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RESEARCH ARTICLE

Increased oxidative metabolism and myoglobin expression in
zebrafish muscle during chronic hypoxia

Richard T. Jaspers1,*, Janwillem Testerink1,2, Bruno Della Gaspera3, Christophe Chanoine3,
Christophe P. Bagowski4 and Willem J. van der Laarse5

ABSTRACT

Fish may be extremely hypoxia resistant. We investigated how

muscle fibre size and oxidative capacity in zebrafish (Danio rerio)

adapt during severe chronic hypoxia. Zebrafish were kept for either

3 or 6 weeks under chronic constant hypoxia (CCH) (10% air/

90%N2 saturated water). We analyzed cross-sectional area

(CSA), succinate dehydrogenase (SDH) activity, capillarization,

myonuclear density, myoglobin (Mb) concentration and Mb mRNA

expression of high and low oxidative muscle fibres. After 3 weeks

of CCH, CSA, SDH activity, Mb concentration, capillary and

myonuclear density of both muscle fibre types were similar as

under normoxia. In contrast, staining intensity for Mb mRNA of

hypoxic high oxidative muscle fibres was 94% higher than that of

normoxic controls (P,0.001). Between 3 and 6 weeks of CCH, CSA

of high and low oxidative muscle fibres increased by 25 and 30%,

respectively. This was similar to normoxic controls. Capillary and

myonuclear density were not changed by CCH. However, in high

oxidative muscle fibres of fish maintained under CCH, SDH activity,

Mb concentration as well as Mb mRNA content were higher by 86%,

138% and 90%, respectively, than in muscle fibres of fish kept under

normoxia (P,0.001). In low oxidative muscle fibres, SDH activity,

Mb and Mb mRNA content were not significantly changed. Under

normoxia, the calculated interstitial oxygen tension required to

prevent anoxic cores in muscle fibres (PO2crit) of high oxidative

muscle fibres was between 1.0 and 1.7 mmHg. These values were

similar at 3 and 6 weeks CCH. We conclude that high oxidative

skeletal muscle fibres of zebrafish continue to grow and increase

oxidative capacity during CCH. Oxygen supply to mitochondria in

these fibres may be facilitated by an increased Mb concentration,

which is regulated by an increase in Mb mRNA content per

myonucleus.

KEY WORDS: Chronic hypoxia, Endurance, Skeletal muscle,

Adaptation, Acclimatization, Acclimation, Mitochondrial density,

Hypertrophy, Myoglobin, Capillarization, Critical oxygen tension

INTRODUCTION
Diseases such as chronic obstructive pulmonary disease, chronic

heart failure and pulmonary hypertension are associated with

hypoxia and considerable reductions in body and skeletal muscle

mass and mitochondrial density (Gosker et al., 2000; Green et al.,

2008; Schols, 2000; Steffensen and Farrell, 1998; Whittom et al.,

1998). Similar changes are reported after experimental exposure

of human and rats to chronic hypoxia at high altitude or in

hypobaric chambers (Bigard et al., 1991; Green et al., 1989;

Hoppeler et al., 1990). The reduction in mitochondrial density

and the decrease in muscle fibre cross-sectional area (CSA) could

be adaptive, because these changes reduce the demand for oxygen

as well as the distance for oxygen diffusion within the muscle

fibre. As a consequence, development of oxygen limitation at

VO2max in the centres of muscle fibres (i.e. hypoxic cores) may be

prevented.

In contrast to mammals, certain fish species can adapt very

well to chronic constant hypoxia (CCH) (Johnston and Bernard,

1982; Roesner et al., 2006; Treberg et al., 2007; van der Meer

et al., 2005). Of these, zebrafish (Danio rerio) remain active in

10% air/90%N2 saturated water for at least up to 6 months during

which body mass increases (Marques et al., 2008; van der Meer

et al., 2005). Apparently, zebrafish have the ability to acclimate

to severe chronic hypoxia, possibly without atrophy of its

musculature. However, to the best of our knowledge, effects of

CCH on zebrafish skeletal muscle fibre size and oxidative

metabolism are unknown. The CCH zebrafish model may be

useful to identify mechanisms underlying skeletal muscle

adaptation in response to chronic hypoxia and identify

signalling targets for treatment of cachexia.

The main factors determining skeletal muscle exercise

tolerance are: 1) the oxidative capacity, which is proportional

to the succinate dehydrogenase (SDH) activity (Bekedam et al.,

2003; van der Laarse et al., 1989), 2) fibre type composition,

3) oxygen transport from the blood to the core of the muscle fibre,

which is determined by capillary density (Hoofd et al., 1985),

myoglobin (Mb) concentration (Wittenberg and Wittenberg,

1989) and fibre CSA (Hill, 1965) and 4) substrate availability

and delivery (Hoppeler and Billeter, 1991). The inverse

relationship between the muscle fibre CSA and oxidative

capacity for different muscle fibres within a particular muscle

and also among muscles fibres from different species suggests that

oxygen diffusion imposes a size constraint (van der Laarse et al.,

1997; van Wessel et al., 2010). In theory, this relationship can be

modulated by changing capillary density or Mb concentration (van

Beek-Harmsen et al., 2004). Mb is a small heme protein, which

reversibly binds O2, contributes to intracellular oxygen buffering

and facilitates intracellular diffusion of oxygen (Scholander, 1960;

Wittenberg and Wittenberg, 1989). Mb may be critically involved
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in angiogenesis during zebrafish embryogenesis (Vlecken et al.,
2009). In addition, oxygenated Mb oxidizes nitric oxide (NO) and

reduces levels of hydrogen peroxide as well as superoxide in
muscle cells (Flögel et al., 2004; Flögel et al., 2001).

The observation that zebrafish body mass is not reduced during
chronic hypoxia (van der Meer et al., 2005) may be related to a

lack of muscle fibre atrophy. If zebrafish muscle fibres do not
reduce size during severe chronic hypoxia, this will require
compensation of one or more of the other determinants of the

interstitial oxygen tension required to prevent hypoxiac in muscle
fibres (interstitial PO2crit). The aim of the present study was to
investigate how muscle fibre size and oxidative metabolism in

low and high oxidative zebrafish muscle fibres adapt to CCH and
to explore whether zebrafish CCH is a useful disease model. We
hypothesized that during chronic hypoxia, zebrafish muscle fibre

CSA is maintained, oxidative capacity is decreased, and that
capillary density as well as Mb protein concentration are
increased. Zebrafish were kept at an oxygen tension of
15 mmHg (2 kPa) for either three or six weeks after which

muscle fibre CSA, oxidative capacity, capillarization, and Mb
concentration as well as Mb mRNA content were determined in
high and low oxidative muscle fibres. As hypoxia may have roles

in both proliferation of satellite cells (Kook et al., 2008; Li et al.,
2007) and myonuclear apoptosis (Kubasiak et al., 2002), we
determined myonuclear density and related this to the Mb mRNA

contents.

RESULTS
Swimming behaviour
Under normoxia, zebrafish were exploring the entire aquarium
while swimming in all directions with their body in a horizontal
position (mean angle with the horizontal 21.663.5 )̊ and making

quick turns (supplementary material Movie 1). In contrast, after
14 days under hypoxia the fish were actively swimming in the
deeper part of the aquarium with their tail pointing downwards

(mean angle with the horizontal 23.761.4 )̊ (supplementary
material Movie 2). The hypoxic fish moved and turned at a much
lower speed than the normoxic fish. However, tail beat frequency

of the hypoxic fish was 4.5360.23 Hz, which was three times
higher than that of normoxic fish (1.560.1 Hz, P,0.001). Mean
tail beat amplitude of hypoxic fish (normalized for body length)
was 0.2060.01, which was similar to that of normoxic fish

(0.1960.01) (P,0.53).

Calibrated histochemistry reveals differential responses for
high and low oxidative muscle fibres during CCH
Sections of the zebrafish tail were incubated for SDH activity, Mb
peroxidase activity and Mb mRNA content. Fig. 1 shows typical

examples of the staining pattern of cross-sections through the fish
tail after 6 weeks hypoxia. SDH activity is high (.1.5?1025

DA660?mm21?s21) in muscle fibres located at the lateral sides and

extending into the interior in the middle of the tail. These fibres,
which stain for slow myosin heavy chain (MyHC) (Fig. 1A,B),
were relatively small and are referred to as high oxidative fibres,
corresponding to the adult red slow muscle fibre type (van

Raamsdonk et al., 1978). The CSA of the muscle fibres located
centrally, which did not stain for slow MyHC (Fig. 1A,C) was
three times larger than that of high oxidative fibres, whereas SDH

activities were low (,0.5?1025 DA660?mm21?s21) (Fig. 1D–F).
These fibres are referred to as low oxidative muscle fibres,
corresponding to the deep white fibre type (van Raamsdonk et al.,

1978). Staining for Mb (Fig. 1G–I) reveals similar patterns as for

SDH activity, indicating that Mb was particularly expressed in the
high oxidative muscle fibres. Mb concentration in the high

oxidative fibres was substantially higher (. 10 times) than in the
fast low oxidative fibres. Localization of Mb mRNA (Fig. 1J–L)
by in situ hybridization shows a similar spatial distribution as for

Mb (Fig. 1J).

Hypertrophy and increased SDH activity during CCH
Fig. 2 illustrates the effects of CCH on fibre cross-sectional area
and SDH activity. After 3 weeks under CCH, mean SDH activity
and fibre CSA of low and high oxidative muscle fibres did not
differ from those of fibres kept under normoxic conditions

(Fig. 2). After 6 weeks of hypoxia, high oxidative fibres showed
an increase in SDH activity of 86% compared to the normoxic
fibres (P,0.004), whereas SDH activity of low oxidative fibres

did not change (Fig. 2B,C). For both hypoxic and normoxic
fibres, CSA was significantly increased by 24.9% for high
oxidative fibres and 30.0% for low oxidative muscle fibres

(Fig. 2A, P,0.002). These results indicate that irrespective of
oxygen tension in the water both types of muscle fibres increased

Fig. 1. Typical examples of slow myosin heavy chain staining, SDH
activity, myoglobin concentration and myoglobin mRNA expression in
the zebrafish tail. (A–C) Image of zebrafish body cross-section stained for
slow MyHC (green). (A) Overview, (B) magnification of slow, high oxidative
(LO) muscle fibres, (C) magnification of fast, low oxidative (LO) muscle
fibres. (D–F) SDH activity. (D) Overview, (E) magnification of slow, HO
muscle fibres, (F) magnification of fast, LO muscle fibres. (G–I) Myoglobin
(Mb). (G) Overview, (H) magnification of slow, HO muscle fibres,
(I) magnification of fast, LO muscle fibres. (J–L) Staining for Mb mRNA.
(J) Overview, (K) magnification of slow, HO muscle fibres, (L) magnification of
fast LO, muscle fibres. Arrowheads indicate the locations where
measurements were performed. Scale bars: 0.5 mm (A,D,G,J), 50 mm
(B,C,E,F,H,I,K,L).
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size, whereas CCH stimulated mitochondrial enzyme expression
in high oxidative muscle fibres only after six weeks.

Capillary density remains unaltered during CCH
Fig. 3 shows the number of capillaries per fibre for high oxidative

fibres and low oxidative fibres. The number of capillaries per
high oxidative muscle fibre was about three times higher than that

of low oxidative muscle fibres (P,0.001) and did not change
during CCH (P50.27).

Increased Mb concentration and mRNA expression by CCH
Fig. 4A shows Mb protein concentrations in the different fibre
types. For normoxic fish, mean Mb concentration in high

oxidative muscle fibres at three and six weeks was 0.38 to
0.39 mM. The Mb concentration was about 10-fold higher than
that measured in low oxidative muscle fibres. After three weeks

of CCH, Mb concentration in both high and low oxidative fibres
did not differ from normoxic or hypoxic fibres. However, after
six weeks of CCH, Mb protein concentration in high oxidative

muscle fibres was increased by 138% (P,0.001). The Mb
concentration in low oxidative fibres could not be shown to be
significantly increased in response to CCH.

To answer the question whether the increase in Mb was due to
an increase in Mb mRNA expression, Mb mRNA content was
analyzed by in situ hybridization. Fig. 4B shows typical examples
of in situ hybridizations for Mb mRNA. Under normoxia at three

and six weeks, the absorbance in low oxidative muscle fibres was
similar to the absorbance obtained using the sense probe
(Fig. 4B,C). The absorbance of Mb mRNA in high oxidative

muscle fibres was significantly higher than in low oxidative
muscle fibres (P,0.001). After three and six weeks of hypoxia,
the absorbance of Mb mRNA was almost twice as high as in

normoxic fibres (P,0.001). For the low oxidative muscle fibres,
mean absorbance in hypoxic fibres was not different from that in
normoxic fibres.

To assess whether the elevation of mRNA content was due to

changes in the number of myonuclei per fibre, myonuclear
densities were determined for both fibre types. At three weeks of
normoxia, the number of myonuclei per mm fibre length in low

oxidative muscle fibres was 43.263.6, which was significantly
higher than in high oxidative fibres (13.460.4, P,0.001). For the
high oxidative muscle fibres, the number of nuclei did not change

from 3 to 6 weeks of normoxia, whereas for the low oxidative
muscle fibres the number of myonuclei per mm fibre length
increased by 29.3% (P,0.001) (Fig. 5A). Taking into account the

differences in fibre CSA, the myonculear densities of high and

Fig. 2. Long-term CCH increases SDH activity after 6 weeks and does
not prevent an increase of the fibre cross-sectional area. Fish were kept
for 3 or 6 weeks in normoxia (open bars) or in CCH (water saturated with 2%
oxygen, gray bars). (A) For every fish, fibre cross-sectional area (CSA) was
measured in 20 high and 20 low oxidative muscle fibres in tail cross-sections.
(B) Images from cross-sections of slow, high oxidative (HO) and fast low
oxidative (LO) muscle fibres incubated for succinate dehydrogenase (SDH)
activity. (C) SDH activity was determined in these fibres by determination of
the absorbance increase (A660) per mm section thickness per second
incubation time. Values are means6SEM (n56 in each group). Scale bar:
50 mm.

Fig. 3. Long-term CCH does not change the number of capillaries per
fibre. Capillaries were immunohistochemically stained for collagen IV. The
same conditions apply as described in the legend for Fig. 2. Values are
means6SEM (n56 in each group).
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low oxidative muscle fibres did not change from 3 to 6 weeks
under normoxia and were also unaffected by CCH. As CSA of
low oxidative muscle fibres was about 2.5 times larger, the

difference in the number of nuclei/mm fibre length between high
and low oxidative fibres is explained by both the larger CSA of
the low oxidative muscle fibres (Fig. 2) and the 34% lower

myonuclear density of high oxidative muscle fibres (Fig. 5B).
Myonuclear densities were similar under normoxic and CCH
conditions. To further assess how the expression of Mb mRNA

was changed in response to CCH, absorbances of Mb mRNA

stainings by in situ hybridizations were normalized by
myonuclear densities. High oxidative fibres exposed to CCH

showed a mean 249% and 73% higher absorbance per
myonucleus compared to normoxic fibres at 3 and 6 weeks
CCH, respectively (P,0.007, data not shown). In low oxidative

muscle fibres, the expression levels of Mb mRNA per nucleus
were not changed.

Effects of adaptation to CCH on PO2crit

Fig. 6 shows the PO2crit based on the VO2max calculated from the
SDH activity, muscle fibre CSA and the Mb concentration. For
high oxidative muscle fibres under normoxia, the calculated

interstitial oxygen tension required to prevent anoxic cores in
muscle fibres (PO2crit) was 1.060.12 mmHg and that for
low oxidative muscle fibres 1.760.26 mmHg. At both 3 and 6

weeks, no significant differences in PO2crit were shown between
the normoxic and hypoxic group (P50.2). This indicates that
PO2crit did not change due to the combined effect of
hypertrophy, and the increases in SDH activity and myoglobin

concentration.

Fig. 4. Long-term CCH increases myoglobin protein concentration after
6 weeks and myoglobin mRNA content after 3 weeks in high oxidative
muscle fibres. The same conditions apply as described in the legend for
Fig. 2. (A) Mb content (quantified by calibrated enzyme histochemistry).
(B) Examples of Mb in situ hybridizations on muscle fibre cross-sections.
(C) The Mb mRNA content (quantified as absorbance of final reaction
product at 550 nm, A550). In the low oxidative muscle fibres the absorbance
was not changed and similar to that of the sense probe (n56 in each group).
Values are means6SEM (n56 in each group). Scale bar: 50 mm.

Fig. 5. Long-term CCH does not change the myonuclear density. The
same conditions apply as described in the legend for Fig. 2. Nuclei were
visualized using DAPI and the membrane by using anti-dystrophin.
(A) Number of myonuclei per mm fibre length. (B) Myonuclear density
expressed in the number per nL cytoplasm. Values are means6SEM (n56 in
each group).
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DISCUSSION
The results confirm our hypothesis that severe CCH does not
prevent growth or induce atrophy of zebrafish muscle fibres. To
our surprise, SDH activity in high oxidative muscle fibres nearly

doubled after six weeks of CCH, whereas SDH activity in the low
oxidative fibres remained unchanged. For both muscle fibre
types, the number of capillaries did not change during CCH.

However, Mb concentrations in the high oxidative muscle fibres
were nearly doubled and theoretically reduced the oxygen
diffusion limitations.

PO2crit of zebrafish muscles fibres under normoxia is lower
than in mammals and amphibians
Previously, we have shown an inverse hyperbolic relation
between muscle fibre CSA and the VO2max of the muscle
fibres at physiological temperature obtained from a variety of
amphibian and mammalian species (Fig. 7) (van der Laarse

et al., 1997; van Wessel et al., 2010). According to this relation,
interstitial PO2crit for muscle fibres of these species is about
14 mmHg. If myoglobin was taken into account, this value

would have been 18–60% lower in mammals (van Beek-
Harmsen et al., 2004). We hypothesized that in zebrafish, muscle
fibre size and VO2max would be related in a similar way.

Comparison of the relation between VO2max and CSA for
zebrafish muscle fibres (Fig. 7), shows that fibre size and
VO2max of zebrafish muscle fibres also fits a hyperbolic relation.
However, VO2max values of zebrafish muscles fibres are

substantially lower than similar-sized muscle fibres in
mammals and amphibians. It is a possibility that this is due to
a different relationship between SDH activity and VO2max in

fish. However, this is unlikely because VO2max of zebrafish
(1223 mg O2/kg/h21 at 24 C̊ (Lucas and Priede, 1992)) is very
similar to the predicted VO2max on the basis of SDH activity

using the conversion factor for mammals (Bekedam et al., 2003;
Des Tombe et al., 2002) and the average SDH activity of whole
muscle sections at 28 C̊ (cf. Fig. 2B) (a Q1052 for VO2max was

used in the calculation (Clarke and Johnston, 1999)).

Calculation of the interstitial PO2crit of normoxic zebrafish
muscle fibres, taking into account the myoglobin concentration
in these cells, reveals that the interstitial PO2crit is about

1 mmHg, which is an order of magnitude lower than in
mammalian and amphibian muscle fibres. To our knowledge,
there are no data on venous PO2 and hemoglobin half-saturation
value in zebrafish. In trout, venous PO2 is approximately

36 mmHg under normoxic conditions and approximately
7 mmHg under severe hypoxia (,30 mmHg) (Steffensen and
Farrell, 1998). Hemoglobin P50 of Lake Victoria cichlids under

normoxia varies between 4.5 and 12 mmHg and under hypoxia
between 3 and 8 mmHg, depending on ATP and GTP
concentrations (Rutjes et al., 2007). Thus, it is conceivable

that venous PO2 in these fish can fall to values below 3 mmHg.
Assuming that high oxidative muscle fibres, which constitute
approximately 15% of the muscle volume (determined in

cross-sections, cf. Fig. 1), are consuming all of the oxygen and
that the standard metabolic rate of zebrafish corrected for
temperature is 480 mg O2/kg/h21 at 28 C̊ (Lucas and Priede,
1992), the estimated VO2 of the high oxidative muscle fibres

is 0.055 nmol?mm23?s21. VO2max was estimated to be
0.07660.005 nmol?s21?mm23, based on mean SDH values in
high oxidative fibres of normoxic fish at three weeks and six

weeks. Because the routine metabolic rate is 16% higher than the
standard metabolic rate (Lucas and Priede, 1992), it is concluded
that high oxidative muscle fibres under normoxia operate close

to their VO2max and thus close to the critical PO2 calculated for
zebrafish muscle fibres. The calculation suggests that the high
oxidative muscle fibres likely become hypoxic when zebrafish

swim in water with a low oxygen tension.

Fig. 6. Long-term CCH does not change interstitial PO2crit in high
oxidative muscle fibres. The same conditions apply as described in the
legend for Fig. 2. Interstitial PO2crit is the minimal PO2 around a muscle fibre
that prevents the development of an anoxic core when the fibre works at its
VO2max and was calculated using a Hill model (for details, see Hill, 1965).
Values are means6SEM.

Fig. 7. Maximum rate of oxygen consumption (VO2max) of different
muscle fibres at physiological temperatures from different muscles of
various species plotted against myocyte cross-sectional area. The black
line is a hyperbola fitted through the calculated VO2max values obtained from
SDH activity staining within muscle fibres from mouse, shrew, guinea pig, rat,
rabbit, human, Xenopus and Rana (adapted from Bekedam et al. and van
Wessel et al. (Bekedam et al., 2003; van Wessel et al., 2010)), and is
described by the function VO2max 5 constant?CSA21. The value of the
constant calculated as the mean of the products VO2max (in nmol?mm23?s21)
and CSA (in mm2) for each species approximates 0.4 pmol?mm21?s21,
corresponding to an interstitial PO2crit514 mmHg. The symbols represent
mean values for VO2max and CSA for normoxic and CCH zebrafish muscle
fibres. The dashed line is the best fit hyperbola in zebrafish: value of constant
is 0.05 pmol?mm21?s21, corresponding to a calculated interstitial
PO2crit52.5 mmHg. Values are mean6SEM (n548).
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Comparison of effects of chronic hypoxia on fibre size,
oxidative capacity and oxygen supply in mammals and
zebrafish
Exposure of humans to chronic hypoxia for six to ten weeks
during high altitude stages (.5000 m) or long-term
decompression, causes reductions in body weight and about 20–

30% atrophy of m. vastus lateralis muscle fibres (Green et al.,
1989; Hoppeler et al., 1990; MacDougall et al., 1991; Rose et al.,
1988). The effects of chronic hypoxia on rodent muscle mass and

muscle fibre CSA are ambiguous. Long-term exposure of rats to
hypoxia has been shown to lead to a substantial reduction in
muscle fibre CSA (Abdelmalki et al., 1996; Bigard et al., 1991;

Deveci et al., 2002; Snyder et al., 1985; Wüst et al., 2009),
whereas in other studies no changes have been reported (Deveci
et al., 2002; Sillau et al., 1980; Snyder et al., 1985). We conclude

that the effect of CCH on mammalian muscle fibre size differs
markedly from those of CCH on zebrafish tail muscle.

For mammals, most of the studies investigating oxidative
enzyme activities during high altitude stage or decompression

revealed reductions in enzymes activities as well as mitochondrial
density (Abdelmalki et al., 1996; Green, 1992; Hoppeler et al.,
1990; Howald et al., 1990). However, during 40 days in a

decompression chamber mitochondrial volume density in vastus
lateralis muscle was reported to be unchanged (MacDougall et al.,
1991). These results indicate that under CCH zebrafish muscle

fibres and mammalian muscle fibres adapt in opposite directions
with respect to the mitochondrial enzyme activity.

In humans, long-term exposure to hypoxia does not lead to

increased muscle capillarization (Green et al., 1989; Hoppeler
et al., 1990; MacDougall et al., 1991). Also in rat and dog, the
number of capillaries per muscle fibre was not changed during
chronic hypoxia (Sillau et al., 1980; Sillau and Banchero, 1977;

Wüst et al., 2009). We found that under CCH zebrafish muscle
also did not change the number of capillaries per fibre. This
suggests that both in mammals and fish hypoxia is not the only

stimulus for induction of angiogenesis (Egginton, 2011).
Regarding effects of chronic hypoxia on myoglobin

concentration in mammalian skeletal muscle, the reported data

are ambiguous. Some studies on human, rat and dog muscle
reported increased myoglobin concentrations (Gimenez et al.,
1977; Reynafarje, 1962; Schenkman et al., 1997), whereas others
reported decreased or unaltered concentrations (Anthony et al.,

1959; Poel, 1949; Wüst et al., 2009). It has been argued that
hypoxia is not the sole stimulus in these studies as nutrition, cold
acclimation and/or physical activity were altered also (Hoppeler

and Vogt, 2001).
The generally reported combination of adaptations in mammals

in response to chronic hypoxia (i.e. atrophy, reduction in

oxidative capacity and increased myoglobin concentration) will
reduce the PO2crit of muscle fibres at the expense of muscle fibre
size. For zebrafish, however, the absence of atrophy in high and

low oxidative muscle fibres under CCH suggests that muscle fibre
size was at least maintained. Regarding the consequences
for muscle fibre metabolic power, which is proportional to
the product of muscle fibre CSA and SDH activity, the

model calculations show that this increase may have been
accommodated by an increased myoglobin concentration.

Hypoxia in muscle fibres in zebrafish under CCH could also be

prevented by reducing oxygen demand, e.g. by swimming at low
intensity. However, the frequency of movement of the caudal fin
and body in the hypoxic fish was three times higher than under

normoxia, while tail beat amplitude was unaltered. The difference

in swimming behaviour may have been due to a smaller
swimbladder during CCH (Robertson et al., 2008). This may

also explain why the swimming speed of hypoxic fish was
reduced while tail beat frequency was higher at similar tail beat
amplitude. This suggests that the zebrafish in the present study
may have been subjected to a combination of CCH and endurance

training.

Normal growth and no reduction in oxidative capacity in
zebrafish muscle after 3 weeks CCH
It is known that endurance training under normoxia improves the
oxidative capacity and oxygen supply of mammalian skeletal

muscle (Hahn and Gore, 2001) and also that of zebrafish (van der
Meulen et al., 2006), trout and white fish (Anttila et al., 2008). Little
is known regarding the effects of training under chronic constant

hypoxia (i.e. comparable to a ‘‘living high training high’’ situation)
on oxidative performance and skeletal muscle adaptation. This type
of training could not reveal any positive effect on oxidative capacity
in humans (Friedmann et al., 2003; Hoppeler et al., 2008; Rusko

et al., 2004). The few animal studies investigating effects of
endurance training on rats living in a hypobaric chamber show that
muscle fibre size was reduced by 20–40% depending on the type of

muscle (Bigard et al., 1991). Mitochondrial density in diaphragm
was reduced whereas it did not change in mouse gastrocnemius
muscle (Gamboa and Andrade, 2010).

It seems that zebrafish muscle fibres are better protected
against hypoxia/anoxia related oxidative stress than mammalian
muscle fibres. A possible mechanism underlying an enhanced

protection against hypoxia in the zebrafish may be down-
regulation of the rate of protein synthesis (Johnston and
Bernard, 1982; Powers et al., 2007), which lowers the demand
for oxygen in hypoxia. However, the unaffected growth of

zebrafish muscle (hypertrophy) suggests that net protein synthesis
rate in our zebrafish was likely not affected. Alternatively,
myoglobin content in the muscle fibres may reduce oxidative

stress due to radical oxygen and nitrogen species (Flögel et al.,
2001). During the first three weeks of CCH, Mb mRNA levels
were nearly doubled; however, this was not yet reflected at the

functional protein concentration. The mechanisms via which
zebrafish muscle fibres preserve size and oxidative capacity
during the first three weeks of hypoxia warrant further
investigation; it may be that hypoxia during the initial phase is

minimized by lactic acid-induced oxygen dissociation from
hemoglobin (the Root effect (McKenzie et al., 2004)).

Increased myoglobin content and oxidative capacity in high-
oxidative muscle fibres during long-term CCH
On the long-term, CCH caused a doubling in SDH activity and

myoglobin concentration in high oxidative zebrafish muscle
fibres, while muscle fibre CSA and the number of capillaries
remained unchanged. The net effect of these adaptations in

zebrafish muscle at 6 weeks CCH was an unaltered PO2crit,
whereas a decrease in PO2crit was expected unless supply of
oxygen to and within the muscle fibres had increased
substantially (van Wessel et al., 2010). Such increase may

occur by an elevation in hematocrit (Hct) and myoglobin
concentration and/or by lowering the P50 of the hemoproteins.
Hypoxia induced increases in Hct and blood–O2 affinity have

been reported for Lake Victoria cichlids (Rutjes et al., 2007), but
not for zebrafish.

Although in mammals training under chronic hypoxia does not

increase in SDH activity and myoglobin concentration, the
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adaptations of zebrafish under CCH are qualitatively similar to
those of the humans training according to the concept ‘‘living

under normoxia and training under hypoxia’’. Expression of
mRNA of myoglobin and mitochondrial enzymes in human m.
vastus lateralis muscle is increased by high intensity exercise and
in particular when performed under hypoxia (Vogt et al., 2001).

Zebrafish larvae at the age of 21 days post fertilization, being
daily subjected to endurance training for 11 days showed
substantial increases mitochondrial volume density within red

muscle fibres and not in white, low oxidative muscle fibres
(Pelster et al., 2003). Sustained swimming exercise transiently
stimulates expression levels of transcriptional co-activators of

genes of oxidative metabolism after one week of training in both
high and low oxidative muscle fibres. However, after four weeks
of training, these levels are similar to pre-training levels

(LeMoine et al., 2010; Palstra et al., 2010). Enhanced
expression of mitochondrial enzymes in the CCH fish is in
accordance with observations that mitochondrial biosynthesis
relies on activity-induced calcium signalling and a reduced

energy status (for discussion, see Holloszy, 2008; Jensen, 2007).
Whether the substantial increase in SDH activity of zebrafish
muscle fibres under CCH is resulting from the increased

swimming activity, the hypoxic environment or both remains to
be determined.

Similarly, for the regulation of myoglobin expression in

zebrafish, hypoxia alone may not be sufficient to induce a
substantial increase in myoglobin mRNA expression. Endurance
training alone stimulates the expression of myoglobin in zebrafish

(van der Meulen et al., 2006). In mice, heart and high oxidative
soleus muscle, but not low oxidative tibialis anterior muscle,
myoglobin expression was increased during hypoxia. In addition,
in C2C12 myotubes, expression of myoglobin is stimulated

particularly under hypoxia and increased contractile activity
(Kanatous et al., 2009). Myoglobin expression in these models
seems to be synergistically determined by activation-induced

calcium release from the sarcoplasmic reticulum and hypoxia-
induced calcium release from the endoplasmic reticulum
(Kanatous and Mammen, 2010; Kanatous et al., 2009). The

differences in effects of CCH between mammal and zebrafish
may therefore be in part a result of the increased activity of
zebrafish under CCH. Another factor that may have contributed
to the relatively strong effect of hypoxia on myoglobin expression

may be a high lipid content in the Tetramin food and in particular
that of omega-3 (estimated to be 1.7% energy). Supplementation
of poly-unsaturated fatty acids (PUFA) to Weddell seal myotubes

has been shown to enhance myoglobin expression in particular
under hypoxia (De Miranda et al., 2012; Kanatous and Mammen,
2010). How the three different stimuli (contractile activity,

hypoxia and PUFA) interact in regulating adaptation of zebrafish
muscle warrants further investigation.

Conclusions
In conclusion, we found that high oxidative muscle fibres of
zebrafish enhance metabolic power during chronic constant
hypoxia by increasing the oxidative capacity of muscle fibres

while muscle fibre size remained unaltered. These adaptations are
opposite to those in high oxidative mammalian skeletal muscle
fibres when subjected to hypoxia. Furthermore, oxygen supply to

the mitochondria was likely improved by doubling of the Mb
concentration. As the myonuclear density in the muscle fibres
remained unchanged, the increase in Mb protein was preceded by

elevated Mb mRNA expression per nucleus and/or a reduced rate

of Mb mRNA break down. The discrepancy between the effects of
CCH in mammals and zebrafish makes this model appropriate for

further research into the mechanisms by which vertebrate muscle is
able to adapt to severe chronic hypoxia in chronic disease.

MATERIALS AND METHODS
Animals and preparation
Wild-type zebrafish (Danio rerio) (3–6 months old, n524) were obtained

from a local pet store and handled in compliance with local animal care

regulations and standard protocols. The protocol was approved by the

review board of Leiden University in accordance with animal protocols

of the government of The Netherlands.

Fish were kept at 28 C̊ in 100 liter aquaria with 12:12-hour light:dark

cycles and were fed twice daily with commercial flake food (TetraMin,

Tetra, Germany). Six fish per group were either maintained in 10% air/

90%N2 saturated water (oxygen tension of 15 mmHg or 2 kPa: hypoxic

group) or in 80–90% air-saturated water (normoxic group). For the

hypoxic group, oxygen levels were gradually decreased over 4 days from

80–90% to 60, 40, 20, and the final 10% air saturation (at 100% air

saturation and 28 C̊ the O2 content of water is 8 mg/l). After day 4, fish

were kept for an additional 21 or 42 days at 10% air saturation. The

oxygen tension in the hypoxic groups was kept constant by a controller

(Applikon Analytical, The Netherlands) connected to an oxygen

electrode and solenoid valve in line with an air diffuser. None of the

fish died while stepwise lowering O2 tension or during the experimental

periods.

After the experiments, fish were sacrificed by an overdose of

anaesthetic (MS-222 tricaine methanesulfonate, Argent Chemical

Laboratories, USA) and pinned on a piece of Sylguard (Dow Corning,

The Netherlands). The preparations were covered by a layer of Tissue

Tek (Jung, Leica Microsystems, Gemany) and frozen in liquid nitrogen.

Transverse cryosections (10 mm thick) were cut just behind the anal fin

at 220 C̊. Sections were collected on Vectabond (Vector Laboratories,

USA) coated slides, which had been treated with diethyl pyrocarbonate

(DEPC) to remove RNAses, air dried for at least 15 minutes at room

temperature (RT) and stored at 280 C̊ until further use. The incubation

for succinate dehydrogenase activity (SDH) was performed immediately

after drying. Unless stated otherwise, chemicals were obtained from

Sigma Aldrich (The Netherlands).

Swimming behaviour
The effects of hypoxia on swimming behaviour were determined from

video recordings (25 Hz) after 14 days of swimming under normoxia or

hypoxia. Tail beat frequency (TBF) and amplitude (TBA) and the angle

of the body with the horizontal were determined for each fish. Body

length (BL) and TBA measurements were taken from calibrated images.

BL was measured from the tip of the snout to the middle between the

dorsal and ventral tips of the tail. TBA was determined in fish swimming

perpendicular to the imaging plane of the video camera, by measuring the

largest distance between the posterior end of the caudal fin and the

anteroposterior axis during a tail beat. TBA was normalized by BL.

Immunofluorescent staining of slow myosin heavy chain
Immunofluorescence staining of slow myosin heavy chain (MyCH) was

performed using anti-slow MyHC monoclonal primary antibody S58

(1:10; Developmental Studies Hybridoma Bank, University of Iowa) and

Alexa Fluor 488 as secondary antibody (Invitrogen, The Netherlands). To

stain the basal lamina, sections were incubated in the dark with Wheat

Germ Agglutinin (1:50) (Invitrogen). Images were captured using a CCD

camera (PCO; Sensicam, Kelheim, Germany) at610 objective connected

to a fluorescent microscope (Axiovert 200M; Zeiss, Göttingen, Germany)

with image processing software (Slidebook 4.1; Intelligent Image

Innovations, Denver, Colorado).

Succinate dehydrogenase (SDH) activity
SDH activity was determined (Pool et al., 1979). Sections were incubated

for SDH activity in a medium consisting of 37.5 mM sodium phosphate
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buffer, pH 7.6, 75 mM sodium succinate, 5 mM sodium azide and

0.4 mM tetranitro blue tetrazolium, in the dark at 28 C̊ for 20 minutes.

The reaction was stopped in 10 mM HCl. The absorbance of the final

reaction product was measured at 660 nm (A660) and was converted to

the rate of staining (DA660?mm21 section thickness?s21 incubation time),

where DA660 is the change in absorbance at 660 nm).

Capillary density
Capillary density was assessed as described previously (Madsen and

Holmskov, 1995). In short, sections were air dried for 10 minutes and

fixed in 4% formaldehyde in phosphate buffered saline (PBS). Sections

were incubated overnight with primary anti-collagen type IV antibody

(1:50 Santa-Cruz, USA), followed by a 1 hour incubation with biotin-

labelled secondary antibody (1:100, Vector Laboratories, USA).

Subsequently, sections were incubated for 30 minutes in avidin–biotin

complex, followed by 10 minutes with 3,30-diaminobenzidine staining.

The number of capillaries was determined by visual inspection using a

Leica DMRB microscope (Wetzlar, Germany) and a 640 objective at

436 nm (for details, see Madsen and Holmskov, 1995).

Myoglobin concentration
Mb concentration was determined using calibrated histochemistry (van

Beek-Harmsen et al., 2004). The sections were freeze-dried for 2 hours

and fixed by paraformaldehyde vapour followed by 10 minutes in 2.5%

glutaraldehyde solution. The sections were incubated for 1 hour in 59 ml

50 mM TRIS/80 mM KCl buffer containing 25 mg ortho-tolidine

(dissolved in 2 ml 95% ethanol at 50 C̊) and 1.43 ml 70% tertiary-

butyl-hydroperoxide (Fluka Chemie, Switzerland), pH 8.0. The

absorbance of the final reaction product was measured at 436 nm (Lee-

de Groot et al., 1998). Absorbance units were converted to Mb

concentration using sections of gelatin containing known equine Mb

concentrations.

In situ hybridization for Mb mRNA
The probe for detection of Mb was amplified from zebrafish cDNA.

Primers used were: 59-TCTTCACAGAGGACAAACACC-39 (forward)

and 59-CGCTTTATTTATGACTCCCATTT-39 (reverse) (528 bp, 24–

551 nt, gene ID BC065862). The PCR product was cloned into vector

pGEMT Digoxigenin(DIG)-labeled antisense and sense RNA probes

were produced using DIG RNA Labeling Kit (T7- and Sp6-RNA

polymerase with digoxigenin-UTP according to the manufacturer’s

instructions (Roche Diagnostics Research, The Netherlands).

Frozen sections were air dried, fixed in 4% paraformaldehyde solution

in PBS (PF) for 20 minutes at 20 C̊ and washed in PBS. The sections

were then treated with proteinase K (10 mg/ml) for 20 minutes at 20 C̊,

washed twice for 3 minutes in PBS and fixed in 4% PF for 5 minutes,

followed by incubation in tri-ethanolamine solution (1.33% TEA,

pH 8.0) for 5 minutes and tri-ethanolamine with acetic anhydride (TEA

solution + 100 ml acetic anhydride) for 5 minutes. After TEA incubation,

slides were washed 2 times for 3 minutes and slides were incubated for

30 minutes in prehybridization mix, 50% formamide + 36 SCC (206
SCC; 3 M NaCl, 0.3 M tri-sodium citrate, pH 4.5), 1% blocking reagent

(Roche Diagnostics Research, The Netherlands), 10 mM EDTA, 1 mg/

ml torula mRNA, 2.5 mg/ml 3-[(3-cholamidopropyl)dimethylammonio]-

1-propanesulfonate, 0.1 mg/ml heparin, 0.2% Tween-20. Hybridization

was performed in the prehybridization solution with 10 mM dithiothreitol

(DTT) and the DIG-labeled anti-sense and sense RNA probe (250 ng/ml,

total volume 50 ml). Sections were hybridized overnight at 50 C̊ in a

humidified chamber.

After hybridization, sections were washed twice with 26SSC + 0.02%

(w/v) sodium dodecyl sulphate (SDS) for 10 minutes at 50 C̊, 8 minutes

0.26SSC + 0.02% (w/v) SDS at 50 C̊ and 8 minutes 0.26SSC + 0.02%

(w/v) SDS + 10 mM DTT at 50 C̊, slides were washed in MAB buffer

(10 mM Maleic acid, 150 mM NaCl, pH 7.5) at RT and incubated with

sheep anti-DIG Fab fragments conjugated with alkaline phosphatase

(1:500, Roche Nederlands B.V., Almere, The Netherlands) in 10% (w/v)

heat inactivated sheep serum, 1% (w/v) blocking reagent, and 0.1% (w/v)

Tween-20 in MAB buffer over night at 4 C̊.

The sections were washed 5 times 15 minutes at RT in MAB

buffer and incubated for 3 minutes in (0.1 M NaCl, 0.1 M

tris(hydroxymethyl)aminomethane hydrochloride (TRIS HCl), 50 mM

MgCl2) supplemented with levamisol (Vector Laboratories, UK; final

concentration 1 mM). Chromogenesis was performed in the dark using

1 mM levamisol in BM purple (Roche Nederland B.V) for 50 hours at

20 C̊. Finally, the sections were mounted in glycerine gelatine and stored

at 4 C̊. Sense probes were used to determine the level of non-specific

probe binding. The absorbance of the final reaction product was

measured at 550 nm (A550).

Microdensitometry and morphometry
The cross-sectional area of muscle fibres and absorbance values of the

final reaction products in muscle fibre sections were determined as

follows: Slow, high oxidative muscle fibres were selected close to the

skin and horizontal septum. White fast muscle fibres were selected in an

epaxial area approximately halfway between most prominent lateral side

and the vertical septum and halfway the most dorsal side and vertebra

(Fig. 2). Sections were imaged using a Leica DMRB microscope

(Wetzlar, Germany) fitted with calibrated grey filters using an

appropriate interference filter (see above). Images were recorded with a

620 objective and a Sony XC-77CE camera (Towada, Japan) connected

to an LG-3 frame grabber (Scion, USA) in an Apple Power Macintosh

computer and analyzed with NIH-Image V1.61 (US National Institutes of

Health). Grey values were converted to absorbance values per pixel using

the grey filters and a third-degree polynomial fit. Morphometry was

calibrated using a slide micrometer and the set scale option in NIH-

image, taking the pixel-to-aspect ratio into account.

Myonuclear density
The myonuclear density was determined according to a modification of

the method described by Jaspers et al. (Jaspers et al., 2006). The number

of nuclei within muscle fibres was determined by co-staining the nuclei

and dystrophin (stain for the sarcolemma).

Sections were air dried and fixed for 10 minutes in 4% formaldehyde

solution. All antibodies were diluted in PBS with 10 mg/10 ml BSA.

Sections were washed 3 times 3 minutes with PBST, incubated with

primary mouse dystrophin monoclonal antibody (1:25) (Novacastra, UK)

for 2 hours, washed 3 times 3 minutes in PBST and incubated with

secondary mouse Alexa 488 (Invitrogen, USA) (1:100) for 60 minutes.

Subsequently sections were washed twice for 3 minutes with PBST and

once with PBS before they were mounted with Vectashield mount

medium with DAPI (Vector laboratories, UK).

Sections were analysed using a fluorescence microscope (Axiovert 200

Marianas, Carl Zeiss, The Netherlands), a cooled charge-coupled device

camera (Cooke Sensicam, Cooke Co., USA) and Slidebook (Intelligent

Imaging Innovations, USA). The mean myonuclear length (l) was

determined in longitudinal tail sections using a640 objective yielding a

value of 12.1861.74 mm (mean6SEM of 30 nuclei). The CSA of 30 high

and low oxidative muscle fibres were measured using a 620 objective

and the cytoplasmic number of nuclear fragments were counted. Given a

mean nuclear length of 12.2 mm, a section thickness of 10 mm and the

fact that the smallest detectable nuclear fragment we were able to detect

was 1.0 mm (determined in additional 1 mm thick sections), the number

of nuclei per unit fibre length was divided by 2.2 to correct for multiple

counting. The actual conversion into myonuclear number for a given

length of fibre (mf,l) was calculated as:

mf,l~
mf,c|Lf

D|2:2

where mf,c is the number of myonuclei in a muscle fibre cross-section, Lf

the length of the muscle fibre segment in mm (in this case taken as 1000

to present the results as number of myonuclei per mm fibre) and D the

thickness of the cross-section in mm. For both high and low oxidative

muscle fibre regions, myonuclear density was calculated by multiplying

the mean cross-sectional area by the mean number of myonuclei per mm

muscle fibre.
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Calculation of the critical oxygen tension (PO2crit)
To determine the functional consequences of the adaptations during CCH,

we used a Hill-type diffusion model (Hill, 1965), to calculate the critical

oxygen tension that is required to prevent the development of an anoxic

core in a cylindrical cell (PO2crit, in mmHg) at its maximum rate of oxygen

consumption (VO2max). When this model takes into account Mb-facilitated

oxygen diffusion (Meyer et al., 1984; Murray, 1974), PO2crit is given by:

PO2crit~ VO2max
:CSA{4p:DMB

: MbO2½ �R
� ��

4p:aM
:DO2

where VO2max is in nmol?mm23?s21 (5mM/s) calculated using SDH-

activity (van der Laarse et al., 1989), CSA in mm2, DMb is the radial

diffusion coefficient of myoglobin (1.91?1025?mm2?s21; calculated from

the diffusion coefficient in frog (Baylor and Pape, 1988) corrected using

Q1051.49 determined in rat soleus (Papadopoulos et al., 2001)), [MbO2]R is

the concentration of oxygenated myoglobin at the sarcolemma (in mM) and

calculated from the total myoglobin concentration in individual fibres as

described (Des Tombe et al., 2002), the myoglobin P50 in zebrafish at 25 C̊

(1 mmHg (Madden et al., 2004) corrected for temperature as described

(Schenkman et al., 1997)). The product aM DO2, (aM is the solubility of

oxygen in skeletal muscle and DO2 is the diffusion coefficient for oxygen in

skeletal muscle) is known as Krogh’s diffusion coefficient. For zebrafish at

28 C̊, aM DO2 was estimated to be 1.51 nM?mm2?mmHg21?s21, which was

based on aM DO251.23 nM?mm2?s21?mmHg21 measured in isolated

Xenopus muscle fibres at 20 C̊ and a temperature dependency of 2.6%/ C̊

(van der Laarse et al., 2005). This is an underestimate of PO2crit, because

mitochondrial oxygen uptake is not zero order and because the reaction of

Mb + O2 may not be in equilibrium (Endeward, 2012).

Statistics
Using the images of the sections, at least 20 cells per fish of the high and

low oxidative fibres were analyzed. Three-way analysis of variance was

performed to test for significant differences in parameter values between

hypoxic and normoxic conditions, fibre types and durations of hypoxia.

Differences in PO2crit and in variables of swimming behaviour were tested

using independent t-tests. A P-value , 0.05 was considered significant.

Values are presented as mean6standard error of the mean (SEM).
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