
VU Research Portal

Efficient Execution of Top-K SPARQL Queries

Magliacane, S.; Bozzon, A.; Della Valle, E

published in
ISWC 2012
2012

document version
Peer reviewed version

Link to publication in VU Research Portal

citation for published version (APA)
Magliacane, S., Bozzon, A., & Della Valle, E. (2012). Efficient Execution of Top-K SPARQL Queries. In ISWC
2012

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303502502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/5cd7b28f-fb8f-45dc-a28c-9969aebecff7


This is a postprint of

Efficient Execution of Top-K SPARQL Queries

Magliacane, S., Bozzon, A., Della Valle, E

In: (Ed.), ISWC 2012.

Published version: no link available

Link VU-DARE: http://hdl.handle.net/1871/39624

(Article begins on next page)

http://hdl.handle.net/1871/39624


Efficient Execution of Top-K SPARQL Queries

Sara Magliacane1,2, Alessandro Bozzon1, and Emanuele Della Valle1

1 Politecnico of Milano, P.za L. Da Vinci, 32. I-20133 Milano - Italy
2 VU University Amsterdam, De Boelelaan 1081a, The Netherlands

Abstract. Top-k queries, i.e. queries returning the top k results ordered
by a user-defined scoring function, are an important category of queries.
Order is an important property of data that can be exploited to speed up
query processing. State-of-the-art SPARQL engines underuse order, and
top-k queries are mostly managed with a materialize-then-sort processing
scheme that computes all the matching solutions (e.g. thousands) even if
only a limited number k (e.g. ten) are requested. The SPARQL-RANK
algebra is an extended SPARQL algebra that treats order as a first class
citizen, enabling efficient split-and-interleave processing schemes that can
be adopted to improve the performance of top-k SPARQL queries. In this
paper we propose an incremental execution model for SPARQL-RANK
queries, we compare the performance of alternative physical operators,
and we propose a rank-aware join algorithm optimized for native RDF
stores. Experiments conducted with an open source implementation of a
SPARQL-RANK query engine based on ARQ show that the evaluation
of top-k queries can be sped up by orders of magnitude.

1 Introduction

As the adoption of SPARQL as a query language for Web data increases, practi-
tioners are showing a growing interest in top-k queries [5,6], i.e. queries returning
the top k results ordered by a specified scoring function. Simple top-k queries
can be expressed in SPARQL 1.0 by including the ORDER BY and LIMIT
clauses, which impose an order on the result set and limit the number of results.
SPARQL 1.1 additionally enables the specification of complex scoring functions
through the use of projection expressions that can define a variable to be used
in the ORDER BY clause. Listing 1.1 provides an example SPARQL 1.1 top-k
query that will be used as a running example.

1 SELECT ?product ?offer (g1(?avgRat1) + g2(?avgRat2) + g3(?price1) AS ?score)
2 WHERE { ?product hasAvgRating1 ?avgRat1 .
3 ?product hasAvgRating2 ?avgRat2 .
4 ?product hasName ?name .
5 ?product hasOffers ?offer .
6 ?offer hasPrice ?price1 }
7 ORDER BY DESC(?score) LIMIT 10

Listing 1.1: A top-k SPARQL query that retrieves the best ten offers of products
ordered by a function of user ratings and offer price; gi are normalization functions
and the bold letters represent the abbreviations used in the following examples.



2

In most of the algebraic representation of SPARQL, the algebraic operators
that evaluate the ORDER BY and LIMIT clauses are result modifiers, i.e. oper-
ators that alter the sequence of solution mappings after the full evaluation of the
graph pattern in the WHERE clause. For instance, the query in Listing 1.1 is ex-
ecuted according to the plan in Fig. 1.a: solutions matching the WHERE clause
are drawn from the storage until the whole result set is materialized; then, the
project expression ?score is evaluated by the EXTEND operator on each solution
and used to order the result set; finally the top 10 results are returned.

This materialize-then-sort scheme can hinder the performance of SPARQL
top-k queries, as a SPARQL engine might process thousands of matching so-
lutions, compute the score for each of them and order the result set, even if
only a limited number (e.g. ten) were requested. Moreover, the ranking crite-
ria can be expensive to compute and, therefore, should be evaluated only when
needed and on the minimum possible number of mappings. It has been shown
[9] that query plans where the scoring function is evaluated in an incremental,
non-blocking manner, access a lower number of mappings, thus yielding better
performance. SPARQL-RANK [1] is a rank-aware algebra for SPARQL that has
been designed to address such a need, as it enables the definition of query plans
as shown in Fig. 1.b, where the evaluation of the scoring function is split and
delegated to rank-aware operators (the ranking operator ρ and the rank-join 1 )
that are interleaved with other operators and incrementally order the mappings
extracted from the data store.

?pr, ?of, ?score

[0,10]SLICE

?pr hasA1 ?a1. 
?pr hasA2 ?a2 . 
?pr hasN ?n . 
?pr hasO ?of .
?of hasP ?p1.

[?score]
ORDER

[?score =g1(?a1)+g2(?a2)+g3(?p1)]
EXTEND

(a)

?pr = ?pr

?pr, ?of, ?score

[0,10]SLICE
Join

g3(?p1) g1(?a1)
?pr hasO ?of .
?of hasP ?p1 . ?pr hasA1 ?a1 . 

?pr = ?pr
RankJoin

?pr = ?pr
?pr hasN ?n .

RankJoin

g2(?a2)

?pr hasA2 ?a2 . 

(b)

Fig. 1: The (a) standard and (b) SPARQL-RANK algebraic query plan for the
top-k SPARQL query in Listing 1.1.

Contribution. In this paper, we propose an incremental execution model
for top-k queries based on the SPARQL-RANK algebra. We show how existing
work on rank-aware physical operators can be adapted to enable the incremental
execution of top-k SPARQL queries over RDF data stores. The focus of our work
is on top-k SPARQL query evaluation at the query engine level, thus abstracting
from the underlying data storage layer. Nonetheless, we show how the availabil-
ity of dedicated storage data structures for sorted (retrieving mappings sorted
by their score) or random access (retrieving mappings matching a join attribute
value) can speed-up the execution of top-k queries. While random access is avail-
able in both in RDBMS and native RDF storage systems (although with better
performance in the latter), sorted access is typically unavailable in RDF stores.
However, we show how the presence of sorted access can boost the performance
of top-k SPARQL queries, and we elaborate on strategies to obtain it. Based on



3

the results of a comparative analysis of state-of-the-art physical operators, we
propose a rank-aware join algorithm (namely RSEQ) optimized for native RDF
stores. We also describe our implementation experience based on ARQ 2.8.93

(namely ARQ-RANK). We provide experimental evidence that the incremental
execution model described in the paper speeds up the execution of top-k queries
in ARQ-RANK by orders of magnitude w.r.t. the original ARQ implementation.

Organization of the paper. In Section 2, we discuss the related work. Sec-
tion 3 reviews the SPARQL-RANK algebra proposed in [1]. Section 4 introduces
a set of incremental rank-aware physical operators, proposes a rank-join algo-
rithm optimized for native RDF stores, discusses sorted access in RDF stores,
and presents three rank-aware optimization techniques. Section 5 focuses on the
evaluation based on an extended version of BSBM [3] and reports on the exper-
iments with ARQ-RANK. Section 6 presents conclusions and future work.

2 Related Work

SPARQL query optimization is a consolidated field of research. Existing ap-
proaches focus on algebraic [11,13] or selectivity-based optimizations [14]. De-
spite an increasing need from practitioners [5,6], few works address top-k query
optimization in SPARQL. In state-of-the-art query engines, a basic top-k op-
timization was introduced in ARQ 2.8.9 [5], but the ORDER BY and LIMIT
clauses are still evaluated after the completion of the other operations and on
the complete set of solutions. OWLIM and Virtuoso4 have some basic ranking
features that precompute the rank of most popular nodes in the RDF graph
based on the graph link density. These ranks are used to order query results by
popularity, not based on a user-specified scoring function. Moreover, the query
execution is not incremental, even if Virtuoso uses an anytime algorithm.

Our work builds on the results of several well-established techniques for the
efficient evaluation of top-k queries in relational databases such as [9,7,8,18,15]
where efficient rank-aware operators are investigated, and [4] where a rank-aware
relational algebra and the RankSQL DBMS are described. In particular, we con-
sidered the algorithms described in [7,8], while building on the discussions about
data access types described in [15]. The application of such results to SPARQL
is not straightforward, as SPARQL and relational algebra have equivalent ex-
pressive power, while just a subset of relational optimizations can be ported to
SPARQL [13]. Moreover, relational rank-aware operators require dedicated data
structures for sorted access, while they often do not assume to have data struc-
tures for random access. In contrast, sorted access is usually not available in
native triplestores (as it is rare to have application-specific indexes), while ran-
dom access is common, as required for the efficient evaluation of schema-free data
such as RDF. In a previous work [1], we presented the SPARQL-RANK algebra,
and applied it to the execution of top-k SPARQL queries on top of virtual RDF

3 Among many alternatives, we chose Jena ARQ, because of its neat design and the
fact that it recently tackled the problem of top-k optimization [5].

4 OWLIM: http://bit.ly/N9ZRG3 Virtuoso: http://bit.ly/SfRWKm



4

stores through query rewriting over a rank-aware RDBMS. In this paper, we
discuss and evaluate the execution of top-k SPARQL queries also in native RDF
stores, offering an extensive discussion on rank-aware operators, optimization
techniques, and their application to different data access configurations.

Several works extend the standard SPARQL algebra to allow the definition
of ranking predicates [10,20]. AnQL [17] is an extension of the SPARQL lan-
guage and algebra able to address a wide variety of queries (including top-k
ones) over annotated RDF graphs; our approach, on the other hand, requires no
annotations, and can be applied to any state-of-the-art SPARQL engine.

Straccia [19] describes an ontology mediated top-k information retrieval sys-
tem over relational databases, where user queries are rewritten into a set of
conjunctive queries, which are translated in SQL queries and executed on a
rank-aware RDBMS [4]; the obtained results are merged into the final top-k
answers. Another rank-join algorithm, the Horizon based Ranked Join, is intro-
duced [21] and aims at optimizing twig queries on weighted data graphs. In this
case, results are ranked based on the underlying cost model, not based on an
ad-hoc scoring function as in our work. The SemRank system [12] uses a rank-
join algorithm to calculate the top-k most relevant paths from all the paths that
connect two resources specified in the query. However, the application context
of this algorithm is different from the one we present, because it targets paths
and ranks them by relevance using IR metrics, and the focus is not on query
performance optimization.

Wagner et al. [2] introduce PBRJ, a top-k join algorithm for federated queries
over Linked Data. The proposed processing model is push-based, i.e. operators
push mappings to subsequent operators, and, given a set or pre-defined rank-
ing criteria, assumes a-priori knowledge of the upper-bounds and lower-bounds
for the scores contained in each data source. By leveraging these bounds it is
possible to decide at execution-time which data source to query. The complete
content of the involved sources is materialized locally and, if sorted access is
not available, it is fully ordered. Due to domain-specific assumptions, PBRJ is
able to define a better estimation of unseen join results than standard rank-join
algorithms. This work is complementary to our approach, as our work bases on
the traditional pull-based processing model, in which operators pull mappings
from their input operators; we consider RDF data stored locally either in native
or virtual RDF stores, and we make no assumption (e.g., upper- or lower-bound
for scores and data access types) on the evaluated data sources. Data can be
queried by user-defined ranking criteria, and efficient data access methods like
random access (an important optimization factor in rank-join algorithms) can
be exploited to further improve the query performance. We are currently in-
vestigating a hybrid processing model to address the federated query scenario,
combining the strengths of both push and pull-based processing models.

3 Background

To support the following discussion, we review the existing formalization of
SPARQL in [11] and our SPARQL-RANK [1] algebra.



5

3.1 Basic SPARQL Definitions

In SPARQL, the WHERE clause contains a graph pattern that can be con-
structed using the OPTIONAL, UNION, FILTER and JOIN operators. Given
three sets I, L and V (IRIs, literals and variables), a tuple from (I ∪ L ∪ V ) ×
(I ∪ V )× (I ∪ L ∪ V ) is a triple pattern. A Basic Graph Pattern (BGP) is a
set of triple patterns connected by the JOIN operator.

The semantics of SPARQL is based on the notion of mapping, defined in
[11] as a partial function µ : V → (I ∪L∪B), where B is the set of blank nodes.
The domain of µ, denoted by dom(µ), is the subset of V where µ is defined. Let
P be a graph pattern, var(P) denotes the set of variables occurring in P. Given
a triple pattern t and a mapping µ such that var(t) ⊆ dom(µ), µ(t) is the triple
obtained by replacing the variables in t according to µ.

Using these definitions, it is possible [11][13] to define the semantics of SPARQL
queries with an algebra having a set of operators – Selection (σ), Join (1), Union
(∪), Difference(\) and Left Join ( )– operating on sets of mappings denoted
with Ω. The evaluation of a SPARQL query is based on its translation into an
algebraic tree composed of those algebraic operators.

3.2 The SPARQL-RANK Algebra

SPARQL-RANK is a rank-aware framework for top-k queries in SPARQL, based
on the SPARQL-RANK algebra, an extension of the SPARQL algebra that
supports ranking as a first-class construct. The central concept of the SPARQL-
RANK algebra is the ranked set of mappings, an extension of the standard
SPARQL definition of a set of mappings that embeds the notion of ranking.
SPARQL-RANK supports top-k queries in SPARQL with an ORDER BY

clause that can be formulated as a scoring function combining several ranking
criteria. Given a graph pattern P , a ranking criterion b(?x1, . . . , ?xm) is a
function defined over a set of m variables ?xj ∈ var(P ). The evaluation of a
ranking criterion on a mapping µ, indicated by b[µ], is the substitution of all of
the variables ?xj with the corresponding values from the mapping. A criterion b
can be the result of the evaluation of any built-in function of query variables that
ensures that b[µ] is a numerical value. We define as maxb the application-specific
maximal possible value for the ranking criterion b.

A scoring function on P is an expression F(b1, . . . , bn) defined over the set
B of n ranking criteria. The evaluation of a scoring function F on a mapping
µ, indicated by F [µ], is the value of the function when all of the bi[µ], where
∀i = 1, . . . , n, are evaluated. As typical in ranking queries, the scoring function
F is assumed to be monotonic, i.e., a F for which holds F(b1[µ1], . . . , bn[µ1]) ≥
F(b1[µ2], . . . , bn[µ2]) when ∀i : bi[µ1] ≥ bi[µ2].

In order to evaluate the scoring function, all the variables in var(P ) that
contribute in the evaluation of F must be bound. Since OPTIONAL and UNION
clauses can introduce unbound variables, we assume all the variables in var(P )
to be certain variables, as defined in [13]5, i.e. variables that are certainly bound

5 This can be ensured by an efficiently verifiable syntactical condition.



6

for every mapping produced by P. An extension of SPARQL-RANK towards the
relaxation of the certain variables constraint is part of the future work. Listing
1.1 provides an example of the scoring function F calculated over the ranking
criteria g1(?avgRat1), g2(?avgRat2), and g3(?price1).

A key property of SPARQL-RANK is the ability to retrieve the first k results
of a top-k query before scanning the complete set of mappings resulting from
the evaluation of the graph pattern. To enable such a property, the mappings
progressively produced by each operator should flow in an order consistent with
the final order, i.e., the order imposed by F . When the evaluation of a SPARQL
top-k query starts on the graph pattern the resulting mappings are unordered.
As soon as a subset B ⊆ B, s.t. B = {b1, . . . , bj} (with j ≤ |B|) of the ranking
criteria can be computed (i.e., when var(bk) ⊆ dom(µ) ∀k = 1, . . . , j), an order
can be imposed to a set of mappings Ω by evaluating for each µ ∈ Ω the upper-
bound of F [µ] as:

FB(b1, . . . , bn)[µ] = F
(
bi = bi[µ] if bi ∈ B
bi = maxbi otherwise

∀i
)

Note that if B = B, then FB[µ] = FB [µ]. Therefore, it is clear that for any
subset of ranking criteria B, the value of FB[µ] is the upper-bound of the score
that µ can obtain, when FB [µ] is completely evaluated, by assuming that all the
ranking criteria still to evaluate will return their maximal possible value.

A ranked set of mappings ΩB w.r.t. a scoring function F and a set B
of ranking criteria, is the set of mappings Ω augmented with an order relation
<ΩB defined over Ω, which orders mappings by their upper-bound scores, i.e.,
∀ µ1, µ2 ∈ Ω : µ1 <ΩB µ2 ⇐⇒ FB[µ1] < FB[µ2]. A set of mappings on which
no ranking criteria is evaluated (B = ∅) is consistently denoted as Ω∅ or Ω.

The monotonicity of F implies that FB is always an upper-bound of F ,
i.e. FB[µ] ≥ F [µ] for any mapping µ ∈ ΩB, thus guaranteeing that the order
imposed by FB is consistent with the order imposed by F .

Algebraic Operators. The SPARQL-RANK algebra introduces a new rank
operator ρ, representing the evaluation of a single ranking criterion, and redefines
the Selection (σ), Join (1), Union (∪), Difference(\) and Left Join ( ) operators,
enabling them to process and output ranked sets of mappings. For the sake of
brevity, we present ρ and 1, referring the reader to [1] for further details.

The rank operator ρb evaluates the ranking criterion b ∈ B upon a ranked
set of mappings ΩB and returns ΩB∪{b}, i.e. the same set ordered by FB∪{b}.
Thus, by definition ρb(ΩB) = ΩB∪{b}.

The extended 1 operator has a standard semantics for the membership prop-
erty [11], while it defines an order relation on its output mappings: given two

ranked sets of mappings Ω
′

B1
and Ω

′′

B2
ordered with respect to two sets of rank-

ing criteria B1 and B2, the join Ω
′

B1
1 Ω

′′

B2
produces a ranked set of mappings

ordered by FB1∪B2
. Formally Ω

′

B1
1 Ω

′′

B2
≡ (Ω

′
1 Ω

′′
)B1∪B2

.
Algebraic Equivalences. Query optimization relies on algebraic equiva-

lences to produce several equivalent formulations of a query. The SPARQL-
RANK algebra defines a set of algebraic equivalences that take into account the
order property. The rank operator ρ can be pushed-down to impose an order to



7

a set of mappings; such order can be then exploited to limit the number of map-
pings flowing through the physical execution plan, while allowing the production
of the k results. In the following, we focus on the equivalences that apply to the
ρ and 1 operators (see [1] for the complete set of equivalences):

1. Rank splitting [Ω{b1,b2,...,bn} ≡ ρb1(ρb2(...(ρbn(Ω))...))]: allows splitting the
criteria of a scoring function into a series of rank operations (ρb1 , ..., ρbn), thus
enabling the individual processing of the ranking criteria.

2. Rank commutative law [ρb1(ρb2(ΩB)) ≡ ρb2(ρb1(ΩB))]: allows the com-
mutativity of the ρ operand with itself, thus enabling query planning strate-
gies that exploit optimal ordering of rank operators.

3. Pushing ρ over 1 [if Ω
′′

does not contain any variable of the ranking

criterion b, then ρb(Ω
′

B1
1 Ω

′′

B2
) ≡ ρb(Ω

′

B1
) 1 Ω

′′

B2
; if both Ω

′
and Ω

′′

contain all variables of b, then ρb(Ω
′

B1
1 Ω

′′

B2
) ≡ ρb(Ω

′

B1
) 1 ρb(Ω

′′

B2
)]: this

law handles swapping 1 with ρ, thus allowing to push the rank operator only
on the operands whose variables also appear in b.

The new algebraic laws lay the foundation for query optimization, as dis-
cussed in the following section.

4 Execution of Top-K SPARQL Queries

In common SPARQL query engines (e.g. Jena ARQ), a query execution plan is a
tree of physical operators designed according to a pull-based processing model.
During execution, mappings are extracted iteratively from the root operator,
which, in turn, will draw from the child operators only the intermediate map-
pings needed to produce the output. The same applies for the child operators,
recursively up to the evaluation of Basic Graph Patterns (BGPs) in the storage
layer. The execution is incremental unless some blocking operator appears in
the execution plan (e.g. the ORDER BY operator, which materializes all the
intermediate results to order them).

The SPARQL-RANK algebra briefly presented in Section 3.2 enables an ex-
ecution model in which the blocking ordering operator can be split in several
non-blocking rank operators. Using the algebraic equivalences, it becomes possi-
ble to push these rank operators inside the execution tree and evaluate the order
for each ranking criterion incrementally. The final order of the results, i.e. the
order of the scoring function, is ensured by the other rank-aware operators.

In this section, we describe the SPARQL-RANK incremental execution model
and the related physical operators; then, we report on our investigations on a
rank-aware optimizer that leverages the algebraic equivalences of Section 3.2.

4.1 Incremental Rank-aware Physical Operators

The SPARQL-RANK execution model creates rank-aware query plans, i.e. trees
of physical operators that incrementally output ranked sets of mappings accord-
ing to their upper-bounds. The execution stops as soon as the requested number



8

of mappings has been drawn from the root operator. A rank-aware execution
model calls for rank-aware physical operators. Some of them are of trivial na-
ture; for instance, the selection operator only filters solutions that do not satisfy
the FILTER clause, thus guaranteeing the preservation of mappings order. Other
operators, e.g. ρ, 1, and ∪, require more complex algorithms.

Rank. The rank operator ρ can exploit rank aggregation algorithms. This
class of algorithms orders, in an incremental manner, lists of objects by combin-
ing several partial scores (e.g. the score for each ranking criterion) into one final
score (e.g.the scoring function). MPro [7] is a state-of-the-art rank aggregation
algorithm, which requires sorted access on one of the ranking criteria to be fully
effective. To fit the SPARQL-RANK execution model we adopted MPro as a
ρb operator that maintains a priority queue containing all the mappings drawn
from its input. Within the queue these mappings are ordered by FB∪{b}, where
B is the set of already evaluated criteria on the input set of mappings, while
b is the ranking criteria to be evaluated by ρb. The operator ρb cannot output
immediately each drawn mapping, since one of the next mappings could obtain
a higher score after evaluation. Instead, it outputs the top ranked mapping of
the priority queue µ only when it draws from its input a mapping µ′ such that
FB∪{b}[µ] ≥ FB [µ′].

(a)
RankJoin

sortedAccesssortedAccess

(b)
RankSequence

randomAccesssortedAccess

(c)

RA-RankJoin

sortedAccess
randomAccess

sortedAccess
randomAccess

Fig. 2: Rank-join algo-
rithms

Join. Depending on the ordering and access pat-
terns of its inputs, a rank-aware 1 operator can be
implemented with several physical operators. In the
simplest case when only the left input is a ranked
set of mapping, a standard index join algorithm can
be adopted, which maintains the order of the output
mappings according to the one of the left operand.
The presence of several indexes in native triplestores
(e.g. s, p, o, spo, pos, osp) guarantees fast random
access to triples, thus enabling an optimized n−way
joining strategy called streaming index join6, which
performs lookups on the indexes by substituting al-
ready bound variables from previous inputs.

Other input configurations require a rank-join al-
gorithm. The idea of rank-join algorithms is to com-
bine ranking and joining, by ordering progressively the results during the join
operation. This can be achieved by taking advantage of the individual orders of
its inputs to update, after each extraction from the inputs, an upper-bound of
the scores of all join combinations not yet seen. A join result is returned only if
it has a combined score greater than or equal to the upper-bound, thus ensuring
that no other combination could possibly achieve a better score. In this work we
consider three algorithms for rank-join (in Fig. 2(a-c)), each one characterized
by a different configuration of access patterns on their left and right inputs.

HRJN [8] (and its variant HRJN*) is an example of rank-aware symmetrical
hash join that has been shown to provide good performance. The basic HRJN
and HRJN* operators assume sorted access (retrieving mappings sorted by their

6 The strategy is named Sequence in Jena ARQ, see http://bit.ly/O8e3Rm



9

score) on both inputs. If the inputs offer random access (retrieving mappings
matching a join attribute value), then some optimizations can be achieved. We
will refer to the generalized version of HRJN endowed with both sorted and
random access on both inputs as “RA-HRJN”.

Fig. 3: getNext method for RSEQ

Given that efficient sorted access in not
commonly available in native triple stores
(Section 4.2 provides a detailed discussion on
the topic), to exploit available random ac-
cess mechanisms we propose RankSequence
(RSEQ), a characterization of the HRJN
rank-join template that requires minimum
sorted access and leverages random access to
improve performances. RSEQ is designed for
supporting a configuration where one input
provides only sorted access (S), and the other
one supports only random access (R). To the
best of our knowledge, no previous work on
rank-join algorithms addresses these assump-
tions on data access7. The RSEQ algorithm
supports a pull-based query model, for which the getNext method is presented
in Figure 3. The algorithm requires the maintenance of a priority queue Q,
which contains all the seen join combinations ordered by a scoring function f . In
a rank-aware query plan, f is FB1∪B2

, where B1 and B2 are the sets of ranking
criteria on the input ranked sets of mappings.

The algorithm extracts a mapping µS from S and it probes R in order to
get all corresponding join combinations, inserting them into the priority queue.
Then it updates a threshold, which is the upper-bound of the scores for the not
yet seen combinations. The mapping with the highest score in the priority queue
is output only if it has a score greater or equal to the threshold.

LeftJoin. As all the variables in a SPARQL-RANK query are assumed to
be certain variables, all operators can have a ranked set of mapping only as
left input. Thus, standard index left-join algorithms can be adopted, as they will
output mappings in the same order of evaluation.

4.2 Sorted access in triplestores

The selection of the most suited rank-join operator is conditioned by the avail-
ability of sorted access or random access for its inputs. While random access on
triples is the basic operation in native triplestores, sorted access is not typically
available at storage level. The ρ operators could be adopted to provide an ini-
tial order (according to one ranking criterion) to mappings extracted from the
storage layer; however, such a solution is inherently inefficient, as it requires to
process all the matching mappings. In the following, we show two cases in which

7 Similar assumptions are made by Upper [16], which is a rank aggregation algorithm,
i.e. it is designed for the ρ operator.



10

we exploit or extend the design of the native triplestores to provide an efficient
sorted access on triples and BGPs.

Exploiting existing indexes. Given a triple pattern of the form (?s p
?o), in which p is a given predicate, if a ranking criterion is defined as the
variable ?o that assumes literal values, then the triplestore native indexes can
be exploited. Since triplestores usually provide POS B+ trees, where objects are
ordered lexicographically, triples are already stored ordered by the variable value
and, therefore, are extracted in the right order. Note that lexicographical order
for numerical values means they will be retrieved in ascending order. The same
effect can be obtained by reordering the set of triple patterns that compose a
BGP so to position the triple pattern involved in the ranking criterion as first.

Creating custom indexes. If a ranking criterion involves the evaluation of
an arbitrary function of variable values, or if the literal values should be ordered
in descending order, then the native POS index cannot be exploited. Therefore,
sorted access can be provided at storage level only by creating custom indexes,
which store the evaluations of triples and/or BGPs in the order enforced by one
or more ranking criterion. POS indexes can be still exploited by materializing
the values of the arbitrary ranking criterion as attributes in the dataset.

4.3 Rank-aware Optimization Techniques

The goal of query optimization is the selection of an efficient execution plan for a
given query. Many optimization techniques exist for SPARQL8, but the addition
of the ranking logical property brings novel optimization dimensions.

Several works on top-k query processing in RDBMSs propose optimization
techniques that attempt to provide a (sub) optimal scheduling of rank [7] or
rank-join operators [8] via dataset sampling or ranking selectivity estimation.
An optimizer using both operators is presented in [4], where the cost of the
generated plans is estimated by executing the plan on a sample of the dataset.

Unfortunately, previous works on top-k query planning in RDBMS cannot be
directly ported to SPARQL engines, as data in an RDF storage can be “schema-
free”; moreover, in some systems, it is possible to push the evaluations of BGPs
down to the storage system, which can be optimized w.r.t. to a standard join by
several techniques, like selectivity estimation optimization in native triplestores
or SQL rewriting in the case of virtual RDF stores.

The design of a query planner for top-k queries demands for a detailed evalu-
ation of the possible rank-aware configurations that might arise, a topic that we
leave to future work. In this paper, we focus on the rank and rank-join operators
and we discuss their application according to several optimization dimensions.
Although simple, all of the proposed strategies proved effective in creating plans
that considerably reduce the execution time of top-k queries and, therefore, could
be easily adopted for heuristic-based query plan selection.

Ranking of BGP strategy. The Ranking of BGP (ROB) strategy is a näıve
planning technique that only uses rank operators. The evaluation of the BGP is

8 Refer to [13] for a comprehensive review



11

(a) (b) (c)

g1(?a1)

g3(?p1)

?pr, ?of, ?score

[0,10]SLICE

seqScan

?pr hasA1 ?a1 . ?pr hasN ?n . 
?pr hasO ?of .  ?of hasP1 ?p1 

g3(?p1)

?pr, ?of, ?score

[0,10]SLICE

orderScan_a1

?pr hasA1 ?a1 . ?pr hasN ?n . 
?pr hasO ?of .  ?of hasP1 ?p1 

?pr = ?pr

?pr, ?of, ?score

[0,10]SLICE

g1(?a1)

g3(?p1)
seqScan

?pr hasN ?n  

Sequence

seqScan

?pr hasA1 ?a1 . 
?pr hasO ?of . ?of hasP1 ?p1 

Fig. 4: Three examples of plans for the query in Listing 1.1: (a) ROB strategy with
sequential access, (b) ROB strategy with sorted access on a1 (c) INTER strategy.

pushed to the storage system, from which the mappings are fetched incremen-
tally through several pipelined rank operators, one per each ranking criterion.
The strategy requires little planning overhead, as it exploits only the algebraic
transformations on rank operators.

Let P be the graph pattern of a query with a scoring function composed
by n ranking criteria, the initial query plan is in the form: ρ{b1,b2,...,bn}(ΩP∅ ),

where ΩP∅ is the unordered set of mapping resulting from evaluation of P . The
rank-aware query plan, produced by the ROB strategy applying the splitting law
for ρ, is in the form: ρb1(ρb2(. . . (ρbn(ΩP∅ )))).

Fig. 4 depicts two example plans for the case study query, where the BGP
evaluation is respectively performed with sequential access (Fig. 4.a) and sorted
access on the variable a1 (Fig. 4.b). If the data source already provides sorted
access according to one ranking criterion bi, then the planner can reorder the ρ
operators using the rank commutative law to have bi evaluated first. Since the
retrieved set of mappings is not ΩP∅ , but ΩPbi , it can remove the corresponding
ρbi operator from the plan.

Interleaved Strategy. The ROB strategy can be extended to include an
additional planning phase that splits the triple patterns containing variables of
the ranking criteria (“ranked triple patterns”) from the others. This approach
is called Interleaved strategy (INTER), because it interleaves rank-aware with
non-rank-aware operators.

By splitting a set of mappings ΩP∅ into two joined sets of mappings ΩP
′

∅ 1

ΩP
′′

∅ , where P ′ is the graph pattern containing all the ranked triple patterns
and P ′′ is the pattern containing the rest, we can apply the algebraic law that
pushes ρ over 1. Applying this law to a ROB plan of the form:

ρb1(ρb2(. . . (ρbn(ΩP
′

∅ 1 ΩP
′′

∅ ))))

we obtain a plan of the form:

ρb1(ρb2(. . . (ρbn(ΩP
′

∅ )))) 1 ΩP
′′

∅

where the 1 operator needs to preserve only the order of the first operand. Thus
it is possible to use a streaming index join between the two sets of mappings.

The splitting strategy can be redefined to adopt the standard planning heuris-
tic of avoiding Cartesian joins: if there is no shared variable between two ranked



12

triple patterns, the strategy must include into the ranked BGP also the “bridge”
triple patterns that have a shared variable with each of them (or chains of triple
patterns). Fig. 4.c provides an example of application of the INTER strategy on
the running case. Since the ranked triple patterns (?pr hasA1 ?a1) and (?of
hasA1 ?p1) have no shared variable, we include (?of hasP1 ?pr) as a bridge
triple pattern inside the ranked sub-plan. The triple pattern (?pr hasN ?n) does
not influence the final order, so it can be safely put in the non-ranked sub-plan.

Rank-join strategy. The Rank-join strategy (RJ) involves the use of one or
more rank-join operators in a query plan. This strategy is a variant of the INTER

strategy, in which the n ranked triple patterns of the query graph pattern P are
split each into one BGP P i (plus the “bridge triple patterns” to avoid Cartesian
joins) for i = 1..n and there is a graph pattern Pn+1 containing the rest of P .

Following this rule, RJ first splits a given set of mappings ΩP∅ into n+1 joined

sets of mappings ΩP
1

∅ 1 · · · 1 ΩP
n+1

∅ , where n is the number of ranking criteria.
Then, RJ can apply the law pushing ρ over 1 to obtain a plan of the form:

(((ρb1(ΩP
1

∅ ) 1 ρb2(ΩP
2

∅ )) 1 · · · 1 ρbn(ΩP
n

∅ )) 1 ΩP
n+1

∅ )

where all the 1 operators, except the rightmost, are rank-joins as they operate
on ranked sub-plans; the rightmost 1 operator needs to preserve only the order
of the first operand, thus an index join can be used. If the datastore already

provides a sorted access according to bi to ΩP
i

∅ , then the retrieved set of map-

pings is already a ranked set of mappings ΩPbi , and the planner can remove the
corresponding ρbi operator from the plan. Fig. 1.b shows the plan generated by
RJ on the query in Listing 1.1.

RJ builds a left-linear tree of operators and selects each rank-join operator
using a simple heuristic based on the availability of sorted or random access to
ranked sets of mappings. This heuristic assumes that using more random access
leads to better performances; the assumption holds if random access has a low
cost (as in native triple stores), because random access allows tightening the
upper-bound of the score. RJ applies: 1) RA-HRJN, when the left input is a
ranked mapping ΩPbi , in which bi is a single ranking criterion and P is a triple

pattern or a BGP; 2) RSEQ, when the left input is ΩPB , in which B is a set of
ranking criteria with |B| ≥ 2, e.g. if the input is another rank-join operator, or if
|B| = 1 and P is not a a triple pattern or BGP. A more complex strategy could
be devised by taking into account also the cost of the sorted access on the right
input, but this is left to future work.

The RJ strategy also exploits an optimization of the random access on a BGP
as, at run-time, it creates a reordered version of the original BGP as follows: first,
the triple pattern containing the joining attribute is evaluated; then a random
access on the other triples is performed iteratively.

5 Evaluation

This section presents an evaluation of ARQ-RANK, a prototype implementation
of a SPARQL-RANK query engine that extends Jena ARQ 2.8.9. The ARQ-



13

Fig. 5: Performance evaluation for the optimization techniques of Section 4.3.

RANK source code, the test datasets and the queries used in the experiments
are available for download at http://sparqlrank.search-computing.org/.

Our experiments are based on a modified version of the Berlin SPARQL
Benchmark (BSBM [3]). The BSBM dataset generator has been modified to cre-
ate additional attributes, generated as aggregates from the existing data (e.g.
the average of the ratings for a given product) or according to different prob-
ability distributions. We report on the performance of ARQ-RANK using the
SumDepth and wall clock execution time metrics. The SumDepth metric pro-
vides a system-independent measure of the I/O cost of a query, as it sums the
total number of processed mappings. The experiments were conducted on an
AMD 64bit processor with 2.66 GHz and 4 GB main, a Debian distribution
with kernel 2.6.26-2, and Sun Java 1.6.0 with 2 GB maximum heap size for the
JVM. The reported execution times are the average of 20 tests, measured after
5 warm ups, removing the outlier values according to the three sigma rule. The
experiments were executed using Jena TDB 0.8.11 as a native triple storage.

5.1 Rank-aware optimization strategies evaluation

In the following we evaluate the performance of the ROB, INTER and RJ strategies
w.r.t. to the non-optimized Jena ARQ 2.8.8 (ARQ) and the TopK optimization
[5] introduced in Jena ARQ 2.8.9 (ARQ-TOP) on a five million triples dataset.

Fig. 5 reports the results of experiments performed on the query in Listing
1.1, where ranking criteria follow a normal (µ = 0.5, σ = 0.15) score distri-
bution, at varying values of k (we consider also k = 1000, while in real world



14

applications k is typically less than 100). The reported numbers represent the
complete evaluation time of the query, without considering the planning time.

Fig. 5.a depicts the results obtained when no sorted access indexes are avail-
able in the data storage. This setting represents the worst-case scenario for the
usage of ARQ-RANK, as rank (e.g. MPro) and rank-join (e.g. HRJN) algo-
rithms are proven to be efficient when sorted access is available for at least one
operand. Despite the additional overhead required to provide an initial ordering
to the mappings fetched from the data storage, all the techniques show a per-
formance increase (from 0.2x to 10x), a result that is mainly accountable to the
reduced number of mappings that flow in the query engine, as shown in Fig. 6.

!"" !#" !##" !###"$%&%'"
!"" !#" !##" !###"

$%&%'"
!"#$$

(
)&

*+
,"-

."&
/0
0%
12
3" !#

4"

!#5"

!#6"

!#7"

!#8"

!#!"

!#4"

!#5"

9:;<=>?"
:@"
:>A"
B(=C:"

!##"

(
)&

*+
,"-

."&
/0
0%
12
3"

!"

Fig. 6: SumDepth with sorted access
indexes

In Fig. 5.b we report the results of
the query when sorted access indexes are
available. In this configuration, the num-
ber of mappings extracted from the data
storage significantly decreases (as shown
in Fig. 6 SumDepth ranges from 10-1000
in RJ, as opposed to 105 in ARQ-TOP) as re-
sults are already ordered according to one
of the ranking criteria, thus exploiting at
full potential the features of the adopted
rank and rank-join operators: all the pro-
posed strategies consistently outperform
ARQ-TOP up to three orders of magnitude.

In Fig. 5.c-d we report the results of a comparison analysis for the rank-join
operators HRJN*, RA-HRJN, and the proposed RSEQ algorithm. The natural
availability of efficient random access to the underlying triple store provides great
benefits in terms of accessed mappings and required execution time. Note that
the RSEQ and RA-HRJN operators get more effective as k increases. When no
sorted access indexes are available, as shown in Fig. 5.c, RSEQ is faster than RA-
HRJN, because it requires sorted access only on the left input, while RA-HRJN
needs sorted access on both inputs. Fig. 5.d presents the case in which sorted
access indexes are available. In this case, RSEQ is comparable to RA-HRJN.

Although the selected case study query may account for the reported num-
bers, the overall (and consistent) performance increase w.r.t. ARQ-TOP provides
strong evidence about the general applicability of the proposed approach, also
when no sorted access indexes are available. The selection of the best configura-
tions depends on several factors, such as the costs of random and sorted access
(which differ based on the storage system), distribution of scores, and others. A
detailed study on SPARQL top-k query planning is left to future work.

5.2 Query benchmark evaluation

As far as we know, currently there is no benchmark for top-k queries SPARQL.
Therefore, we created a small benchmark of 8 queries9 having 2 and 3 ranking
criteria. Although previous works [18] show that the cost associated with top-k

9 Queries are available at http://sparqlrank.search-computing.org/



15

!""#$$ %&"#$$ &""#$ !'$ &'$ !""#$$ %&"#$$ &""#$ !'$ &'$ !""#$$ %&"#$$ &""#$ !'$ &'$

!"($

!")$

!"%$

!"!$

!"($

!")$

!"%$

!"!$

!"($

!")$

!"%$

!"!$*
+,

-.
$,
/,
0+
12

3$
14

,$
54

67
$

89:96,:$6;<,$ 89:96,:$6;<,$ 89:96,:$6;<,$

!"#$ !%#$ !&#$

Fig. 7: Performance Evaluation of ARQ-RANKon the benchmark query mix using
the a) ROB, b) INTER, and c) RJ optimization strategies

algorithms is mainly related to the selected k value, to provide asymptotic evi-
dence of the utility of ARQ-RANK, we performed the evaluation on five datasets
of increasing size (from 100K triples to 5M triples). Fig. 7 depicts the average
execution times (for each considered dataset) of the query mix in ARQ-TOP and
using the ROB, INTER, and the RJ strategies.

When 1 ≤ k ≤ 100, typical values in top-k queries, ARQ-RANK consistently
outperforms ARQ-TOP (up to two orders of magnitude), with a gain proportional
to the dataset size. The RJ optimization strategy yields considerably better per-
formance for 1 ≤ k ≤ 10, while the INTER strategy is the best for k = 100. Note
that the ROB strategy provides significant performance gain, while requiring a
negligible planning effort.

On the other hand, when k = 1000 and the dataset size is below 1M triples,
the two systems show comparable performance; nonetheless, the ROB and INTER

strategies show a performance gain w.r.t. ARQ-TOP for the biggest dataset in the
experiment, and the curves suggest an improvement also for bigger datasets.

6 Conclusion and Future Work

In this paper, we addressed the problem of efficiently executing top-k SPARQL
queries; we introduced an incremental execution model for the SPARQL-RANK
algebra and we presented ARQ-RANK, a rank-aware SPARQL query engine that
builds on the SPARQL-RANK algebra and exploits state-of-the-art rank-aware
query operators. We proposed RSEQ, a rank-join algorithm specifically designed
to exploit fast random access in native triple stores, and we analyzed the behavior
of the system under several configurations. Our results show that ARQ-RANK is
consistently able to significantly improve the performance of top-k queries. Al-
though our evaluation did not include other SPARQL engine implementations,
the proposed execution model and planning strategies are applicable to other
pull-based SPARQL query engine implementations.

The results presented in this paper are part of a broader research work, where
we plan to study more advanced, cost-based, optimization techniques that es-



16

timate the cardinality of intermediate results in multiple pipelined rank-join
operator evaluations. Among our goals there is also a study on efficient materi-
alization of RDF views for sorted access, and the effects of the relaxation of the
certain variables constraint defined in Section 3, as the introduction of poten-
tially unbound variables brings uncertainty in the score evaluation. Finally, we
outlook extensions of SPARQL-RANK w.r.t. SPARQL 1.1 federation extension.

Acknowledgements. This research is supported by the Search Computing
project, funded by ERC, under the IDEAS Advanced Grants program.

References

1. A. Bozzon et al. Towards and efficient SPARQL top-k query execution in virtual
RDF stores. In DBRANK workshop in VLDB ’11, 2011.

2. A. Wagner et al. Top-k Linked Data Query Processing. In ESWC ’12. Springer,
2012.

3. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic Web
Inf. Syst., 5(2), 2009.

4. C. Li et al. RankSQL: query algebra and optimization for relational top-k queries.
In SIGMOD ’05. ACM, 2005.

5. P. Castagna. Avoid a total sort for order by + limit queries. JENA bug tracker.
https://issues.apache.org/jira/browse/jena-89.

6. E. Della Valle et al. Order matters! harnessing a world of orderings for reasoning
over massive data. Semantic Web Journal, 2012.

7. S.-w. Hwang and K. Chang. Probe minimization by schedule optimization: Sup-
porting top-k queries with expensive predicates. IEEE TKDE, 19(5), 2007.

8. I. F. Ilyas et al. Rank-aware Query Optimization. In SIGMOD ’04. ACM, 2004.
9. I. F. Ilyas et al. A survey of top-k query processing techniques in relational database

systems. ACM Comput. Surv., 40(4), 2008.
10. J. Cheng et al. f-SPARQL: a flexible extension of SPARQL. In DEXA ’10. ACM,

2010.
11. J. Pérez et al. Semantics and complexity of SPARQL. ACM Trans. Database Syst.,

34(3), 2009.
12. K. Anyanwu et al. SemRank: ranking complex relationship search results on the

semantic web. In WWW ’05. ACM, 2005.
13. M. Schmidt et al. Foundations of SPARQL query optimization. In ICDT ’10.

ACM, 2010.
14. M. Stocker et al. SPARQL basic graph pattern optimization using selectivity

estimation. In WWW ’08. ACM, 2008.
15. D. Martinenghi and M. Tagliasacchi. Cost-Aware Rank Join with Random and

Sorted Access. IEEE TKDE, 2011.
16. N. Bruno et al. Evaluating Top-k Queries over Web-Accessible Databases. In ICDE

’02. IEEE, 2002.
17. N. Lopes et al. AnQL : SPARQLing up annotated RDFS. In ISWC ’10. Springer,

2010.
18. K. Schnaitter and N. Polyzotis. Optimal algorithms for evaluating rank joins in

database systems. ACM Transactions on Database Systems, 35(1), 2010.
19. U. Straccia. SoftFacts: A top-k retrieval engine for ontology mediated access to

relational databases. In SMC ’10. IEEE, 2010.
20. W. Siberski et al. Querying the semantic web with preferences. In ISWC ’06.

Springer, 2006.
21. Y. Qi et al. Sum-Max Monotonic Ranked Joins for Evaluating Top-K Twig Queries

on Weighted Data Graphs. In VLDB ’07, 2007.


