
VU Research Portal

Decoupling Provenance Capture and Analysis from Execution

Stamatogiannakis, M.; Groth, P.T.; Bos, H.J.

published in
7th USENIX Workshop on the Theory and Practice of Provenance (TaPP'15)
2015

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Stamatogiannakis, M., Groth, P. T., & Bos, H. J. (2015). Decoupling Provenance Capture and Analysis from
Execution. In 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP'15)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303536646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/cd62d9c7-d946-40eb-a20c-eb9ed112af2c


Decoupling Provenance Capture and Analysis from Execution

Manolis Stamatogiannakis ∗

VU University Amsterdam
manolis.stamatogiannakis@vu.nl

Paul Groth
Elsevier Labs

p.groth@elsevier.com

Herbert Bos
VU University Amsterdam

h.j.bos@vu.nl

Abstract
Capturing provenance usually involves the direct observation and
instrumentation of the execution of a program or workflow. How-
ever, this approach restricts provenance analysis to pre-determined
programs and methods. This may not pose a problem when one
is interested in the provenance of a well-defined workflow, but
may limit the analysis of unstructured processes such as interac-
tive desktop computing. In this paper, we present a new approach
to capturing provenance based on full execution record and replay.
Our approach leverages full-system execution trace logging and re-
play, which allows the complete decoupling of analysis from the
original execution. This enables the selective analysis of the execu-
tion using progressively heavier instrumentation.

Keywords provenance, introspection, reverse engineering

1. Introduction
A key challenge when developing provenance aware systems is de-
ciding what provenance should be captured during the execution of
that system. Developers need to ensure that enough provenance is
captured such that future analysis will be able to be performed. If
a developer fails to foresee the need for a particular kind of prove-
nance to be captured (e.g. not capturing the loading of libraries),
then subsequent analysis will be difficult and would require one to
attempt to reconstruct the missing provenance [10, 15, 22].

One answer, then, is to capture all relevant provenance infor-
mation. However, we may not be able to determine this a priori.
In some cases, an entire system is deterministically replayable and
all operators of importance are known in advance. This is an ap-
proach adopted within database systems [6, 13] where the oper-
ators in question are well-known and have clear semantics. Such
a replay centric approach has also be recently applied to big data
analysis systems [20]. However, many systems, for example desk-
top computing environments, have operations which are complex
or unknown beforehand and thus thus have unclear semantics.

For other applications, one could apply software methodology
to help make informed decisions upfront about what provenance
information should be captured and the level of instrumentation
required for that. Miles et al. created such software methodology
called PrIME [21]. Unfortunately, even such a systematic approach
cannot foresee every possible analysis.

Finally, lightweight always-on provenance capture can be em-
ployed. The runtime overhead of provenance capture can vary be-

∗ Part of this work was done while the author was visiting SRI Interna-
tional’s Computer Science Laboratory.

This article was originally published in Proceedings of the 7th USENIX Workshop
on the Theory and Practice of Provenance (TaPP 2015). Copyright remains with the
owner/author(s).

tween 1-100% depending on the system used [2]. For operating
system based capture, state of the art systems have roughly a 10%
overhead [11]. While the runtime overhead can be kept relatively
low, several compromises have to be made to achieve this: a) man-
ual instrumentation effort may be required for each application;
b) the produced provenance may not semantically rich [30]; c) vir-
tually, no analysis flexibility is offered; and d) intensive provenance
analysis [24] is precluded.

In this work, we eliminate the need for developers to decide a
priori what provenance needs to be captured. We do this by lever-
aging full system execution trace logging and replay, which can
be done at a fixed, relatively small overhead. In essence, our ap-
proach replays exactly what a system performs adding provenance
instrumentation needed for a particular analysis after the fact. More
importantly, our approach enables iterative/user-driven provenance
analysis during replay, using progressively heavier instrumentation.
The user or analyst can use provenance queries to find portions of
the execution trace to focus on and to request such additional in-
strumentation.

The contributions of the paper are as follows:

• A 4-stage methodology for selectively and progressively apply-
ing provenance capture instrumentation in the context of an ex-
ecution record/replay environment.

• Two plugins for the PANDA record/replay environment which
can be used for provenance analysis using our methodology.

• A demonstration of the application of the system using a case
study.

The rest of the paper is organized as follows. We begin by
describing our methodology and system. This is followed by a
case study description. We then discuss the ramifications for overall
system performance and alternative methods of record and replay.
Finally, we conclude.

2. System and Methodology
Our system is based on the following, 4-stage methodology:

1. Execution Capture: At runtime, a self-contained replayable
execution trace is captured.

2. Application of instrumentation: In this stage, depending on
goal of the analysis, an instrumentation plugin is selected to
process the execution trace. Through this process, a provenance
graph is generated.

3. Provenance analysis: In this stage, the user interrogates the
provenance graph using a query language to focus on and/or
select portions of the graph.

4. Selection and iteration: Based on the provenance analysis,
the user can select a portion of the execution trace to apply



additional, more intensive, instrumentation on. To do this, the
user starts again from stage 2.

Before describing our system, we provide a brief background
on execution record and replay that is at the heart of our system.

2.1 Full System Record and Replay
Recording and replaying of full system executions became popular
in the early years of this millennium with applications almost exclu-
sively related to debugging and security/intrusion analysis [9, 26].
After all, the ability to replay an execution with limited overhead is
ideally suited to finding rare and non-deterministic error conditions
and for analysing attacks as they occur. Moreover, by decoupling
the analysis from the execution the overhead can be kept to a min-
imum [4, 23]. The functionality became so popular that VMware
started shipping it in some of its products [27]. Over time the tech-
niques became more efficient [3], but the application domains re-
mained the same. Here, we show the usefulness of these techniques
in the field of provenance.

2.2 The PANDA analysis framework
The Platform for Architecture-Neutral Dynamic Analysis (PANDA) [8]
is an open source framework for full-system analysis based on ex-
ecution record and replay. It is based on the QEMU emulator [1].
PANDA recording works by taking a snapshot of the guest mem-
ory and subsequently recording all the non-deterministic inputs to
the guest CPU. The recorded information enables the deterministic
replay of all the execution at any later time.

Because recoding happens at the “boundaries” of the virtual
CPU, execution traces recorded with PANDA cannot be used to
“go live” as they do not include the state of the emulated hardware
devices. This is a conscious decision in the design of PANDA, as
it is meant as an analysis framework rather than a generic VM.
Another property of PANDA execution traces is that they are self-
contained (i.e. you can replay and analyze a trace without having
access to the VM image that was used to record it).

One key feature of PANDA is its plugin architecture which
allows writing analysis modules in C and C++. The plugins can
insert instrumentation at different granularities: per instruction, per
memory access, per context switch etc. More importantly, PANDA
offers a framework for the plugins to interact with each other. This
allows implementing complex analysis functionality by composing
it from several smaller plugins. This approach follows the Unix
philosophy of relying on combining a plethora of small tools,
rather than building monolithic end-all, be-all tools. PANDA allows
plugins to either invoke functionality of other plugins through API
calls, or register plugin-specific callbacks.

2.3 The PROV-Tracer plugin
PROV-Tracer is the central PANDA plugin we developed for
supporting provenance analysis. The plugin taps on osi and
osi_linux plugins for some functionality. Most of this function-
ality was developed from scratch to support PROV-Tracer but it
was modeled as separate plugins because it was not provenance-
specific. In fact we have reports of researchers using it for other
types of analysis.

The operation of PROV-Tracer can be summarized as:

1. Registering for notifications on the creation/destruction of pro-
cesses. The callback mechanism is implemented by the osi plu-
gin.

The captured inputs include CPU port I/O, DMA, hardware interrupts.
Source code available on:
https://github.com/m000/panda/tree/prov_tracer/

2. Retrieving process information from guest OS memory for each
new process. The guest OS introspection is implemented by the
osi_linux plugin.

3. Decoding and keeping track of the performed system calls. This
functionality is embedded in prov_tracer plugin.

4. Doing book-keeping on the file usage, reads and writes per-
formed by processes and emitting the respective provenance
along the way.

In principle, PROV-Tracer works similar to existing prove-
nance systems that monitor the OS-process interface for provenance-
related events [10, 12, 16]. However, in contrast to those systems,
PROV-Tracer does not have primary access to these events. In-
stead, it has to construct them from lower level semantics. E.g. a
write to the CR3 register signifies a context switch, which may (or
may not) coincide with the creation of a new process.

PROV-Tracer emits provenance in a compact intermediate for-
mat. This choice was made to reduce the complexity of the required
book-keeping. E.g. deduplication of the produced provenance rela-
tions is much easier to perform after the analysis has completed. A
python script (raw2ttl.py) is used to convert the provenance to
PROV serialized as Turtle RDF.

2.4 The ProcStrMatch plugin
The ProcStrMatch plugin monitors all memory accesses in the
guest VM, waiting for a specific text string to appear. Its func-
tionality is clearly simpler than that of the prov_tracer plugin.
Although this type of analysis would not be adequate on its own
for fully-fledged provenance analysis, it can prove very useful in
enriching already extracted provenance. This is a demonstration of
how our methodology enables the use of more intensive techniques
not traditionally associated with provenance analysis.

The plugin is implemented on top of the stringsearch plu-
gin, which offers the string matching functionality and the osi,
osi_linux plugins which provide information about the currently
running process at the time a match occurs. Because of the use of
the stringsearch plugin, ProcStrMatch is particularly heavy-
weight in its analysis. The reason is that while stringsearch has
carefully been designed to match strings as efficiently as possible
(see [7]), it is still very heavyweight to use. This is because a) it
has to be invoked very frequently – on every memory access, and
b) some QEMU runtime optimizations have to be turned off to en-
able this. The plugin emits any matches as :hasMemText triples
which can be merged with the results of PROV-Tracer and subse-
quently be queried in a unified way (see Section 3.4.1).

2.5 User-driven Provenance Analysis
As discussed previously, provenance produced by the system is rep-
resented using the W3C PROV recommendations[14] and serial-
ized using Turtle RDF. This enables us to leverage existing Seman-
tic Web infrastructure for provenance analysis. The integration with
this generic infrastructure is done by specifying query result for-
mats for obtaining parameter values that can then be fed back into
the replay and instrumentation system (i.e. PANDA). For instance,
to define a particular time range for future analysis, the SPARQL
query returns a start and end time. An example query would be as
follows:
SELECT ?stime ?etime WHERE {
<file:/home/panda/letter.txt>

prov:wasGeneratedBy ?act.

The prefixes used in the SPARQL queries reported here are de-
fined by the RDFa Core Initial Context - http://www.w3.org/2011/
rdfa-context/rdfa-1.1. We also define or own predicates in the dt:
namespace.

https://github.com/m000/panda/tree/prov_tracer/
http://www.w3.org/2011/rdfa-context/rdfa-1.1
http://www.w3.org/2011/rdfa-context/rdfa-1.1


?act prov:startedAtTime ?stime .
?act prov:endedAtTime ?etime .

}

This finds the activity that generated the letter.txt file and re-
trieves the start and end times of the activity. The use of SPARQL in
combination with PROV provides a full featured language for users
to interrogate and analyze the provenance produced by PROV-
Tracer. Note, in the case study that follows we used the Stardog
triple store, which supports SPARQL 1.1.

3. Case Study
To demonstrate the applicability of our approach, we apply our
approach to the following scenario.

3.1 Scenario
Alice has been tasked by Bob to write a report on Camelidae.
The sources of the report are sent to her as a tar archive named
camelidae.tar.

1. The archive is extracted and four text files are generated:
alpaca.txt, bactrian.txt, guanco.txt, and llama.txt.

2. Alice creates a new file with vim text editor. Some text is typed
and the first three of the files are read into the buffer. The buffer
is saved as camelidae-report.txt

3. Alice now edits llama.txt and adds some text to it before
appending it to report. But Alice is now getting hungry, so she
closes her editor and goes out to lunch.

4. Taking advantage of the author’s absence, Mallory edits llama.txt
adding the text: “Llamas are lame!”.

5. Alice resumes editing and appends file llama.txt to it, with-
out noticing the inserted text.

6. The report and its sources are packed into a new archive
(camelidae-new.tar) and sent to Bob for proof-reading.

During proof-reading, Bob detects the inserted text and requests
an analysis to identify the source. Fortunatelly, the whole editing
process had been recorded in the execution trace alice.et.

3.2 Initial Provenance Analysis
To start the analysis, a quick full-system provenance analysis was
produced by PROV-Tracer:
$ qemu -replay alice.et -panda
"osi;osi_linux;prov_tracer"

$ ./raw2ttl.py < prov_out.raw > alice.ttl

We can see that PROV-Tracer stacks on top of two other
PANDA plugins. The osi plugins enable it to introspect the run-
ning OS and get information on the running processes. On top of
that, PROV-Tracer decodes all the system calls that were executed
and associates them with a process, as described in Section 2.3.

Because all the running processes are tracked, the quick analysis
of PROV-Tracer tends to produce unwieldy provenance graphs,
even for a short scenario like the one we study. The provenance
graph produced by the plugin for this scenario has 3063 triples and
222 unique prov:Activities.

As a first step, a query was written to see the text files from
which camellidae-new.tar was derived:
SELECT ?file WHERE {
<file:/home/panda/work/camelidae-new.tar>

http://stardog.com
As an aside, Stardog is a versioned database that supports querying over its
revisions using W3C PROV.

prov:wasDerivedFrom ?file .
FILTER regex(str(?file), "txt")

}

Results:
file
file:/home/panda/work/alpaca.txt
file:/home/panda/work/bactrian.txt
file:/home/panda/work/guanco.txt
file:/home/panda/work/llama.txt
file:/home/panda/work/camelidae-report.txt

This verified that the camelidae-report.txt file edited on
Alice’s machine was indeed included in the archive submitted to
Bob.

3.3 Selective Analysis
We now have an entry point to the part of the provenance graph
of interest. Using this, the full execution trace can be trimmed
down to only cover the time when processes interacting with the
above files were active. For trimming down the trace, we use the
pseudo-timestamps produced by PROV-Tracer (see Section 2.3).
The pseudo-timestamps are extracted from the provenance trace
using a SPARQL query. The following query extracts the relevant
start and end positions of the editing sessions that touched the files
in question.
SELECT (MIN(?startTime) AS ?s)

(MAX(?endTime) AS ?e) WHERE
{
<file:/home/panda/work/camelidae-new.tar>
prov:wasDerivedFrom ?file .
FILTER regex(str(?file), "txt")

?file prov:wasGeneratedBy ?activity .
?activity a dt:Editor .
?activity prov:startedAtTime ?startTime .
?activity prov:endedAtTime ?endTime .

}

Results:
s e
705412095 990055363

Note, the above query shows the advantages of using an existing
query language. We are able to make use of the existing aggregation
and filtering functionality built into SPARQL. The results of the
query can then be used to retrieve a portion of the trace using the
scissors PANDA plugin.
$ export s=705412095 e=990055363
$ qemu -replay alice.et -panda
"scissors:start=$s,end=$e,name=report.et"

The resulting execution trace report.et contains the smaller
slice.

3.4 Progressive Analysis
Now that we have a more compact execution trace, it becomes pos-
sible to start applying more heavyweight instrumentation methods,
which enable more detailed provenance analysis. The intensiveness
of these methods stems from the fact that they apply instrumenta-
tion on a finer granularity (e.g. per memory access) than the initial
quick analysis which operates on a per context switch granularity.

We note that we have broken the semantics of prov:startedAtTime and
prov:endedAtTime as this should be an XML Schema date time. In future
revisions, we will make changes to the correct formatting.

http://stardog.com


3.4.1 String Matching
One particularly heavy analysis is offered by the stringsearch
PANDA plugin. The plugin instruments all the memory accesses
in the trace (reads and writes) and attempts to match them against
a list of strings, read from file. However, by itself the plugin does
not provide high level process semantics. For this, we do not use
it directly, but rather through the psstrmatch plugin which com-
bines information from different sources to tell us the name of the
processes that read/wrote a specific string to/from memory.
$ echo '"Llamas are lame"' > search_strings.txt
$ qemu -replay report.et -panda
"osi;osi_linux;callstack_instr;stringsearch;psstrmatch"

By running this, we can determine the processes that wrote the
infringing string to memory. The plugin outputs this information in
file smatch.ttl which is in Turtle RDF format. As such, the new
information can be loaded in the same triple store with the original
trace to augment the existing graph. This is another benefit of using
RDF, which allows for the incremental addition of data. After this
update, we can query the provenance to retrieve the first of these
processes using the following SPARQL query:
SELECT (MIN(?st) as ?min) ?vi WHERE
{

?vi dt:hasMemText "Llamas are lame".
?vi prov:startedAtTime ?st

} GROUP BY ?vi

Results:
min vi
705412095 exe://vi~3547
782648505 exe://vi~3557
857809758 exe://vi~3570
963886071 exe://vi~3595

The first of these processes is the one which introduced the
infringing text into the report editing pipeline. The process can be
easily mapped to Mallory’s username. This result is not presented
in the query output because it is not currently supported by the
PANDA osi_linux plugin. It is however straightforward to extend
the osi_linux plugin so that this information is made available to
PROV-Tracer.

With this case study, we have demonstrated the application of
our methodology and the potential benefits of a progressive and
decoupled analysis.

4. Discussion
4.1 Additional Analysis
With our analysis described, we managed to track the source of the
infringing text back to a vi process belonging to Mallory. However
can we be sure that Mallory hasn’t introduced any other text in the
report? This kind of question could be answered by applying taint
analysis on the captured execution trace, as proposed in [24].

Taint analysis in general is prohibitively expensive for runtime
application. Chow et al. [4] quote a 100x slowdown on their system,
also based on QEMU. More recently, for security applications, Ke-
merlis et al. [18] have managed to reduce the overhead of taint anal-
ysis to the 4x-6x range for analysis of individual CPU-bound pro-
cesses. For taint analysis tailored for provenance, as implemented
in [24], the overhead is in the O(100x) range.

By applying taint analysis, very fine grained provenance can
be produced, attributing the source of each byte in the final report
back to a specific input source. This would help verify that Mallory
didn’t introduce any additional text that went unnoticed. It would
also help to selectively “clean-up” the original provenance graph
from potential false-positives. We are currently investigating the

integration of the existing taint-analysis module of PANDA into
our provenance analysis.

Another potential fine grained analysis is the application of
program slicing to infer hidden provenance relationships [29]. As
with taint tracking this approach allows for the elimination of false
positives but is too expensive to be applied at runtime, with a
reported 7x-40x slowdown.

In addition, to these analyses, one can imagine the addition of
post hoc instrumentation to output additional semantics as we have
have done by outputting that vi activities are a type of editing
activity.

4.2 Performance
In a record/replay environment, the primary performance concern
is low overhead during recording. Speed of replaying and analysis
are of secondary importance, as they take place offline. The perfor-
mance of PANDA proved adequate for paced user interaction with
the VM. Yet, it still is insufficient for deployment in a production
day-to-day environment The reason for the subpar performance is
mainly the QEMU platform which incurs a 5x slowdown compared
to native execution. On top of that, PANDA recording imposes an
additional 10-20% overhead [7].

However, after paying this “startup cost”, arbitrary types of
provenance analysis may be explored. E.g. taint analysis for cap-
turing provenance can easily incur an O(10x) slowdown. How-
ever, it has been argued [8] that performance of PANDA can be
significantly improved by enabling KVM acceleration [19] on
QEMU. However, this means that recording would have to be re-
implemented inside the KVM module – a substantial undertaking.

4.3 Space Requirements
Another concern for whole-system execution recording is the space
required to store the captured execution trace. The raw trace pro-
duced by PANDA for our case study scenario was roughly 160MB.
This breaks down to a 111MB initial memory dump and a 49MB
log of the non-deterministic inputs. We would expect the size of
the non-deterministic input log would be much bigger in a loaded
multi-tasking system. Although a more detailed study is needed to
explore the exact space requirements for different types of systems,
we believe that these requirements would still be within reach of to-
days’ technology. Furthermore, several approaches could be taken
for managing or reducing the space requirements for storing execu-
tion traces.

Compression: PANDA already includes a packing script for re-
ducing the size of the captured execution traces and making sharing
them easier. The script utilizes XZ compression [5] and provides
substantial gains in terms of the space required to store the trace.
For our case study, the total size of the trace was reduced to 32MB.

Hard disk rotation: The space required to capture the whole
execution trace for a working-day session seems to fall well within
the limits of today’s desktop drive technologies, where 2TB-3TB
drives are commonplace. This means that by adopting a hard disk
drive rotation scheme (similar to rotating backup tapes), it would
be possible to store several days worth of execution history at an
affordable cost.

VM snapshots: An important design decision in the development
of PANDA was that the produced traces must be self-contained
in order to enable sharing among the research community. This
decision has as consequence that the non-deterministic input log
must also include any data read from the VM disk. If we don’t need
to share the produced traces, we could make them more compact by
associating them with a VM disk snapshot. This would allow us to
exclude any data read from disk from the non-deterministic input



log. On the downside, this would add significant complexity to
PANDA, as now it would also have to deal with the disk emulation
code of QEMU.

4.4 Alternative VM Introspection Methods
In order to introspect the guest VM, our prototype system relies
on knowing the memory layout and data structures of the Linux
kernel. Using this knowledge, the current state of the running OS
can be reconstructed. However, because the kernel contains several
conditionally compiled code fragments, the exact layout of its data
structures (i.e. the exact offset of each member of the data structure)
depends on the compile-time configuration of the kernel. These
offset values can be easily acquired for the kernels of all popular
distributions and loaded as a kernel offsets profile to our system.
A similar profile-based approach is used by the Volatility memory
forensics framework [25].

A different approach to introspection is employed by the TEMU
[28] analysis framework, which uses a guest driver to export infor-
mation from the guest OS. However, this approach is not applica-
ble in our system, because PANDA cannot “go live” so that we can
query the driver for the desired information.

Finally, Jones et al. [17] present a low-overhead method for
detecting process creation in the guest OS. Their method however,
is limited to the retrieval of the address space identifiers (ASIDs)
of the processes. As such, it is of limited use for our system as we
seek to extract much richer information.

5. Conclusion
In this paper, we have shown how the application of record and re-
play techniques allows provenance analysis to be decoupled from
execution. We described a four stage methodology for the inter-
weaving of provenance analysis and progressively more detailed
instrumentation. This methodology is realized in a system im-
plemented using the combination of provenance specific PANDA
plugins and Semantic Web infrastructure. The resulting system is
demonstrated against a case study run in a desktop computing en-
vironment.

There are several avenues for future work. The application of
provenance analysis to real world execution traces, for example
those available at PANDA Share, to discover regularities. The im-
provement of the system through the development of additional
plugins, more seamless integration of querying and instrumenta-
tion as well as performance improvements. On the usability side, it
would be interesting to explore building a GUI shell over the cur-
rent prototype. This would both make the system more accessible
to analysts with little experience with SPARQL and would allow
the visualization of provenance and debugging any anomalies. Fi-
nally, we aim to investigate the role that offline or cloud processing
of provenance can play based on execution traces.

Overall, we believe that record/replay provides a powerful in-
frastructure for provenance capture and analysis that frees develop-
ers from upfront instrumentation concerns.

References
[1] F. Bellard. QEMU, a fast and portable dynamic translator. In Pro-

ceedings of USENIX ATC’05, Anaheim, CA, USA, Apr. 2005. URL
http://dl.acm.org/citation.cfm?id=1247401.

[2] L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan, M. Sel-
ter, and A. Hopper. A primer on provenance. Communications of
the ACM, 57(5):52–60, 2014. ISSN 0001-0782. . URL http:
//dx.doi.org/10.1145/2596628.

[3] Y. Chen and H. Chen. Scalable deterministic replay in a parallel
full-system emulator. In Proceedings of ACM SIGPLAN PPoPP’13,

http://www.rrshare.org

Shenzhen, China, Feb. 2013. . URL http://dx.doi.org/10.
1145/2442516.2442537.

[4] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proceedings
of USENIX ATC’08, Boston, MA, USA, Jun. 2008. URL http:
//dl.acm.org/citation.cfm?id=1404015.

[5] L. Collin. XZ Utils: Free general-purpose data compression software
with high compression ratio. http://tukaani.org/xz/. [Online;
accessed Jun. 2015].

[6] Y. Cui and J. Widom. Lineage tracing for general data ware-
house transformations. The VLDB Journal, 12(1):41–58, May
2003. ISSN 1066-8888. . URL http://dx.doi.org/10.1007/
s00778-002-0083-8.

[7] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee. Tappan Zee (North)
Bridge: Mining memory accesses for introspection. In Proceedings
of the ACM SIGSAC CCS’13, Berlin, Germany, Nov. 2013. . URL
http://dx.doi.org/10.1145/2508859.2516697.

[8] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Re-
peatable reverse engineering for the greater good with PANDA. Tech-
nical Report CUCS-023-14, Columbia University, Oct. 2014. URL
http://ezid.cdlib.org/id/doi:10.7916/D8WM1C1P.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging and
replay. In Proceedings of USENIX OSDI’02, Boston, MA, USA, Dec.
2002. . URL http://dx.doi.org/10.1145/1060289.1060309.

[10] J. Frew, D. Metzger, and P. Slaughter. Automatic capture and re-
construction of computational provenance. Concurr. Comput.: Pract.
& Exper., 20(5):485–596, Apr. 2008. ISSN 1532-0634. . URL
http://dx.doi.org/10.1002/cpe.1247.

[11] A. Gehani and D. Tariq. SPADE: Support for Provenance Auditing
in Distributed Environments. In Proceedings of Middleware 2012,
Montreal, Quebec, Canada, Dec. 2012. . URL http://dx.doi.
org/10.1007/978-3-642-35170-9_6.

[12] E. Gessiou, V. Pappas, E. Athanasopoulos, A. Keromytis, and S. Ioan-
nidis. Towards a universal data provenance framework using dy-
namic instrumentation. volume 376 of IFIP Advances in Informa-
tion and Communication Technology, pages 103–114. 2012. ISBN
978-3-642-30435-4. . URL http://dx.doi.org/10.1007/
978-3-642-30436-1_9.

[13] B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul. Efficient
stream provenance via operator instrumentation. ACM Transactions
on Internet Technology, 14(1):7:1–7:26, Aug. 2014. ISSN 1533-5399.
. URL http://dx.doi.org/10.1145/2633689.

[14] P. Groth and L. Moreau (eds.). PROV-Overview: An overview
of the PROV family of documents. W3C Working Group
Note NOTE-prov-overview-20130430, World Wide Web Con-
sortium, Apr. 2013. URL http://www.w3.org/TR/2013/
NOTE-prov-overview-20130430/.

[15] P. Groth, Y. Gil, and S. Magliacane. Automatic metadata annotation
through reconstructing provenance. In Proceedings of the 3rd Inter-
national Workshop on the role of Semantic Web in Provenance Man-
agement, Heraklion, Greece, May 2012.

[16] D. A. Holland, M. I. Seltzer, U. Braun, and K.-K. Muniswamy-Reddy.
PASSing the provenance challenge. Concurr. Comput.: Pract. &
Exper., 20(5):531–540, Apr. 2008. ISSN 1532-0634. . URL http:
//dx.doi.org/10.1002/cpe.1227.

[17] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Ant-
farm: Tracking processes in a virtual machine environment. In Pro-
ceedings of USENIX ATC’06, Boston, MA, USA, May 2006. URL
http://dl.acm.org/citation.cfm?id=1267360.

[18] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft:
Practical Dynamic Data Flow Tracking for Commodity Systems. In
Proceedings of VEE’12, London, UK, Mar. 2012. . URL http:
//dx.doi.org/10.1145/2151024.2151042.

[19] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In Proceedings of the Linux
Symposium, Ottawa, Ontario, Canada, Jun. 2007.

http://dl.acm.org/citation.cfm?id=1247401
http://dx.doi.org/10.1145/2596628
http://dx.doi.org/10.1145/2596628
http://www.rrshare.org
http://dx.doi.org/10.1145/2442516.2442537
http://dx.doi.org/10.1145/2442516.2442537
http://dl.acm.org/citation.cfm?id=1404015
http://dl.acm.org/citation.cfm?id=1404015
http://tukaani.org/xz/
http://dx.doi.org/10.1007/s00778-002-0083-8
http://dx.doi.org/10.1007/s00778-002-0083-8
http://dx.doi.org/10.1145/2508859.2516697
http://ezid.cdlib.org/id/doi:10.7916/D8WM1C1P
http://dx.doi.org/10.1145/1060289.1060309
http://dx.doi.org/10.1002/cpe.1247
http://dx.doi.org/10.1007/978-3-642-35170-9_6
http://dx.doi.org/10.1007/978-3-642-35170-9_6
http://dx.doi.org/10.1007/978-3-642-30436-1_9
http://dx.doi.org/10.1007/978-3-642-30436-1_9
http://dx.doi.org/10.1145/2633689
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://dx.doi.org/10.1002/cpe.1227
http://dx.doi.org/10.1002/cpe.1227
http://dl.acm.org/citation.cfm?id=1267360
http://dx.doi.org/10.1145/2151024.2151042
http://dx.doi.org/10.1145/2151024.2151042


[20] D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for
debugging DISC analytics. In Proceedings of ACM SOCC’13, Santa
Clara, CA, USA, Oct. 2013. . URL http://dx.doi.org/10.1145/
2523616.2523619.

[21] S. Miles, P. Groth, S. Munroe, and L. Moreau. PrIMe: A Methodology
for Developing Provenance-Aware Applications. ACM TOSEM, 20
(3):8:1–8:42, Aug. 2009. ISSN 1049-331X. . URL http://dx.doi.
org/10.1145/2000791.2000792.

[22] T. D. Nies, S. Coppens, D. V. Deursen, E. Mannens, and R. V. D.
Walle. Automatic discovery of high-level provenance using se-
mantic similarity. In Proceedings of IPAW’12, Santa Barbara,
CA, USA, Jun. 2012. . URL http://dx.doi.org/10.1007/
978-3-642-34222-6_8.

[23] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid
Android: Versatile protection for smartphones. In Proceedings of
ACSAC’10, Austin, TX, USA, Dec. 2010. . URL http://dx.doi.
org/10.1145/1920261.1920313.

[24] M. Stamatogiannakis, P. Groth, and H. Bos. Looking inside the black-
box: Capturing data provenance using dynamic instrumentation. In
Proceedings of IPAW’14, Cologne, Germany, Jun. 2014. . URL
http://dx.doi.org/10.1007/978-3-319-16462-5_12.

[25] A. Walters. Volatility: An Advanced Memory Forensics Framework.
http://www.volatilityfoundation.org/. [Online; accessed
Jun. 2015].

[26] M. Xu, R. Bodik, and M. D. Hill. A "flight data recorder" for enabling
full-system multiprocessor deterministic replay. In Proceedings of
ACM ISCA’03, San Diego, CA, USA, Jun. 2003. . URL http:
//dx.doi.org/10.1145/859618.859633.

[27] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
ReTrace: Collecting execution trace with virtual machine determinis-
tic replay. In Proceedings of MoBS’07, San Diego, CA, USA, Jun.
2007.

[28] H. Yin and D. Song. Temu: Binary code analysis via whole-system
layered annotative execution. Technical Report UCB/EECS-2010-
3, EECS Department, University of California, Berkeley, Jan. 2010.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/
EECS-2010-3.html.

[29] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar. Tracing lineage
beyond relational operators. In Proceedings of VLDB’07, Vienna,
Austria, Sep. 2007. URL http://dl.acm.org/citation.cfm?
id=1325851.1325977.

[30] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining Taverna’s semantic
web of provenance. Concurr. Comput.: Pract. & Exper., 20(5):463–
472, Apr. 2008. ISSN 1532-0634. . URL http://dx.doi.org/10.
1002/cpe.1231.

http://dx.doi.org/10.1145/2523616.2523619
http://dx.doi.org/10.1145/2523616.2523619
http://dx.doi.org/10.1145/2000791.2000792
http://dx.doi.org/10.1145/2000791.2000792
http://dx.doi.org/10.1007/978-3-642-34222-6_8
http://dx.doi.org/10.1007/978-3-642-34222-6_8
http://dx.doi.org/10.1145/1920261.1920313
http://dx.doi.org/10.1145/1920261.1920313
http://dx.doi.org/10.1007/978-3-319-16462-5_12
http://www.volatilityfoundation.org/
http://dx.doi.org/10.1145/859618.859633
http://dx.doi.org/10.1145/859618.859633
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-3.html
http://dl.acm.org/citation.cfm?id=1325851.1325977
http://dl.acm.org/citation.cfm?id=1325851.1325977
http://dx.doi.org/10.1002/cpe.1231
http://dx.doi.org/10.1002/cpe.1231

	Introduction
	System and Methodology
	Full System Record and Replay
	The PANDA analysis framework
	The PROV-Tracer plugin
	The ProcStrMatch plugin
	User-driven Provenance Analysis

	Case Study
	Scenario
	Initial Provenance Analysis
	Selective Analysis
	Progressive Analysis
	String Matching


	Discussion
	Additional Analysis
	Performance
	Space Requirements
	Alternative VM Introspection Methods

	Conclusion

