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Abstract: In this paper, the problem of acoustic wave propagation in a waveguide of infinite 

extent is modelled, taking into account constant depth in each section of the sea. Efficient 

numerical strategies in the frequency domain are addressed to investigate two-dimensional 

acoustic wave propagation in a shallow water configuration, considering a step in the rigid 

bottom and a flat free surface. The time domain responses are obtained by means of an 

inverse Fast Fourier Transform (FFT) of results computed in the frequency domain. The 

numerical approaches used here are based on the Boundary Element Method (BEM) and the 

Method of Fundamental Solutions (MFS). In the numerical models only the inclined or 

vertical interface between the sub-regions of different depth are discretized, as Green’s 

functions that take into account the presence of free and rigid surfaces are used. These 

Green’s functions are obtained either by eigenfunction expansion or by Ewald’s method. A 

detailed discussion on the performance of these formulations is carried out, with the aim of 

finding an efficient numerical formulation to solve the step problem in shallow water. 

Keywords: Boundary Element Method, Method of Fundamental Solutions, Green’s 
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1  INTRODUCTION 

Many analytical and numerical methods have been developed to simulate and analyse 

underwater acoustic wave propagation. The book by Jensen et al. [1] discusses in detail the 

different methodologies applied to solve the problem of wave propagation in acoustic 

environments that have interested many researchers over past decades. Some of the well-

known methods are based on the acoustic ray theory [2], the normal modes method [3] and 

the parabolic equation [4]. 

A variety of numerical models has also been developed based on well-established 

approaches such as the finite difference, finite element and boundary element methods. Of 

these, the Boundary Element Method (BEM) permits an efficient analysis of underwater 

acoustic problems with complex shapes and complicated boundary conditions. The BEM has 

a number of advantages over other numerical methods [5], such as: it is very well suited for 

modeling homogeneous unbounded domains since it automatically satisfies the Sommerfeld 

radiation condition and thus involves a more compact description of the acoustic medium, 

requiring only the discretization of the problem boundaries, which considerably reduces the 

size of the final linear system of equations. However, the application of the boundary integral 

equation is often limited by the requirement of prior knowledge of the fundamental solutions 

and the appearance of singular or hyper-singular integrals in its formulation. 

Another difficulty of the BEM in the analysis of acoustic wave propagation in shallow 

water occurs when more complex geometries are considered, requiring large discretization 

schemes. One way of avoiding this large discretization is by using Green’s functions which 

directly satisfy the boundary conditions on the flat free surface and the rigid bottom of the 

ocean. Such Green’s functions can be constructed using the image-source technique, but this 

leads to very slowly convergent series [6, 7]. An alternative to improve the convergence of 

the series is to build a Green’s function in the form of eigenfunction expansions, the so-called 

normal mode solution. This function is also an infinite series but if only the evanescent modes 

are considered and there are no propagating modes, the series becomes rapidly convergent 

owing to the exponentially decaying terms for the evanescent modes. In spite of that, the 

convergence problems of this series still remain when the source and the field points are 

positioned along the same vertical alignment [8, 9].  

Linton [10, 11] and Papanicolaou [12] discuss mathematical techniques for accelerating 

slowly convergent series and show that the Ewald’s method is able to provide dramatic 
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improvements in the speed of convergence, particularly when the source and field points are 

located along the same vertical line. This method has been successfully implemented in the 

boundary integral equation formulation by Venakides et al. [13], for the calculation of 

electromagnetic scattering of photonic crystals. 

Santiago and Wrobel [8, 9] discussed the implementation of Ewald’s method in a BEM 

model for underwater acoustics. They compared the convergence of Ewald’s method with that 

of eigenfunction expansions, showing a substantial reduction in the number of terms 

necessary for convergence of the series, particularly when the source and field points are 

positioned along the same vertical line. In the present paper, for the first time, Ewald’s 

method is fully implemented in a BEM underwater acoustics model in which a vertical 

interface is discretized, significantly improving the performance of the method. The 

integration of the resulting singular integrals is also discussed in the paper. 

In recent years, meshless methods have attracted great interest of scientists and 

researchers. The Method of Fundamental Solution (MFS) is one of these methods and it has 

been applied with success for scattering or radiation problems. Mathematically, the MFS is a 

very simple technique and it is also based on the prior knowledge of fundamental solutions, 

but not requiring the numerical and analytical integrations that need to be performed in the 

BEM. One disadvantage of the MFS is the determination of the position of the pseudo-

boundary on which the singularities are placed. Karageorghis [14] has proposed a simple 

algorithm for estimating an optimal pseudo-boundary for certain boundary value problems. 

Costa et al. [15, 16] have shown that, despite its simplicity, the MFS is a very interesting tool 

to efficiently predict wave acoustic propagation in shallow water. 

In this paper, the Boundary Element Method and the Method of Fundamental Solutions 

are used to analyse, in the frequency domain, the two-dimensional acoustic wave propagation 

in a shallow water configuration, considering a step up on the bottom of the sea. Time domain 

signals are computed by means of an inverse fast Fourier transform of the numerical results in 

the frequency domain. Appropriate Green’s functions are used limiting the number of 

discretized surfaces and consequently reducing the computational cost of the proposed 

models. These models are developed by using a sub-region technique, where only the inclined 

or vertical interface between the sub-regions of different depth has to be discretized. These 

Green’s functions are obtained either by eigenfunction expansion or by Ewald’s method. A 

set of numerical examples is performed in order to demonstrate the efficiency of the proposed 

models in the analysis of acoustic wave propagation in shallow water problems containing a 
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step on the seabed. In addition, a detailed discussion on the performance of these formulations 

is carried out, with the aim of finding an efficient formulation to solve the acoustic step 

problem in shallow water in the frequency domain. 

2  GOVERNING EQUATION OF THE PROBLEM 

The problem of two-dimensional acoustic wave propagation in a region Ω of infinite 

extent in the longitudinal z-direction is analysed, taking into account the presence of a step up 

on the bottom of the sea, as shown in Fig. 1. If the velocity of sound is constant, the source of 

acoustic disturbance is time-harmonic and the medium in the absence of perturbations is 

quiescent, the problem is governed by the Helmholtz equation which can be written as: 

2 2( ) ( ) ( )   in sp k p Qδ∇ + = − − Ωx x x ξ , (1) 

where 2
2 2x y

∂ ∂
∇ = +

∂ ∂
; ( )p x  is the acoustic pressure; Q  is the magnitude of the acoustic, 

sound-emitting source sξ  located at ( , )s sx y
ξ ξ

; x  is the observation point located at ( , )x y , 

( )sδ −x ξ  is the Dirac delta function, and 2k f cπ=  is the wave number, with f  being the 

excitation frequency and c  the sound propagation velocity. 

 

 

Figure 1: Geometry of the problem. 

 

The boundary conditions for the above described problem are given by: 

• Dirichlet condition 

F( ) 0   in p = Γx  (2) 
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• Neumann condition 

B
i ( )( ) 0   in n

pv
ωρ

∂
= = Γ

∂
xx

n
 (3) 

where 2 fω π=  is the angular frequency, ρ  is the density, n  is the unit outward normal 

vector, i 1= −  and FΓ  and BΓ  are the free and bottom surfaces, respectively. 

3  GREEN’S FUNCTIONS 

The Green’s functions for the BEM and MFS models are developed using two numerical 

approaches. The first makes use of the eigenfunction expansion based on a combination of 

normal modes; and the second uses an alternative form based on the Ewald’s method to 

improve the convergence of the series, particularly when the source and the receiver are 

positioned in the same vertical alignment. Both Green’s functions exactly satisfy the 

boundary conditions on the free surface and the flat rigid bottom boundaries of the 

waveguide. 

3.1 Eigenfunction expansion 

The Green’s function designated as M ( , )G ξ x  directly satisfies the boundary conditions 

on the flat rigid bottom and the free surface. In terms of normal modes [17], the Green’s 

function can be written as: 

i

M F F
1

i( , ) sin ( ) sin ( )
xmk x x

ym ym
m xm

eG k Y y k Y y
H k

x

x

−∞

=

   = − −   ∑ξ x . (4) 

The derivatives with respect to x and y are: 

iM
F F

1

( , ) 1 sgn( ) sin ( ) sin ( ) xmk x x
ym ym

m

G x x k Y y k Y y e
x H

x

x x

∞
−

=

∂    = − − − −   ∂ ∑ξ x , (5) 

i
M

F F
1

( , ) i sin ( ) cos ( )
xmk x x

ym ym ym
m xm

G ek k Y y k Y y
y H k

x

x

−∞

=

∂    = − − −   ∂ ∑ξ x , (6) 
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where the source point ξ  is located at ( , )x yξ ξ , and H  is the depth of the waveguide 

F B( ),Y Y−  as defined in Fig. 2. The parameters 2 2
xm ymk k k= −  and 

1
2ymk m

H
π = − 

 
 are 

horizontal and vertical wavenumbers, respectively. 

It is important to note that the exponential term in Eqs. (4), (5) and (6) makes the 

convergence of the Green’s function decrease rapidly when xmk  becomes an imaginary 

number (evanescent modes), but when the exponential term is equal to 1.00, the convergence 

of the series is much slower. 

 

 

Figure 2: Geometry of the waveguide. 

 

3.1.1 Convergence tests 

Convergence tests were performed in order to assess the possible advantages and 

limitations of using Eqs. (4), (5) and (6) in either BEM or MFS models. The example refers to 

a waveguide with sound velocity 1500m s , subjected to a point source S applied at position 

(0.00m, 9.00m)  as illustrated in Fig. 3. The responses were computed at receiver R1 placed at 

(0.00m,5.00m)  and at receiver R2 placed at (5.00m, 9.00m) . The convergence test was 

performed for an excitation frequency of 1000 Hz . 

Figure 4 shows the responses for R1 and R2, respectively, where the amplitudes refer to 

the modulus of the acoustic pressure. From the analysis of Fig. 4(a) it was found that, as the 

receiver R1 is placed on the same vertical line of the source (S), a large number of terms is 

required for convergence of the series. On the other hand, as the receiver R2 is not on the 
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same vertical line of the source, the number of terms required for convergence of the series is 

significantly reduced, as illustrated in Fig. 4(b). 

 

 

Figure 3: Geometry of the waveguide used in the convergence tests. 

 
a) 

 
b) 

Figure 4: Green’s function responses as a function of the number of terms provided by source 

(S) for an excitation frequency of 1000Hz : a) receiver R1 and b) receiver R2. 

 

3.2 Ewald’s method 

Before applying Ewald’s representation, the Green’s function M ( , )G ξ x  given in Eq. (4) 

needs to be rewritten in the following form: 

M F F
1

1( , ) sin ( ) sin ( )
m x x

ym ym
m m

eG k Y y k Y y
H

xλ

x λ

− − −∞

=

   = − −    −
∑ξ x , (7) 

where 2 2
m ymk kλ = − . 
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After this procedure, the Green’s function (7) can be defined by E ( , )G ξ x  as [13]: 

2(( ) 4 )

E F F
1 0

2( , ) sin ( ) sin ( )
4

mt x x t

ym ym
m

eG k Y y k Y y dt
H t

xλ

x π

− −∞∞

=

   = − −   ∑ ∫ξ x . (8) 

Hence, when the source and field points are on the same vertical line, the final expression 

for Ewald’s method can be written as: 

E
0 1 0

F F

1

1 cos( )( , ) ( , ) ( , )
4 4

sin ( ) sin ( ) erfc
                

n mn
n m n

ym ym m

m m

mG C C

k Y y k Y y b

H
ξ

π
π π

λ

λ

∞ ∞ ∞

= = =

∞

=

= + +

    − − −     +
−

∑ ∑ ∑

∑

ξ ξ ξ ξ ξ ξ

. (9) 

More details of the Ewald’s representation can be found in Appendix A and in Santiago 

and Wrobel [8, 9]. 

3.2.1 Convergence tests 

In order to verify the performance of the Green’s function E ( , )G ξ x , a geometry was 

chosen which assumes two point sources and a line of receivers defined so that this problem 

allows undertanding the behaviour of the Green’s function when implemented in BEM or 

MFS codes. This problem refers to a waveguide with constant depth of 10.00 m  and subjected 

to a source S1 applied at position (0.00m, 1.00m)  and to another source S2 applied at 

position (0.00m, 5.00m) , as illustrated in Fig. 5. The responses were computed along a line 

of receivers located on the same vertical alignment of the sources. Once again, the sound 

velocity and excitation frequency were taken to be 1500m s  and 1000 Hz , respectively. 

In the present paper, the constants α , γ  and θ  are assigned the empirical values 0.1 , 

0.000001 and 20 , respectively (see Appendix A). The corresponding functions ( )b b  

obtained with these values are shown in Fig. 6. 
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Figure 5: Geometry of the waveguide used in the convergence tests. 

 
a) 

 
b) 

Figure 6: Parameter b for F 10 mH Y= =  and B 0 mY = : a) source S1 and b) source S2. 

 

Figure 7 shows the verification of the functions M ( , )G ξ x  and E ( , )G ξ x  using the function 

( )b b  for an excitation frequency of 1000 Hz, for the sources S1 and S2, respectively. The 

analysis of these results clearly confirms that there is an excellent agreement between the two 

Green’s functions, confirming the validity of Ewald’s representation. In Fig. 8, curves 

representing the convergence behaviour of the Ewald’s method are shown. The curves clearly 

reveal a small relative error (below 210− ) of the proposed method compared to the 

eigenfunction expansion solution. 

From the analysis of Fig. 9, which plots the number of terms required for both Green’s 

functions to achieve convergence, it can be seen that a much faster series is produced by the 

function E ( , )G ξ x . 
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Real part Imaginary part 

 
a1) 

 
a2) 

 
b1) 

 
b2) 

Figure 7: Verification of the Green’s functions M ( , )G ξ x  and E ( , )G ξ x  for an excitation 

frequency of 1000 Hz : a) source S1 and b) source S2. 

 

 
a) 

 
b) 

Figure 8: Convergence of the Green’s function E ( , )G ξ x  for an excitation frequency of 

1000 Hz : a) source S1 and b) source S2. 
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a) 

 
b) 

Figure 9: Number of terms of the Green’s functions M ( , )G ξ x  and E ( , )G ξ x  for an excitation 

frequency of 1000 Hz : a) source S1 and b) source S2. 

3.2.2 Implementation of the functions in the numerical models 

It is important to remember that the implementation of these Green’s functions in the 

BEM models requires the calculation of singular integrals when the functional and nodal 

points coincide. To eliminate this singularity, the free space Green’s function is subtracted 

and added to the Green’s function in Eqs. (7) and (9), in the form:  

1 1
(1) (1)

M, E 0 0
1 1

i i( , ) ( , ) ( ) ( )
4 4

G d G H kr J d H kr J dη η
G − −

   G = − +      ∫ ∫ ∫ξ x ξ x , (10) 

where (1)
0H  is the Hankel function of the first kind of order zero and J  is the Jacobian. It is 

important to note that (1)
0

i ( )
4

H kr  refers to the full-space Green’s function. The resulting 

integrals in Eq. (10) can then be computed in two parts: the first term is integrated 

numerically using standard Gauss quadrature, since the singularity has been removed; the 

second term can be integrated analytically, following Tadeu et al. [18, 19]. 

4  NUMERICAL FORMULATIONS 

The previously described two-dimensional acoustic wave propagation problem is solved 

using three efficient numerical models in the frequency domain, based on the BEM and on the 

MFS. 
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4.1 Boundary Element Method 

According to Green’s second identity, the following classical boundary integral equation 

can be obtained: 

( , )( ) ( ) i ( , ) ( ) ( ) ( , )s
n

GC p G v d p d QGωρ
GG

∂
= − G − G +

∂∫ ∫
ξ xξ ξ ξ x x x ξ ξ
n

, (11) 

where Γ  is equal to F BΓ ∪ Γ ; ( , )G ξ x  is the Green’s functions; ( )p x  and ( )nv x  represent the 

acoustic pressure and the normal derivative of the acoustic pressure, respectively. The 

coefficient ( )C ξ  depends on the boundary geometry at the source point ξ . This coefficient 

takes the value 0.5  if the boundary is smooth and 1.0 at any point within the domain. 

In order to solve Eq. (11), the boundary integral equation requires the discretization of all 

boundaries, if special Green’s functions are not used. However, the problem will be solved 

herein by using the previously described BEM formulation which adopts Green’s functions 

that satisfy specific boundary conditions, allowing reducing the discretization of the proposed 

models. The formulation refers to a specific shallow water configuration, taking into account 

the presence of a step up on the rigid bottom and of a free surface, as defined in Fig. 10, 

excited by a point source. 

 
a) 

 
b) 

Figure 10: Geometry of the BEM models: a) Model 1 and b) Model 2. 
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Two different models are proposed here: the first one (Model 1) makes use of the sub-

region technique with a Green’s function designated as E ( , )G ξ x  for each sub-region, 

requiring only the discretization of the vertical interface cΓ  (see Fig. 10(a)). Hence, 

introducing the appropriate conditions along the common vertical interface cΓ  (where 

continuity of pressure and velocity is imposed), and the Neumann condition ( ( ) 0nv =x ) in the 

boundary of the step designated as stepΓ , and considering a total of NN  functional nodes with 

constant elements ( s cNN NE NE= + ), the following equations can be obtained: 

1

1

1

H
EH

E
1 1

H
E 1

( , )
( ) ( ) i ( , ) ( ) ( )

                     +(1 ) ( , );    1, ,         region 

s c s c

s j j

NE NE NE NE
i j

i i i j n j j
j NE j

s
i

G
C p G v d p d

Q G i NN

ωr
+ +

= + =GG

∂
= − G − G +

∂

− = Ω

∑ ∑∫ ∫
ξ x

ξ ξ ξ x x x
n

ξ ξ 

, (12) 

2

2

2

H
EH

E
1 1

H
E 2

( , )
( ) ( ) i ( , ) ( ) ( )

                     + ( , );    1, ,      region 

s c s c

s sj j

NE NE NE NE
i j

i i i j n j j
j NE j NE

s
i s

G
C p G v d p d

QG i NE NN

ωr
+ +

= + = +GG

∂
= − G − G +

∂

= + Ω

∑ ∑∫ ∫
ξ x

ξ ξ ξ x x x
n

ξ ξ 

, (13) 

where 1H
E ( , )i jG ξ x  and 2H

E ( , )i jG ξ x  are the Green’s functions for a waveguide with flat rigid 

bottom and free surface at the boundary element jx , whose details were given in a previous 

section; 1H
E ( , )s

iG ξ ξ  and 2H
E ( , )s

iG ξ ξ  are the incident fields regarding the acoustic pressure by 

the point source placed at position sξ ; 1Q =  if the source is positioned in region 2Ω  while 

0Q =  if the source is positioned in region 1Ω . The notation 1H  refers to the higher depth of 

the channel and the notation 2H  refers to the lower depth of the channel. The velocity nv  is 

the particle velocity along the normal direction and n  is the unit normal vector pointing 

outward of each sub-region (i.e., with opposing directions for the two sub-regions). 

Considering that sNE  elements are used to discretize the boundary of the step and cNE  

elements are used to discretize the common interface between the sub-regions, a system of 

2s cNE NE+  equations on 2s cNE NE+  unknown values may be written. Solving this system 

of equations makes it possible to obtain the acoustic pressure at any domain point through the 

boundary integral equation for internal points. 
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The second model (Model 2) makes use of a Green’s function designated as 2H
M ( , )i jG ξ x  

in the region 2Ω  that directly satisfies the boundary conditions at the flat rigid bottom and flat 

free surface, while for region 1Ω  the Green’s function also takes into account the presence of 

the step by applying the image-source method, designated as step
M ( , )i jG ξ x . A sub-region 

technique is again applied by defining two sub-regions, with only the inclined interface in-

between them requiring discretization (see Fig. 10(b)). Therefore, introducing the appropriate 

conditions in the inclined interface, the following equations can be written: 

step
Mstep

M
1 1

step
M 1

( , )
( ) ( ) i ( , ) ( ) ( )

                    (1 ) ( , );    1, ,         region 
j j

NE NE
i j

i i i j n j j
j j

s
i

G
C p G v d p d

Q G i NN

ωr
= =GG

∂
= − G − G +

∂

+ − = Ω

∑ ∑∫ ∫
ξ x

ξ ξ ξ x x x
n

ξ ξ 

, (14) 

2

2

2

H
MH

M
1 1

H
M 2

( , )
( ) ( ) i ( , ) ( ) ( )

                    ( , );    1, ,                 region 
j j

NE NE
i j

i i i j n j j
j j

s
i

G
C p G v d p d

QG i NN

ωr
= =GG

∂
= − G − G +

∂

+ = Ω

∑ ∑∫ ∫
ξ x

ξ ξ ξ x x x
n

ξ ξ 

, (15) 

where = =cNE NE NN  (constant elements). 

Solving the linear system of 2NE  equations on 2NE  unknowns makes it possible to 

obtain the nodal values of the acoustic pressure and normal component of the velocity in the 

inclined interface cΓ . Thus, the acoustic pressure can be obtained at any point of the acoustic 

domain through the boundary integral equation for internal points. 

4.2 Method of Fundamental Solutions 

In this sub-section, a single proposed model was defined using the MFS, as schematically 

illustrated in Fig. 11. This model makes use of the sub-regions technique, with the Green’s 

function designated as M ( , )G ξ x  applied for each sub-region, requiring only the discretization 

of the vertical interface cΓ  (as in Model 1). In both regions, the Green’s function that directly 

satisfies the rigid bottom and free flat surface is assumed. Thus, imposing continuity of the 

acoustic pressure and normal component of the velocity at each interface point x , the 

following equations can be obtained: 
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1 1 2 2H H H H
M M M M

1 1
A ( , ) (1 ) ( , ) B ( , ) ( , )

c s cNVS NVS NVS
s s

n n n n
n n

G Q G G QG
+

= =

+ − = +∑ ∑ξ x ξ x ξ x ξ x , (16) 

1 21 2H HH H
M MM M

1 11

( , ) ( , )( , ) ( , )A (1 ) B
c s cNVS NVS NFVs s

n n
n n

n n

G GG GQ Q
+

= =

∂ ∂∂ ∂
+ − = +

∂ ∂ ∂ ∂∑ ∑ξ x ξ xξ x ξ x
n n n n

, (17) 

where An  and Bn  are the amplitudes to be determined for each virtual source; 1Q =  if the 

real source is positioned in region 2Ω  and 0Q =  if the real source is located in region 1Ω ; 

1H
M ( , )sG ξ x  and 2H

M ( , )sG ξ x  are the incident fields regarding the acoustic pressure generated by 

the real source; cNVS  corresponds to the number of virtual sources placed at each sub-region 

and sNVS  corresponds to the number of virtual sources positioned in region 1Ω ; 1H
M ( , )nG ξ x  

and 2H
M ( , )nG ξ x  refer to the Green’s functions for a flat rigid bottom and flat free surface, 

whose details were given in the previous section. 

 

 

Figure 11: Geometry of the MFS model. 

Imposing the Neumann condition ( ( ) 0nv =x ) at each collocation point x  of the vertical 

boundary stepΓ , the following equation can be written: 

1 1H H
M M

1

( , ) ( , )A (1 )
s cNVS NVS s

n
n

n

G GQ
+

=

∂ ∂
= − −

∂ ∂∑ ξ x ξ x
n n

, (18) 

Therefore, a linear system of 2s cNVS NVS+  equations on 2s cNVS NVS+  unknowns may 

be written. Once this system of equations is solved for the relevant unknown amplitudes, the 

response at any point of the domain may be obtained by using the following equations: 
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1 1H H
M M 1

1
A ( , ) (1 ) ( , )   region 

c sNVS NVS
s

n n
n

G Q G
+

=

+ − Ω∑ ξ x ξ x , (19) 

2 2H H
M M 2

1
B ( , ) ( , )   region 

cNVS
s

n n
n

G QG
=

+ Ω∑ ξ x ξ x . (20) 

5  BEHAVIOUR OF THE BEM AND MFS MODELS 

In order to verify and analyse the behaviour of the proposed BEM and MFS models used 

in this work, the described formulations were implemented and a test case was analysed. We 

consider the geometry depicted in Fig. 12(a), consisting of a flat waveguide containing a step 

on the bottom of the sea. For this configuration, the response is generated by a point source 

positioned at 5.0 m  depth and computed at one horizontal line of receivers, placed at depth of 

2.5 m . The acoustic medium is assumed to be water, with density of 31000kg m  and a 

sound propagation velocity of 1500m s .  

 

 

a) 
 

 

b) 
 

c) 

 

 

d) 

Figure 12: a) Geometry of the problem, b) Model 1: geometry with discretized vertical 

interface (BEM), c) Model 2: geometry with discretized inclined interface (BEM) and d) MFS 

Model: geometry and position of collocation points and fictitious sources. 
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The models require the discretization of either the vertical interface between the sub-

regions of different depth of the waveguide (Model 1) or an inclined interface with an angle 

of 2.3α = ° to the left side (Model 2), as illustrated in Figs. 12(b) and (c), respectively. The 

parameters 0.1=α , 0.000001=γ  and 20=θ  (empirical values) for function ( )b b  were 

adopted in the BEM analysis of Model 1. To build the MFS model, boundary points are 

located over a vertical interface and two sets of virtual source points may be defined (see Fig. 

12(d)). In this model, a distance between the vertical interface and the virtual source points 

equal to 1.0 m was adopted. 

When using the BEM models the number of boundary elements is defined as a function 

of the frequency, by using a relation between the incident wavelength and the length of the 

boundary elements equal to a minimum of 10. For the MFS model, the number of collocation 

points was also defined as a function of the frequency and computed using a relation of 5 

between the incident wavelength and the distance between collocation points. 

Figure 13 illustrates the response computed for frequencies of 125 Hz, 250 Hz, 500 Hz 

and 1000 Hz  using the three methods, for a set of receivers located at a depth of 2.50 m . It is 

clear that an excellent agreement occurs between all three models, with accurate responses 

being computed by all of them. It should be mentioned that the three approaches were found 

to be numerically efficient, and allowed overcoming the Green’s function’s convergence 

problems that occur when using the BEM together with the classic eigenfunction expansion, 

given by eq. (7). 

5.1 Comparison of the three numerical models 

The BEM model 1 makes use of Green’s functions based on the Ewald’s Method for 

each sub-region and the sub-region technique is employed, requiring only the discretization of 

a vertical interface. The Ewald’s method is used here in order to improve the convergence of 

the Green’s functions in terms of normal modes, particularly when the source and field points 

are located on the same vertical alignment, significantly improving the performance of the 

BEM. 
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Real part Imaginary part 

 
a1) 

 
a2) 

 
b1) 

 
b2) 

 
c1) 

 
c2) 

 
d1) 

 
d2) 

Figure 13. Response calculated at one horizontal line of receivers placed at depth of 

2.5 m  for the three numerical models: a) 125 Hz, b) 250 Hz, c) 500 Hz and d) 1000 Hz. 
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The BEM model 2 and the MFS model make use of Green’s functions based on the 

normal mode solution for each sub-region and the sub-region technique is again applied. Note 

that the convergence problem of the series in terms of normal modes occurs when the source 

and the receiver are positioned on the same vertical line, as the exponential term of the 

eigenfunction expansion is equal to one in this case ( x xx= ). In model 2, this problem is 

overcome by inclining the interface between the two sub-regions within the waveguide. 

Therefore, the convergence of these Green’s functions is fast and occurs with a small number 

of terms. In the MFS model, this convergence problem is also overcome because the virtual 

sources required to construct the response are never in the same vertical line of the collocation 

points, allowing a much faster convergence of the Green’s functions. 

The three numerical models were found to be numerically efficient, but it should be 

mentioned that the number of collocation points used to calculate the MFS results is two 

times smaller than the number of boundary elements used in the BEM models. Moreover, the 

MFS does not require the numerical and analytical integrations needed in the BEM models. 

Therefore, the MFS model was found to be the most efficient of the three proposed numerical 

approaches to study underwater acoustic wave propagation in the frequency domain. 

6  NUMERICAL EXAMPLES 

To illustrate the applicability of the proposed formulations, the problem shown in Fig. 14 

is analysed in this section using only the MFS model. In underwater acoustics, it is common 

to use the Transmission Loss ( 2 2
0TL 10Log( )p p= −  with 0p  being the pressure of the 

incident field generated by a point source at a distance of 1.00 m ) to calculate the response of 

a given underwater system. It is thus important to assess the influence of the step on the 

bottom of the sea using the TL. Once again, the acoustic medium is assumed to be water, with 

density of 31000kg m  and sound propagation velocity of 1500m s . 

 

Figure 14: Geometry of the numerical example. 
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Figure 15 displays the TL plots computed along the line of receivers placed 1.00 m 

below the free surface of the sea when an excitation source is at position (0.00 m,19.50 m) . 

In these plots, the dashed curve refers to the reference case of a waveguide with free surface 

and flat rigid bottom, while the continuous curve refers to the configurations of the proposed 

MFS model. A vertical dashed line is also included to mark the transition between the two 

sub-regions of different depth of the waveguide. The transmission loss is computed for four 

different excitation frequencies, so that the response includes the contribution of 1 (50 Hz ), 3 

(100 Hz ), 5 ( 250 Hz ) and 13 (500 Hz ) propagating modes of the waveguide with constant 

depth of 20.0 m . 

For all frequencies, the TL responses of the waveguide containing a step up present 

significant differences in relation to the TL responses considering only a horizontal 

waveguide. It can be seen that the TL curves in this waveguide exhibit only few oscillations 

along the computed receivers for frequencies of 50 Hz  and 100 Hz , whereas for the 

frequencies of 250 Hz  and 500 Hz  the TL curves show a sequence of peaks corresponding to 

a large number of propagating modes within the system, particularly at the frequency of 

500 Hz . However, when the waveguide containing a step up is considered, a pronounced 

interference occurs between the source and the step up related to the waves that are reflected 

by the step, particularly at the higher frequencies ( 250 Hz and 500 Hz ). Therefore, the values 

computed for the TL tend to be closer to those responses calculated for the waveguide (see 

Figs. 15(c) and (d)). For this reason, the TL plots are more difficult to be analysed at the 

higher frequencies due to the pronounced interference between the reflections that occur 

within this system due to presence of the step up. It is important to note that the lower 

frequencies produce less propagating modes with higher amplitudes, while the higher 

frequencies allow a large number of propagating modes. 

For the lower frequencies ( 50 Hz and 100 Hz ), the receptors further away from the 

source have a constant TL, indicating that there are few propagating modes (see Figs. 15(a1), 

(b1) and (b2)), while Fig. 15(a2) displays a different characteristic, with an exponential 

increase of the TL when the wave travels farther away from the source. This behaviour 

indicates that there are no propagating modes and only evanescent waves occur, characterized 

by a pronounced and progressive decay of the energy in this part of the channel due to its 

lower depth. 
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Step up of 10.00 m Step up of 15.00 m 

 
a1) 

 
a2) 

 
b1) 

 
b2) 

 
c1) 

 
c2) 

 
d1) 

 
d2) 

Figure 15: TL in a waveguide containing a step up with different heights on the bottom 

of the sea for frequencies of: a) 50 Hz , b) 100 Hz , c) 250 Hz  and d) 500 Hz . 
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Time domain responses are computed in shallow water acoustic problems for the 

identification of important features related to the presence of a step on the seabed, which are 

not clearly visible in frequency domain analyses. In this work, time domain signals are 

computed by means of an inverse fast Fourier transform. The pressure field generated by a 

point source in the spatial-temporal domain is assumed to be defined by a Ricker wavelet. Its 

Fourier transform is 

2i 2
0( ) A 2 e e− −Λ = Λ 

stU t ωω π , (21) 

where A is the amplitude, 0 2Λ = tω ; st  is the time when the maximum occurs, while 0tπ  is 

the characteristic (dominant) period of the wavelet. 

The analysis uses complex angular frequencies with 0.7= ∆ζ ω  to avoid the aliasing 

phenomena. In the time domain this shift is later taken into account by applying an 

exponential window e tζ  to the response [20]. 

A relation of 5 was adopted between the wavelength of the incident waves and the 

distance between collocation points. The distance between the virtual sources and the 

collocation points was always 5 times the distance between the collocation points. 

The calculations were performed over a frequency range from 2.0 to 1024.0 Hz, 

assuming a frequency step of 2.0 Hz, which gives a total time of T 500 ms= . The pressure 

field was computed over a grid of receivers, equally spaced 0.25 m∆ =x  and 0.25 m∆ =y . A 

sequence of snapshots displaying the pressure field computed within the channel at different 

time instants is presented to better illustrate the acoustic wave propagation pattern. In all the 

analyses in the time domain, the responses provided by a flat seabed of constant depth were 

displayed and used as a reference solution. 
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Figure 16: Time domain responses when a point source excites the channel without and with a 

step up on the bottom of the sea for different instants: a) 21.3623 ms; b) 29.1748 ms; c) 

34.0576 ms; d) 46.7529 ms and e) 58.4717 ms. 

 

The channel is excited by a point source placed at position (0.00 m,19.50 m)  and the 

acoustic wave propagation of a Ricker pulse generated by this point source with a 

characteristic frequency of 400 Hz is modelled. The first column illustrates pressure 

distribution snapshots in a waveguide with flat bottom and free surface while the second and 

third columns depict the plots in the presence of step ups of 10.00 m and 15.00 m, 
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respectively. Figure 16 (a1-a3) displays a snapshot for time instant t 21.3623 ms= , where an 

incident pulse (P1) can be seen, although it is already combined with a first reflection from 

the rigid bottom of the sea. In the presence of the step, it is also possible to observe the first 

reflection from the bottom discontinuity (P2). Later, at time instant t 29.1748 ms= , the 

second reflection is visible (P3). In addition, at this time, the first reflection generated at the 

free surface can also be easily identified (P4), with inverted polarity (Figs. 16 (b1-b3)). At 

time t 34.0576 ms= , a diffracted pulse (P5) with a very low amplitude is generated at the 

bottom discontinuity (see Figs. 16(c2) and (c3)). In these figures, another diffracted pulse on 

the top of the step up is also visible (P6). In the plots of Fig. 16(d2) and (d3), at time instant 

t 46.7529 ms= , a reflected pulse (P7) in the rigid bottom can also be easily observed. As 

time passes (Figs. 16(e2) and (e3)), the pulses reflected and diffracted on the surfaces of the 

channel have generated wave fronts, some propagating towards the higher region of the 

channel and others propagating towards the lower region of the channel. It is important to 

note that several wave fronts are generated by reflections on the waveguide, and by reflections 

and diffractions on the bottom discontinuity between the two regions of the channel, and so, 

as time elapses, a growing number of reflections and diffractions are registered in the higher 

region of the channel. This behaviour is more pronounced when a step up of 15.00 m is 

considered. 

Figure 17 displays the time domain response at receivers placed along a horizontal line at 

co-ordinates 19.00 m=y  ( 10.00,  20.00, 30.00, 40.00, 50,00 m)=x , to better illustrate the 

phase inversion each time a pulse hits the free surface. As the distance x increases, the time 

responses become more complex because of the multiple reflections and diffractions that 

occur within the channel containing a step up on the bottom. 
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Figure 17: Time domain response at receivers placed along a horizontal line: a) step of 10.00 

m; b) step of 15.00 m. 

7  CONCLUSIONS 

In this paper, the Boundary Element Method and the Method of Fundamental Solutions 

were used to simulate two-dimensional acoustic wave propagation in a shallow water 

configuration in the frequency domain, considering a step up on the bottom of the sea. The 

time domain responses were obtained through an inverse fast Fourier transform of numerical 

results computed in the frequency domain. Appropriate Green’s functions were employed, 

limiting the required discretization and reducing the computational cost of the proposed 

models. These Green’s functions were obtained either by classic eigenfunction expansion or 

by Ewald’s method. An excellent agreement was obtained between the three proposed models 

and all three approaches were found to be numerically efficient. In addition, the Green’s 

function’s convergence problems that occur when using the boundary integral equation 

formulation together with the eigenfunction expansion were overcome. The numerical 

examples demonstrated the use of the proposed models in the analysis of wave propagation in 

shallow water. In addition, the presented cases of a waveguide containing a step up with 

different heights, allowed identifying relevant differences in the sound propagation patterns in 

the underwater acoustic problem in the frequency and the time domain. 

 

Appendix A. Ewald’s representation 

The underlying idea of Ewald’s representation is to split the integral from 0 to ∞ into two 

parts [12]: 

2
2(( ) 4 )

E1 F F
10

2 1( , ) sin ( ) sin ( )
4

m

b
t x x t

ym ym
m

G e k Y y k Y y dt
H t

xλ
xπ

∞
− −

=

   = − −   ∑∫ξ x , (A.1) 

2

2

(( ) 4 )

E2 F F
1

2( , ) sin ( ) sin ( )
4

mt x x t

ym ym
m b

eG k Y y k Y y dt
H t

xλ

x π

− −∞∞

=

   = − −   ∑ ∫ξ x , (A.2) 

where the parameter b  which divides these integrals is chosen appropriately, taking into 

account the position of the source and field points [9]. 
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In Ewald’s approach, the integrals in Eqs. (A.1) and (A.2) are manipulated in order to 

obtain a Green’s function involving rapidly decaying series of special functions. The final 

expression of the Ewald’s representation is: 

E
0 1 0

F F

1

( )

( )

1 cos( )( , ) ( , ) ( , )
4 4

sin ( ) sin ( )
                

2

( )
erfc

2
                

( )
erfc

2

m

m

n mn
n m n

ym ym

m m

x x
m

x x
m

mG C C

k Y y k Y y

H

x x
e b

b

x x
e b

b

x

x

x

λ x

λ x

π
π π

λ

λ

λ

∞ ∞ ∞

= = =

∞

=

− −

− − −

= + +

   − −   + ×
−

 − 
− + + 

 ×
− 

+ − − 
 

∑ ∑ ∑

∑

ξ x ξ x ξ x


 
 
 
 
 
 

, 

(A.3) 

where erfc( )z  is the complementary error function [21] and the coefficients ( , )nC ξ x  and 

( , )mnC ξ x  are defined as: 

2 2
1 2

1 12 2( , )
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n n n
a ak bC E E

n b b+ +
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  
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∑ξ x , (A.4) 

with 1nE +  the exponential integral function [21] and the coefficients 1a , 2a  and jma  defined 

as: 
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2 2

4

( ) (2 )
4m

x x Hm y y
a x x− + − +

= . (A.5) 

An appropriate function to define the parameter b was selected based on the following 

considerations: the parameter b should vary between 0 and 1 (0 1)b< <  to accelerate the decay 

of the term containing 2nb , and it should also have a very small value near the singular points. 

The first singular point is located where the source and field points coincide, i.e. when 0r →

while the second  type of singularity appears when the special function 𝐸𝐸𝑛𝑛+1(𝑎𝑎2 𝑏𝑏2⁄ ) in Eq. 

(A.4) goes to infinity as the parameter 𝑎𝑎2 in expression (A.5) goes to zero. These singular 

points are shown in Figure A.1.  

For the variation of the field point x , with co-ordinates ( , )x y , in a vertical line 

containing the fixed source point ξ , with co-ordinates ( , )x yx x , ( )b b  can be defined in the 

following form: 

[ ]( ) cos( ) 1
2

b αb bπ γ= + + , (A.6) 

where α  and γ  are constants and β  is a value that depends on the depth y  of the 

waveguide, as illustrated in Fig. A.1. Considering the general case (two singular points), β  

can be defined as [9]: 

0 0
0

2
F 0 F 0

0

1    for 

1    for 2 2

0           for  outside the above intervals 

r y y y

a Y y y Y y

y

ξξ

ξξ

b b
b

b b b
b

 + − ≤ ≤ +



= + − − ≤ ≤ − +





 (A.7) 

with 0 Hβ θ=  being θ  a constant and r y yξ= − . The constants α , γ  and θ  are assigned 

empirical values. 
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Figure A.1: Function used as parameter β , considering source and field points located on the 

same vertical alignment. 
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