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Abstract

An h-adaptive finite element code for solving coupled Navier-Stokes and energy equations
is used to solve the thermally driven cavity problem for Rayleigh numbers at which no
steady state exists (greater than 1.9x108). This problem is characterised by sharp thermal
and flow boundary layers and highly advection dominated transport, which normally
requires special algorithms, such as streamline upwinding, to achieve stable and smooth
solutions. It will be shown that h-adaptivity provides a suitable solution to both of
these problems (sharp gradients and advection dominated transport). Adaptivity is also
very effective in resolving the flow physics, characterised by unsteady internal waves and
separation zones. Fundamental frequencies, generated by unsteady internal waves, are
calculated for three Rayleigh numbers; 2 x 10%, 3 x 10® and 4 x 10% using a Prandtl
number of 0.71 and results are compared with other published results.

1 Introduction

It is well known that h-adaptive FEM is very well suited to modelling scalar and vector
fields containing sharp gradients by automatically refining the spatial discretisation to
‘fit’ the solution. The refinement is normally based on some a-posteriori estimation of
the discretisation error. In previous papers [1,2] the authors have clearly shown that
for transient flow and transport problems, where advection is the dominant mechanism,
h-adaptive FEM fulfils another very important role. It removes the requirement of intro-
ducing any special algorithm for treatment of the ‘wiggles’ generated by using numerical
schemes which are essentially of a ‘central difference’ type, as is the case with the standard
Galerkin finite element formulation, often referred to as GFEM. There has been a great
deal of controversy over the special schemes that are used to ‘suppress the wiggles’ [3],
however some of the best schemes, for instance SUPG [4], have been highly successful in
providing a mathematically consistent framework, by using non-Galerkin formulations for
such problems. In a previous paper [1], Usmani clearly demonstrated that if h-adaptive



FEM is used for transient pure-advection problem (the rotating cone or cosine-hill prob-
lem) than the GFEM and SUPG solutions are practically indistinguishable. This was a
confirmation of the original assertion by Gresho and Lee [3], ‘don’t suppress the wiggles
they are telling you something’. The authors tested this further [2] for a coupled flow
and heat transfer problem (thermally driven cavity problem for Rayleigh numbers up to
10 x 10®) with the same conclusion. The exercise here is partly to test the h-adaptive
GFEM solution procedure further, for even higher Rayleigh numbers when no steady state
solutions exist.

Modelling the effects of a temperature difference across a square cavity has many im-
portant technical applications. A thorough understanding of the convective processes
present at high Rayleigh numbers is critical in assessing the transport of heat in nuclear
reactors, solar collectors and buildings. The thermally driven cavity problem also serves
as a convenient benchmark test for new programs [5], which is another purpose of this
exercise, as the authors are using this program (CADTRAS) to model the transport of co-
hesive sediments in estuarine waters, which are characterised by sharp density interfaces.
The program was thoroughly tested by solving the thermally driven cavity problem for
Rayleigh numbers up to 1.0 x 10® [2] and comparing results in considerable detail with the
best available benchmark solutions. In this paper detailed solution of the same problem
is undertaken for Rayleigh numbers; 2 x 108, 3 x 10® and 4 x 108.

Bergholz [6] and Patterson et al [7] both discuss important features that are present in
the development of a transient solution for high Rayleigh number cavity flows. Prandtl
number strongly influences the transient development of the buoyancy driven flow fea-
tures. The separation and recirculation observed in the departing corners becomes less
pronounced and eventually disappears as the Rayleigh number is increased [6,8]. The cor-
ner regions are particularly important in the development of the flow over time. Ivey [9]
proposed that the corner flow regions were characteristic of a hydraulic jump however
Ravi et al [8] have concluded that this was not possible for several reasons. Among these

e Theory of hydraulic jumps does not explain the separation of flow at the horizontal
boundaries.

e There is no substantial energy loss associated with the departing corner flow.

e The Froude number dependency appears to be arbitrary.

They propose that the flow structure in the departing corner is solely dependent on ther-
mal effects, producing a separation and recirculation of the boundary layer. They also
state that the separation zone that characterises the departing corner for high Rayleigh
number flows, does not form beyond a Prandtl number of 1.2, similarly the recirculation
zone disappears for Prandtl numbers above 1.4. They go on to say that this is due to the
core temperature distribution suppressing large undershoots of temperature at the bound-
aries. Several researchers discuss the oscillatory behaviour of the flow at high Rayleigh
number due to internal wave instability, [10-13]. Chenoweth and Paolucci [10] present
power spectra plots of temperature time trace data, giving values of two key frequencies



that dominate high Rayleigh number flows; the frequency of the boundary layer on the
vertical wall and the frequency of wave breaking at the departing corners. The decrease
in thickness of the boundary layer with increasing Rayleigh number imposes a constraint
on the solution of the problem, [10,12,14], requiring a high level of discretisation.

2 Governing equations

The governing equations have been written for a constant density, incompressible Newto-
nian fluid using the Boussinesq approximation to model buoyancy.

Continuity
V:v=20 on Q (1)

where v represents the velocity and €2 represents the domain.

Nauwvier-Stokes

p(aa—‘tf—i-v-Vv)—l-VP = V-u[Vv+(VV)T]—pgﬂ(T—TT) on (2)

subject to boundary conditions:

F = Pn—u{Vv+(Vv)T] ‘n on [p (3)
v = v(z,y,t) on T, (4)

and initial conditions:
v(t=0)=v, with V.v,=0 (5)

4 is the dynamic viscosity, g is the acceleration due to gravity, S is the volumetric co-
efficient of thermal expansion, 71" is the temperature, 7, is a reference temperature, F
represents the applied tractions on the boundary I'r, n is the unit normal vector and ¥
is the Dirichlet boundary condition for velocity on the part of the boundary T,,.

Energy

88—7;+V-VT = V-kVT on € (6)

subject to boundary conditions:

n-(kVT) = ¢ on Ty (7)



and initial conditions:

Tt=0) =T, (9)

where ¢ is a specified normal heat flux on the boundary I'g, T is the Dirichlet boundary
condition for temperature on the boundary I'r and & is the thermal diffusivity given by,

K= — (10)

where, k is the thermal conductivity, p is the fluid density and C, is the specific heat
capacity.

2.1 Finite Element Formulation

The program is based on the Galerkin Finite Element Method (GFEM), solving for the
primitive variables: u-velocity, v-velocity and T-temperature at all nodes in the mesh and
P-pressure at a reduced level of interpolation to avoid spurious pressure modes, using a
mized formulation for the Navier-Stokes equations. The Navier-Stokes and energy equa-
tions were coupled by the Boussinesq approximation for buoyancy. Notation used here is
as used by Gresho et al, [15,16]. The Galerkin FEM discretisation produces a system of
ODE’s as follows:

Nauwvier-Stokes

M, 0 0] [ Ky Cu Ku] [u F,
0o 0 o ||[P|+|CT o CT||P|=1|0
0 0 M,|\v Ky Cv Koo \v F,

Where M, K, C and F represent the mass matrix, viscous stress matrix, pressure gra-
dient matrix and global force vector respectively. The first to third rows represent the
r-momentum, continuity and y-momentum equation respectively. The right hand side
vector F, contains the coupling buoyancy term.

Energy

[Mz](T) + [Kr](T) = (Fr)

Expansion of all terms can be found in Usmani et al [17]. The two systems of equations
above are solved as a coupled system, with the K¢ term containing the velocities (obtained
from solving the flow field) and the Fy term containing the buoyancy forces (determined
by the temperature field).



2.2 Temporal discretisation

Temporal discretisation of the time domain is achieved by applying the generalised mid-
point rule, [18,19].

Mita 1 -« Foia
+Kn+a] (gn-l-l) = [QAJ; _( o )Kn-l—a (gn)"'( a+)

[Mnm (1)

at

Variation of « leads to different members of this family of methods i.e.

o = 0 -Forward Difference or Forward Euler.

a = % -Midpoint rule or Crank Nicolson.

o = % -Galerkin.

a = 1 -Backward Difference or Backward Euler.

The Crank Nicolson, Galerkin and Backward Euler schemes are all unconditionally stable,

however, of these methods the oscillation limit is lowest for a = % The time step size

chosen for all Rayleigh numbers is small enough to avoid an oscillatory solution when

using a = % The choice of unconditionally stable implicit methods is enforced by the
use of h-adaptivity as the smallest elements determine the stability of conditionally stable

explicit methods, which makes them impractical for use in this context.

The formulations described above were implemented in the implicit transient FE code
CADTRAS (Coupled Advective Diffusive TRAnSport model), which was used to solve
the thermally driven cavity problem. The code incorporates an unstructured Delaunay
triangulation based mesh generator [20], which allows automatic adaptive re-meshing to
take place at each time step if necessitated by the a-posteriori error estimation algorithm.
Six-node triangular elements are used for all the meshes.

3 Adaptivity

The use of h-adaptivity enables the solution of this problem at high Rayleigh number with-
out the necessity of designing a suitable mesh at first and going through a trial-and-error
process. Adaptivity automatically produces an optimal mesh based on a user specified
discretisation error thus saving computational time and focusing effort intelligently over
successive time steps on areas of high scalar gradients (which for this problem coincide
with the areas of high velocity gradients). There are five distinct steps to the iterative
adaptive process used here :

1. Solution of the coupled system

2. Recovery of smoothed scalar gradients using the super-convergent patch recovery
(SPR) method [21]



3. Error Estimation using the a-posterior: error calculated at all nodes in the mesh for
the scalar field

4. Re-meshing based on the mesh sizes produced from the previous step

5. Transfer of all data to the new mesh

Recovery

The temperature field generated by the finite element method is most accurate at nodal
points whereas the temperature gradients are most accurate at (Gaussian integration
points, known as the super-convergence phenomenon. Hinton and Campbell [22] showed
that finite elements produce superior values of temperature gradient at node points after
application of a smoothing procedure. Their method was based on a global smoothing
scheme requiring the solution of a large system of equations. A more efficient and effec-
tive procedure was introduced by Zienkiewicz and Zhu [21], called super-convergent patch
recovery (SPR). The smoothed nodal gradients are calculated from the Gauss points on a
patch of elements surrounding a node, using a least squares interpolation, for each node
in the mesh.

Error Estimation

The error estimator used was originally derived for heat conduction [23]. Mathematical
justification of using such an estimator for the problem of this paper does not exist,
however as the estimator used is based on the scalar flux, it has proven very effective in
detecting regions of high scalar gradient, which in practice is sufficient for the purposes
of this paper. The a-posteriori error is based upon an energy norm (see [23]),

lle||2 = /Q(VT)TWTdQ - /Q(VT)T/-CVTdQ (12)
if we define,
Q|2 = /Q (V)" kVTdS
102 = /Q (VD) kVTdQ (13)
then Equation (12) can be rewritten as
lel]” = llQII” - |QII” (14)

Such a definition allows a practical representation of the error norm in terms of a per-
centage error 7,
lel]
n=—x100% (15)
Q|

Re-meshing and mesh generation

Specification of a permissible error 7 determines the level of refinement throughout the
mesh, leading to a predicted reduction or increase in the element sizes so that the new



mesh may possess an approximately equal distribution of error. The maximum permissible
error for each element is calculated as,

jell, = n(%”Q)% (10

where m is the number of elements, 7 is the specified maximum percentage error. Dividing
||é]|, by the calculated error in an element yields a parameter &, as follows,

- (17)

i.e. if & > 1 the mesh must be refined in the vicinity of element e, conversely, if £ < 1
the mesh may be coarsened. The new element size is calculated using,

he - (18)

where h, is the original element size and p is the order of the element shape functions.
Mesh data transfer

Ensuring proper transfer of variables between meshes is crucial for conservation of quan-
tities such as energy and momentum. A transfer strategy using local coordinates of nodal
points and elemental shape functions has been used that maps the mesh data accurately.
The local coordinates (£ —n) of each node in the adapted mesh are determined with re-
spect to the elements of the previous mesh. Element shape functions are then used to
interpolate the data onto the new mesh nodes.

4 The Benchmark Problem

The problem involves modelling fluid flow in a two dimensional square cavity of typical
dimension L with the two vertical walls being maintained at a temperature difference of
AT . The top and bottom walls are insulated and the velocities at all boundaries set
to zero. The fluid inside the cavity is initially at rest and at a temperature which is the
mean of the temperatures on the vertical walls. The resulting flow can be described by
the Rayleigh number:

ATL?

VK

Ra = GrPr = g¢gp

(19)
where g is the acceleration due to gravity, S is the coefficient of volumetric expansion, L
the typical dimension of the cavity, AT is the temperature difference between the vertical

walls, v is the kinematic viscosity and « is the thermal diffusivity.
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The following non-dimensional groups are used in the analysis and presentation of the
computational results:

Velocity
ul
ut = 7L (20)
v
vt o= — (21)
Temperature T
T = T —T22 (22)
Coordinates
= < (23)
yo= 7 (24)
Time
o= z—’; (25)

where * indicates the the non-dimensional quantity. T} and T5 are the fixed temperatures
at the two side walls of the cavity.

The Nusselt number is calculated at each node in the domain using

Nu = uT — — 2
w= ol - (26)

where the temperature gradient is obtained by the gradient recovery process.

4.1 Departing Corner Flow

It is important to understand the mechanism that generates the destabilising internal
waves, dictating the pattern of the flow field. As mentioned in the introduction, Ravi
et al [8] set out a description of the flow behaviour in the departing corners and give a
mechanism for its creation. The left cavity region next to the vertical boundary carries
flow at large velocities. This flow, after departing the corner, slows down, the isotherms
that were packed closely together at the wall boundary spread out over a much thicker
layer. The highest velocity layer, nearest the to the hot boundary experiences the greatest
change in velocity after passing the departing corner. A slightly cooler layer (travelling
at a slightly lower velocity) next to the hot layer is forced to slide over it in the corner
region. This causes a sharp reversal in velocity as the cooler boundary layer plunges
abruptly back into the cooler core, resulting in the characteristic u-shape isotherm. At
high Rayleigh numbers the downward force of the negatively buoyant plume is enough
to cause separation of flow from the horizontal boundary. Recirculation occurs when the
fluid is re-entrained into the vertical wall boundary from the plume.



5 Results

Values of u-velocity, v-velocity and temperature were recorded over the duration of the
simulation for all three Rayleigh numbers; 2x10%, 3x10® and 4x10%. They where recorded
at a point x = 0.1032, y = 0.8036 within the unit square cavity, following Chenoweth et
al [10]. This point falls in a particularly sensitive location regarding the oscillatory nature
of the boundary layer. Figures 1 and 2 show time trace histories for all three variables.
The temperature time history data was also converted from the time domain into the
frequency domain using Fast Fourier Transform (FFT) analysis, this allows frequencies
that characterise the time plots to be seen more clearly, see Figure 2.

The graphs showing primitive variable time histories for Ra = 2 x 108, figures 1(a),1(b),
2(a) show convergence to a periodic oscillation. Each plot is dominated by one fundamen-
tal frequency. This fundamental frequency is generated by the internal boundary layer
instability at the departing corners.

Figure 2(b) shows one very clear spike, indicating the fundamental frequency, with a
value of 546.9 Hz. The Ra = 3 x 10® time histories show a clear waveform consisting
of more than one frequency, exhibiting quasi-periodic behaviour. The FFT plot, figure
2(d), reveals a clear fundamental frequency at 651.0 Hz. followed by several small, high
frequency components. The time history graphs for Ra = 4 x 10® show mildly chaotic,
quasi-periodic behaviour, as previously shown by Chenoweth and Paolucci [10]. The
fundamental frequency as per figure 2(f) is 781.3 Hz. There is also an increased amount
of high frequency background noise.

It is clear from the results that an increase in Rayleigh number is accompanied by an
increase in the fundamental frequency of the oscillation. Chenoweth et al [10] present a
table of results showing a similar increase in frequency with Rayleigh number however
the values they obtained were slightly higher; 630.3, 737.7 and 850.2 for Ra = 2 x 108,
3 x 108 and 4 x 10® respectively.

The frequency plot for Ra = 3 x 108, figure 2(d), shows a clear high amplitude fundamental
frequency followed by several low amplitude high frequencies. The amplitude of the
fundamental frequency is significantly larger than that of 2 x 10% and 4 x 10®. For 3 x 10®
the majority of the spectral energy resides in this spike while in the other Rayleigh numbers
this energy is divided up between the fundamental frequency and other more substantial
higher frequency components. The spectral plots presented by Chenoweth and Paolucci
[10] show the same phenomenon but on a log scale for amplitude.

5.1 Rayleigh number behaviour scale

Figure 3 has been constructed on the basis of results presented in several research papers,
[10,12,24]. The first important threshold marked on the diagram is Ra = 1.9 x 108. This
represents the transition from steady state flow to unsteady periodic flow, as recorded
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Figure 1: Time trace histories at x = 0.1032, y = 0.8036 for U and V velocities.
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Figure 3: Rayleigh number versus behaviour

by Chenoweth et al [10] and Le Quere [25]. Chenoweth and Paolucci go on to predict
two more regions of transition; instability of the wall boundary layers leading to quasi-
periodic flow near 2.7 x 10® and a further change to mildly chaotic flow somewhere between
3 x 10% and 4 x 10%. Very similar behaviour is noticed in the presented results, in that
at Ra = 2 x 108 the flow is periodic, at 3 x 10® the flow is clearly quasi-periodic and at
4 x 108 the flow is still maintains its quasi-periodic nature but shows signs of chaoticity,
see Chenoweth et al figure 13 [10].

5.2 h-adaptivity and its role in the solution

Figure 4 shows a sequence of meshes produced during the solution of the thermally driven
cavity problem for Ra = 4 x 10%. There were a total of 750 time steps producing 13
separate adaptive meshes during the simulation, six are shown to highlight the effective
capture of important flow features. The corresponding velocity vectors and temperature
contours are shown in Figures 5 and 6.

Mesh 1 - This is the pre-adaptive mesh i.e. the result of a number of re-meshing cycles
based on the boundary conditions. The area around the vertical boundary layers is heavily
discretised to capture the steep temperature gradients.

Mesh 6 - The boundary layer has rounded the corner and is moving across the horizon-
tal surface. The mesh follows the temperature front as it moves, some degree of flow
separation is manifested in the mesh at the departing corner.

Mesh 8 - The boundary layer is half way across the cavity, there are two distinct regions
that form the leading edge of the intrusion; the separated zone and the boundary layer
still attached to the horizontal surface.

Mesh 10 - The boundary layer has reached the opposite vertical boundary. A continuous
plume stretches across the cavity.
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| | 2x10° | 3x10° | 4x10® |

Numax, y | 6.7140 x 1073 | 6.7031 x 1073 | 6.7328 x 10*
Numin, y 1.0 1.0 0.9938

Table 1: Nusselt number positions for each Rayleigh number

Mesh 12 - The boundary layer has diffused into its surroundings to some degree causing
the temperature gradients to decrease. The mesh has coarsened in these areas accordingly.

Mesh 13 - The highest level of discretisation is focussed in the departing corners capturing
the zone of boundary layer recirculation. The centre of the recirculating eddy is just visible
as an area of lower discretisation near the corner. The flow has settled down considerably,
however the separated boundary layer is moving back and forth quasi-periodically. This
is the last re-meshing cycle of the run, the temperature gradients are only varying around
the departing corners and they have been discretised adequately to capture the unsteady
internal waves.

Figures 5 to 7 show the development of the velocity field and temperature contours over
time. The isotherms become increasingly stratified resulting in the distribution shown
in Figure 7(f). The flow is mildly chaotic and unsteady but still retains a high degree
of structure. The asymmetry of the flow, apparent in the isotherms and velocity vector
plots in figures 5, 6 and 7, is mentioned by Chenoweth and Paolucci [10]. They suggest
that the loss of symmetry is due to the quasi-periodic nature of the flow generated by
presence of two different fundamental frequencies i.e. the internal wave and wall boundary
oscillations.

Figure 8 shows the time history of temperature recorded at two points for Ra = 2 x
108, one at z = 0.1032, y = 0.8036 and the other at x = 0.8968, y = 0.1964. The
fundamental frequencies of the two time traces are very similar but there is an obvious
difference between the two time history plots in figure 8. Unfortunately the lower time
trace seems ‘damped’ compared to the top trace, this is due to the effect of unstructured
mesh generation. The application of a structured mesh generator should remove this
problem and allow a thorough analysis of any possible phase differences, however this is
beyond the scope of this paper.

Table 1 shows the vertical positions of of maximum and minimum Nusselt numbers for
the three Rayleigh numbers presented. Figures 9, 10 and 11 show the variation of Nusselt
number over a period of time. The maximum, minimum and average Nusselt number on
the boundary x = 0.0 plotted against dimensionless time are shown. All nine plots show
that the value of Nusselt number at the vertical boundary show periodic variation. The
time histories of maximum and average Nusselt numbers show small amplitude oscilla-
tion while the minimum Nusselt number is more sensitive to the unsteady nature of the
flow, exhibiting larger amplitude oscillation, becoming more pronounced with increasing
Rayleigh number.
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0.00138; (f) t* = 0.00156.

= 0.00066; (e) t* =

0.00044; (d) t*

t*
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(a) Time step 1, velocity vectors. (b) Time step 1, isotherms.

(e) Time step 22, velocity vectors. (f) Time step 22, isotherms.

Figure 5: Velocity vectors and isotherms for Ra = 4 x 10® at (a),(b) t* = 0.0; (c),(d)
£ = 0.00028; (e),(f) ¢* = 0.00044.
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(d) Time step 69, isotherms.

~

—

(e) Time step 78, velocity vectors. (f) Time step 78, isotherms

Figure 6: Velocity vectors and isotherms for Ra = 4 x 10® at (a),(b) ¢* = 0.00066; (c),(d)
# = 0.00138; (e),(f) t* = 0.00156.
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(a) Time step 188, velocity vectors.

(e) Time step 748, velocity vectors.

(b) Time step 188, isotherms.

(d) Time step 468, isotherms.

(f) Time step 748, isotherms

Figure 7: Velocity vectors and isotherms for Ra = 4 x 10® at (a),(b) #* = 0.00376; (c),(d)

#* = 0.01808; (e),(f) t* = 0.03488.
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Figure 8: Temperature time trace for Ra = 2 x 10%

6 Conclusions

It was demonstrated that h-adaptivity with GFEM provides a powerful means of solving
difficult problems such as the thermally driven cavity problem at high Rayleigh numbers
characterised by; thin boundary layers, separation and recirculation zones and oscilla-
tory internal waves dominating the flow behaviour. The use of h-adaptivity produces
an accurate, efficient and economical solution to this problem. The accuracy compared
favourably with other published solutions. h-adaptive methods with automatic mesh
refinement based upon the actual physics of the problem are inherently efficient as no
development time is required to create the ‘right’ mesh for a problem. They are also
economical as an ‘optimal’ discretisation is produced for a desired level of accuracy, with
grid-points placed only where they are needed. The actual computational time is divided
between the solution of the discretised governing equations and the adaptive process (gra-
dient recovery, error-estimation and mesh refinement). The adaptive process accounts for
only 0.25% of the total CPU time. This can be reduced considerably by using simpler
structured meshes with a mesh enrichment method of refinement.

It is clear that this problem is dominated by the advective transport mechanism, however
the solutions achieved do not rely upon any special scheme for advection dominated flow,
such as SUPG etc. This is a very significant additional benefit of using adaptivity in the
context of transient problems (especially when a pre-adaptive cycle is performed on the
initial conditions). This was alluded to by an early paper by Gresho et al [3] and recently
demonstrated by Usmani [1].

Fundamental frequencies were calculated for three Rayleigh numbers; 2 x 10%, 3 x 10®
and 4 x 10%. These frequencies were found to be slightly lower than previously calculated
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Figure 9: Time plots of Nusselt number on z = 0.0 for Ra = 2 x 108
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Figure 10: Time plots of Nusselt number on z = 0.0 for Ra = 3 x 108
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Figure 11: Time plots of Nusselt number on z = 0.0 for Ra = 4 x 108
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by [10]. The primitive variable time history results indicate that the transition from
periodic to quasi-periodic and quasi-periodic to mildy chaotic flow match those compiled
from past results. Further details such as the possible phase differences between the
oscillations at the two departing corners could not be investigated here as an unstructured
mesh generator was used in this work. Unless one is prepared to refine to a much lower
mesh size (which will be very expensive) it is difficult to separate the effects caused by
small differences in the local mesh refinement and genuine flow features. A structured
mesh version of this program is under development, which will allow such investigations
to be undertaken reliably.
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