exceeded. We have implemented a low, a medium
and a high value for this, in particular, 10%, 20% or 30%

of the theoretical maximum of the fitness function.1 The
place where memotypes from other robots are collected is
called the memotype storage. A memotype is taken from
the memotype storage in a Last In First Out (LIFO) order
and combined with the current robots controller to create a
challenger. To perform recombination the weights of the cur-
rent controller are copied into the challenger. After that the
challenger weights, now equal to the champion weights, are
overridden by those of the collected meme if these weights
are applicable to the current genome (i.e. the correspond-
ing sensory layout). The resulting meme is thus a crossover
between the champion and the challenger. After evaluation
of the challenger, the challenger meme is either discarded,
when the fitness is lower than the current champion, or pro-
moted to the current champion.

During an evaluation, one of three possible actions are
performed. The robot performs individual learning, social
learning or reevaluates its current controller. The fitness
value obtained by reevaluation is used to create a new fit-
ness value for the current controller in combination with the
old fitness value with an 20-80 weight distribution (where
80% is from the old fitness value). Reevaluation of a cham-
pion is necessary because of the noisy fitness function [2].
The proportion of number of executions between the three
mentioned actions, individual learning, social learning and
reevaluation, is a system parameter and thus can be tuned.

Figure 2: The Webots (version 7.4.2) environment where the
group of six e-puck are simulated

1The maximum is calculated by assuming a robot moving
in a perfectly straight line with no obstacles in sight for
the full evaluation period. Let us note that the practically
obtainable fitness values are around 40% of this maximum.
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4. EXPERIMENTAL SETUP
We conduct our experiments 2 in a high quality simulator,

Webots version 7.4.2. We limit the duration of simulations
to 3 hours, because the batteries of the e-pucks do not last
longer. The simulation environment is exhibited in Figure
2 showing 6 e-pucks. This is the amount of real e-pucks we
have, such that we can validate the results in hardware.

The list of all relevant system parameters and the values
used in the experiments is given below. When multiple pa-
rameter values are used for the experiments, the range is
given.

System parameters
Max. evaluations 200 - 800

Maximum number of evaluations in a run.
Max. robot lifetime 100 - 200

Maximum lifetime of a robot initialized at
birth.
Evaluation duration 10.25 sec

The duration of one evaluation measured in
seconds. (Recovery time is 1.5 sec and ac-
tual evaluation is 8.75 sec).
Reevaluation rate 0.2

Chance that the champion is reevaluated.
Challenger rate 0.8

Chance that a challenger is evaluated trough
either social learning or individual learning.
Social learning rate 0.3

Chance that a challenger is created by social
learning.
Individual learning rate 0.7

Chance that a challenger is created by indi-
vidual learning.

Evolution
Disable chance 0.3

Chance for each sensor to be disabled at
birth.
Tournament size 2

Size of tournament that is held among the
collected genomes.
Mutation chance 0.05

Change to enable/disable sensor after re-
combination.
Maximum genotype memory 5

Maximum number of unique collected
genomes.

Learning
Weight range 4

Value of NN weights are between [-Weight
range, Weight range].
Sigma initial 1

Initial sigma value for mutating weights.
Sigma maximum 4

Maximum sigma value.
Sigma minimum 0.01

Mimimal sigma value.
Maximum memotype memory 20

Maximal size of meme storage.

2The code for implementation is available on https://github.
com/jvheinerman/three fold adaptivity algorithm.

Fitness
Reevaluation weight 0.8

Weight of champion fitness in reevaluation.
Maximum fitness 22400

Theoretical maximum fitness value.
Threshold 0-30%

Percentage of maximum fitness to exceed
before sending meme.

5. EXPERIMENTAL RESULTS
We have arranged our experiments according to the main

research questions listed in the Introduction. Thus, we con-
ducted three series of runs under different conditions regard-
ing the sensory layout of the robots. In each case, we com-
pared the setup with individual learning only and that of
individual and social learning together. Furthermore, we
varied the threshold value that regulates the quality pres-
sure in the social learning mechanism, cf. Section 3.2.3.
This resulted in four social learning variants: no threshold
at all, low, medium or high threshold. For every threshold
value and the test without social learning 50 repetitions were
executed with different random seeds.

In the first experiment all robots have the same layout:
all eight proximity sensors are activated and there is no evo-
lution in the genotype space. The duration of the run is
200 controller evaluations. The outcomes are displayed in
Figure 3. The graph shows the average fitness (over the 50
repetitions) of the population. The plots clearly show the
impact of social learning: it improves the speed of learning
as well as the quality of the learned controllers. For every
threshold value the average fitness increases with at least
30% (and up to 60%). It is interesting to note that social
learning has a positive effect even if there is no threshold
for broadcasting memotypes after every evaluation. This is
good news, indicating that the method works even in cases
where there is not enough information about optimal fit-
ness values to establish a reasonable threshold. To validate
this effect we re-plot the experimental results with the 95%
confidence intervals for individual learning alone and social
learning without threshold in Figure 4. We can see that the
confidence intervals do not overlap, meaning a significant
difference with the P value much less than 0.05 [18].

In the second experiment the robots have a different lay-
out: each e-puck has different sensors that are activated.
These layouts are randomly generated in the beginning of
each experiment. The results are shown in Figure 5. In
this case, social learning does not result in a much higher
quality (average fitness increase is up to 30%), but it does
make the learning process faster, reaching the same fitness
levels in fewer evaluations then individual learning only. It
is interesting to compare the setup with no threshold and
with the high threshold. This shows that having no thresh-
old causes a faster increase of the fitness function, while a
high threshold results in higher fitness at the end of the 200
evaluations. This indicates that the threshold value can be
used to calibrate the system according to user preferences:
speed or quality.

In the third experiment the robots have an evolvable lay-
out initialized randomly. To better investigate the effect of
social learning we decided to use non overlapping genera-
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Figure 3: Average population fitness when the sensory lay-
outs of the robots are identical. Time is measured by the
number of evaluations (x-axis), fitness by the formula in
Section 3 (y-axis). Averages are taken over 50 repetitions.

Figure 4: Average population fitness when the sensory lay-
outs of the robots are identical including 95% confidence
intervals.

tions, where every robot has the same age. The maximum
lifetime is set at 100, i.e., every generation lasts for 100 eval-
uations, and we have 8 generations all together. Figure 6
displays the results. The first generation shows similar re-
sults to Figure 5. Again, we can clearly see a positive effect
of social learning. The changes from generation to genera-
tion are subtle, but over the whole run we can see a trend:
learning within a generation becomes faster.

To inspect the effect of evolution on the genotypes, that
is, the sensory layout of the robots., we collected statistics
about the status of the sensors that (on or off). The data
shows that the number of sensors used decreases over time.
The decrease is about 10 to 20 percent, compared to the
number of active sensors in the beginning (which varies, de-
pending on the random initialization). Evolution seems to

Figure 5: Average population fitness when the sensory lay-
outs of the robots are different. Time is measured by the
number of evaluations (x-axis), fitness by the formula in
Section 3 (y-axis). Averages are taken over 50 repetitions.

discover that using fewer sensors is advantageous, because
it makes the learning task easier. Furthermore, we could
observe a difference between the usage of the front and the
rear sensors. Intuitively, one would expect that rear sensors
become obsolete because they are not necessary for detect-
ing obstacles during forward locomotion. The data provides
some confirmation for this, showing that the decrease in the
usage of front sensors is lower (around 10%) than the drop
for the rear sensors (around 15%). Figure 7 provides an il-
lustration of these effects for two setups, the one with social
learning and a low threshold and the one with social learning
and a medium threshold.

6. CONCLUSIONS AND FURTHER WORK
In this paper we presented and investigated a three-fold

adaptive mechanism based on evolution, individual and so-
cial learning to implement on the fly adaptation in a group
of robots. The conceptual framework underlying this system
is generic, based on distinguishing inheritable and learnable
components in the robots makeup and specifying adequate
evolutionary and learning operators. Such a system pro-
vides a new opportunity to investigate the mutual effects
of all these adaptive mechanisms together – an option that
existing systems do not offer.

We have implemented this three-fold system in a popu-
lation of e-puck robots for investigating the effects of social
learning. To this end, we designated the sensory appara-
tus as inheritable/evolvable and the NN-based controllers
as learnable. The experiments clearly indicated the bene-
fits of social learning: it makes the population learn faster
and the quality of learned controllers higher. This effect is
demonstrated under three different setups: for robots with
identical sensory layout, for robots with different sensory
layout and for robots with evolving sensory layout. We have
also found that the social learning mechanism can be tuned
for speed or controller quality by a simple parameter, the
quality threshold maintained for sending around a robot’s
controller to others.
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Figure 6: Average population fitness when the sensory layouts of the robots are evolving. Time is measured by the number
of evaluations (x-axis), fitness by the formula in Section 3 (y-axis). Averages are taken over 50 repetitions. After 100
evaluations an evolutionary step takes place resulting in a new genotype (sensory layout) for the e-pucks and the controllers
are re-initialized.

Figure 7: Evolution of the usage of front and rear sensors.
The grayscale indicates the portion of active sensors w.r.t.
the initial setting over time (black = 100%), the numbers
show the exact figures.

Limited by the battery life of the real e-pucks we could
only accommodate eight generations in the experiments with
evolving sensory layouts. In general, this is not much on an
evolutionary timescale, but we could observe a trend of a
decreasing number of active sensors over generations.

All in all, our experiments represent a proof of concept,
in the meanwhile they provide answers to the specific re-
search questions within our implementation. Ongoing work
concerns validation of these results in hardware, facing sev-
eral challenges. Direct communication between e-pucks is
not reliable enough for continuous and frequent broadcast-
ing of memotypes. Extending the hardware with a Linux
extension board will hopefully solve this problem. Further
research will address tuning of the parameters, using mul-

tiple tasks and the use of different hardware, for example
Thymio II robots.
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