
Observer-basedH∞Control ofNetworkedSystems

withStochasticCommunicationProtocol: the

Finite-HorizonCase ⋆

Lei Zou a, ZidongWang b,c, Huijun Gao a,

aResearch Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150001, China.
bCollege of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.

cDepartment of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.

Abstract

This paper is concerned with the H∞ control problem for a class of linear time-varying networked control systems (NCSs) with
stochastic communication protocol (SCP). The sensor-to-controller network (the controller-to-actuator network) is considered
where only one sensor (one actuator) obtains access to the communication network at each transmission instant. The SCP
is applied to determine which sensor (actuator) should be given the access to the network at a certain instant. The aim of
the problem addressed is to design an observer-based controller such that the H∞ performance of the closed-loop system is
guaranteed over a given finite horizon. For the purpose of simplifying the NCS model, a new Markov chain is constructed to
model the SCP scheduling of communication networks. Then, both the methods of stochastic analysis and completing squares
are utilized to establish the sufficient conditions for the existence of the desired controller. The controller parameters are
characterized by solving two coupled backward recursive Riccati difference equations subject to the scheduled SCP. Finally, a
numerical example is given to illustrate the effectiveness of the proposed controller design scheme.

Key words: Stochastic communication protocol; H∞ control; Time-varying systems; Networked control systems; Recursive
Riccati difference equations.

1 Introduction

Networked control systems (NCSs) are control systems
in which the signal transmission between system com-
ponents (e.g. sensors, actuators and controller) is im-
plemented through the communication networks. Since
NCSs possess many advantages such as low cost, sim-
ple installation, reduced system wiring and high relia-
bility, they have found successful applications in a wide
range of areas including environmental monitoring, in-
dustrial automation, smart grids and distributed/mobile
communications. Accordingly, the control and filtering
issues of NCSs have gained ever-increasing research at-
tention, see e.g. [1,12,16]. For instance, the reliable con-
trol problem has been investigated in [16] for unreliable
NCSs with probabilistic actuator failures, measurement
distortions, random network-induced delays and packet
dropouts. The design problem of the optimal H∞ filter-
ing has been dealt with in [12] for NCSs with multiple
packet dropouts.

In reality, almost all systems have certain time-varying
parameters since the system parameters may be change-
able in time due to a variety of reasons such as tempera-
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ture fluctuation, operating point shifting, graduate aging
of system components, etc. Because of the time-varying
nature of the underlying systems, one would be natural-
ly more interested in analyzing their transient dynamic-
s over a finite horizon than the traditional steady-state
behaviors over the infinite horizon, see e.g. [8,10,14]. In
recent years, considerable research attention has been
devoted to the H∞ control/filtering problems for time-
varying systems, see e.g. [2–4, 6–8, 13] and the refer-
ences therein. From a technical point of view, there are
generally two effective approaches to solving the H∞

control/filtering problems for time-varying systems: the
so-called recursive linear matrix inequality (RLMI) ap-
proach [3,4,7,8] and the Riccati differential/difference e-
quation (RDE) approach [2]. For example, in [4], a finite-
horizonH∞ fault estimator has been designed for a class
of nonlinear stochastic time-varying systems with both
randomly occurring faults and fading channels based on
the RLMI approach. The probability-guaranteed H∞

finite-horizon filtering problem has been considered in [7]
for a class of nonlinear time-varying systems with un-
certain parameters and sensor saturations by using the
RLMI approach. The H∞ control problem has been in-
vestigated in [2] for discrete time-varying nonlinear sys-
tems with both randomly occurring nonlinearities and
fading measurements over a finite-horizon by using the
backward recursive RDE approach.

In most existing literature concerning the control prob-
lems of NCSs, it has been assumed that all the sen-
sors (or actuators) could simultaneously get access to
the communication network to transmit/receive signal-
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s. However, this assumption is generally unrealistic s-
ince real-world networks unavoidably suffer from limit-
ed bandwidth which is likely to give rise to data colli-
sions in case of simultaneous multiple accesses. As such,
many communication protocols have been introduced in
industry in order to prevent the data from collisions by
determining which sensors (or actuators) should obtain
access to the communication networks. These protocols
include, but are not limited to, the Round-Robin pro-
tocol [17], the try-once-discard protocol [18] and the s-
tochastic communication protocol (SCP) [9, 15, 20]. So
far, the analysis and synthesis problems of NCSs sub-
ject to various communication protocols have begun to
stir some initial research interest. For example, in [17],
the distributedH∞ estimation problem has been studied
for sensor networks subject to the Round-Robin proto-
col scheduling by using the time-delay system approach.
The optimal linear estimation problem has been inves-
tigated in [20] for networked systems subject to a ran-
dom media access control (MAC) protocol. In [5], the
stability issue has been investigated for NCSs with time-
varying transmission intervals, time-varying transmis-
sion delays, packet dropouts subject to various commu-
nication protocols (e.g. Round-Robin protocol, try-once-
discard protocol and SCP) by using a switching system
approach.

The SCP serves as a widely used model describing a cer-
tain class of carrier-sense multiple access with collision
avoidance (CSMA/CA) protocols. The CSMA/CA pro-
tocols have been implemented in a variety of commu-
nication systems (e.g. IEEE 802.11-based wireless local
area networks and IEEE 802.15.4-based wireless sensor
networks). Recently, the analysis issue of NCSs subject
to SCP has drawn some refreshed research attention, see
e.g. [5,9,15]. In particular, a linear time-invariant (LTI)
continuous-time NCS with the SCP has been modeled
in [5] by utilizing the properties of the Markov process. It
should be mentioned that the communication protocol
would inevitably complicate the dynamics analysis of the
NCS especially when the NCS exhibits the time-varying.
To this end, a seemingly interesting research problem is
to investigate the control problem for the time-varying
NCS with SCP constraints owing to its clear engineering
insight in both control and communication areas. Nev-
ertheless, this is a non-trivial problem with three chal-
lenges identified as follows: 1) how to develop a recursive
algorithm accounting for the time-varying nature of the
SCP-constrained NCS? 2) how to obtain the sufficient
conditions for the existence of the desired time-varying
controllers? and 3) how to examine the impact from the
SCP on the control performance of the overall system?
It is, therefore, the main purpose of this paper to offer
satisfactory answers to the aforementioned three ques-
tions.

In response to the above discussion, in this paper, we
aim to investigate the finite-horizonH∞ control problem
for the NCS with the SCP constraints. More specifically,
the objective of this paper is to design an observer-based
controller for the NCS subject to SCP such that theH∞

performance of the closed-loop system is guaranteed over
a given finite horizon. The main contributions of this pa-
per are highlighted as follows. 1) The control problem is,
for the first time, investigated for time-varying systems
with the SCP. 2) Both sensor-to-controller network and

controller-to-actuator network featured with the SCPs
are simultaneously considered in the controller design. 3)
A novel coupled RDE approach is developed to solve the
addressed finite-horizonH∞ control problem. 4) The im-
pact from the SCP on the structure of the controller gain
matrix is revealed.
The rest of this paper is organized as follows. In Sec-
tion 2, the NCS with time-varying parameters and two
communication networks are introduced and the prob-
lem under consideration is formulated. In Section 3, the
design problem of observer-based controller is solved in
terms of the solution to two coupled backward recursive
RDEs. Furthermore, a numerical simulation example is
given in Section 4 to illustrate the effectiveness of the
controller design scheme. Finally, we conclude the paper
in Section 5.
Notations: The notation used here is fairly standard
except where otherwise stated. Rn andR

n×m denote, re-
spectively, the n dimensional Euclidean space and set of
all n×m real matrices. The notation X ≥ Y (X > Y ),
where X and Y are real symmetric matrices, means
that X − Y is positive semi-definite (positive definite).
Prob{·} means the occurrence probability of the event
“·”. E{x} and E{x|y} will, respectively, denote the ex-
pectation of the stochastic variable x and expectation of
x conditional on y. 0 represents the zero matrix of com-
patible dimensions. The n-dimensional identity matrix
is denoted as In or simply I, if no confusion is caused.
The shorthand diag{· · · } stands for a block-diagonal
matrix. ‖v‖ refers to the Euclidean norm of a vector v.
MT and M † ∈ R

n×m represent the transpose and the
Moore-Penrose pseudo inverse ofM ∈ R

m×n. ‖M‖F de-
notes the Frobenius norm of the matrix M . Matrices,
if they are not explicitly specified, are assumed to have
compatible dimensions. Let a be an integer and b be a
positive integer. The function mod(a, b) represents the
unique nonnegative remainder on division of the integer
a by the positive integer b. The floor function ⌊b⌋ denotes
the largest integer not greater than b. The Kronecker
delta function δ(a) is a binary function that equals 1 if
a = 0 and equals 0 otherwise.

2 Problem Formulation and Preliminaries

In this section, we introduce some preliminaries related
to the communication of NCSs and then describe the
problem setup.

2.1 Stochastic Communication Protocol (SCP)

Consider a NCS with N transmission nodes labeled as
{1, 2, · · · , N}. The main idea of the SCP for discrete-
time systems is that only one node is selected to trans-
mit/receive data via the communication network at
each transmission instant. Let ξ(k) denote the se-
lected node obtaining access to the network at time
k. Then, as shown in [5], under the SCP scheduling,
ξ(k) ∈ {1, 2, · · · , N} can be regarded as a stochastic
process which could be modeled by a Markov chain.
The occurrence probability of ξ(k + 1) = j conditioned
on ξ(k) = i is given by

P{ξ(k + 1) = j|ξ(k) = i} = πij(k)

where πij(k) ≥ 0 (i, j ∈ {1, 2, · · · , N}) is the tran-
sition probability from i to j at time instant k and
∑N

j=1 πij(k) = 1 (i ∈ {1, 2, · · · , N}).
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Remark 1 The so-called stochastic communication
protocol (SCP) has been first investigated in [15] for
continuous-time systems and [5] for discrete-time sys-
tems. Such a protocol actually belongs to the category of
the CSMA/CA protocols. The CSMA protocol is imple-
mented based on the principle “sense before transmit”
or “listen before talk”. The CSMA/CA protocol can be
seen as an improved version of the CSMA protocol. In
practice, by relying on the acknowledgements from the
communication network to indicate each transmission,
the packet collisions could be avoided. Specifically, in a
NCS with the CSMA/CA protocol, each node of the NCS
should have a sense of the communication network for
its status (idle or busy), where a node is permitted to
transmit/receive data only when the network is idle. If
the network is known to be busy, the node intending to
send/receive data waits for a random interval (random
backoff time) and then checks again to see if the network
is idle. Because of the “random switch” behavior of such
a node scheduling procedure, the Markov chain has been
employed to characterize the CSMA/CA protocol [5]. On
the other hand, the co-design issue of the node scheduling
scheme and the H∞ controller is important yet compli-
cated especially when the trade-off between the scheduler
performance and the controller performance becomes a
concern, and this is one of our future research topics.

2.2 Problem formulation

Fig. 1. Structure of the control system with communication
networks

Consider a NCS with two communication networks
shown in Fig. 1. The signal transmission is implemented
between the plant and remote controller via two com-
munication networks: the S/C (sensor-to-controller)
network and the C/A (controller-to-actuator) network.
The plant is a discrete time-varying system defined on
the finite horizon (k ∈ [0, N − 1]) of the form







x(k + 1) = A(k)x(k) +B(k)ū(k) +D(k)ν(k)

y(k) = C(k)x(k) + E(k)ν(k)

z(k) = M(k)x(k)

(1)

where x(k) ∈ R
nx , ū(k) ∈ R

nu , y(k) ∈ R
ny and

z(k) ∈ R
nz denote, respectively, the state vector, the

control input after transmitted through the C/A net-
work, the measurement output before transmitted
through the S/C network and the signal to be controlled.
ν(k) ∈ l2([0, N−1];Rnν ) is the disturbance input where
l2([0, N − 1],Rnν ) is the space of square-summable nν -
dimensional vector functions over the interval [0, N−1].
A(k), B(k), C(k), D(k), E(k) and M(k) are known
time-varying matrices with appropriate dimensions.

Let us now discuss the effect induced by communication
networks (i.e., S/C network and C/A network). In this

paper, it is assumed that there is no packet dropout oc-
curring during the data transmissions through commu-
nication networks. For technical analysis, we first write

y(k) =
[

yT1 (k) yT2 (k) · · · yTny
(k)

]T

,

ū(k) =
[

ūT
1 (k) ūT

2 (k) · · · ūT
nu

(k)
]T

.

where yi(k) is the measurement of the i-th sensor, ūi(k)
is the input signal of the j-th actuator.

In this work, the SCP is utilized to determine which
sensor (or actuator) obtains access to the S/C net-
work (C/A network). According to the SCP scheduling,
only one sensor is allowed to get access to the S/C
network and only one actuator obtains access to the
C/A network. For the sake of examining the influ-
ence of the SCP constraints, let σ(k) ∈ {1, 2, · · · , ny}
(θ(k) ∈ {1, 2, · · · , nu}) denote the selected sensor (ac-
tuator) obtaining access to the S/C network (C/A
network) at the time instant k, where θ(k) and σ(k)
are independent of each other. Under the SCP schedul-
ing, θ(k) and σ(k) can be governed by Markov chains
with the transition probability matrices P1(k) and
P2(k), respectively. The transition probability matrices

P1(k) =
[
p
ij
1 (k)

]

ny×ny
and P2(k) =

[
p
ij
2 (k)

]

nu×nu
are

defined as follows:
{

p
ij
1 (k) , Prob (θ(k + 1) = j|θ(k) = i)

p
ij
2 (k) , Prob (σ(k + 1) = j|σ(k) = i)

(2)

Let ȳ(k) ,
[

ȳT1 (k) ȳT2 (k) · · · ȳTny
(k)

]T
∈ R

ny be the

measurement output after transmitted through S/C net-

work and u(k) ,
[

uT
1 (k) uT

2 (k) · · · uT
nu

(k)
]
∈ R

nu be

the control input before transmitted through C/A net-
work. The updating rule for ȳi(k) (i = 1, 2, · · · , ny) and
ūi(k) (i = 1, 2, · · · , nu) subject to the SCP is set to be

ȳi(k) =

{

yi(k) + E1,iω(k), if i = σ(k)

ȳi(k − 1), otherwise
(3)

ūi(k) =

{

ui(k) + E2,iω(k), if i = θ(k)

ūi(k − 1), otherwise
(4)

where ω(k) ∈ l2 ([0, N − 1];Rnω) is the network-induced
disturbance, and E1,i(k) ∈ R

1×nω (i = 1, 2, · · · , ny) and
E2,j(k) ∈ R

1×nω (j = 1, 2, · · · , nu) are known, real,
time-varying matrices. Defining

E1(k) ,
[

ET
1,1(k) ET

1,2(k) · · · ET
1,ny

(k)
]T

,

E2(k) ,
[

ET
2,1(k) ET

2,2(k) · · · ET
2,nu

(k)
]T

.
(5)

we have






ȳ(k) =Φy

σ(k)

(
y(k) + E1(k)ω(k)

)

+ (I − Φy

σ(k))ȳ(k − 1)

ū(k) =Φu
θ(k)

(
u(k) + E2(k)ω(k)

)

+ (I − Φu
θ(k))ū(k − 1)

(6)

where
{
Φy

σ(k) = diag
{
δ̄1σ(k), δ̄

2
σ(k), · · · , δ̄

ny

σ(k)

}

Φu
θ(k) = diag

{
δ̄1θ(k), δ̄

2
θ(k), · · · , δ̄

nu

θ(k)

}
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and δ̄ba , δ(a − b) in which δ(·) is the Kronecker delta
function.

Denoting x̃(k) ,
[

xT (k) ȳT (k − 1) ūT (k − 1)
]T

, the

time-varying system (1) with the SCP constraints can
be reformulated as follows:







x̃(k + 1) = Āσ(k),θ(k)(k)x̃(k) + B̄θ(k)(k)u(k)

+ D̄σ(k),θ(k)(k)ν̄(k)

ȳ(k) = C̄σ(k)(k)x̃(k) + Ēσ(k)(k)ν̄(k)

z(k) = M̄(k)x̃(k)

(7)

where

Āσ(k),θ(k)(k) =







A(k) 0 B(k)
(

I −Φu
θ(k)

)

Φy

σ(k)C(k) I − Φy

σ(k) 0

0 0 I − Φu
θ(k)






,

B̄θ(k)(k) =
[
(

Φu
θ(k)

)T
BT (k) 0

(

Φu
θ(k)

)T ]T
,

D̄σ(k),θ(k)(k) =







D(k) B(k)Φu
θ(k)E2(k)

Φy

σ(k)E(k) Φy

σ(k)E1(k)

0 Φu
θ(k)E2(k)






,

C̄σ(k)(k) =
[

Φy

σ(k)
C(k) I − Φy

σ(k)
0
]

,

Ēθ(k)(k) =
[

Φy

σ(k)E(k) Φy

σ(k)E1(k)
]

,

M̄(k) =
[

M(k) 0 0
]

, ν̄(k) =
[

νT (k) ωT (k)
]T

.

For analysis convenience, we now reformulate the system
(7) by mapping the two stochastic processes θ(k) and
σ(k) to oneMarkov chain. The following proposition can
be easily accessible from Lemma 1 of [19].

Proposition 1 The Markov chains θ(k) and σ(k) of the

system (7) can be mapped to the sequence r(k) ∈ R ,

{1, 2, · · · , nynu} by the following mapping Θ(·, ·):

r(k) = Θ(θ(k), σ(k)) , θ(k) + (σ(k) − 1)nu, (8)

Moreover, if r(k) is given, the values of θ(k) and σ(k)
can be derived by φ1(r(k)) and φ2(r(k)):







σ(k) = φ1(r(k)) ,

⌊
r(k) − 1

nu

⌋

+ 1,

θ(k) = φ2(r(k)) , mod(r(k) − 1, nu) + 1

(9)

Obviously, there is a one-to-one correspondence between
the variable r(k) and the pair (θ(k), σ(k)). According to
the mapping described by (8), the transition probability
matrix P̄ =

[
p̄ij(k)

]

nuny×nuny
of the Markov chain r(k)

is obtained as follows:

p̄ij(k) = Prob(r(k + 1) = j|i = r(k))

=Prob
(
σ(k + 1) = φ1(j)

∣
∣σ(k) = φ1(i)

)

× Prob
(
θ(k + 1) = φ2(j)

∣
∣θ(k) = φ2(i)

)

= p
φ2(i)φ2(j)
1 (k)p

φ1(i)φ1(j)
2 (k) (10)

where pij1 (k) and p
ij
2 (k) have been defined in (2). Based

on Proposition 1, the augmented system (7) can be
rewritten as follows:







x̃(k + 1) = ~Ar(k)(k)x̃(k) + ~Br(k)(k)u(k)

+ ~Dr(k)(k)ν̄(k)

ȳ(k) = ~Cr(k)(k)x̃(k) + ~Er(k)(k)ν̄(k)

z(k) = M̄(k)x̃(k)

(11)

where

~Ar(k)(k) = Āφ1(r(k)),φ2(r(k))(k),
~Br(k)(k) = B̄φ2(r(k))(k),

~Cr(k)(k) = C̄φ1(r(k))(k),
~Dr(k)(k) = D̄φ1(r(k)),φ2(r(k))(k),

~Er(k)(k) = Ēφ1(r(k))(k).

2.3 Observer-based Controller

The observer-based control scheme for the system (11)
is described by






x̂(k + 1) = ~Ar(k)(k)x̂(k) + ~Br(k)(k)Kr(k)(k)

× x̂(k) + Lr(k)(k)
(

ȳ(k)− ~Cr(k)(k)x̂(k)
)

u(k) = Kr(k)(k)x̂(k)

(12)

where x̂(k) ∈ R
n is the state estimate of the system (11)

with n = nx + ny + nu, and the time-varying matrices
Kr(k)(k) and Lr(k)(k) are controller parameters to be
designed. Let the observer error be e(k) = x̃(k)− x̂(k).
Then, the error dynamics can be obtained from (11) and
(12) as follows:

e(k + 1) =
(
~Ar(k)(k)− Lr(k)(k)~Cr(k)(k)

)
e(k)

+
(
~Dr(k)(k)− Lr(k)(k) ~Er(k)(k)

)
ν̄(k)

(13)

By defining variable η(k) =
[

x̃T (k) eT (k)
]T

, we obtain

the closed-loop system as follows:
{
η(k + 1) = Ar(k)(k)η(k) +Dr(k)(k)ν̄(k)

z(k) = M(k)η(k)
(14)

where

Ar(k)(k) =

[

A11(k) A12(k)

0 A22(k)

]

, Dr(k)(k) =

[

D11(k)

D21(k)

]

,

A11(k) = ~Ar(k)(k) + ~Br(k)(k)Kr(k)(k),

M(k) =
[

M̄(k) 0
]

, A12(k) = − ~Br(k)(k)Kr(k)(k),

A22(k) = ~Ar(k)(k)− Lr(k)(k) ~Cr(k)(k),D11(k) = ~Dr(k)(k),

D21(k) = ~Dr(k)(k)− Lr(k)(k) ~Er(k)(k).

We are now in the position to state the problem ad-
dressed in this paper as follows. We aim to design ap-
propriate controller parameters Kr(k)(k) and Lr(k)(k)
such that, for the given positive scalar γ, the closed-loop
system (14) satisfies the following H∞ performance re-
quirement:

J ,E

{
N−1∑

k=0

(
‖z(k)‖2 − γ2‖ν̄(k)‖2

)

}

− γ2ηT (0)Wη(0) ≤ 0, ∀(ν̄(k), η(0)) 6= 0

(15)

where W is a given positive definite matrix.
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Remark 2 In (15), an H∞ performance index is pro-
posed in the sense of mathematical expectation. Roughly
speaking, such an index can better describe the weighted
average H∞ performance of the closed-loop system over
the possible modes with individual weights (transition
probabilities), and is therefore particularly suitable when
the overall control performance becomes a concern. Also,
such an index could facilitate the subsequent mathemat-
ical analysis and enhance the feasibility of the controller
design problem. On the other hand, one could also ask for
a certain H∞ performance requirement to be met for all
possible modes, and this might be useful for considering
the worst-case performance at the cost of increasing the
computational complexity.

3 Main results

Lemma 1 [11] Let U , V and W be known nonzero ma-
trices with appropriate dimensions. The solution X to
minX ‖UXW −V‖F is U†VW†.

Lemma 2 Consider the system (1) with the SCP con-
straints governed by the Markov chain r(k) whose tran-
sition probability matrix is P̄ defined in (10). With
the updating rule (6), let the controller parameters
{Ki(k)}0≤k≤N−1, {Li(k)}0≤k≤N−1, the disturbance at-
tenuation level γ > 0 and the positive definite matrix W
be given. For any disturbance sequences {ω(k)}0≤k≤N−1

and {ν(k)}0≤k≤N−1, the augmented system (14) sat-
isfies the H∞ performance requirement if there ex-
ist a family of non-negative definite matrices Pi(k)
(i ∈ R, 0 ≤ k ≤ N−1) (with final condition Pi(N) = 0)
satisfying the following backward recursive RDE:

Pi(k) = AT
i (k)P̄i(k + 1)Ai(k) +MT (k)M(k) +AT

i (k)

× P̄i(k + 1)Di(k)∆
−1
i (k)DT

i (k)P̄i(k + 1)Ai(k) (16)

subject to
{
∆i(k) = γ2I −DT

i (k)P̄i(k + 1)Di(k) > 0

Pi(0) ≤ γ2W
(17)

where

P̄i(k + 1) =
∑

j∈R

p̄ij(k)Pj(k + 1) (18)

and the nonempty finite setR is defined in Proposition 1.

Proof: By defining

Yr(k)(k) , E
{
ηT (k + 1)Pr(k+1)(k + 1)η(k + 1)

− ηT (k)Pi(k)η(k)|i = r(k)
}

(19)

and noticing (14), we have

Yr(k)(k)

=E

{(
Ai(k)η(k) +Di(k)ν̄(k)

)T
P̄i(k + 1)

(
Ai(k)η(k)

+Di(k)ν̄(k)
)
− ηT (k)Pi(k)η(k)|i = r(k)

}

=E

{

ηT (k)
(
AT

i (k)P̄i(k + 1)Ai(k)− Pi(k)
)
η(k)

+ 2ηT (k)AT
i (k)P̄i(k + 1)Di(k)ν̄(k)

+ ν̄T (k)DT
i (k)P̄i(k + 1)Di(k)ν̄(k)|i = r(k)

}

. (20)

Adding the following zero term

‖z(k)‖2 − γ2‖ν̄(k)‖2 −
(
‖z(k)‖2 − γ2‖ν̄(k)‖2

)
(21)

to both sides of (20) and then taking the mathematical
expectation, we have

Yr(k)(k) = E

{

γ2‖ν̄(k)‖2 + ηT (k)
(
MT (k)M(k)

+AT
i (k)P̄i(k + 1)Ai(k)− Pi(k)

)
η(k)− ‖z(k)‖2

+ 2ηT (k)AT
i (k)P̄i(k + 1)Di(k)ν̄(k)− ν̄T (k)

(
γ2I

−DT
i (k)P̄i(k + 1)Di(k)

)
ν̄(k)|i = r(k)

}

. (22)

Applying the completing squares method results in

Yr(k)(k) = E

{

ηT (k)
(
AT

i (k)P̄i(k + 1)Ai(k)− Pi(k)

+MT (k)M(k)
)
η(k) + (ν̄∗(k))T∆i(k)ν̄

∗(k)

−
(
ν̄(k)− ν̄∗(k)

)T
∆i(k)

(
ν̄(k)− ν̄∗(k)

)
|i = r(k)

}

− E

{

‖z(k)‖2 − γ2‖ν̄(k)‖2
}

(23)

where

ν̄∗(k) = ∆−1
r(k)(k)D

T
r(k)(k)P̄r(k)(k + 1)Ar(k)(k)η(k).

Taking the sum on both sides of (23) from 0 to N − 1,
we obtain

E
{
ηT (N)Pr(N)(N)η(N) − ηT (0)Pr(0)(0)η(0)

}

=E

{

−

N−1∑

k=0

(
ν̄(k)− ν̄∗(k)

)T
∆r(k)(k)

(
ν̄(k)− ν̄∗(k)

)

−

N−1∑

k=0

(
‖z(k)‖2 − γ2‖ν̄(k)‖2

)
}

. (24)

Since ∆i(k) > 0, Pi(0) ≤ γ2W and Pi(N) = 0, we have

J =E

{

−

N−1∑

k=0

(
ν̄(k)− ν̄∗(k)

)T
∆r(k)(k)

(
ν̄(k)− ν̄∗(k)

)

+ ηT (0)
(
Pi(0)− γ2W

)
η(0)

}

≤ 0 (25)

which means the pre-specified H∞ performance is satis-
fied. The proof of is complete.

So far, we have conducted the H∞ performance analysis
in terms of the solvability of a backward Riccati equa-
tion in Lemma 2. In the next stage, let us propose an ap-
proach for computing the appropriate controller param-
etersKr(k)(k) and Lr(k)(k) in each step under the worst

situation, i.e. ν̄(k) = ν̄∗(k) = ∆−1
r(k)(k)D

T
r(k)(k)P̄r(k)(k+

1)Ar(k)(k)η(k). For this purpose, we rewrite the aug-
mented system (14) as follows:

η(k + 1) =
(
Ār(k)(k) +Dr(k)(k)Tr(k)(k)

)
η(k)

+ B̄r(k)(k)u(k) + ĪLr(k)(k)ỹ(k) (26)

where Ār(k)(k) = diag
{
~Ar(k)(k), ~Ar(k)(k)

}
, Tr(k)(k) =

∆−1
r(k)(k)D

T
r(k)(k)P̄r(k)(k + 1)Ar(k)(k), B̄r(k)(k) =

[
~BT
r(k)(k) 0

]T
, Ī =

[

0 −I
]T

, ỹ(k) = ~Cr(k)(k)e(k) and

u(k) is defined in (12). Then, we define the following
cost functional:

J̄ν̄∗ ,E

{N−1∑

k=0

(
‖z(k)‖2 + ε1‖u(k)‖

2
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+ ε2‖Lr(k)(k)ỹ(k)‖
2
)
}

(27)

where ε1 and ε2 are known constants introduced formore
flexibility in the controller parameter design.

Theorem 1 Consider the system (1) with the SCP as-
sociating with (10) and the updating rule (6). Let the dis-
turbance attenuation level γ > 0 and the positive definite
matrix W be given. The augmented system (14) satisfies
the H∞ performance requirement if there exist solution-
s {(Pi(k), Qi(k), Ki(k), Li(k))}0≤k≤N−1 (i ∈ R) sat-
isfying the recursive RDE (16) as well as the following
recursive RDE:






























Qi(k) =
(

Āi(k) +Di(k)Ti(k)
)T

Q̄i(k + 1)
(

Āi(k)

+Di(k)Ti(k)
)

+MT (k)M(k) + Ῡ(k)

+ ĨT
K

T
i (k)B̄T

i (k)Q̄i(k + 1)ĪLi(k)C̃i(k)

+ C̃
T
i (k)LT

i (k)Ī
T
Q̄i(k + 1)B̄i(k)Ki(k)Ĩ

Qi(N) =0

(28)

subject to


















Pi(0) ≤ γ
2
W,Pi(k) ≥ 0, Pi(N) = Qi(N) = 0

∆i(k) = γ
2
I −DT

i (k)P̄i(k + 1)Di(k) > 0

∆̄1,i(k) = B̄T
i (k)Q̄i(k + 1)B̄i(k) + ε1I > 0

∆̄2,i(k) = ĪT
Q̄i(k + 1)Ī + ε2I > 0

(29)

with the controller parameters given as follows:

Ki(k) = −Pi(k)Ĩ
†, Li(k) = −Qi(k)C̃

†
i (k) (30)

where

Ῡ(k) = −Υ1(k)−Υ2(k) + Υ3(k) + Υ4(k),

P̄i(k + 1) =
∑

j∈R

p̄ij(k)Pj(k + 1), C̃i(k) =
[

0 ~Ci(k)
]

,

Q̄i(k + 1) =
∑

j∈R

p̄ij(k)Qj(k + 1), Ĩ =
[

I −I
]

,

Υ1(k) = ĀT
i (k)Q̄i(k + 1)B̄i(k)∆̄

−1
1,i (k)B̄

T
i (k)

× Q̄i(k + 1)Āi(k),

Υ2(k) = ĀT
i (k)Q̄i(k + 1)Ī∆̄−1

2,i (k)Ī
T
Q̄i(k + 1)Āi(k),

Υ3(k) = T T
i (k)DT

i (k)Q̄i(k + 1)B̄i(k)Ki(k)Ĩ

+ ĨT
K

T
i (k)B̄T

i (k)Q̄i(k + 1)Di(k)Ti(k),

Υ4(k) = T T
i (k)DT

i (k)Q̄i(k + 1)ĪLi(k)C̃i(k)

+ C̃
T
i (k)LT

i (k)Ī
T
Q̄i(k + 1)Di(k)Ti(k),

Pi(k) = ∆̄−1
1,i (k)B̄

T
i (k)Q̄i(k + 1)Āi(k),

Qi(k) = ∆̄−1
2,i (k)Ī

T
Q̄i(k + 1)Āi(k),

and the nonempty finite setR is defined in Proposition 1.

Proof: First, it follows from Lemma 2 that, if there exists
solutions Pi(k) to (28) such that ∆i(k) > 0 and Pi(0) <
γ2W , then system (14) achieves the pre-specified H∞

performance. In this case, the worst-case disturbance can
be expressed as ν̄∗(k) = Tr(k)η(k). In what follows, by
employing the worst-case disturbance, we aim to provide
a design scheme of the controller parameters Ki(k) and
Li(k). For this purpose, we define

Ȳr(k)(k) ,E{ηT (k + 1)Qr(k+1)η(k + 1)

− ηT (k)Qi(k)η(k)|i = r(k)}. (31)
Then, we have

Ȳr(k)(k) = E

{

ηT (k)
(
Āi(k) +Di(k)Ti(k)

)T
Q̄i(k + 1)

×
(
Āi(k) +Di(k)Ti(k)

)
η(k)− ηT (k)Qi(k)η(k)

+ 2ηT (k)
(
Āi(k) +Di(k)Ti(k)

)T
Q̄i(k + 1)B̄i(k)u(k)

+ uT (k)B̄T
i (k)Q̄i(k + 1)B̄i(k)u(k) + 2ηT (k)

(
Āi(k)

+Di(k)Ti(k)
)T

Q̄i(k + 1)ĪLi(k)ỹ(k) + ỹT (k)LT
i (k)

× ĪT Q̄i(k + 1)ĪLi(k)ỹ(k) + 2uT (k)B̄T
i (k)Q̄i(k + 1)

× ĪLi(k)ỹ(k)|i = r(k)
}

. (32)

Since
u(k) = Kr(k)(k)Ĩη(k), ỹ(k) = C̃r(k)(k)η(k), Qi(N) = 0,

it follows from the cost function (27) that

J̄ν̄∗ =
N−1∑

k=0

(

Ȳr(k)(k) + E

{

‖z(k)‖2 + ε1‖u(k)‖
2

+ ε2‖Lr(k)(k)ỹ(k)‖
2 + ηT (0)Qr(0)(0)η(0)

})

. (33)

Completing the square with respect to u(k) and ỹ(k), it
can be derived from (29) that

J̄ν̄∗ = E
{
ηT (0)Qr(0)(0)η(0)

}
+

N−1∑

k=0

E

{
(
u(k) + u∗

i (k)
)T

× ∆̄1,i(k)
(
u(k) + u∗

i (k)
)
+
(
Li(k)ỹ(k) + ỹ∗i (k)

)T

× ∆̄2,i(k)
(
Li(k)ỹ(k) + ỹ∗i (k)

)∣
∣i = r(k)

}

(34)

where

u∗
i (k) = ∆̄−1

1,i (k)B̄
T
i (k)Q̄i(k + 1)Āi(k)η(k) = Pi(k)η(k),

ỹ∗i (k) = ∆̄−1
2,i (k)Ī

T Q̄i(k + 1)Āi(k)η(k) = Qi(k)η(k).

Consider the following inequality:

J̄ν̄∗ =E
{
ηT (0)Qr(0)(0)η(0)

}
+

N−1∑

k=0

E

{
(
u(k)

+ u∗
i (k)

)T
∆̄1,i(k)

(
u(k) + u∗

i (k)
)
+
(
Li(k)ỹ(k)

+ ỹ∗i (k)
)
∆̄2,i(k)

(
Li(k)ỹ(k) + ỹ∗i (k)

)∣
∣i = r(k)

}

≤

N−1∑

k=0

E

{

‖Ki(k)Ĩ + Pi(k)‖
2
F ‖∆̄1,i(k)‖F ‖η(k)‖

2

+ ‖Li(k)C̃i(k) +Qi(k)‖
2
F ‖∆̄2,i(k)‖F ‖η(k)‖

2
}

+ E
{
ηT (0)Qr(0)(0)η(0)

}
. (35)

For the purpose of suppressing the cost function (27), the
controller parameters Ki(k) and Li(k) can be selected
in each iteration backward as follows:







Ki(k) = arg min
K∗

i
(k)

∥
∥
∥K

∗
i (k)Ĩ + Pi(k)

∥
∥
∥
F

Li(k) = arg min
L∗

i
(k)

∥
∥
∥L

∗
i (k)C̃i(k) +Qi(k)

∥
∥
∥
F

(36)

Then, it follows from Lemma 1 that (30) is the solution
of the optimization problem (36). The proof is complete.

Next, we proceed to examine the impact from the SCP
constraints on the design of the control parameter with
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hope to simplify the computational algorithm. To be
specific, we now study the “special” structure of the
matrix Ki(k) (i ∈ R) according to the controller pa-
rameters given by (30). Firstly, let us focus our atten-
tion on the structure of B̄i(k). It is easy to obtain that

B̄i(k) =
[
B̄T

φ2(i)
(k) 0

]T
= B(k)Φu

φ2(i)
where B(k) =

[

BT (k) 0 I 0
]T

. Therefore, we have

∆̄1,i(k) = B̄T
i (k)Q̄i(k + 1)B̄i(k) + ε1I

=Φu
φ2(i)

B
T (k)Q̄i(k + 1)B(k)Φu

φ2(i)
+ ε1I. (37)

Denoting Ω̄(k) , BT (k)Q̄i(k+1)B(k) ,
[
Ωij(k)

]

nu×nu
,

it follows from (37) that

∆̄1,i(k) = diag
{

ε1, ε1, · · · , ε1
︸ ︷︷ ︸

φ2(i)−1

, ε̄1, ε1, ε1, · · · , ε1
︸ ︷︷ ︸

nu−φ2(i)

}

(38)

where ε̄1 = ε1 + Ωφ2(i)φ2(i)(k). Then, Kr(k)(k) can be
rewritten as follows:

Kr(k)(k) = −Pr(k)(k)Ĩ
†

= − ∆̄−1
1,r(k)(k)B̄

T
r(k)(k)Q̄r(k)(k + 1)Ār(k)(k)Ĩ

†

= − ∆̄−1
1,r(k)(k)Φ

u
φ2(r(k))B

T (k)Q̄r(k)(k + 1)Ār(k)(k)Ĩ
†

= −Φu
θ(k)∆̄

−1
1,r(k)(k)B

T (k)Q̄r(k)(k + 1)Ār(k)(k)Ĩ
† (39)

where θ(k) is derived by (9). Subsequently, denoting

K(k) , ∆̄−1
1,r(k)(k)B

T (k)Q̄r(k)(k + 1)Ār(k)(k)Ĩ
†

,

[

KT
1 (k) KT

2 (k) · · · KT
nu

(k)
]T

,

one has the special structure of Kr(k)(k) as follows:

Kr(k)(k) =
[

0 0 · · · 0
︸ ︷︷ ︸

θ(k)−1

KT
θ(k)(k) 0 0 · · · 0

︸ ︷︷ ︸

nu−θ(k)

]T

(40)

where the zero entries are the reflection of the adoption
of the scheduled SCP.

Remark 3 It is worth mentioning that the special struc-
ture of Kr(k)(k) in (40) is generated mainly due to the
matrix φu

θ(k) indicating the selected actuator obtaining

access to the C/A network at time instant k. Under the
scheduled SCP, only uθ(k)(k) is transmitted to the actua-
tor and others (i.e. ui(k) (i 6= θ(k))) have no effect on the
update of ū(k) at time instant k. In other words, only the
calculation of uθ(k)(k) = Kθ(k)(k)x̂(k) is “necessary” for
the controller design purpose of the time-varying system
(1) at time instant k. Therefore, the structure of the ma-
trix Kr(k)(k) is reasonable for suppressing the cost func-
tion (27) and the zero entries in (40) would simplify the
design algorithm to a great extent.

By means of Theorem 1, we can summarize the
Finite-Horizon Observer-Based H∞ Controller Design
(FHOBCD) algorithm as follows:

Remark 4 In this paper, the finite-horizon observer-
based H∞ controller is designed for a time-varying sys-
tems with the SCP by solving coupled backward recursive
RDEs. Note that Lemma 2 and Theorem 1 are proved
mainly by the “completing the square” technique which
results in very little conservatism. It can be observed from

Algorithm FHOBCD:

Step 1. Set k = N − 1, i = r(N − 1) ∈ R. Then Pi(N) = 0
and Qi(N) = 0 are available.

Step 2. Calculate the matrices ∆̄1,i(k) and ∆̄2,i(k) by, (29)
respectively. If ∆̄1,i(k) and ∆̄2,i(k) are all positive
definite, then the controller parameters Ki(k) and
Li(k) can be solved by (30), and go to the next
step, else jump to Step 6.

Step 3. Compute the matrix ∆i(k). If ∆i(k) is positive
definite, then step to the next procedure, else
jump to Step 6.

Step 4. Solve the backward RDEs of (16) and (28) to get
Pi(k) and Qi(k), respectively.

Step 5. If k 6= 0, set k = k − 1, i = r(k) ∈ R and go back
to Step 2, else turn to the next step.

Step 6. If the condition {∆̄r,i(k) > 0 (r = 1, 2), ∆i(k) > 0,
Pi(0) ≤ γ2W } is not satisfied, this algorithm is
infeasible. Stop.

Algorithm FHOBCD that, in the controller design pro-
cedure, all the important factors contributing to the sys-
tem complexity have been reflected which include 1) the
time-varying system parameters; 2) the transition prob-
abilities of the SCP; and 3) the prescribed disturbance
attenuation level.

4 AN ILLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate the ef-
fectiveness of the proposedH∞ controller design scheme.

Consider system (1) with the following parameters:

A(k) =







0.45 + sin(2k)
10

−0.40 0.65

−0.50 0.65 + cos(2k)
10

0.50

0.60 −0.30 −0.4− 0.3e−
k
10






,

B(k) =







0.64 0.65

0.58 0.52

0.3 0.25






, C(k) =

[

0.65 −0.30 −0.40

0.55 0.40 −0.45

]

,

D(k) =







0.04

−0.06

0.05






, E(k) =

[

0.01

0.02

]

,M(k) =
[

0.2 −0.1 0.2
]

.

The matrices P1(k) and P2(k) are taken to be

P1(k) =

[

0.6 + 0.1(−1)k 0.4 − 0.1(−1)k

0.55 0.45

]

,

P2(k) =

[

0.6 + 0.1(−1)k 0.4 − 0.1(−1)k

0.55 0.45

]

.

The matrices E1(k) and E2(k) are defined as follows:

E1(k) =
[

0.3 −0.2
]T

, E2(k) =
[

0.2 −0.3
]T

.

In this example, the H∞ performance level γ, positive defi-
nite matrix W and time-horizon N are selected as 0.99, 2.2I
and 80, respectively. The scalars ε1 and ε2 are selected as
ε1 = 0.01 and ε2 = 0.01, respectively. The exogenous distur-
bance inputs are selected as

ν(k) = 0.8 sin(1.2k), ω(k) = 0.6 cos(k).

Based on the given algorithm, the set of solutions to recursive
RDEs in Theorem 1 are obtained and the simulation result is
shown in Figs. 2, where Fig. 2 depicts the controlled output
trajectories of the open-loop and closed-loop system.
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Fig. 2. The output trajectories of the open-loop and
closed-loop system

5 CONCLUSION

In this paper, the observer-based H∞ control problem has
been investigated for a class of discrete time-varying sys-
tems with the SCP over a given finite horizon. The signal
transmission between the plant and remote controller has
been implemented via two communication networks where
the SCP has been applied to determine which sensor (or ac-
tuator) obtains access to the network. The Markov chains are
employed to characterize the random nature of the SCP. An
observer-based controller has been designed to construct the
control law. By employing the completing squares method
and the stochastic analysis techniques, the sufficient condi-
tions have been derived to guarantee the H∞ performance
of the closed-loop system. Moreover, the desired controller
parameters have been achieved by solving two coupled recur-
sive RDEs. Then, the corresponding analysis on the struc-
ture of the controller parameters has been conducted sub-
ject to the SCP scheduling. Finally, an illustrative example
has been given to highlight the effectiveness of the proposed
design strategy.
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Pérez, Optimal state estimation for networked systems with
random parameter matrices, correlated noises and delayed
measurements, International Journal of General Systems,
vol. 44, no. 2, pp. 142-154, Feb. 2015.

[2] D. Ding, Z. Wang, J. Lam and B. Shen, Finite-horizon
H∞ control for discrete time-varying systems with randomly
occurring nonlinearities and fading measurements, IEEE
Transactions on Automatic Control, vol. 60, no. 9, Sep. 2015,
pp. 2488-2493.

[3] D. Ding, Z. Wang, B. Shen and H. Dong, Envelope-
constrained H∞ filtering with fading measurements and
randomly occurring nonlinearities: the finite horizon case,
Automatica, vol. 55, pp. 37-45, May 2015.

[4] H. Dong, Z. Wang, S. X. Ding and H. Gao, OnH∞ estimation
of randomly occurring faults for a class of nonlinear time-
varying systems with fading channels, IEEE Transactions on
Automatic Control, 2015, DOI: 10.1109/TAC.2015.2437526.

[5] M. C. F. Donkers, W. P. M. H. Heemels, D. Bernardini,
A. Bemporad and V. Shneer, Stability analysis of stochastic
networked control systems, Automatica, vol. 48, no. 4,
pp. 917-925, May. 2012.

[6] E. Fridman and U. Shaked, Finite horizon H∞ state-feedback
control of continuous-time systems with state delays, IEEE

Transactions on Automatic Control, vol. 45, no. 12, pp. 2406-
2411, Dec. 2000.

[7] J. Hu, Z. Wang, H. Gao and L. K. Stergioulas, Probability-
guaranteed H∞ finite-horizon filtering for a class of nonlinear
time-varying systems with sensor saturations, Systems &
Control Letters, vol. 61, no. 4, pp. 477-484, Apr. 2012.

[8] J. Liang, F. Sun and X. Liu, Finite-horizon H∞ filtering
for time-varying delay systems with randomly varying
nonlinearities and sensor saturations, Systems Science and
Control Engineering: A Open Access Journal, vol. 2, no. 1,
pp. 108-118, Dec. 2014.

[9] Y. Long and G.-H. Yang, Fault detection and isolation
for networked control systems with finite frequency
specifications, International Journal of Robust and Nonlinear
Control, vol. 24, no. 3, pp. 495-514, Feb. 2014.
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