VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Looking Inside the Black-Box: Capturing Data Provenance using Dynamic
Instrumentation

Stamatogiannakis, M.; Groth, P.T.; Bos, H.J.

published in
5th International Provenance and Annotation Workshop (IPAW'14)

2014

DOI (link to publisher)
10.1007/978-3-319-16462-5_12

document version _
Early version, also known as pre-print

Link to publication in VU Research Portal

citation for published version (APA)

Stamatogiannakis, M., Groth, P. T., & Bos, H. J. (2014). Looking Inside the Black-Box: Capturing Data
Provenance using Dynamic Instrumentation. In 5th International Provenance and Annotation Workshop
(IPAW'14) (pp. 155-167) https://doi.org/10.1007/978-3-319-16462-5 12

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1007/978-3-319-16462-5_12
https://research.vu.nl/en/publications/5c1ad4b4-c367-4645-8edf-839da877dd84
https://doi.org/10.1007/978-3-319-16462-5_12

Looking Inside the Black-Box: Capturing Data
Provenance using Dynamic Instrumentation

Manolis Stamatogiannakis, Paul Groth, and Herbert Bos

VU University Amsterdam, The Netherlands,
{manolis.stamatogiannakis, p.t.groth, h.j.bos}@vu.nl

Abstract. Knowing the provenance of a data item helps in ascertaining
its trustworthiness. Various approaches have been proposed to track or
infer data provenance. However, these approaches either treat an ex-
ecuting program as a black-box, limiting the fidelity of the captured
provenance, or require developers to modify the program to make it
provenance-aware. In this paper, we introduce DataTracker, a new ap-
proach to capturing data provenance based on taint tracking, a technique
widely used in the security and reverse engineering fields. Our system is
able to identify data provenance relations through dynamic instrumen-
tation of unmodified binaries, without requiring access to, or knowledge
of, their source code. Hence, we can track provenance for a variety of
well-known applications. Because DataTracker looks inside the executing
program, it captures high-fidelity and accurate data provenance.

Keywords: data provenance, dynamic, taint analysis, taint tracking, PROV

1 Introduction

Provenance is a “record that describes the people, institutions, entities, and
activities involved in producing, influencing, or delivering a piece of data or a
thing” [26]. This record can be analyzed to understand if data was produced
according to regulations, understand the decision making procedure behind the
generation of data, used in debugging complex scientific programs, or used to
make trust calculations [25].

Given the need for an explicit record to analyze, the community has studied
a variety of ways to record or capture data provenance ranging from modifying
applications, to explicitly recording provenance, to reconstructing provenance
from the computational environment. In designing a provenance capture sys-
tem, one must make a trade-off between the fidelity of the captured provenance
(i.e. how accurate the provenance is) and the effort on the part of application
developers and/or users to make a system provenance-aware.

In this work, we introduce DataTracker, a new system for capturing prove-
nance that practically eliminates the effort of making an application provenance-
aware while still producing high-fidelity provenance. Analogous to high-fidelity
sound, we use this term to refer to provenance information with minimal amounts

of noise (false-positives) and distortion (misrepresentation of existing relations).
DataTracker offers both these qualities as it a) eliminates a large number of
false-positives by tracking how data are actually used, and b) is able to capture
provenance at the byte-level. Our system is based on dynamic taint analysis
(DTA), a method popular with the security research community, allowing our
system to leverage already available infrastructure. It can track data provenance
for a wide-variety of unmodified binaries ranging from small command line util-
ities to full-fledged editors like vim. Moreover, unlike other systems that can be
used to capture high fidelity provenance, DataTracker does not require knowledge
of the application semantics. Concretely, the contributions of this paper are:
1. A system, DataTracker!, to transparently capture data provenance of un-
modified binaries based on DTA.
2. An evaluation of the system that shows high-fidelity provenance capture on
small inspectable programs.
3. Case studies of provenance capture for well-known applications.

The rest of the paper is organized as follows. Section 2 discusses previous
work on capturing provenance and introduces dynamic binary instrumentation
and taint analysis, the techniques we use to implement DataTracker. In Section 3
we present the architecture of our system and detail its implementation. Next,
in Section 4 we evaluate the provenance produced by it. We use both simple
programs that address cases that are not adequately handled by the state of
the art, as well as real applications. Finally, in Section 5 we discuss some of the
aspects of DataTracker, highlighting possible follow-up work.

2 Background and related work

2.1 Capturing provenance

Provenance has been widely studied in the database [5], distributed systems [31]
and e-science communities [9]. For a comprehensive overview of the field, we
refer the reader to Moreau [24]. Furthermore, Cheney et al. [5] and Simmhan
et al. [30] provide specialized reviews for databases and e-science respectively.
Here, we focus on systems for provenance capture.

We classify provenance capture approaches on a spectrum in terms of how
much intervention they require to make an application provenance-aware. By
intervention, we mean the modifications of a program or computational envi-
ronment to capture provenance. Typically, the more intervention required the
higher fidelity of provenance and the greater the required effort is.

At the most detailed level are systems modified to be provenance-aware. For
example, Trio DBMS [35] extends a relational database system to cope with
uncertain data and provenance. Frameworks for modifying programs to record
provenance information have also been proposed [23,20].

An alternative take to provenance-awareness is the use of middleware to wrap
applications and components. The provenance is generated by the middleware

! The source code of DataTracker is available on: http://github.com/m000/dtracker

http://github.com/m000/dtracker

after inspection of the inputs and outputs of the wrapped components. This
approach is popular with the scientific workflow community and includes systems
such as Taverna [29], VisTrails [11], Kepler [2] and Wings [17]. Other middleware-
based systems like Karma [31] are not tied to a workflow system, but instead
tap into the communication stack to capture provenance.

It has also been proposed to capture provenance by exploiting the mecha-
nisms offered by the operating system to trace the activities of programs. Such
systems include TREC [34], ES3 [12] and the work of Gessiou et al. [13]. All these
systems operate in user-space and don’t require special privileges. A slightly dif-
ferent approach is taken by PASS [14], which has been implemented as a Linux
kernel extension. From this vantage point, PASS is able to capture provenance
from multiple processes at once. The fidelity of the provenance captured by these
systems is comparable, as they all retrieve and use similar information (albeit
using different mechanisms) and all of them treat traced programs as black bozes
without tracking how data are actually processed. We consider our system to
be an extension of these approaches to support higher fidelity provenance. From
them, DataTracker is mostly related to Gessiou’s et al. system, in the sense that
both use dynamic binary instrumentation.

Finally, newer work [21,28] does not use a-priori instrumentation but at-
tempts to reconstruct provenance directly from data. Without primary access to
the actual provenance, this approach will always suffer from lower fidelity.

2.2 Dynamic Instrumentation and Taint Analysis

Dynamic Instrumentation: DataTracker applies Dynamic Instrumentation on
the executing programs using the Intel Pin [19] framework. Pin allows monitor-
ing and interacting with an executing program using a rich API and provides
the base platform for the implementation of Dynamic Taint Analysis (discussed
next). We picked Pin over similar Dynamic Binary Instrumentation (DBI) plat-
forms [27,3] because it is considered the easiest to work with while providing
high performance without the need for much manual tinkering. Instrumenta-
tion techniques which require modification or recompilation of the instrumented
programs [33,18] were precluded.

Dynamic Taint Analysis: Pioneered by Denning in the 70s [10], the idea of
tracking the flow of data though a program is all but new. The technique has re-
mained relevant through the years and has been implemented on different levels,
ranging from source code [22], to interpreters?, to full emulators [8,1]. Its most
common applications are in the field of security and intrusion detection [7,1].
However, until now, it hasn’t been used for capturing provenance.

When data flow tracking is applied at runtime, it is generally called Dynamic
Flow Tracking or, equivalently, Dynamic Taint Analysis (DTA). The term taint
refers to the metadata associated with each tracked piece of data. A short and
concise definition of DTA has been given by Kemerlis et al. [16] as: “the process
of accurately tracking the flow of selected data throughout the execution of a

2 E.g. Perl taint mode: http://perldoc.perl.org/perlsec.html#Taint-mode

http://perldoc.perl.org/perlsec.html#Taint-mode

program or system”. The four elements that are define a DTA implementation
are: a) the taint type, which encapsulates the semantics tracked for each piece
of data; b) the taint sources, i.e. locations where new taint marks are applied;
c) the taint sinks, i.e. locations where the propagated taint marks are checked
or logged; d) a set of propagation policies that define how that taint marks are
handled during program execution.

Given the effectiveness of DTA, recently much research has been done on
reusable DTA frameworks. This was largely made possible by the maturing of
dynamic binary instrumentation platforms (see above). Dytan [6] uses the In-
tel Pin [19] DBI framework and provides much flexibility for configuring taint
sources and propagation policies. Additionally, it offers some support for implicit
data flows (see Section 5). DTA++[15] by Kang et al. focuses on the efficient
handling of such implicit flows in benign programs.

A more recent effort (also based on Intel Pin) which emphasizes on perfor-
mance is libdft [16]. To achieve superior performance, libdft consciously sacrifices
some flexibility by supporting only bit or byte sized taint marks and omitting
any support for implicit data flows. DataTracker is based on libdft, however we
opted to use a modified version which adds support for arbitrary taint marks.

3 System

The architecture of DataTracker is illustrated in Fig. la. Colored blocks repre-
sent the additional components required for capturing provenance information
in PROV format from unmodified applications. The darker blocks are those
specifically developed for DataTracker. Due to Pin’s architecture, application
and instrumentation code appear as a single process to the OS and share the
same address space. This means that instrumentation code has access to all of
the application data and can intercept system-calls made by the application.

3.1 Modifications to libdft

A fundamental requirement of DataTracker is the ability to use richer taint marks
than those offered by the original libdft. Libdft has been carefully optimized
with security applications in mind. For such applications, it has been argued
that byte-sized taint marks are large enough for the current crop of security
applications based on DTA [6]. So, libdft has limited the size of supported taint
marks to either 1b or 1B, which allows for optimizing the taint propagation logic
and reducing the memory requirements.

However, the requirements for DTA-based provenance applications are quite
different. In this case, the default byte-sized taint marks of libdft just do not
provide enough fidelity. In order to accommodate for the higher fidelity we need,
we opted to use a modified version of libdft developed at our lab?. The modified
version shares much code with the original, however the taint mark type and
propagation logic can be configured to match the application needs.

3 Source code available on: https://git.cs.vu.nl/r.vermeulen/libdft

https://git.cs.vu.nl/r.vermeulen/libdft

T T L TP e P e T C P LT CETEPEECECPCETEPEPEE . input

 Infarmation HNNEEEE

Application
file A libdft :
H H output
NN T¥ - H Raw to PROD P
E \\ Pin Instrumentation Al : Converter (b) seq. range
. Application A Code | . input
fileB |:* Image Pin UM Cache ' D]]:D]]
; : PROU file
NI) Syscall/Event Dispatcher | : AN
) H ’ ~
| Linux Kernel ' | D:D]:lj]:l]
output
(a) (c) rep. range

Fig. 1: DataTracker architecture (a) and taint ranges (b, c).

For DataTracker, the taint marks associated with each memory location are
modeled as set of two-tuples: {(ufd0:offset0), (ufdl:offsetl),...}. Each of these
tuples is 64bit long, and uniquely identifies an offset in a file*. The first half of
each tuple is a wnique file descriptor (UFD) which identifies a file during an
application session. The second half represents the offset of the data within
the file mapped to the UFD. Unlike file descriptors provided by the OS, UFDs
increase monotonically and are not recycled after closing a file. Thus, they enable
us to tell apart data which outlive the file descriptor they were read from. UFDs
are only used internally and are resolved back to filenames during the conversion
to PROV.

3.2 The dtracker pin tool and converter

The dtracker pin tool is the core component of DataTracker. It implements the
following functionality: a) identifying when taint should be applied; b) properly
setting taint marks on data; ¢) logging raw provenance information.

Identification of data to taint: When an instrumented program accesses
a file for the first time, dtracker intercepts the open() system call and invokes
its UFD mapper sub-component. The mapper checks whether the file descriptor
returned by open() should be watched for input/output operations in order to
respectively assign/log taint marks. This check is necessary in order to avoid
applying taint on data that are either of no interest or highly unlikely to end-
up in the application output. Examples of such files are shared libraries, Ul
icons, etc. The mapper includes heuristics to identify such files. If the mapper
determines that the file descriptor should be watched, it will create a new UFD
mapping for it. Additionally, it will check whether the file was created as a
result of the system call and if it has been opened for writing. This information
is logged and used to avoid generating false prov:wasGeneratedBy records.

4 For simplicity, we prefer the term “file” over the more accurate “file-like resource”.

Applying taint marks: The majority of applications read data from exter-
nal sources using read() and mmap2() system calls. The return values and argu-
ments of these calls are intercepted by DataTracker and, if the file descriptor used
is watched, taint marks are set on the memory locations where the data were
read into. E.g. for a call read(fd, buf, size) which returns n, DataTracker will
assign tags[buf+i] < (ufd[fd]:offset+i), Vi € [0,n). The handling of mmap2()
is similar. The required offset to create the taint mark is acquired by querying
the operating system using the 1seek() system call. For file descriptors where
this is not supported (e.g. pseudo-terminal devices), DataTracker keeps separate
read /write counters. After the taint marks have been set, their propagation as
the program executes is handled by libdft.

Raw provenance logging and aggregation: While some pieces of raw
provenance are logged by the instrumentation code attached to open(), the bulk
of logging happens when write() and munmap() are called. A naive approach for
this logging would be to just loop through written buffer and log one entry per
tainted memory location. This strategy would easily result in very large log files.
Logging large amount of data to disk would also slow-down the execution of the
application. To avoid these issues and and produce more compact and meaningful
output, dtracker includes a simple aggregator for the logged taint marks which
condenses logged information into two types of taint ranges: a) Sequence ranges
(Fig. 1b), which occur when the same same sequence of consecutive taint marks
appears both in the input and the output; b) Repetition ranges (Fig. 1c¢), which
occur when consecutive output bytes are all marked with the same taint mark.
From the supported ranges the most common is the first, which naturally occurs
whenever data are moved or copied by the application.

Raw output to PROV converter: In order to be able to use existing tools
to further process the produced provenance, DataTracker provides a converter
from its own raw format to PROV-O, the RDF serialization of PROV. While
the bulk of the conversions are simple transformations, the converter script also
needs to maintain some internal state, in order to avoid producing false-positives
in some specific cases (e.g. false prov:wasGeneratedBy triples).

4 Evaluation

We carry out a two part evaluation. In the first part, we examine simple baseline
programs with transparent and inspectable functionality. The goal is to demon-
strate specific cases where our system is able to improve on the quality of pro-
duced provenance and produce less false-positives than existing approaches. In
the second part, we focus on well-know applications and show how DataTracker
can be used to extract useful provenance information from them without requir-
ing modifications. We use the diagrammatic convention of PROV?®. We have also
been able to run bigger applications like AbiWord with DataTracker. However,
in this introductory paper we will focus on simpler, more tractable programs.

5 nttp://wuw.u3.org/2011/prov/wiki/Diagrams

http://www.w3.org/2011/prov/wiki/Diagrams

for i < 1 to argc — 1 do
f < open(argvli]);

[
w < argv[l].lower(); O e .
for i + 2 to argc — 1 do :fﬁﬁ((eargv[z] + "up”);

f <« open(argv[i]);

(c « f.gete() #

for In in f.lines() f < open(argv[1]); EOF do
do g < open(argv[2)); o< o<z
if w in dummy <+ f.readline(); then
In.lower() then g.write(“http://bit.ly/ipaw2014"); f.putc(c +
| print In; Apr_ 2%
d ;
den else
en (b) tricky pseudocode | f .pute(c);
end end
end
(a) sgrep pseudocode end

(c) upcase pseudocode

Fig. 2: Pseudocode for baseline programs.

(a) Lorem Ip-
(b) Aesop’s Fables

sum

use

tricky upcase
gen dey 9€M | der
(c) TRicky (d) Shout it out loud

Fig. 3: Output from baseline experiments with DataTracker.

http://bit.ly/ipaw2014

4.1 Baseline experiments

Lorem Ipsum: In this experiment, we use sgrep, a simplified version of the
standard grep unix utility. It finds lines containing the word w specified as its
first argument inside the files specified by the rest of the arguments. The search
is case-insensitive and the found lines are printed to the standard output. Its
functionality is illustrated as pseudocode in Fig. 2a. We use sgrep to find the
lines containing word “dolor” in a file containing the standard Lorem Ipsum®
passage. The standard output is redirected to file “out.txt”.

This test demonstrates that DataTracker is able to produce the same prove-
nance graph as those of techniques like [14,12,13]. In Fig. 3a we can see that
DataTracker correctly produces the expected usage and derivation edges. Our
system also produces byte level provenance information, which has been omit-
ted from the graph for saving space.

Aesop’s Fables: Here, the sgrep utility is again used. This time, we are
looking to find lines containing the word “lion” in four files containing Aesop
fables. Only two of the four fables actually involve a lion.

We can see in Fig. 3b that DataTracker correctly identifies that the output
contains lines (and therefore was derived) from only two out of the four input
files. This is an improvement over systems like [14,12,13], which would have
also produced false derivation edges for the remaining two files. The reason that
DataTracker is able to eliminate these false positives, is that it goes beyond simply
tracking how the instrumented program exchanges data with its environment.
It actually looks inside the program, a provenance black box until now, and
determines which of the exchanged data have been used and where.

TRicky: For this experiment, we use a utility called tricky which purport-
edly scans the input file for urls, and writes them to the specified output file.
However, it seems that we’ve been tricked! In reality, the program always prints
the same url regardless of the input it reads, as shown in Fig. 2b.

We ran tricky with a call for papers as input that happens to include the
exact same string that tricky has hardcoded. DataTracker was able to correctly
identify that tricky generated the output file but its contents actually have
nothing to do with the input file (Fig. 3c). Similarly with the previous example,
systems that only trace the operations performed by the instrumented program
but not the data used would have been tricked into producing a false derivation
edge. But in this case, systems that infer provenance by applying content-based
heuristics [28] would have also been tricked.

Shout it out loud: In this final baseline experiment, we use a utility called
upcase. This program opens the files specified as arguments and produces one
output file for each of them with its contents in uppercase. The pseudocode of
upcase is shown in Fig. 2c.

This experiment is simply a verification that DataTracker is able to identify
the correct derivation edges in the case of multiple inputs and outputs. The
generated graph is depicted in Fig. 3d. For upcase and N input files, other

5 A common placeholder text which has been used by typesetters since the 1500s.

world hello hello hello
cruel s world N world N cool
hello cruel world

(a) vim editing scenario steps

(world.txt " hello.txt " cruel.txt

Xauthority)

|

.empty.txt.swx

.ICEauthority

A e
(out.txt g .viminfo)

(b) provenance graph

Fig. 4: Case study — vim editor.

systems would have produced a graph with NV x N edges. Such a result is too
vague to be of practical use. With the use of heuristics, the quality of this
result could be improved. However, with DataTracker we don’t have to resort to
heuristics that may fail in other cases.

4.2 Case studies

In this section we will present the provenance produced by DataTracker when
instrumenting two well-known applications: vim editor and Python.
vim editor: We used vim to run the following editing scenario (illustrated

in Fig. 4a):

1. Open empty.txt with vim.
. Read world.tzt, cruel.tzt, and hello.tzt into the buffer.
. Move contents of hello.txt to the top of the buffer.
. Remove contents of cruel.tzt from the buffer.
. Type the word “cool” in the buffer.
. Write the buffer to out.txt and quit.

The produced provenance graph can is shown in Fig. 4b. We can see that
the produced graph is much denser than the ones produced by the baseline
programs of Section 4.1. This is because vim opens numerous supporting files.

SO W N

We can see that DataTracker correctly didn’t produce an out.txt AT el tat
edge, as the contents of cruel.tzt were removed in step 3 of the scenario. It also

didn’t produce an out tat &L .empty.txt.swp edge, even though the contents of

out.txt were temporarily stored in .empty.txt.swp during the session.
Additionally, our system was able to capture provenance attributed to user

input. The node labeled “0” in the graph corresponds to the pseudo-terminal

device which is used by the program. We can see that DataTracker correctly

produced derivation edges out 4zt <0 and 04270 for it: the former represents
the word “cool” we typed, while the latter denotes that whatever we typed was
also displayed on the pseudo-terminal. Capturing the user input has remained
largely unaddressed by previous work (e.g. [34]). Not only can DataTracker trace
provenance back to user’s input, but it can also pinpoint which parts of the
output were contributed by the user.

Python scripts: We used DataTracker to capture the provenance produced
by some simple Python scripts in order to test how it performs with interpreted
languages. Due to limited space, we will only briefly present our findings. Data-
Tracker was able to produce correct provenance graphs on the file granularity.
However, the provenance of some byte ranges was not captured correctly. This
can be attributed to implicit flows, discussed in Section 5.

5 Discussion

The use of DTA allows for tracking of high-fidelity provenance. Following, we
discuss some shortcomings of this technique as well as avenues for future work.

Capturing implicit provenance: A noteworthy deficiency of DTA is that
it cannot easily track implicit information flows. An implicit information flow be-
tween variables x and y occurs when the value of y is set from a variable/constant
z but the execution of the assignment is determined by the value of x. This
matches cases like conditional assignments (e.g. if (x) then y=0; else y=1;)
or assignment through lookup tables (e.g. int v[1 = {1, 2, 3}; y = v[x];). In
DTA implementations like libdft [16], where taint marks propagate only through
operations directly involving a tainted location, these cases will not result in
propagation of taint from x to y. This problem had already been noted by Den-
ning [10] in her seminal work. The provenance relations that occur as a result of
implicit flows are called implicit provenance.

Attempting to track implicit flows may result in over-tainting and a high
number of false-positive, especially when using DTA to analyze malware [32]. For
tracking taint through implicit flows in benign programs, Kang et al. propose
DTA++ [15]. Their approach uses an offline analysis phase to identify locations
where implicit flows occur and cause loss of taint. This is consistent with Cav-
allaro’s observations [4]. However, when using DTA to capture provenance we
can safely assume that our programs are benign. So, in principle, techniques like
DTA++ could be retrofitted to DataTracker to improve its recall on the retrieved
implicit provenance relations.

Performance: While performance is acceptable on most command-line pro-
grams, issues do exist. E.g. the use of large taint marks may result in increased
memory usage. The extent of this effect depends on how much tainted data are
used at once. It can be alleviated by attaching to the application after its launch,
reducing the amount of un-needed taint applied. We plan to quantitatively study
this effect and investigate optimizations to lessen it. Another issue is that DTA
is particularly slow when instrumenting interpreted programs (see Section 4.2).

10

This is because it treats interpreted programs as data and applies taint to them.
Investigation of possible solutions to this problem is an area of future work.

6 Conclusions

We have presented DataTracker, a novel system for capturing provenance from
unmodified binaries based on Dynamic Taint Analysis and implemented using
Dynamic Instrumentation. DataTracker advances the state of the art by not
treating executing programs as black-boxes, inferring provenance by how they
interact with their environment, but instead dynamically tracking the flow of
data through their internals, capturing high-fidelity provenance along the way.
We have shown that DataTracker is able to generate accurate provenance in cases
where state-of-the-art techniques would have produced false-positives. It is also
capable of capturing user interaction provenance and generating high-fidelity
provenance for individual byte ranges within files.

References

1. Bosman, E., Slowinska, A., Bos, H.: Minemu: The World’s Fastest Taint Tracker.
In: Proceedings of RAID’11. Menlo Park, CA, USA (2011)

2. Bowers, S., McPhillips, T.M., Ludaescher, B.: Provenance in collection-oriented
scientific workflows. Concurr. Comput.: Pract. & Exper. 20(5) (2008)

3. Bruening, D.L.: Efficient, Transparent, and Comprehensive Runtime Code Manip-
ulation. Ph.D. thesis, MIT, Cambridge, MA, USA (2004)

4. Cavallaro, L., Saxena, P., Sekar, R.: On the Limits of Information Flow Tech-
niques for Malware Analysis and Containment. In: Proceedings of DIMVA’08.
Paris, France (2008)

5. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in Databases: Why, How, and
Where. Foundations and Trends in Databases 1(4) (2009)

6. Clause, J., Li, W., Orso, A.: Dytan: A Generic Dynamic Taint Analysis Framework.
In: Proceedings of ISSTA’07. London, UK (2007)

7. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end Containment of Internet Worm Epidemics. ACM TOCS
26(4) (2008)

8. Crandall, J.R., Chong, F.T.: Minos: Control Data Attack Prevention Orthogonal
to Memory Model. In: Proceedings of MICRO 37. Portland, OR, USA (2004)

9. Davidson, S.B., Freire, J.: Provenance and Scientific Workflows: Challenges and
Opportunities. In: Proceedings of SIGMOD’08. Vancouver, Canada (2008)

10. Denning, D.E.; Denning, P.J.: Certification of Programs for Secure Information
Flow. Communications of the ACM 20(7) (1977)

11. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Man-
aging rapidly-evolving scientific workflows. In: Proceedings of IPAW’06. Chicago,
IL, USA (2006)

12. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurr. Comput.: Pract. & Exper. 20(5) (2008)

13. Gessiou, E., Pappas, V., Athanasopoulos, E., Keromytis, A., Ioannidis, S.: Towards
a Universal Data Provenance Framework Using Dynamic Instrumentation. IFIP
Advances in Information and Communication Technology, vol. 376 (2012)

11

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Holland, D.A., Seltzer, M.I., Braun, U., Muniswamy-Reddy, K.K.: PASSing the
provenance challenge. Concurr. Comput.: Pract. & Exper. 20(5) (2008)

Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In: Proceedings of NDSS’11.
San Diego, CA, USA (2011)

Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical Dy-
namic Data Flow Tracking for Commodity Systems. In: Proceedings of VEE’12.
London, UK (2012)

Kim, J., Deelman, E., Gil, Y., Mehta, G., Ratnakar, V.: Provenance Trails in the
Wings-Pegasus System. Concurr. Comput.: Pract. & Exper. 20(5) (2008)
Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of CGO’04. Palo Alto, CA, USA (2004)
Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: Proceedings of PLDI’05. Chicago, 1L, USA
(2005)

Macko, P., Seltzer, M.: A General-purpose Provenance Library. In: Proceedings of
USENIX TaPP’12. Boston, MA, USA (2012)

Magliacane, S.: Reconstructing Provenance. In: Proceedings of ISWC’12. Boston,
MA, USA (2012)

McCamant, S., Ernst, M.D.: Quantitative information-flow tracking for C and
related languages. Tech. Rep. MIT-CSAIL-TR-2006-076, MIT, Cambridge, MA,
USA (2006)

Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: A Methodology for Developing
Provenance-Aware Applications. ACM TOSEM 20(3) (2009)

Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends
in Web Science 2(2-3) (2010)

Moreau, L., Groth, P.: Provenance: An Introduction to PROV. Synthesis Lectures
on the Semantic Web: Theory and Technology 3(4) (2013)

Moreau, L., Missier, P.. PROV-DM: The PROV Data Model. Recommendation
REC-prov-dm-20130430, W3C (2013)

Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Proceedings of PLDI’07. San Diego, CA, USA (2007)
Nies, T.D., Coppens, S., Deursen, D.V., Mannens, E., Walle, R.V.D.: Automatic
Discovery of High-Level Provenance using Semantic Similarity. In: Proceedings of
IPAW’12. Springer Berlin Heidelberg, Santa Barbara, CA, USA (2012)

Oinn, T., Greenwood, M., et al.: Taverna: lessons in creating a workflow environ-
ment for the life sciences. Concurr. Comput.: Pract. & Exper. 18(10) (2006)
Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3) (2005)

Simmhan, Y.L., Plale, B., Gannon, D.: Karma2: Provenance management for data
driven workflows. International Journal of Web Services Research 5(2) (2008)
Slowinska, A., Bos, H.: Pointless Tainting?: Evaluating the Practicality of Pointer
Tainting. In: Proceedings of EuroSys’09. Nuremberg, Germany (2009)

Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. In: Proceedings of PLDI'94. Orlando, FL, USA (1994)

Vahdat, A., Anderson, T.: Transparent Result Caching. In: Proceedings of USENIX
ATC’98. New Orleans, LA, USA (1998)

Widom, J.: Trio A System for Data Uncertainty and Lineage. In: Managing and
Mining Uncertain Data, vol. 35 (2009)

12

	Looking Inside the Black-Box: Capturing Data Provenance using Dynamic Instrumentation

