
VU Research Portal

Teaching Software Design with Social Engagement

Tamburri, D.A.; Lago, P.; Razavian, M.

published in
26th Conference on Software Engineering Education &amp; Training
2013

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tamburri, D. A., Lago, P., & Razavian, M. (2013). Teaching Software Design with Social Engagement. In 26th
Conference on Software Engineering Education & Training IEEE.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303515731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/14373778-0a88-4e11-ae9c-d36a51b308fe


Teaching Software Design with Social Engagement

Damian A. Tamburri
Dept. of Computer Science

VU University Amsterdam, Netherlands
d.a.tamburri@vu.nl

Maryam Razavian
Dept. of Computer Science

VU University Amsterdam, Netherlands
m.razavian@vu.nl

Patricia Lago
Dept. of Computer Science

VU University Amsterdam, Netherlands
p.lago@vu.nl

Abstract

Software designers constantly mediate with various stakeholders, agree with requirement engi-
neers and interact with coders. Software design is a socially-intensive activity. Teaching software
design should be equally socially-intensive. However academic courses still lack a beneficial bal-
ance between theory, practice and social engagement. This paper provides details on how we
address this problem in our course on software design. The course is designed to engage students
with real-life projects and using peer-review sessions within collaborative team clusters. These
instruments embed the social conditions of software design within the students’ learning process.
We show the effectiveness of the course by discussing student evaluations.

1. Introduction

Software design is a critical activity in the process of constructing software. Designers often
need to act as a social link between stakeholders, their requirements and the rest of the development
crowd. Courses on software design, however, are often too dense with both theory and practice of
software design, and lack in an essential third ingredient, i.e. engagement as social connotation
[23]. We argue this social connotation is vital for students to understand the role of designing
complex software systems.

Software design should be taught within a professional learning community [13,22] in which the
social engagement of students takes the upper hand. This paper presents our software design course
and reports on our experience in delivering it by blending theory, practice and social engagement
in a balanced way. This goal is realised with a combination of three factors: (a) giving students a
challenging, real-life project from an industrial partner (playing the role of industrial customer); (b)
organising student teams in collaborative clusters; (c) inspiring students’ mutual learning through
peer-reviewing and competition within clusters. Through weekly peer-review sessions, students
also learn how to cope with different people’s perspectives, backgrounds, requirements/concerns
and shared understanding [4].

We have observed that this approach helps students in learning the main challenges of software
design [18, 19]: (a) Accountable and Rational Design Decisions - students learn how to reason
and really be accountable for their own design decisions; (b) Collaborative Design - students can
brainstorm constructively with “opponent” teams, reaching a deeper understanding of the designer
role; (c) Iterative Design - students learn from other people’s mistakes and solutions pro-actively
revisiting their own design, which is far more effective than any of the many examples we used in
the previous years; (d) “Social” Design - students learn to make teamwork effective and cope with

978-1-4673-5139-3/13/$31.00 c© 2013 IEEE CSEE&T 2013, San Francisco, CA, USA

61



critical reviews driven by different backgrounds and expertise (hence offering feedback from very
different perspectives).

The rest of the paper is structured as follows: section 2 describes our course; section 3 provides
student evaluations and discussions. Finally, section 5 concludes this paper.

2. Service-Oriented Design Course at VU University Amsterdam

Software design means to apply the theory of software engineering to designing software-
intensive systems. This process involves stakeholders of various nature [2] and is highly people-
intensive. Also, software design is an incremental and highly interactive activity. We structured
the Service-Oriented Design course at VU University Amsterdam such that theory, practice and
social engagement become equally important. Social engagement is realised in practice by using a
combination of peer-review sessions and stakeholder reviews. In the following we further explain
the structure of the course.

Fig. 1 shows the weekly structure of our course yielding three types of sessions. Each week,
on day 1, theory is given in the form of service oriented design lectures. On day 3, teams unite to
constructively review the work of others, while on day 5 randomly selected teams present their re-
sults to the industrial customer. Both peer-review and customer presentation sessions are designed
to increase social engagement among students and lecturers.

Lectures

Peer-Review

Stakeholder 
Review

THEORY: DESIGNING
SERVICES

PRACTICE: SOCIAL 
ENGAGEMENT

Day 1

Day 3

Day 5

Figure 1: SOD Weekly Cycle - Theory of
Services Design applied through social engage-
ment.

Our course is structured in three types of
sessions: (1) theory; (2) peer-review; (3)
stakeholder reviews. Each week is organ-
ised as follows: (1) two hours of design
theory; (2) two hours of peer-review; (3) 2
hours of progress review presentations, au-
dited by the “customer”, i.e. the industry
providing the real-life industrial case-study.
The week starts with theory of service-
oriented software architectures and the pro-
cess of designing them following a service-
oriented style (top-left on Fig. 1). Students
are asked to start working immediately on
the week’s assignment so that on wednesday
night (within 23:59 hours), each cluster can
share internally the current version(s) for the
peer-review session on the following day. At the end of the week the students are randomly se-
lected to present their progress so far, stressing on design issues and concerns that were of particular
importance/difficulty. Supervisors and industrial stakeholder, enact a classroom-learning session
asking questions to clarify the issue or further exploring it, e.g. by splitting the issue into multi-
ple questions. In the following we focus on three key aspects, namely: (1) real-life project; (2)
peer-review clusters; (3) stakeholder reviews.

1. Real-Life Project. Each academic year the project is provided by one of our industrial
partners. Over the years we found that a non-trivial example of domain and development
problem stimulates the creativity of students and challenges them to be actual designers
rather than mere apprentices. In doing so, we tried to simulate an industrial environment
with intensive, recurrent and fixed deadlines featuring partial increments, e.g. on a weekly

62



Table 1: Our Student Projects

Project Characteristics In our Context
Number of Project
Requirements

Every project satisfied an average of 16 requirements.

Number of
Non-Functional
Requirements

non-functional requirements or other desirable quality attributes
were 9 in average. These needed to be exhibited and maintained
by the designed service offer.

Number of Business
Services

Projects normally exhibit an average of 10 business services that
students must design into a complete service offer.

Size of the Design Space
(in terms of Design Issues
and related Options)

On average the projects exhibit 8 design Issues formulated in the
form of design questions. Each question has at least 3 options.

basis. Tight deadlines, scheduling and organisational efficacy are therefore of key impor-
tance. Our final goal is that of giving real challenges from real-life scenarios in a real-life
environment. The real-life project typically features a specific business domain (e.g. airports
automation services, smart-building services) together with sizeable needs for the service of-
fer to be designed by students. In previous editions, our projects featured in average for every
group some 30+ requirements (specific business, functional/non-functional, etc.). Table ??
contains additional details describing our projects.

Pedagogic Value: Software engineering literature, e.g. [23], suggests that designing soft-
ware consists of finding a reasonable and rational equilibrium among many design alterna-
tives and uncertainties. Teaching software design should also embed such uncertainty and
variety of alternatives. Using project in a quasi-real context is not novel. We tailored our
approach so that students have an industrial project featuring a real scenario as well as
real customers and their requirements for a real environment. This is delivered through the
weekly presence of industrial stakeholders. This makes students’ challenge real.

2. Peer-Review Clusters. Every week, students are called to review each other’s assignment
in a collaborative “cluster”, i.e. a set of teams. Every cluster is structured as follows:

(a) During the first week of the course, after the theory session, teams are arranged in
groups of three (i.e. a cluster). The cluster remains the same for the whole course.

(b) Each cluster is coordinated by a member of the teaching staff.
(c) Weekly, the day preceding the peer-review session, every team shares the current, par-

tially worked out version of the weekly assignment with the rest of the clustered teams.
(d) On the following day, the clusters work in parallel peer-review sessions, during which

the documents shared receive a review and feedback by the whole cluster.

Pedagogic Value: Software designers are constantly called to make, and consent with, de-
sign decisions [21]. Finally, design decisions themselves are constantly reviewed and up-
graded, e.g. following bug-reviews and similar activities. In this year’s edition of our soft-
ware design course, peer-review sessions are a completely novel way for students to learn
coping with different perspectives, gain a shared understanding of the problem(s) and col-
laboratively apply their own expertise/background to reach consensus over design issues.
Teaching staff steers clusters into a shared understanding of issues and solutions by chal-
lenging decisions and asking clarification questions.

63



3. Stakeholder Reviews. At the end of every week, industrial stakeholders are invited to take
part to students’ progress presentations. Students are encouraged to present least understood
requirements and/or issues found during the week. The customer is encouraged to give
feedback based on its expectations from the final product. Customer and students come to
synergy and co-create best-fit solutions. Finally, students are provided with the perspective
of: (a) presenting their work to practitioners in industry, e.g. to receive real-life feedback
in real-life conditions; (b) working on follow-up studies; (c) winning a prize for the best
project. Example prizes from last editions are visits/presentations to big industrial players
(e.g. IBM) or free entry tickets to Amsterdam professional/networking events.
Pedagogic Value: Software designs have value insofar as their customers perceive it [7].
In addition, designers must account for their own decisions, since these can compromise
overall system quality. Thanks to stakeholder reviews, students realise the importance of
understanding the customer’s needs and quality concerns, such that customer satisfaction
can be achieved. In addition, students learn to be accountable for their decisions, such that
they can convince the customer of the value of their proposed design solution. Finally, we
have observed that the acknowledgement from the customer creates incentive and reward
mechanisms for students [7].

2.1. Student Population

Thus structured, our course is addressed to students currently undertaking the first year of their
master study program. In previous editions, the course hosted around 30+ students every year. In
this year’s edition, the course hosted an increased number of students coming from different cul-
tural, social and skills backgrounds, due to a new collaboration with the University of Amsterdam.
While addressed mainly at students coming from a software engineering specialisation track, we
welcome different computer science backgrounds, e.g. information- or knowledge management.

Course contents feature service-oriented analysis and design. Contents focus on how to anal-
yse business and domain requirements to identify and design a correct and complete service offer
for the identified requirements. Contents focus around the service-identification methodology pro-
posed in [16]. The methodology, and the course in general, require heavy modelling and reasoning
abilities. Therefore the course requires curricula with our Software Modelling course within them.
Moreover, we strongly advise students to get acquainted with a UML modelling tool very early in
the beginning of the course. This allows students to practice UML to quickly work out and refine
a service-oriented design during our two-month intensive course. Table 2 provides more details
on the student population. Column 1 names the characteristic for the student population, while
Column 2 discusses our case. Contents and the intensive structure of our course, prepare students
to attend classes focusing on Software Architectures and Distributed Software Systems.

2.2. Course Theory: Service Oriented Design

The theory part of our course focuses on service-oriented design i.e., designing a software that
is truly service-oriented [11]. Our learning objectives in the theory part include:

• Service aspects: According to [3], the introduction of the SO paradigm introduced a shift in
the way we conceive a “software system”: from a large system to a set of small pluggable
elements. We therefore, argue that the decision making of the designers should also be in-line
with such shift. In this course we teach the students what makes a software truly service-
oriented and what essential characteristics of services should drive their design decisions.

64



Table 2: Our Design Course, details on student population

Characteristics Our Student Population
Previous Background Students are expected to have solid knowledge of UML and

similar modeling notations to support software design, e.g. using
a service-dominant perspective.

Tutors per Student Ratio We experimented with student groups of multiple sizes and found
that a group of 50 students circa, can be managed easily with a
single Course Lecturer and two teaching assistants.

Number of Teams Students are normally arranged in teams of 4, if the student
population is around 50. In general, we found as a rule-of-thumb,
to keep the total number of teams (manageable with a Course
Lecturer and two Teaching Assistants) around 20.

Project Perspectives Students are encouraged to apply themselves on their project by
stressing that their end-results are employed in a follow-up
course in which they will (partially) implement their design.

• Service analysis: Our course teaches students how to translate business requirements to a
number of business service candidates. In service analysis the students learn how to identify
candidate software services as well as the participants providing or consuming those services.

• Service design: Many existing service design approaches assume that by identifying the
candidate services, the design of services can be done in a straightforward manner. Unfortu-
nately, devising a solid design that supports requirements and goals and is in-line with SOA
principles (service aspects) is not straightforward and needs to be aided in a step-by-step
manner. In this course we aim at supporting the students’ line of reasoning in designing ser-
vices. Within service design the students learn how to design and model a software services
and/or reusing it to compose a service-based application.

• Design reasoning: Our course provides the theory about various design techniques are
taught, including the use of software design reasoning tactics and documenting the archi-
tectural knowledge pertaining a software design solution.

To pursue the above goals we have developed a service analysis and design methodology
which have been taught in the last five editions of the course. This methodology, reported
in [16], puts a special emphasis on modeling (in the most straightforward and pragmatic way
possible) the elements that are left implicit in the existing service oriented notations and that
in our experience aid students reasoning. For modeling purposes we reused state-of-the-
practice notations like UML and SoaML, and extended them only where they revealed to
be insufficient (for extensions see [16]). Figure 2 depicts the steps of our Service-Oriented
Analysis and Design methodology. Across the years we noticed the necessity of providing
the students with a template to document their design decisions. Without such a template,
design decisions are documented in an unstructured way. This template is reported in [12].

2.3. Evaluation Scheme

Being a project-based course, the evaluation of our course was only based on the students
projects. The project constituted 7 weekly assignments. Based on the content of each assign-

65



SO Analysis SO Design

- Service inventory identification 
- Service candidate definition 

- Service contract definition 
- Service network modeling 
- Service choreography modeling

- Business service identification 
- Context identification
- Business service decomposition 

Figure 2: Service Analysis and Design Methodology in Our Design Course [16]

ment we had a different evaluation scheme. Those different schemes, however, can be generalized
to the one shown in Table 3.

Table 3: An Overview of our Evaluation Criteria

Evaluation Criteria Description
Accuracy and Correctness The extent to which the analysis models/design issues/ service

design models are accurate and correct
Completeness The extent to which the analysis models/design issues/ service

design models are complete related to the project scope and con-
text

Relevance to project The extent to which the analysis model/design issue/ service de-
sign model are relevant to project context and scope

Relevance to services The extent to which the analysis model/design issue/ service de-
sign model address service aspects

Originality The extent to which the students have used their creativity or
reflection

Document internal consis-
tency and traceability

The consistency between requirements, design, design issue and
solution

Document quality English, style, clarity

3. Discussion of Student Evaluations and Lessons Learned

After course completion, we asked all 49 students attending our course to fill a qualitative eval-
uation form. This featured two open questions. First, we asked students feedback concerning the
peer-review clusters. Second, we asked students to evaluate the course, e.g. focusing on collabo-
rative work based on the amount of work provided, time, resources and course-structure. In italic
we point out lessons learned.

3.1. On the Structure of Peer-Review Clusters

All students have showed interest and active participation in the peer-review clusters. Of the 49
students attending, 42 students positively evaluated the use of peer-review sessions. Among them,
10 students did not have any criticism. In the following we discuss the constructive feedback we
received for future improvement.

First, 3 respondents were indifferent to peer-review sessions and did not perceive any added
value. In addition, 4 respondents considered peer-review a waste of time and resources. These
students apparently perceived the added value of brainstorming together against design concerns

66



and problems but identified the need for more guidance and supervision in each cluster. Comments
regarding the need for supervisors were varying, ranging from the presence of uncooperative be-
haviour to superficial/unproductive feedback to the being stuck on difficult issues for too long.
Peer-review clusters need to be steered by means of fixed and written guidelines. In our experi-
ence, we found that students do not yet possess the critical thinking skills needed to constructively
evaluate somebody else’s work. To solve this issue, checklists can be used by the lecturer to drive
the focus of reviewers to key issues based on the week’s assignment. Each checklist item can ad-
dress a critical learning point, i.e. something that is expected to be learned and that is critical for
the success of the students’ work.

Moreover, 17 respondents recognised the need for more structure within clusters, since their
learning objective was not clear or impossible to reach without structured guidance. Finally, 15
respondents pointed out that there is a heavy overlap between the learning objective of peer-review
sessions and that of stakeholder reviews. Students must be provided with a clear-cut explanation
of the learning objectives of each session, very early in the course. Many students claimed that
the overall structure and learning objectives of each phase in the course were not clear. Many also
claim that their learning abilities were inhibited by this lack of vision. Providing a written, day-
by-day roadmap to the students can help in clarifying the learning objectives of every phase of the
course as well as giving the lecturer the possibility of verifying if all the learning objectives are
met by the students after the course is done. This can also be used as a mechanism for grading.

3.2. On Collaborative Work

Whilst most of the students considered the collaborative work being valuable by enabling mutual
learning, evaluations raised some issues.

First, 20 respondents considered splitting the work between team members being especially dif-
ficult. We found that such task management is carried out in an ad-hoc manner which possibly
hinders the quality of work. For instance, some teams distributed the tasks based on different skills
of students while some others assigned different portions of functionality to each member. Indepen-
dently from the way teams split the work, all 20 respondents felt the need for help/supervision to
enhance team collaboration. This suggests that teams need some support on project management.

Second, 9 respondents identified non-performing team members as a key hindrance for their
collaborative work. They further emphasised that specific mechanisms are needed to deal with such
problems, for instance peer-evaluation within the teams. While peer-evaluations can potentially
improve this problem, we plan to address this problem using industrial practice. Lecturers should
steer peer-reviews, focusing on: (i) setting clear expectations, (ii) ensuring that non-performing
members are held accountable, and (iii) setting internal deadlines for teams.

3.3. Lessons Learned

In delivering SOD with the new structure we learned two key lessons. First, improving the social
aspects of the course enabled us to manage an increased number of students (around 80) from
many different backgrounds. Teams and clusters become increasingly self-managing as members’
experience increases. This leaves the tutor to wander around clusters to steer and guide each
cluster’s work, or evaluating students performance. Second, the new structure allowed us to blend
multiple backgrounds, cultural extractions and experience levels together. The very collaborative
nature of the peer-review clusters allowed students to increase their performance matching that of
others, or to compensate for the shortcomings of students with less experience. We conclude that
the benefits of peer-review clusters far outweighs the invested organisation effort.

67



4. Related Work

Teaching software design has been extensively investigated and discussed in the literature. Many
approaches, like in [9, 20], have mostly focused on teaching technical competencies and skills,
while recognizing the intrinsic creative nature of software design. Brignall and Ramaswamy [5]
study the differences between on-line versus on-campus teaching styles in an analysis and design
course, and discuss the influence of the two teaching styles on social aspects like student coopera-
tion, active learning, communication and teamwork.

Similar to Jarzabek et al. [15], Carrington [8] addresses the problem of team collaboration by
offering the students with mechanisms to freely organize their own work within a team and expe-
rience with responsibilities and accountability. While useful for grading, this approach is general
for any software engineering activity. We rather aim at focusing on the interplay between social
aspects and technical aspects recurring in software design.

In [6] Budgen introduces a deep overview of software design and its implications on the quality
of software intensive systems. Many other works explore both in education and practice the devices
of software design, e.g design patterns in [14], or design notations applied to real-world scenarios,
e.g. [1]. We inherit from such works the challenges of software design. In our work however, we
do not introduce any challenge or device to tackle them, we merely introduce a course structure
that can teach students both challenges and productive approaches to tackle them in practice.

Other works such as [10], explore the cognitive and human challenges that make software de-
sign very difficult and equally uncertain. Our motivation draws from this and similar works. We
argue that software design is cognitively straining and the sum of many agreements (e.g. to satisfy
many stakeholders and their concerns). In this vein, students must learn to confront many possi-
ble reviews, coming from many stakeholders with different backgrounds and technical expertise.
Moreover, to be effective, this learning process must take place in the straining cognitive conditions
of industrial practice, dense with deadlines and restrictions.

However, the only work directly related to ours is [17], where the authors introduce an approach
to teach software design using the scaffolding pedagogical paradigm. Similarly to us, the authors
stress the need for cooperative learning and heavy interaction among students. However, while
they use cooperative learning as a tool to achieve learning objectives, we let cooperative learning
emerge as a result of our approach dense with social connotations. In our approach, students learn
to tackle design problems by understanding those of others. Also, students learn new ways of
improving their designs by looking at innovative ideas from different backgrounds.

5. Conclusions

Software design is a social activity. While lectures in software design have typically focused
on theory and practice alone, a strong social connotation is needed. This paper introduces our
software design course that features social aspects as important as theory and practice. We discuss
observations and lessons learned using our experience in teaching the course as well as students’
evaluations. Our design course efficiently delivers a balance between theory, practice and social
aspects of software design. However, we also learned that social engagement needs to be structured
in a more systematic way. In addition, tasks and work management should be steered by lecturers
explicitly. In the future we plan to improve the usage of peer-review and collaboration mechanisms,
e.g. by using review checklists within peer-review clusters. More study also needs to be invested
in confirming the outlines and lessons learned as part of the work contained in this paper. More
in particular, both quantitative and qualitative studies should be invested in confirming the quality
aspects of our course, e.g. by interviews to students with a statistically relevant perspective.

68



References

[1] T. Baar. Improving software engineering education by modeling real-world implementations. In In
EduSym2012 - 8th Educators’ Symposium @ MODELS 2012: Software Modeling in Education, 2012.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Series in Software Engineer-
ing. Addison Wesley, Reading, MA, USA, 1998.

[3] A. E. Bell. From the front lines: DOA with SOA. Commun. ACM, 51:27–28, Oct. 2008.
[4] E. Bittner and J. M. Leimeister. Why shared understanding matters - engineering a collaboration

process for shared understanding to improve collaboration effectiveness in heterogeneous teams. In
46th Hawaii International Conference on System Sciences (HICSS), Maui, Hawaii (to appear), 2013.
352.

[5] T. Brignall and S. Ramaswamy. Impact of different teaching paradigms on student learning in tech-
nically intensive courses: Observations from a software analysis and design course. volume 0, page
100. IEEE Computer Society, 2003.

[6] D. Budgen. Software design. International computer science series. Addison-Wesley, 1994.
[7] J. Cameron and W. D. Pierce. Reinforcement, reward, and intrinsic motivation: A meta-analysis.

Review of Educational Research, 64(3):363–423, Fall 1994.
[8] D. Carrington. Teaching software design and testing. In Frontiers in Education Conference, 1998.

FIE ’98. 28th Annual, volume 2, pages 547 –550 vol.2, nov. 1998.
[9] A. Cowling. Stages in teaching software design. In Software Engineering Education Training, 2007.

CSEET ’07. 20th Conference on, pages 141 –148, july 2007.
[10] F. Dtienne. Software design cognitive aspects. Practitioner series. Springer, 2001.
[11] Q. Gu and P. Lago. Exploring service-oriented system engineering challenges: a systematic literature

review. Service Oriented Computing and Applications, 3(3):171–188, 2009.
[12] Q. Gu, P. Lago, and H. van Vliet. A template for SOA design decision making in an educational setting.

In Software Engineering and Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on,
pages 175–182. IEEE, 2010.

[13] S. M. Hord and W. A. Sommers. Leading professional learning communities : voices from research
and practice / Shirley Hord, William A. Sommers. Hawker Brownlow Education, Moorabbin, Vic. :,
2009.

[14] H. Huang and D. Yang. Teaching design patterns: A modified pbl approach. In Young Computer
Scientists, 2008. ICYCS 2008. The 9th International Conference for, pages 2422 –2426, nov. 2008.

[15] S. Jarzabek and P.-K. Eng. Teaching an advanced design, team-oriented software project course. In
Software Engineering Education &Training, 18th Conference on, pages 223 –230, april 2005.

[16] P. Lago and M. Razavian. A pragmatic approach for analysis and design of service inventories. In
Service-Oriented Computing - ICSOC 2011 Workshops, volume 7221 of Lecture Notes in Computer
Science, pages 44–53. Springer Berlin Heidelberg, 2012.

[17] S. P. Linder, D. Abbott, and M. J. Fromberger. An instructional scaffolding approach to teaching
software design. In In CCSC06. Consortium for Computing Sciences in Colleges, 2006.

[18] N. Medvidovic. Software architecture challenges and opportunities for the 21st century: dynamism,
mobility, autonomy, services, grids, and clouds. In S. K. Aggarwal, T. V. Prabhakar, V. Varma, and
S. Padmanabhuni, editors, ISEC, page 1. ACM, 2012.

[19] M. Mrtensson. The role of the software architect: Caring and communicating. MSDN, page 3, 2008.
[20] J. Naveda. Teaching architectural design in an undergraduate software engineering curriculum. In

Frontiers in Education Conference, 1999. FIE ’99. 29th Annual, volume 2, nov. 1999.
[21] D. L. Parnas and D. M. Weiss. Active design reviews: principles and practices. In Proceedings of the

8th international conference on Software engineering, ICSE ’85, pages 132–136, Los Alamitos, CA,
USA, 1985. IEEE Computer Society Press.

[22] D. A. Tamburri, P. Lago, and H. van Vliet. Organizational social structures for software engineering.
pages 1–35. ACM Digital Library, ACM Computing Surveys, 2012.

[23] H. van Vliet. Software engineering - principles and practice. Wiley, 1993.

69


