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A B S T R A C T

Falls have major consequences both at societal (health-care and economy) and individual (physical and

psychological) levels. Questionnaires to assess fall risk are commonly used in the clinic, but their

predictive value is limited. Objective methods, suitable for clinical application, are hence needed to

obtain a quantitative assessment of individual fall risk. Falls in older adults often occur during walking

and trunk position is known to play a critical role in balance control. Therefore, analysis of trunk

kinematics during gait could present a viable approach to the development of such methods. In this

study, nonlinear measures such as harmonic ratio (HR), index of harmonicity (IH), multiscale entropy

(MSE) and recurrence quantification analysis (RQA) of trunk accelerations were calculated. These

measures are not dependent on step detection, a potentially critical source of error. The aim of the

present study was to investigate the association between the aforementioned measures and fall history

in a large sample of subjects (42 fallers and 89 non-fallers) aged 50 or older. Univariate associations with

fall history were found for MSE and RQA parameters in the AP direction; the best classification results

were obtained for MSE with scale factor t = 2 and for maximum length of diagonals in RQA (72.5% and

71% correct classifications, respectively). MSE and RQA were found to be positively associated with fall

history and could hence represent useful tools in the identification of subjects for fall prevention

programs.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Falls in the elderly have adverse physical and psychological
consequences for the individuals, as well as substantial con-
sequences for health-care and economy [1]. In older adults, falls
often occur during walking [2]. The analysis of gait stability may
allow identification of subjects at risk. However, the definition of
gait stability is still not entirely clear, and many direct and indirect
measures aiming to quantify this feature have been suggested in
the literature [3]. Measures of trunk accelerations are crucial in the
assessment of gait stability [4–6], as the trunk segment is known to
play a critical role in regulating gait-related oscillations in all
directions [7].

Many gait stability measures proposed in the literature are
based on the identification of gait cycles [2,8–11]. Several methods
for step detection have been presented in the literature [12–14],
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based on different techniques and sensor positioning. Errors in step
detection can, however, critically affect stability outcomes, making
step detection a possible intrinsic source of error. Examples are
present in the literature of inability in the detection of gait events
due to irregular acceleration patterns [15] and incorrect identifi-
cation of acceleration peaks [16]. Gait characteristics or anomalies
typical of certain pathologies (e.g. shuffling, crouched, toe gait) can
result in atypical acceleration signals, determining unreliable step-
detection. Assuming that such deviations are more common
among people with a high fall risk, such errors may cause bias
when calculating gait stability measures. Other temporal parame-
ter detection systems, such as foot switches or pressure sensors
attached to the sole, involve several problems [14] (e.g. difficulties
in sensor attachment when assessing subjects with abnormal gait).
To overcome this possible source of error, nonlinear analysis
techniques may offer a powerful tool. In particular, some of these
stability related measures do not depend on step detection. In this
study the Harmonic ratio (HR) [17,18], the Index of harmonicity
(IH) [19], Multiscale entropy (MSE) [20], and Recurrence quantifi-
cation analysis (RQA) [21] of trunk accelerations during gait were
analysed [17–22]. The relationship between these measures and
fall risk has not been analysed and reported before.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.gaitpost.2013.05.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.gaitpost.2013.05.002&domain=pdf
http://dx.doi.org/10.1016/j.gaitpost.2013.05.002
mailto:f.riva@unibo.it
http://www.sciencedirect.com/science/journal/09666362
http://dx.doi.org/10.1016/j.gaitpost.2013.05.002


F. Riva et al. / Gait & Posture 38 (2013) 170–174 171
HR, derived from trunk acceleration signals and based on
amplitudes in frequency spectra, provides information on how
smoothly subjects control their trunk during walking, giving an
indication of whole body balance and coordination [17,18].

Similarly to HR, IH assesses the contribution of the oscillating
components to the observed coordination patterns by means of
spectral analysis [19], quantifying the contribution of the stride
frequency to the signal power relative to higher harmonics.

MSE quantifies the complexity of a time series at multiple
spatio-temporal scales [20], since biological systems are likely to
present structures at different scales.

RQA is a nonlinear technique that has been applied recently to
biological time series, including gait data [22]. Based on local
recurrence of data points in the reconstructed phase space, it
provides a characterization of a variety of features of the time
series, such as the quantification of deterministic structure and
non-stationariness [21].

The aim of the present study was to investigate the association
between fall history and the aforementioned measures (HR, IH,
MSE and RQA) during treadmill walking in a large sample of older
subjects.

2. Materials and methods

2.1. Participants

A total of 131 subjects (62.4 � 6.1 years; 171 � 8 cm; 74 � 10 kg)
participated in the study, after giving informed written consent. The
data have been described earlier by Toebes et al. [23] in a paper on
local dynamic stability and stride variability of gait. Three subjects
from the original data set were excluded from the analysis due to
technical problems during data acquisition.

2.2. Protocol

Participants walked on a treadmill at 4 km/h for 12–17 min,
wearing an inertial sensor (Dynaport Hybrid, McRoberts B.V., The
Hague, The Netherlands) located on the trunk, below the shoulder
blades. Sensing range was �2g (g = 9.81 m/s2) and sample frequency
was 100 Hz. Signals were not filtered. Data of 3 min of walking (after
5–10 min of acclimatization) were acquired. Fall history was obtained
by self-report; a subject was classified as a faller if at least one fall had
occurred in the 12 months prior to the measurements. 42 subjects
(32.1%) experienced at least one fall in the year previous to the
experiment. To estimate the habitual physical activity in daily life, the
Longitudinal Aging Study Amsterdam Physical Activity Questionnaire
(LAPAQ) was used. LAPAQ data were used to calculate the total
physical activity score [24]. Subjects were classified as experienced
treadmill walkers if they had walked on a treadmill at least twice
previously.

2.3. Data analysis

Trunk accelerations in the anterior–posterior (AP) and medio-
lateral (ML) directions were analysed. Vertical acceleration signals
showed clipping artifacts (on average 0.34% of the signal) in 52% of
the subjects, and were therefore not considered in the analysis.

The HR was calculated by decomposing the AP and ML
acceleration signals into harmonics using a discrete Fourier
transform [18]; the summed amplitudes of the first 10 even
harmonics were divided by the summed amplitudes of the first 10
odd harmonics for the AP accelerations, and vice versa for the ML
accelerations. This difference is due to the fact that whereas the AP
accelerations have two periods every stride, showing a dominance
of the second harmonic, representing step frequency and subse-
quent even harmonics, ML accelerations have only one period per
stride, reflecting a dominance of the first (and subsequent odd)
harmonics [18]. In order to avoid errors that might be introduced
by step detection, HR was not calculated stride by stride, but
decomposing the whole signal into its harmonics. A higher HR is an
indication of increased smoothness of gait, which can be
interpreted as increased stability.

IH was calculated according to Lamoth et al. [19]. The power
spectra of the AP and ML acceleration signals were estimated by
means of discrete Fourier transform. The peak power at the first six
harmonics was estimated and IH was defined as:

IH ¼ P0P5
i¼0 Pi

(1)

where P0 is the power spectral density of the first harmonic and Pi

the cumulative sum of power spectral density of the fundamental
frequency and the first five super-harmonics. Values close to 1
indicate high harmonicity. Power spectral density of each peak was
averaged over a range of �0.1/+0.1 Hz around the peak frequency
value.

MSE was implemented constructing consecutively more
coarse-grained time series; this procedure implies averaging
increasing numbers of data points in non-overlapping windows
of length t. Sample entropy (SE) [25] was then calculated for each
coarse-grained time series, in order to obtain entropy measures at
different scales. SE at each time scale t is expressed as the negative
of the natural logarithm of the conditional probability C(r) that two
sequences that are close within a tolerance rd for m consecutive
points remain close when one more consecutive point is included
[26]:

SE ¼ �ln
Cmþ1ðrÞ
CmðrÞ

(2)

r is a fixed radius, m is the number of consecutive data points and d
is the standard deviation of the original series. MSE was calculated
for values of t ranging from 1 to 6, m = 2 and r = 0.2, as suggested by
Pincus [27] and later applied by Richman and Moorman to
biological time series [25].

The first implementation step of RQA is the reconstruction of
the phase space by means of delay embedding [28]. In this study,
an embedding dimension of 5 and a delay of 10 samples were
used, based on previous studies [29–31]. A distance matrix based
on Euclidean distances between normalized embedded vectors
was then constructed; the recurrence plot was obtained by
selecting a radius of 40% of the max distance, and all cells with
values below this threshold were identified as recurrent points. A
radius of 40% was chosen to make sure that recurrence rate (RR)
responded smoothly and was not too high, and that determinism
(DET) did not saturate at the floor of 0 or the ceiling of 100, as
approaching these limits would tend to suppress variance in the
measure [21].

A number of measures can be obtained by RQA; in this study,
RR, DET, averaged diagonal line length (avg_length) and maximum
diagonal line length (max_length) were calculated (Eqs. (3)–(6)),
reflecting different properties of the system.

RR ¼ 1

N2

XN

i; j¼1

Ri; j (3)

where N is the number of points on the phase space trajectory;

DET ¼
PN

l¼4 lPl

RR
(4)
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where l is the length of diagonal lines, represented through a
histogram (Pl);

avg length ¼
PN

l¼4 lPðlÞ
PN

l¼4 PðlÞ
(5)

max length ¼ ðfli; i ¼ 1; . . . ; NlgÞ (6)

where Nl is the number of diagonal lines in the recurrence plot.
SE was calculated using MATLAB (Mathworks, Natick, MA)

software available on Physionet [32]. All other estimates were
calculated through custom self-made MATLAB (Mathworks,
Natick, MA) scripts.

2.4. Statistical analysis

To assess differences in demographics, treadmill experience
and physical activity between fallers and non-fallers, Mann–
Whitney U-test, independent samples t-test and chi-square test
were used. SPSS Statistics 20.0 (IBM, Armonk, NY, USA) was used
for all statistical tests. Statistical significance for all statistical tests
was declared if p < 0.05.

A factor analysis was performed to assess to what extent the
resulting 24 different measures (HR, IH, MSE and RQA, both in AP
and ML directions) reflect different properties of the dynamics. To
correct for non-normality, all measures were log transformed and
then used as input for factor analysis. The scree plot was used to
determine the number of extracted factors, and VariMax rotation
was used to optimize the loading of variables onto factors.

Log transformed measures were then used as inputs for
univariate logistic regression models, to test if measures were
able to classify subjects as fallers or non-fallers, considering self-
report as the gold standard. The resulting regression models were
then checked for confounders (demographic variables, treadmill
experience and physical activity score). In addition, a multivariate,
forward step-wise logistic regression model was constructed using
the most representative variables of each factor as predictors, i.e.
the variable with the highest factor loading for each factor.
Potential confounders were added to the models one by one and
retained when they changed the coefficients by more than 10%.
Table 1
Loading of log transformed variables after factor analysis. Absolute loadings > 0.4 are s

Stability measure Factor 1 Factor 2 Factor 3 

HR ML 

HR AP �0.498 

MSE ML (t = 1) 0.938

MSE ML (t = 2) 0.946

MSE ML (t = 3) 0.970

MSE ML (t = 4) 0.961

MSE ML (t = 5) 0.899

MSE ML (t = 6) 0.823

MSE AP (t = 1) 0.913

MSE AP (t = 2) 0.960

MSE AP (t = 3) 0.968

MSE AP (t = 4) 0.960

MSE AP (t = 5) 0.947

MSE AP (t = 6) 0.919

IH ML 

IH AP 

RQA ML RR 

RQA ML DET 0.716

RQA ML avg_length 0.848

RQA ML max_length 0.764

RQA AP RR �0.837

RQA AP DET �0.721

RQA AP avg_length �0.725 0.448

RQA AP max_length �0.701 0.437
3. Results

Factor analysis on the 24 log transformed measures led to 7
factors (Table 1), accounting for 89% of the variance (all
eigenvalues > 0.8). Absolute factor loading values were >0.5, with
the exception of HR in AP direction, which had cross loading on 3
factors and was considered non-specific to a factor. RQA
parameters in AP direction showed quite high (absolute
value > 0.4) loading on two factors. Parameters of MSE, IH, RQA
in the ML direction and HR in the ML direction showed loadings on
different factors, reflecting the description of different system
dynamics. Parameters for the trunk kinematics in the ML and AP
were largely independent as reflected in the factor loadings. In
summary, Factor 1 mainly reflected AP entropy and recurrence
characteristics, Factor 2 reflected ML entropy, Factor 3 reflected ML
recurrence characteristics, Factor 4 reflected ML harmonicity,
Factor 5 reflected AP HR, Factor 6 reflected AP harmonicity, and
Factor 7 reflected ML HR.

Univariate associations with fall history were found for MSE
and RQA measures in the AP direction. The best classification
results were obtained for MSE with scale factor t = 2 (p < 0.001)
and for maximum length of diagonals in RQA (p = 0.002), which
correctly classified 72.5% (sensitivity 21.4%, specificity 96.6%) and
71% (sensitivity 16.7%, specificity 96.6%) of cases, respectively. All
MSE measures in AP direction showed correlations > 70%. Other
measures showed no significant association with fall history
(Table 2). The multivariate model retained only AP direction MSE
with t = 3, and this model yielded slightly worse classification than
the model using MSE with t = 2. All models were checked for
possible confounders (demographics, physical activity score,
treadmill experience); none of the variables changed the
coefficients by more than 10%.

No significant differences were found between fallers and non-
fallers regarding demographic variables, physical activity score
and treadmill experience.

4. Discussion

Currently, fall risk is mainly inferred from fall incidence, but this
method obviously provides information only after the event and
has proven to be unreliable, especially when dealing with subjects
hown.

Factor 4 Factor 5 Factor 6 Factor 7

0.951

0.790

0.860

0.901

0.884



Table 2
Result of the univariate logistic regression models. Regression coefficient (b), p-

value (p) and 95% confidence interval of b (95% CIb) are shown.

Stability measure b p 95% CIb

HR ML 3.135 0.113 �0.74 to 7.01

HR AP �2.016 0.183 �4.98 to 0.95

MSE ML (t = 1) 1.579 0.689 �6.15 to 9.31

MSE ML (t = 2) 0.208 0.951 �6.44 to 6.86

MSE ML (t = 3) 1.119 0.75 �5.78 to 8.02

MSE ML (t = 4) 1.915 0.63 �5.87 to 9.70

MSE ML (t = 5) 3.861 0.376 �4.68 to 12.41

MSE ML (t = 6) 4.525 0.312 �4.25 to 13.30

MSE AP (t = 1) 8.994 0.002 3.34 to 14.65

MSE AP (t = 2) 9.138 0.001 3.68 to 14.60

MSE AP (t = 3) 9.191 0.001 3.82 to 14.56

MSE AP (t = 4) 8.594 0.001 3.39 to 13.80

MSE AP (t = 5) 7.750 0.002 2.80 to 12.70

MSE AP (t = 6) 7.010 0.004 2.26 to 11.76

IH ML �3.102 0.105 �6.85 to 0.65

IH AP �4.072 0.128 �9.32 to 1.17

RQA ML RR �2.688 0.14 �6.26 to 0.89

RQA ML DET �0.470 0.843 �5.11 to 4.17

RQA ML avg_length 0.106 0.959 �3.94 to 4.16

RQA ML max_length �0.001 0.999 �0.94 to 0.94

RQA AP RR �8.510 0.999 �13.12 to �3.61

RQA AP DET �4.197 0.001 �7.34 to �1.05

RQA AP avg_length �6.485 0.009 �11.04 to �1.94

RQA AP max_length �2.410 0.005 �3.90 to �0.92
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with memory impairments [33]. Alternative fall risk measures are
therefore required. Quantitative nonlinear dynamic measures
applied to acceleration signals can represent a viable alternative.
Accelerometry systems are useful for clinical purposes, as they are
small, light and portable. Some of these measures (such as HR, IH,
MSE and RQA) do not require step detection, excluding a possible
source of error. This study aimed to explore the relationship of
these measures with fall risk.

One previous study [23] assessed the association between
linear and nonlinear measures (namely gait variability and
Lyapunov exponents), concluding that these parameters were,
individually and combined, positively associated with fall history.
Another study [29] investigated the association between Lyapunov
exponents and tendency to fall in older adults, but on a
significantly smaller sample. The nonlinear measures implemen-
ted in this study have already been applied to gait parameters [18–
20,22], but their relationship with fall history has, to the authors’
knowledge, not been previously investigated.

The factor analysis highlighted quite a sharp separation,
supporting the hypothesis that the techniques describe different
aspects of the system dynamics; each one of these aspects can
reflect different aspects of locomotion features, and could
contribute information related to fall risk.

Age effects have previously been shown for HR in AP direction
[34]. In our study, however HR and IH did not show any correlation
with fall history. Harmonicity of oscillations and rhythmicity of the
accelerations of the trunk seem not to provide useful information
for fall risk assessment.

Costa et al. found that the spontaneous output of the human
locomotor system during usual walking is more complex than
walking under slow, fast or metronome paced protocols [20]. The
association between MSE and fall history found in the present
study seems to suggest that complexity can also be related to fall
risk. Modifications in complexity could reflect alterations in
locomotor strategy that affect stability. In particular, MSE with a
scale factor t = 2 led to the best classification results, suggesting
that frequencies in the band of 17–25 Hz contribute the most; in
fact, operating two coarse graining procedures on gait acceleration
signal would filter frequencies higher than 25 Hz, while operating
three would filter frequencies higher than 17 Hz.
The present findings seem to suggest higher complexity of gait
kinematics in subjects with a fall history, while previous studies
have associated higher entropy with better health [5,35]. This is
perhaps not surprising, since nonlinear time series analysis often
showed contradictory results even when applied in the same
context, as it has been demonstrated for Floquet multipliers [36]. In
addition, non-monotonic relationships could exist. Moreover,
results of nonlinear time series analysis of gait accelerations
strongly depend on sensor placement [18].

A previous study [22] used RQA to differentiate healthy and
hypovestibular subjects; our findings extend this result, showing
that RQA can discriminate between healthy and fall-prone
subjects. In the present study, RQA measures, and in particular
the maximum length of diagonal structures in recurrence plots,
were found to correlate with fall history. Max_length is strictly
related to the mechanical concept of stability in terms of Lyapunov
exponents; in fact, its inverse (called divergence) can roughly
reflect the largest Lyapunov exponent [21,37,38]. These results are
in line with the existing literature showing an association between
short term Lyapunov exponents and fall history [23]. Whereas
these two measures express theoretically similar concepts, the
calculation process is different; in particular, the RQA algorithm
does not depend on step detection.

For all gait variables, specificity of the associations with fall
history was low (maximally 21.4%). This may imply that the
present methods are not yet suitable to identify individuals at risk
of falling and thus the target group for interventions. Combinations
with other variables in a multivariate prediction model, e.g.
variables that reflect physical capacity, may be necessary. On the
other hand, fall history may comprise a substantial number of
incidental falls in subjects, exposed to high-risk events, who may
not necessarily have an increased risk due to intrinsic factors.

A possible limitation of the present study is the use of a
treadmill; conclusions cannot be directly transferred to over-
ground walking, due to the differences between the two motor
tasks [39,40]. No procedure was applied to precisely standardize
the acceleration signals direction, in terms of sensor placement;
however, due to the intrinsic nature of the task and the
instrumentation, straight walking was assured. Another limitation
is the use of self-report as a gold standard for the classification;
despite the disadvantages, this method represents the most
established technique for fall risk assessment [3], and hence this
choice is unavoidable.

Due to the lack of a standard implementation for the measures
used in this work, there is no consensus on how to deal with
methodological aspects such as sample frequency of the signal,
instrumentation noise and trial length. For this reason, compari-
son of results from different implementations of the same
measures is not straightforward. With respect to the length of
the trials, these measures, particularly RQA, have often been
applied to short trials (a few steps). In the opinion of the authors,
the analysis of longer trials is preferable for several reasons:
effects of long range dynamics, acclimatization time and the
probability that occasional gait deviations show up during the
acquisition. This need however leads to a necessary trade-off
between trial length and computational time, which can increase
to several hours, especially for RQA.

Transfer from our results to less controlled acceleration data
obtained during daily activities, in which step detection is a major
problem, requires further exploration.

Further research should address the physiological correlates of
these measures; whereas the analysis of acceleration time series
provides useful information on gait dynamics and fall risk, the
physiological conditions leading to differences in complexity or
recurrence of locomotion acceleration signals are yet unknown.
The identification of the physiological correlates could lead to the
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development of appropriately targeted therapies or rehabilitation
programmes aiming at fall prevention.
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