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an unstable surface, suggesting a relative decrease in the 
weights of proprioceptive and tactile information.

Keywords  Postural control · Sensory reweighting · 
Sitting posture · Sway

Introduction

The human ligamentous spine, devoid of muscular control, 
is incapable of carrying the weight of the upper body, as 
the smallest perturbation will cause it to buckle (Crisco and 
Panjabi 1992). Therefore, in addition to passive structures 
such as the intervertebral discs and the ligaments, back and 
abdominal muscles contribute to stabilization of the trunk 
against perturbations (Panjabi 1992) through modulation of 
co-activation and the resultant muscle stiffness and damp-
ing (Cholewicki et  al. 1997; van Dieen et  al. 2003) and 
under feedback control based on the sensory information 
provided by visual, vestibular, proprioceptive, and tactile 
afferents (Goodworth and Peterka 2009; Maaswinkel et al. 
2014).

The postural control system appears to use multiple 
sources of sensory information on trunk movement for 
feedback control. The vestibular and visual systems provide 
indirect information on motion and spatial orientation of 
the trunk (Mergner and Rosemeier 1998). The somatosen-
sory system likewise provides indirect information through 
sensing of shear or pressure induced by motion between 
body and support area (Lestienne and Gurfinkel 1988; Mas-
sion 1992). Also, in studies of whole body control (Lackner 
et al. 2000) and of trunk control (Maaswinkel et al. 2014) 
it was shown that tactile information contributes. Proprio-
ceptive information appears to be a more direct source of 
information on trunk movement and probably the only 

Abstract  This study aimed to examine the interactions 
of visual, vestibular, proprioceptive, and tactile sensory 
manipulations and sitting on either a stable or an unstable 
surface on mediolateral (ML) trunk sway. Fifteen indi-
viduals were measured. In each trial, subjects sat as quiet 
as possible, on a stable or unstable surface, with or with-
out each of four sensory manipulations: visual (eyes open/
closed), vestibular (left and right galvanic vestibular stim-
ulation alternating at 0.25  Hz), proprioceptive (left and 
right paraspinal muscle vibration alternating at 0.25  Hz), 
and tactile (minimal finger contact with object moving in 
the frontal plane at 0.25 Hz). The root mean square (RMS) 
and the power at 0.25 Hz (P25) of the ML trunk accelera-
tion were the dependent variables. The latter was analyzed 
only for the rhythmic sensory manipulations and the refer-
ence condition. RMS was always significantly larger on the 
unstable than the stable surface. Closing the eyes caused a 
significant increase in RMS, more so on the unstable sur-
face. Vestibular stimulation significantly increased RMS 
and P25 and more so on the unstable surface. Main effects 
of the proprioceptive manipulation were significant, but the 
interactions with surface condition were not. Finally, also 
tactile manipulation increased RMS and P25, but did not 
interact with surface condition. Sensory information in 
feedback control of trunk posture appears to be reweighted 
depending on stability of the environment. The absolute 
effects of visual and vestibular manipulations increase on 
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source of information on spinal curvature. Muscle spindles 
are thought to be the main source of this information (Bru-
magne et  al. 2008), although joint receptors may also be 
involved (Solomonow 2004).

It has been suggested that the central nervous system 
(CNS) weighs information from different sensory sources, 
relative to one another, to generate appropriate feedback 
commands (Peterka 2002; van der Kooij et al. 2005). Infor-
mation from multiple systems appears combined also in 
control of the trunk (Brumagne et  al. 2004; Carver et  al. 
2006; Goodworth and Peterka 2009). An advantage of this 
reweighting may be that the CNS can adjust gains of sen-
sory inputs from other locations, when the quality of the 
input from one location decreases due to for example aging 
or injury (Brumagne et al. 2004).

Sensory weighting in feedback control also appears to 
be affected by environmental conditions. Studies have 
shown that effects of triceps surae muscle vibration were 
less when standing on an unstable than on a stable sur-
face, indicating that proprioceptive information from tri-
ceps surae muscles was used less in postural control on an 
unstable support than on a stable support (Ivanenko et  al. 
1999; Kiers et al. 2012). This effect has been explained by 
an altered relation between muscle strain and the body’s 
orientation in the gravitational field on the unstable support 
(Ivanenko et  al. 1999; Kiers et  al. 2012). When standing 
on a rigid surface, foot orientation is fixed; hence, shank 
angle determines the length of the lower leg muscles and 
bears a direct relation with the orientation of the body with 
respect to gravity. This is not the case when standing on 
a tiltable or compliant surface. Somewhat simplified: the 
state of the two degrees of freedom (shank angle and foot/
surface angle) present on an unstable surface can not be 
sensed by one degree of freedom (ankle angle) propriocep-
tive information. In addition, standing on an unstable sup-
port would reduce the input into the somatosensory system 
arising from the contact with the support surface (Pasma 
et  al. 2012). Finally, on an unstable surface movement 
amplitudes will increase, which, for control of standing 
postures, has been indicated to cause upweighting of ves-
tibular information (Maurer et al. 2006; van der Kooij and 
Peterka 2011) and visual information (Fransson et al. 2007; 
Polastri et al. 2012; Asslander and Peterka 2014) relative to 
proprioceptive information.

The goal of the present study was to examine the effects 
of surface conditions on the importance of different sources 
of sensory information, as reflected in the effects of sensory 
manipulations on mediolateral (ML) postural trunk con-
trol. We hypothesized interaction effects between surface 
conditions and the sensory manipulations, reflecting larger 
effects of visual and vestibular information on an unstable 
surface than on a stable surface and a reduced effect of pro-
prioceptive manipulation. We also tested for an interaction 

between surface conditions and tactile manipulations, but 
we had no a priori expectation on the direction of this inter-
action, if any.

Methods

Subjects

Fifteen subjects participated in this study (9 females and 6 
males, age: 26.1 SD 2.8 years, height: 173.5 SD 11.9 cm; 
body mass: 65.5 SD 13.9  kg). The exclusion criteria for 
this study were current low back pain, any neurological 
disorder that could affect balance and also, presence of any 
musculoskeletal problem in the lumbar area. Subjects were 
asked to sign informed consent, after being briefed and 
instructed about the research protocol. The protocol was 
approved by the ethics committee of the Faculty of Human 
Movement Sciences of the VU University Amsterdam.

Experimental protocol

The experiment took place in a single visit to the labora-
tory, during which subjects performed a total of 10 trials, 
each lasting 65 s. Trunk postural sway was measured while 
subjects were seated in two surface conditions: sitting on 
a rigid surface and on a surface that was unstable in the 
frontal plane. Four different sensory manipulations were 
applied: visual, vestibular, proprioceptive, and tactile. The 
order of the trials was randomized.

For the stable surface condition, subjects sat on a rigid 
flat surface. For the unstable surface condition, subjects 
sat on an adjustable chair, keeping the hips and knees 90° 
flexed and the feet supported. This seat with foot sup-
port was mounted on a rocking support (seesaw) with one 
degree of freedom in the frontal plane. The height of the 
seat was 185 mm, and the radius of curvature of the support 
was 240  mm. A metal bar was placed around the subject 
for safety reasons. If the subjects touched the bar during 
the trial, the trial was discarded and repeated. In every trial, 
subjects had to cross their arms, except for the trial with the 
tactile manipulation, where one hand was touching a sphere 
at the end of a robot arm while the other was still crossed 
(Fig. 1).

The visual manipulation consisted of subjects clos-
ing the eyes. During all other trials, their eyes were open. 
Except for the manipulation of visual information, all sen-
sory manipulations were applied at a fixed frequency of 
0.25 Hz, to facilitate the comparison between the different 
conditions.

For manipulation of vestibular information, galvanic 
vestibular stimulation (GVS) was used. A sinusoidal, mean 
zero, amplitude 1.5  mA, current was applied, through 

Author's personal copy



1081Exp Brain Res (2015) 233:1079–1087	

1 3

electrodes placed over the mastoid processes, by a linear 
isolated stimulator (Stmisola, Biopac systems, Inc., Goleta 
CA, USA). GVS activates afferent fibers of the vestibu-
lar nerve and excites a wide range of vestibular neurons 
including the otolith system and the semicircular canals, 
causing an illusion that the body leans toward the cathodal 
side (Cohen et al. 2012), which with this stimulation proto-
col occurred in an alternating fashion from left to right at 
the stimulus frequency.

For the proprioceptive manipulation, muscle–tendon 
vibration (MTV) was applied over the muscle bellies of 
the paraspinal muscles in the mid-lumbar area. Vibration 
alternated between left and right paraspinal muscles, as 
a square wave at a fixed frequency of 0.25  Hz, applied 
by a custom-made stimulator consisting of two electro-
motors (Graphite Brushes S2326.946, Maxon, Sachseln, 
Switzerland) driven in a velocity loop at 100 Hz (4-Q-DC 
Servo Control LSC 30/2, Maxon, Sachseln, Switzerland). 
Muscle vibration activates mainly Ia-afferents, which 
causes illusions of lengthening and reflex responses 
to counteract the perceived movement (Goodwin et  al. 
1972; Roll et al. 1989).

For the tactile perturbation, subjects were asked to 
touch, as lightly as possible, the head of the arm of a hap-
tic master (Moog-FCS, Nieuw-Vennep, The Netherlands), 
which was to their right side, outside their field of vision 
and which was moving at a frequency of 0.25 Hz over a 
range of 5  cm. Subjects were instructed to look straight 
ahead and not at their arm. Touching a stationary sur-
face reduces trunk sway (Maaswinkel et al. 2014), and it 
has been shown that whole body sway is coupled to the 
rhythm of moving surfaces when these are touched (Jeka 
et al. 1998; Wing et al. 2011).

Measurements and data analysis

Postural sway was measured by a hybrid inertial sen-
sor at a sample frequency of 100  Hz (Dynaport, McRob-
erts, the Hague, Netherlands), placed at the back over the 
tenth thoracic vertebrae. The sensor recorded accelera-
tions and angular velocities in three planes. All data analy-
sis was performed using custom-made software in Matlab 
R2014a (Mathworks, Natick MA, USA). For analysis, we 
used acceleration data to represent trunk movement, as it 
is more sensitive because higher frequency components 
are reflected more strongly in the signal than in velocity or 
the position signals. Inertial sensors allow relatively noise-
free measurement of acceleration, in contrast with optical 
methods, which measure position and obtain acceleration 
through double differentiation, thereby introducing consid-
erable noise. Data recording was started after the subject 
had adopted an upright posture and sensory manipulations 
had been started. Moreover, the first 5 s of every trial was 
discarded, in order to eliminate transient behavior. Data 
were bi-directionally, low-pass filtered, with a second-order 
6  Hz Butterworth filter, and subsequently the root mean 
square (RMS) of the ML acceleration and the power spec-
tral density of the ML acceleration at 0.25  Hz (P25; the 
frequency used for the rhythmic perturbations) were calcu-
lated. The latter was determined using the Welch estimation 
method, using a Hamming window size of 10  s, with 5  s 
overlap and a 10,000-point DFT, yielding a spectral resolu-
tion of 0.01 Hz. For illustrations, the spectra were normal-
ized to total power.

Statistics analysis

Statistical analyses were performed with SPSS 20 (IBM 
Software, Armonk NY, USA). Normality of the data was 
confirmed by visual inspection of the q–q plots and box 
plots of the residuals and the Shapiro–Wilk test. To test the 
hypotheses that surface conditions (stable and unstable) 
and the four sensory manipulations had interaction effects 
on RMS trunk acceleration, we performed three-way fac-
torial ANOVA’s, with subject as a random factor and sur-
face condition (stable/unstable) and sensory manipulation 
(yes/no) as fixed factors. In case of a significant interaction 
effect, the effect of the sensory manipulation was tested 
with a paired t test with Bonferroni correction. The effects 
of each of sensory manipulations were tested separately as 
the intensities of the perturbations applied cannot be com-
pared between sensory modalities.

Interactions in which the effect of the sensory 
manipulation indicating a larger increase in sway on 
the unstable surface could arise from the unstable sup-
port itself amplifying the effect of any perturbation and 
hence do not necessarily imply reweighting of sensory 

see-saw 

accelerometer 

muscle vibra on 

GVS 

Hap c Master 

Fig. 1   Schematic illustration of the experimental setup (in the unsta-
ble surface condition)
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information. To circumvent this interpretation problem, 
two additional analyses were performed. When main 
effects of the sensory manipulation were present, the 
relative change in RMS due to the sensory manipulation 
was compared between surface conditions with paired t 
tests, thus correcting for effects of changes in the dynam-
ics of the controlled system. In addition, for the rhyth-
mic perturbations, factorial ANOVA’s were performed 
on the P25 values. As for the RMS, significant interac-
tion effects were followed up by t tests with Bonferroni 
correction for sensory manipulation within each surface 
condition. For all tests, results were considered signifi-
cant at p < 0.05.

Results

Due to technical problems, one subject did not perform one 
trial with VTS. In addition, we excluded data from another 

subject for the eyes closed on stable support surface condi-
tion, in view of exceptionally high acceleration values of 
which the origin was unclear.

The acceleration data in Fig. 2 show that trunk sway was 
generally more pronounced on the unstable support. More-
over, it can be seen that the sensory manipulations tended 
to increase sway differently between the support surface 
conditions, with clear rhythmic responses in trunk sway 
identifiable in the time series (Fig. 2a, b) as well as in the 
normalized power spectra (Fig. 2c). Note also that the sig-
nals in the unperturbed and eyes closed conditions contain 
very little power at 0.25 Hz. In general, the unstable sup-
port condition caused a higher RMS acceleration (Table 1), 
while P25 showed this main effect only in the ANOVA for 
the GVS (Table 2).

Closing the eyes caused a significant increase in trunk 
acceleration, while an interaction with support surface was 
also found (Table 1; Fig. 3a). The increase in RMS was sig-
nificant only in the unstable support condition (p < 0.001), 

CBA

Fig. 2   Example of acceleration data of a single subject in each of the 
conditions. a Time series of acceleration on the stable surface, b time 
series of acceleration on the unstable surface, c normalized power 
spectra of the accelerations on both surfaces. None no sensory manip-

ulation, EC eyes closed or visual manipulation, MTV muscle–tendon 
vibration or proprioceptive manipulation, GVS galvanic vestibular 
stimulation or vestibular manipulation, TAC tactile manipulation

Table 1   Results of four 
separate factorial ANOVA’s on 
the RMS trunk accelerations, 
with subject as random factor 
and sensory manipulation and 
surface as fixed factors

Significant effects are 
highlighted in bold

Condition Manipulation Surface Manipulation  
× surface

F p F p F p

Eyes closed 16.985 0.001 31.830 0.000 27.439 0.000

Vestibular 31.010 0.000 26.430 0.000 20.993 0.001

Proprioceptive 10.617 0.006 11.105 0.005 0.022 0.884

Tactile 12.400 0.004 15.008 0.002 2.364 0.148
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and the relative increase in the RMS was significantly 
larger in the unstable condition than in the stable condition 
(p = 0.008; Fig. 3b).

GVS caused a significant increase in RMS and inter-
acted with the surface conditions (Table  1). The increase 
in RMS was clearly larger on the unstable than on the sta-
ble support (Fig. 4a), but still it was significant in the sta-
ble (p = 0.032) and unstable condition (p < 0.001; Fig. 4). 
The relative effect of GVS on the RMS was significantly 
larger on the unstable than the stable condition (p = 0.009; 
Fig.  4b). A similar pattern of effects as for the RMS was 
observed for the power spectral density at 0.25 Hz specifi-
cally (Table 2, Fig. 4c).

While the proprioceptive manipulation significantly 
increased the RMS and P25 values, there were no inter-
actions with the surface condition (Tables  1 and 2), even 
though the effect on RMS and P25 appeared more pro-
nounced at the stable support surface (Fig. 5c). In line with 
this, the relative effect of MTV on the RMS acceleration 
was not different between support conditions (p =  0.257, 
Fig. 5b).

Touching the moving arm of the haptic master increased 
RMS and P25 acceleration. Although for both variables a 

tendency was observed toward smaller effects of touch-
ing the haptic master on the unstable support, there were 
no significant interactions between the tactile manipula-
tion and the support conditions (Tables  1, 2; Fig.  6a, c). 
Similarly, for the relative effects on the RMS, only a trend 
toward a larger relative effect on the stable support was 
found (p = 0.062; Fig. 6b).

Discussion

The purpose of the present study was to examine the effect 
of sensory manipulations on trunk control during stable 
and unstable sitting. We hypothesized interaction effects 
between surface conditions and the sensory manipulations, 
reflecting larger effects of visual and vestibular manipula-
tions on an unstable surface than on a stable surface and 
a reduced effect of proprioceptive manipulation. We also 
tested for an interaction between surface conditions and 
tactile manipulations. The results showed the expected 
interactions for the visual and vestibular manipulations 
with the surface conditions, but not for the proprioceptive 
and tactile manipulations.

Table 2   Results of three separate factorial ANOVA’s on power spectral density of trunk acceleration at 0.25 Hz, with subject as random factor 
and sensory manipulation and surface as fixed factors

Significant effects are highlighted in bold

Condition Manipulation Surface Manipulation × surface

F p F p F p

Vestibular 7.527 0.017 6.590 0.023 6.033 0.029

Proprioceptive 19.249 0.001 2.414 0.144 2.861 0.115

Tactile 10.903 0.006 1.501 0.242 2.056 0.175

Fig. 3   Mean values of the 
RMS of mediolateral trunk 
acceleration (a) for the eyes and 
eyes closed conditions at both 
support surfaces, as well as the 
relative effects on RMS of the 
eyes closed compared to eyes 
open condition on both support 
surfaces (b). Error bars indicate 
one standard deviation and 
asterisks indicate significant 
effects paired t tests
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When comparing the surface conditions, the unstable 
condition led to an increase in postural sway. Increased 
sway due to surface instability is not surprising and has 
previously been reported (Cholewicki et al. 2000; Radebold 
et  al. 2001; Silfies et  al. 2003; Reeves et  al. 2006; Slota 
et al. 2008). The current study adds to this that changes in 
stability of the surface interact with manipulations of vis-
ual and vestibular information, suggesting reweighting of 
these sensory modalities in control of trunk posture. Such 
reweighting of sensory systems should be considered in 
research and clinical practice when aiming to assess or train 
trunk control and, for example, raises questions regarding 
the use of unstable surfaces for so-called proprioceptive 
training (c.f. Kiers et al. 2012).

When vision was occluded in the stable condition, ML 
trunk acceleration did not significantly increase. Similarly, 
Maaswinkel et al. (2014) did not find an effect of closing the 
eyes on anteroposterior trunk sway in stable sitting. These 
findings contrast with effects of closing the eyes on postural 
sway observed in many previous studies (for an overview 
see Mazaheri et al. 2013). Possibly, this is attributable to the 
smaller effect of sway angle on head movement in sitting 
compared to standing. In the present study, ML sway did 
increase with closing the eyes in the unstable condition. In 
line with this, Silfies et al. (2003) showed that chair move-
ment in unstable sitting increased faster with seat instability 
when visual input was lacking. However, this effect was sig-
nificant only for anteroposterior sway and total path length 
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Fig. 4   Mean values of the RMS of mediolateral trunk acceleration 
(a) for the conditions with and without GVS at both support surfaces 
and the relative effects on RMS of the GVS compared to no GVS 
condition on both support surfaces (b), as well as mean values of 

power spectral density of mediolateral trunk acceleration at 0.25 Hz 
(c). Error bars indicate one standard deviation and asterisks indicate 
significant effects paired t tests
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Fig. 5   Mean values of the RMS of mediolateral trunk acceleration 
(a) for the conditions with and without MTV at both support surfaces 
and the relative effects on RMS of the MTV compared to no MTV 

condition on both support surfaces (b), as well as mean values of 
power spectral density of mediolateral trunk acceleration at 0.25 Hz 
(c). Error bars indicate one standard deviation

Author's personal copy



1085Exp Brain Res (2015) 233:1079–1087	

1 3

and not for ML sway. Goodworth and Peterka (2009) did not 
find a significant effect of closing the eyes in ML sway in 
standing on an actively tilting platform. On the other hand, 
tilting the visual environment did increase sway. Combined, 
these data may suggest that the use of visual information in 
control of trunk sway is dependent on the amplitude of the 
visual stimulus and hence of trunk sway, which would also 
explain the interaction effect with surface condition found 
in the present study.

As expected, there was an interaction between vestibu-
lar manipulation and surface condition; relative effects 
and P25 were higher on the unstable surface than on the 
stable one. These results are in line with Fitzpatrick et al. 
(1994) who applied GVS while standing and found a larger 
EMG response in the lower leg muscles while standing on 
an unstable, compared to a stable surface. As for visual 
manipulation, the increased effect of vestibular manipula-
tion could be due to increased reliance on vestibular inputs 
with increased movement amplitudes. This is in line with 
upweighting of vestibular information with increasing 
movement amplitudes, as predicted by models of sensory 
weighting (Maurer et al. 2006; van der Kooij and Peterka 
2011) and empirically supported by data on ML trunk sway 
(Goodworth and Peterka 2009).

A significant increase in sway was observed also with 
muscle vibration on both surfaces, but absolute and relative 
effects on acceleration were not different between support 
conditions. We had hypothesized a smaller effect of the 
proprioceptive manipulation on the unstable surface than on 
the stable surface, in line with reduced effects of calf mus-
cle vibration on unstable surfaces (Ivanenko et  al. 1999; 
Kiers et al. 2012). On the unstable surface, proprioceptive 
information is ambiguously related to trunk orientation 

in space, which makes this input less pertinent and could 
even lead to responses that further offset balance. However, 
although some models of sensory reweighting assume that 
weighting of a specific input is dependent on discrepancies 
with a veridical signal (Mahboobin et al. 2009), other mod-
els suggest that it is based on the signal’s variability (van 
der Kooij and Peterka 2011) or on its amplitude in relation 
to a sensory threshold (Maurer et  al. 2006). While such 
weighting processes could account for upweighting of sen-
sory channels in an absolute sense at increasing amplitudes 
without downweighting of ‘competing’ channels, these 
models assume a reciprocal weighting to avoid changes 
in the overall feedback gain. The present data suggest that 
the relative but not the absolute weight of proprioceptive 
information decreased on the unstable surface, since the 
effects of visual and vestibular input increased, while that 
of proprioceptive input remained constant. While this is 
in line with a shift toward reliance on vestibular and vis-
ual information as movement amplitudes increase (Good-
worth and Peterka 2009; Polastri et al. 2012; Asslander and 
Peterka 2014), it does not support the reciprocal nature of 
sensory reweighting. Polastri et al. (2012) likewise reported 
an asymmetric change in weighting of visual and proprio-
ceptive information, which was however not supported by 
data presented by Assländer and Peterka (2014). It should 
be noted here that other sensory modalities may play a role. 
Sensing the ground reaction force through pressure sen-
sors in the skin can potentially contribute to trunk control 
in the present task (c.f. Maurer et al. 2006). This source of 
information is greatly attenuated on the unstable surface 
and since it is not known whether and how its weighting 
changes, the reciprocal nature of weighting of all relevant 
sensory modalities cannot be excluded.
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one standard deviation
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The tactile manipulation also caused an increase in 
sway in all the trials and did not interact with surface 
condition, although a tendency toward smaller effects 
was found in the unstable condition. Several studies have 
shown that light touch can reduce postural sway in the 
ML direction in standing whether the eyes are open or 
closed (Jeka and Lackner 1994; Holden et al. 1994). Also 
light finger touch with a moving object leads to entrain-
ment of the whole body to the movement frequency of 
the object (Jeka et  al. 1997, 1998). While it has previ-
ously been shown that tactile information has a strong 
influence on trunk sway, irrespective of the body part that 
is in contact with an external object (Maaswinkel et  al. 
2014), this study adds that also the effect of touching a 
moving object generalizes to control of trunk posture in 
sitting.

Some limitations of the current study need to be 
addressed. Most importantly, the strength of the different 
manipulations applied was not scaled, rendering direct 
comparisons of the effects of these sensory manipulations 
impossible. Secondly, with the change in surface condi-
tions, the dynamics of the controlled system changed. 
Hence, increased responses to sensory manipulations can-
not directly be attributed to upweighting of sensory infor-
mation. Therefore, we also compared relative effects within 
surface conditions. Consistent increases in both relative and 
absolute effects are suggestive though no definitive proof 
of upweighting of the sensory information manipulated. 
Finally, the subjects that participated in this study consisted 
of young healthy individuals; consequently, the results can-
not be generalized to clinical populations in which trunk 
control is affected such as low back pain (e.g. Radebold 
et  al. 2001) or Parkinson’s Disease (van der Burg et  al. 
2006). Further study in patient populations could reveal 
differences in the use of sensory information in such tasks 
compared to healthy controls (c.f. Claeys et al. 2011; Wil-
ligenburg et al. 2013).

Conclusion

The aim of the present study was to investigate the effect 
of sensory manipulations on trunk control on stable and 
unstable sitting. Interactions between surface condition and 
the manipulation of visual and vestibular information were 
found, with stronger effects of these manipulations on the 
unstable surface. The effects of muscle vibration to manip-
ulate proprioceptive information and of touching a slowly 
moving object were constant between the two surface con-
ditions. These findings suggest a relative upweighting of 
visual and vestibular information compared to propriocep-
tive and tactile information in trunk control on an unstable 
surface.
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