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hool of Civil and Environmental Engineering, University of EdinburghAbstra
tAn h-adaptive �nite element 
ode for solving 
oupled Navier-Stokes and energy equationsis used to solve the thermally driven 
avity problem for Rayleigh numbers at whi
h nosteady state exists (greater than 1:9�108). This problem is 
hara
terised by sharp thermaland 
ow boundary layers and highly adve
tion dominated transport, whi
h normallyrequires spe
ial algorithms, su
h as streamline upwinding, to a
hieve stable and smoothsolutions. It will be shown that h-adaptivity provides a suitable solution to both ofthese problems (sharp gradients and adve
tion dominated transport). Adaptivity is alsovery e�e
tive in resolving the 
ow physi
s, 
hara
terised by unsteady internal waves andseparation zones. Fundamental frequen
ies, generated by unsteady internal waves, are
al
ulated for three Rayleigh numbers; 2 � 108, 3 � 108 and 4 � 108 using a Prandtlnumber of 0.71 and results are 
ompared with other published results.1 Introdu
tionIt is well known that h-adaptive FEM is very well suited to modelling s
alar and ve
tor�elds 
ontaining sharp gradients by automati
ally re�ning the spatial dis
retisation to`�t' the solution. The re�nement is normally based on some a-posteriori estimation ofthe dis
retisation error. In previous papers [1, 2℄ the authors have 
learly shown thatfor transient 
ow and transport problems, where adve
tion is the dominant me
hanism,h-adaptive FEM ful�ls another very important role. It removes the requirement of intro-du
ing any spe
ial algorithm for treatment of the `wiggles' generated by using numeri
als
hemes whi
h are essentially of a `
entral di�eren
e' type, as is the 
ase with the standardGalerkin �nite element formulation, often referred to as GFEM. There has been a greatdeal of 
ontroversy over the spe
ial s
hemes that are used to `suppress the wiggles' [3℄,however some of the best s
hemes, for instan
e SUPG [4℄, have been highly su

essful inproviding a mathemati
ally 
onsistent framework, by using non-Galerkin formulations forsu
h problems. In a previous paper [1℄, Usmani 
learly demonstrated that if h-adaptive1



FEM is used for transient pure-adve
tion problem (the rotating 
one or 
osine-hill prob-lem) than the GFEM and SUPG solutions are pra
ti
ally indistinguishable. This was a
on�rmation of the original assertion by Gresho and Lee [3℄, `don't suppress the wigglesthey are telling you something'. The authors tested this further [2℄ for a 
oupled 
owand heat transfer problem (thermally driven 
avity problem for Rayleigh numbers up to10 � 108) with the same 
on
lusion. The exer
ise here is partly to test the h-adaptiveGFEM solution pro
edure further, for even higher Rayleigh numbers when no steady statesolutions exist.Modelling the e�e
ts of a temperature di�eren
e a
ross a square 
avity has many im-portant te
hni
al appli
ations. A thorough understanding of the 
onve
tive pro
essespresent at high Rayleigh numbers is 
riti
al in assessing the transport of heat in nu
learrea
tors, solar 
olle
tors and buildings. The thermally driven 
avity problem also servesas a 
onvenient ben
hmark test for new programs [5℄, whi
h is another purpose of thisexer
ise, as the authors are using this program (CADTRAS) to model the transport of 
o-hesive sediments in estuarine waters, whi
h are 
hara
terised by sharp density interfa
es.The program was thoroughly tested by solving the thermally driven 
avity problem forRayleigh numbers up to 1:0�108 [2℄ and 
omparing results in 
onsiderable detail with thebest available ben
hmark solutions. In this paper detailed solution of the same problemis undertaken for Rayleigh numbers; 2� 108, 3� 108 and 4� 108.Bergholz [6℄ and Patterson et al [7℄ both dis
uss important features that are present inthe development of a transient solution for high Rayleigh number 
avity 
ows. Prandtlnumber strongly in
uen
es the transient development of the buoyan
y driven 
ow fea-tures. The separation and re
ir
ulation observed in the departing 
orners be
omes lesspronoun
ed and eventually disappears as the Rayleigh number is in
reased [6,8℄. The 
or-ner regions are parti
ularly important in the development of the 
ow over time. Ivey [9℄proposed that the 
orner 
ow regions were 
hara
teristi
 of a hydrauli
 jump howeverRavi et al [8℄ have 
on
luded that this was not possible for several reasons. Among these: � Theory of hydrauli
 jumps does not explain the separation of 
ow at the horizontalboundaries.� There is no substantial energy loss asso
iated with the departing 
orner 
ow.� The Froude number dependen
y appears to be arbitrary.They propose that the 
ow stru
ture in the departing 
orner is solely dependent on ther-mal e�e
ts, produ
ing a separation and re
ir
ulation of the boundary layer. They alsostate that the separation zone that 
hara
terises the departing 
orner for high Rayleighnumber 
ows, does not form beyond a Prandtl number of 1.2, similarly the re
ir
ulationzone disappears for Prandtl numbers above 1.4. They go on to say that this is due to the
ore temperature distribution suppressing large undershoots of temperature at the bound-aries. Several resear
hers dis
uss the os
illatory behaviour of the 
ow at high Rayleighnumber due to internal wave instability, [10{13℄. Chenoweth and Paolu

i [10℄ presentpower spe
tra plots of temperature time tra
e data, giving values of two key frequen
ies2



that dominate high Rayleigh number 
ows; the frequen
y of the boundary layer on theverti
al wall and the frequen
y of wave breaking at the departing 
orners. The de
reasein thi
kness of the boundary layer with in
reasing Rayleigh number imposes a 
onstrainton the solution of the problem, [10, 12, 14℄, requiring a high level of dis
retisation.2 Governing equationsThe governing equations have been written for a 
onstant density, in
ompressible Newto-nian 
uid using the Boussinesq approximation to model buoyan
y.Continuity r � v = 0 on 
 (1)where v represents the velo
ity and 
 represents the domain.Navier-Stokes� �v�t + v � rv!+rP = r � � hrv + (rv)T i� �g� (T � Tr) on 
 (2)subje
t to boundary 
onditions:F = Pn� � hrv + (rv)T i � n on �F (3)v = �v (x; y; t) on �v (4)and initial 
onditions: v (t = 0) = vo with r � vo = 0 (5)� is the dynami
 vis
osity, g is the a

eleration due to gravity, � is the volumetri
 
o-eÆ
ient of thermal expansion, T is the temperature, Tr is a referen
e temperature, Frepresents the applied tra
tions on the boundary �F , n is the unit normal ve
tor and �vis the Diri
hlet boundary 
ondition for velo
ity on the part of the boundary �v.Energy �T�t + v � rT = r��rT on 
 (6)subje
t to boundary 
onditions:n � (�rT ) = q on �Q (7)3



T = �T (x; y; t) on �T (8)and initial 
onditions: T (t = 0) = To (9)where q is a spe
i�ed normal heat 
ux on the boundary �Q, �T is the Diri
hlet boundary
ondition for temperature on the boundary �T and � is the thermal di�usivity given by,� = k�Cp (10)where, k is the thermal 
ondu
tivity, � is the 
uid density and Cp is the spe
i�
 heat
apa
ity.2.1 Finite Element FormulationThe program is based on the Galerkin Finite Element Method (GFEM), solving for theprimitive variables: u-velo
ity, v-velo
ity and T-temperature at all nodes in the mesh andP-pressure at a redu
ed level of interpolation to avoid spurious pressure modes, using amixed formulation for the Navier-Stokes equations. The Navier-Stokes and energy equa-tions were 
oupled by the Boussinesq approximation for buoyan
y. Notation used here isas used by Gresho et al, [15, 16℄. The Galerkin FEM dis
retisation produ
es a system ofODE's as follows:Navier-Stokes264Mu 0 00 0 00 0 Mv 3750B� _u_P_v 1CA + 264Kuu Cu KuvCTu 0 CTvKvu Cv Kvv 3750B� uPv 1CA = 0B�Fu0Fv 1CAWhere M, K, C and F represent the mass matrix, vis
ous stress matrix, pressure gra-dient matrix and global for
e ve
tor respe
tively. The �rst to third rows represent thex-momentum, 
ontinuity and y-momentum equation respe
tively. The right hand sideve
tor Fv 
ontains the 
oupling buoyan
y term.Energy [MT ℄ ( _T ) + [KT ℄ (T ) = (FT )Expansion of all terms 
an be found in Usmani et al [17℄. The two systems of equationsabove are solved as a 
oupled system, with theKT term 
ontaining the velo
ities (obtainedfrom solving the 
ow �eld) and the Fv term 
ontaining the buoyan
y for
es (determinedby the temperature �eld). 4



2.2 Temporal dis
retisationTemporal dis
retisation of the time domain is a
hieved by applying the generalised mid-point rule, [18, 19℄."Mn+���t +Kn+�# (�n+1) = "Mn+���t � (1� �)� Kn+�# (�n) + (Fn+�)� (11)Variation of � leads to di�erent members of this family of methods i.e.� = 0 -Forward Di�eren
e or Forward Euler.� = 12 -Midpoint rule or Crank Ni
olson.� = 23 -Galerkin.� = 1 -Ba
kward Di�eren
e or Ba
kward Euler.The Crank Ni
olson, Galerkin and Ba
kward Euler s
hemes are all un
onditionally stable,however, of these methods the os
illation limit is lowest for � = 12 . The time step size
hosen for all Rayleigh numbers is small enough to avoid an os
illatory solution whenusing � = 12 . The 
hoi
e of un
onditionally stable impli
it methods is enfor
ed by theuse of h-adaptivity as the smallest elements determine the stability of 
onditionally stableexpli
it methods, whi
h makes them impra
ti
al for use in this 
ontext.The formulations des
ribed above were implemented in the impli
it transient FE 
odeCADTRAS (Coupled Adve
tive Di�usive TRAnSport model), whi
h was used to solvethe thermally driven 
avity problem. The 
ode in
orporates an unstru
tured Delaunaytriangulation based mesh generator [20℄, whi
h allows automati
 adaptive re-meshing totake pla
e at ea
h time step if ne
essitated by the a-posteriori error estimation algorithm.Six-node triangular elements are used for all the meshes.3 AdaptivityThe use of h-adaptivity enables the solution of this problem at high Rayleigh number with-out the ne
essity of designing a suitable mesh at �rst and going through a trial-and-errorpro
ess. Adaptivity automati
ally produ
es an optimal mesh based on a user spe
i�eddis
retisation error thus saving 
omputational time and fo
using e�ort intelligently oversu

essive time steps on areas of high s
alar gradients (whi
h for this problem 
oin
idewith the areas of high velo
ity gradients). There are �ve distin
t steps to the iterativeadaptive pro
ess used here :1. Solution of the 
oupled system2. Re
overy of smoothed s
alar gradients using the super-
onvergent pat
h re
overy(SPR) method [21℄ 5



3. Error Estimation using the a-posteriori error 
al
ulated at all nodes in the mesh forthe s
alar �eld4. Re-meshing based on the mesh sizes produ
ed from the previous step5. Transfer of all data to the new meshRe
overyThe temperature �eld generated by the �nite element method is most a

urate at nodalpoints whereas the temperature gradients are most a

urate at Gaussian integrationpoints, known as the super-
onvergen
e phenomenon. Hinton and Campbell [22℄ showedthat �nite elements produ
e superior values of temperature gradient at node points afterappli
ation of a smoothing pro
edure. Their method was based on a global smoothings
heme requiring the solution of a large system of equations. A more eÆ
ient and e�e
-tive pro
edure was introdu
ed by Zienkiewi
z and Zhu [21℄, 
alled super-
onvergent pat
hre
overy (SPR). The smoothed nodal gradients are 
al
ulated from the Gauss points on apat
h of elements surrounding a node, using a least squares interpolation, for ea
h nodein the mesh.Error EstimationThe error estimator used was originally derived for heat 
ondu
tion [23℄. Mathemati
aljusti�
ation of using su
h an estimator for the problem of this paper does not exist,however as the estimator used is based on the s
alar 
ux, it has proven very e�e
tive indete
ting regions of high s
alar gradient, whi
h in pra
ti
e is suÆ
ient for the purposesof this paper. The a-posteriori error is based upon an energy norm (see [23℄),jjejj2 = Z
(rT )T�rTd
� Z
(rT̂ )T�rT̂ d
 (12)if we de�ne, jjQjj2 = Z
(rT )T�rTd
jjQ̂jj2 = Z
(rT̂ )T�rT̂ d
 (13)then Equation (12) 
an be rewritten asjjejj2 = jjQjj2 � jjQ̂jj2 (14)Su
h a de�nition allows a pra
ti
al representation of the error norm in terms of a per-
entage error �, � = jjejjjjQjjx100% (15)Re-meshing and mesh generationSpe
i�
ation of a permissible error �� determines the level of re�nement throughout themesh, leading to a predi
ted redu
tion or in
rease in the element sizes so that the new6



mesh may possess an approximately equal distribution of error. The maximum permissibleerror for ea
h element is 
al
ulated as,jjêjje = ��  jjQjj2m ! 12 (16)where m is the number of elements, �� is the spe
i�ed maximum per
entage error. Dividingjjêjje by the 
al
ulated error in an element yields a parameter �e as follows,�e = jjejjejjêjje (17)i.e. if �e > 1 the mesh must be re�ned in the vi
inity of element e, 
onversely, if �e < 1the mesh may be 
oarsened. The new element size is 
al
ulated using,�he = he�e 1p (18)where he is the original element size and p is the order of the element shape fun
tions.Mesh data transferEnsuring proper transfer of variables between meshes is 
ru
ial for 
onservation of quan-tities su
h as energy and momentum. A transfer strategy using lo
al 
oordinates of nodalpoints and elemental shape fun
tions has been used that maps the mesh data a

urately.The lo
al 
oordinates (� � �) of ea
h node in the adapted mesh are determined with re-spe
t to the elements of the previous mesh. Element shape fun
tions are then used tointerpolate the data onto the new mesh nodes.4 The Ben
hmark ProblemThe problem involves modelling 
uid 
ow in a two dimensional square 
avity of typi
aldimension L with the two verti
al walls being maintained at a temperature di�eren
e of�T . The top and bottom walls are insulated and the velo
ities at all boundaries setto zero. The 
uid inside the 
avity is initially at rest and at a temperature whi
h is themean of the temperatures on the verti
al walls. The resulting 
ow 
an be des
ribed bythe Rayleigh number: Ra = GrPr = g��TL3�� (19)where g is the a

eleration due to gravity, � is the 
oeÆ
ient of volumetri
 expansion, Lthe typi
al dimension of the 
avity, �T is the temperature di�eren
e between the verti
alwalls, � is the kinemati
 vis
osity and � is the thermal di�usivity.7



The following non-dimensional groups are used in the analysis and presentation of the
omputational results:Velo
ity u� = uL� (20)v� = vL� (21)Temperature T � = T � T2T1 � T2 (22)Coordinates x� = xL (23)y� = yL (24)Time t� = �tL2 (25)where * indi
ates the the non-dimensional quantity. T1 and T2 are the �xed temperaturesat the two side walls of the 
avity.The Nusselt number is 
al
ulated at ea
h node in the domain usingNu = uT � �T�x (26)where the temperature gradient is obtained by the gradient re
overy pro
ess.4.1 Departing Corner FlowIt is important to understand the me
hanism that generates the destabilising internalwaves, di
tating the pattern of the 
ow �eld. As mentioned in the introdu
tion, Raviet al [8℄ set out a des
ription of the 
ow behaviour in the departing 
orners and give ame
hanism for its 
reation. The left 
avity region next to the verti
al boundary 
arries
ow at large velo
ities. This 
ow, after departing the 
orner, slows down, the isothermsthat were pa
ked 
losely together at the wall boundary spread out over a mu
h thi
kerlayer. The highest velo
ity layer, nearest the to the hot boundary experien
es the greatest
hange in velo
ity after passing the departing 
orner. A slightly 
ooler layer (travellingat a slightly lower velo
ity) next to the hot layer is for
ed to slide over it in the 
ornerregion. This 
auses a sharp reversal in velo
ity as the 
ooler boundary layer plungesabruptly ba
k into the 
ooler 
ore, resulting in the 
hara
teristi
 u-shape isotherm. Athigh Rayleigh numbers the downward for
e of the negatively buoyant plume is enoughto 
ause separation of 
ow from the horizontal boundary. Re
ir
ulation o

urs when the
uid is re-entrained into the verti
al wall boundary from the plume.8



5 ResultsValues of u-velo
ity, v-velo
ity and temperature were re
orded over the duration of thesimulation for all three Rayleigh numbers; 2�108, 3�108 and 4�108. They where re
ordedat a point x = 0:1032, y = 0:8036 within the unit square 
avity, following Chenoweth etal [10℄. This point falls in a parti
ularly sensitive lo
ation regarding the os
illatory natureof the boundary layer. Figures 1 and 2 show time tra
e histories for all three variables.The temperature time history data was also 
onverted from the time domain into thefrequen
y domain using Fast Fourier Transform (FFT) analysis, this allows frequen
iesthat 
hara
terise the time plots to be seen more 
learly, see Figure 2.The graphs showing primitive variable time histories for Ra = 2� 108, �gures 1(a),1(b),2(a) show 
onvergen
e to a periodi
 os
illation. Ea
h plot is dominated by one fundamen-tal frequen
y. This fundamental frequen
y is generated by the internal boundary layerinstability at the departing 
orners.Figure 2(b) shows one very 
lear spike, indi
ating the fundamental frequen
y, with avalue of 546.9 Hz. The Ra = 3 � 108 time histories show a 
lear waveform 
onsistingof more than one frequen
y, exhibiting quasi-periodi
 behaviour. The FFT plot, �gure2(d), reveals a 
lear fundamental frequen
y at 651.0 Hz. followed by several small, highfrequen
y 
omponents. The time history graphs for Ra = 4 � 108 show mildly 
haoti
,quasi-periodi
 behaviour, as previously shown by Chenoweth and Paolu

i [10℄. Thefundamental frequen
y as per �gure 2(f) is 781.3 Hz. There is also an in
reased amountof high frequen
y ba
kground noise.It is 
lear from the results that an in
rease in Rayleigh number is a

ompanied by anin
rease in the fundamental frequen
y of the os
illation. Chenoweth et al [10℄ present atable of results showing a similar in
rease in frequen
y with Rayleigh number howeverthe values they obtained were slightly higher; 630.3, 737.7 and 850.2 for Ra = 2 � 108,3� 108 and 4� 108 respe
tively.The frequen
y plot for Ra = 3�108, �gure 2(d), shows a 
lear high amplitude fundamentalfrequen
y followed by several low amplitude high frequen
ies. The amplitude of thefundamental frequen
y is signi�
antly larger than that of 2� 108 and 4� 108. For 3� 108the majority of the spe
tral energy resides in this spike while in the other Rayleigh numbersthis energy is divided up between the fundamental frequen
y and other more substantialhigher frequen
y 
omponents. The spe
tral plots presented by Chenoweth and Paolu

i[10℄ show the same phenomenon but on a log s
ale for amplitude.
5.1 Rayleigh number behaviour s
aleFigure 3 has been 
onstru
ted on the basis of results presented in several resear
h papers,[10,12,24℄. The �rst important threshold marked on the diagram is Ra = 1:9� 108. Thisrepresents the transition from steady state 
ow to unsteady periodi
 
ow, as re
orded9
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Figure 3: Rayleigh number versus behaviourby Chenoweth et al [10℄ and Le Quere [25℄. Chenoweth and Paolu

i go on to predi
ttwo more regions of transition; instability of the wall boundary layers leading to quasi-periodi
 
ow near 2:7�108 and a further 
hange to mildly 
haoti
 
ow somewhere between3 � 108 and 4 � 108. Very similar behaviour is noti
ed in the presented results, in thatat Ra = 2 � 108 the 
ow is periodi
, at 3� 108 the 
ow is 
learly quasi-periodi
 and at4� 108 the 
ow is still maintains its quasi-periodi
 nature but shows signs of 
haoti
ity,see Chenoweth et al �gure 13 [10℄.5.2 h-adaptivity and its role in the solutionFigure 4 shows a sequen
e of meshes produ
ed during the solution of the thermally driven
avity problem for Ra = 4 � 108. There were a total of 750 time steps produ
ing 13separate adaptive meshes during the simulation, six are shown to highlight the e�e
tive
apture of important 
ow features. The 
orresponding velo
ity ve
tors and temperature
ontours are shown in Figures 5 and 6.Mesh 1 - This is the pre-adaptive mesh i.e. the result of a number of re-meshing 
y
lesbased on the boundary 
onditions. The area around the verti
al boundary layers is heavilydis
retised to 
apture the steep temperature gradients.Mesh 6 - The boundary layer has rounded the 
orner and is moving a
ross the horizon-tal surfa
e. The mesh follows the temperature front as it moves, some degree of 
owseparation is manifested in the mesh at the departing 
orner.Mesh 8 - The boundary layer is half way a
ross the 
avity, there are two distin
t regionsthat form the leading edge of the intrusion; the separated zone and the boundary layerstill atta
hed to the horizontal surfa
e.Mesh 10 - The boundary layer has rea
hed the opposite verti
al boundary. A 
ontinuousplume stret
hes a
ross the 
avity. 12



2� 108 3� 108 4� 108Numax, y 6:7140� 10�3 6:7031� 10�3 6:7328� 10�3Numin, y 1.0 1.0 0.9938Table 1: Nusselt number positions for ea
h Rayleigh numberMesh 12 - The boundary layer has di�used into its surroundings to some degree 
ausingthe temperature gradients to de
rease. The mesh has 
oarsened in these areas a

ordingly.Mesh 13 - The highest level of dis
retisation is fo
ussed in the departing 
orners 
apturingthe zone of boundary layer re
ir
ulation. The 
entre of the re
ir
ulating eddy is just visibleas an area of lower dis
retisation near the 
orner. The 
ow has settled down 
onsiderably,however the separated boundary layer is moving ba
k and forth quasi-periodi
ally. Thisis the last re-meshing 
y
le of the run, the temperature gradients are only varying aroundthe departing 
orners and they have been dis
retised adequately to 
apture the unsteadyinternal waves.Figures 5 to 7 show the development of the velo
ity �eld and temperature 
ontours overtime. The isotherms be
ome in
reasingly strati�ed resulting in the distribution shownin Figure 7(f). The 
ow is mildly 
haoti
 and unsteady but still retains a high degreeof stru
ture. The asymmetry of the 
ow, apparent in the isotherms and velo
ity ve
torplots in �gures 5, 6 and 7, is mentioned by Chenoweth and Paolu

i [10℄. They suggestthat the loss of symmetry is due to the quasi-periodi
 nature of the 
ow generated bypresen
e of two di�erent fundamental frequen
ies i.e. the internal wave and wall boundaryos
illations.Figure 8 shows the time history of temperature re
orded at two points for Ra = 2 �108, one at x = 0:1032, y = 0:8036 and the other at x = 0:8968, y = 0:1964. Thefundamental frequen
ies of the two time tra
es are very similar but there is an obviousdi�eren
e between the two time history plots in �gure 8. Unfortunately the lower timetra
e seems `damped' 
ompared to the top tra
e, this is due to the e�e
t of unstru
turedmesh generation. The appli
ation of a stru
tured mesh generator should remove thisproblem and allow a thorough analysis of any possible phase di�eren
es, however this isbeyond the s
ope of this paper.Table 1 shows the verti
al positions of of maximum and minimum Nusselt numbers forthe three Rayleigh numbers presented. Figures 9, 10 and 11 show the variation of Nusseltnumber over a period of time. The maximum, minimum and average Nusselt number onthe boundary x = 0:0 plotted against dimensionless time are shown. All nine plots showthat the value of Nusselt number at the verti
al boundary show periodi
 variation. Thetime histories of maximum and average Nusselt numbers show small amplitude os
illa-tion while the minimum Nusselt number is more sensitive to the unsteady nature of the
ow, exhibiting larger amplitude os
illation, be
oming more pronoun
ed with in
reasingRayleigh number. 13



(a) Time step 1, mesh 1 (b) Time step 14, mesh 6.

(
) Time step 22, mesh 8. (d) Time step 33, mesh 10.

(e) Time step 69, mesh 12. (f) Time step 78, mesh 13.Figure 4: Adaptive mesh �les for Ra = 4 � 108 at (a) t� = 0:0; (b) t� = 0:00028; (
)t� = 0:00044; (d) t� = 0:00066; (e) t� = 0:00138; (f) t� = 0:00156.14



(a) Time step 1, velo
ity ve
tors. (b) Time step 1, isotherms.

(
) Time step 14, velo
ity ve
tors. (d) Time step 14, isotherms.

(e) Time step 22, velo
ity ve
tors. (f) Time step 22, isotherms.Figure 5: Velo
ity ve
tors and isotherms for Ra = 4 � 108 at (a),(b) t� = 0:0; (
),(d)t� = 0:00028; (e),(f) t� = 0:00044. 15



(a) Time step 33, velo
ity ve
tors. (b) Time step 33, isotherms.

(
) Time step 69, velo
ity ve
tors. (d) Time step 69, isotherms.

(e) Time step 78, velo
ity ve
tors. (f) Time step 78, isothermsFigure 6: Velo
ity ve
tors and isotherms for Ra = 4� 108 at (a),(b) t� = 0:00066; (
),(d)t� = 0:00138; (e),(f) t� = 0:00156. 16



(a) Time step 188, velo
ity ve
tors. (b) Time step 188, isotherms.

(
) Time step 468, velo
ity ve
tors. (d) Time step 468, isotherms.

(e) Time step 748, velo
ity ve
tors. (f) Time step 748, isothermsFigure 7: Velo
ity ve
tors and isotherms for Ra = 4� 108 at (a),(b) t� = 0:00376; (
),(d)t� = 0:01808; (e),(f) t� = 0:03488. 17
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TimeFigure 8: Temperature time tra
e for Ra = 2� 1086 Con
lusionsIt was demonstrated that h-adaptivity with GFEM provides a powerful means of solvingdiÆ
ult problems su
h as the thermally driven 
avity problem at high Rayleigh numbers
hara
terised by; thin boundary layers, separation and re
ir
ulation zones and os
illa-tory internal waves dominating the 
ow behaviour. The use of h-adaptivity produ
esan a

urate, eÆ
ient and e
onomi
al solution to this problem. The a

ura
y 
omparedfavourably with other published solutions. h-adaptive methods with automati
 meshre�nement based upon the a
tual physi
s of the problem are inherently eÆ
ient as nodevelopment time is required to 
reate the `right' mesh for a problem. They are alsoe
onomi
al as an `optimal' dis
retisation is produ
ed for a desired level of a

ura
y, withgrid-points pla
ed only where they are needed. The a
tual 
omputational time is dividedbetween the solution of the dis
retised governing equations and the adaptive pro
ess (gra-dient re
overy, error-estimation and mesh re�nement). The adaptive pro
ess a

ounts foronly 0.25% of the total CPU time. This 
an be redu
ed 
onsiderably by using simplerstru
tured meshes with a mesh enri
hment method of re�nement.It is 
lear that this problem is dominated by the adve
tive transport me
hanism, howeverthe solutions a
hieved do not rely upon any spe
ial s
heme for adve
tion dominated 
ow,su
h as SUPG et
. This is a very signi�
ant additional bene�t of using adaptivity in the
ontext of transient problems (espe
ially when a pre-adaptive 
y
le is performed on theinitial 
onditions). This was alluded to by an early paper by Gresho et al [3℄ and re
entlydemonstrated by Usmani [1℄.Fundamental frequen
ies were 
al
ulated for three Rayleigh numbers; 2 � 108, 3 � 108and 4� 108. These frequen
ies were found to be slightly lower than previously 
al
ulated18
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by [10℄. The primitive variable time history results indi
ate that the transition fromperiodi
 to quasi-periodi
 and quasi-periodi
 to mildy 
haoti
 
ow mat
h those 
ompiledfrom past results. Further details su
h as the possible phase di�eren
es between theos
illations at the two departing 
orners 
ould not be investigated here as an unstru
turedmesh generator was used in this work. Unless one is prepared to re�ne to a mu
h lowermesh size (whi
h will be very expensive) it is diÆ
ult to separate the e�e
ts 
aused bysmall di�eren
es in the lo
al mesh re�nement and genuine 
ow features. A stru
turedmesh version of this program is under development, whi
h will allow su
h investigationsto be undertaken reliably.7 A
knowledgementsThis work was funded by an EPSRC resear
h studentship. The authors are also gratefulto Dr M.O.Gordon for his assistan
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