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Abstract- Recently, analysis of some major blackouts and failures of power system shows that 

voltage instability problem has been one of the main reasons of these disturbances and 

networks collapse. In this paper, a systematic approach to voltage stability analysis using 

various techniques for the IEEE 14-bus case study, is presented. Static analysis is used to 

analyze the voltage stability of the system under study, whilst the dynamic analysis is used to 

evaluate the performance of compensators. The static techniques used are Power Flow, V–P 

curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current 

Transmission system (FACTS) devices- namely, Static Synchronous Compensators 

(STATCOMs) and Static Var Compensators (SVCs) - are used as reactive power 

compensators, taking into account maintaining the violated voltage magnitudes of the weak 

buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that 

both the STATCOMs and the SVCs can be effectively used to enhance the static voltage 

stability and increasing network loadability margin. Additionally, based on the dynamic 

analysis results, it has been shown that STATCOMs have superior performance, in dynamic 

voltage stability enhancement, compared to SVCs. 

 

Keywords: Dynamic analysis, FACTS, optimization, power flow, static analysis, voltage 

stability. 

 

Nomenclature 

Be Suceptance of SVC 

ids Direct axis component of the stator current 
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iqs Quadrature axis component of the stator current 

idr Direct axis component of the rotor current 

iqr Quadrature axis component of the rotor current 

J Jacobian matrix of the system 

JR Reduced Jacobian matrix of the system 

P  Real power  

Q Reactive power 

rs Stator resistance 

rr Rotor resistance 

s Slip 

Vds Direct axis component of the stator voltage 

Vqs Quadrature axis component of the stator voltage 

Vdr Direct axis component of the rotor voltage 

Vqr Quadrature axis component of the rotor voltage 

ωm  Synchronous speed 

Xs Stator reactance 

Xr Rotor reactance 

Xm Magnetising reactance 

ΔV Change in the voltage matrix 

ΔQ Change in the reactive power 

λi The ith eigenvalue of JR 

 

1. Introduction 

The depletion of fossil fuel resources and the growing concern for greenhouse gases are 

triggering many countries to invest in renewable energy resources such as energy production 

from wind and solar resources. Both wind and solar resources are free and once they are 

operating, they have almost no greenhouse gas emission associated with them [1]. However, 

the rapid growth in using renewable-based generation poses challenges for the system 

operators. In general, they experience intermittency, variability, partial controllability and 

location dependency. Some of the challenges introduced in [2] include system security, power 

quality and system stability. Among power system stability concerns, voltage stability, which 

is addressed in this paper, is one of the major concerns. Voltage stability of networks is still a 

major issue with major blackouts recently occurred, such as the massive blackout that took 

place on July 2012 in India affecting around 670 million people, or the partial blackout that 

took place on September 2014 in Egypt affecting around 20 million people. Typically, 

according to [3], voltage stability refers to the capability of  power system to sustain constant 



voltage at all buses after being subjected to a disturbance from a given initial operating point. 

Moreover, voltage stability can be classified into two categories, according to the type of 

disturbance, or according to the time span over which instability may occur. Regarding to the 

type of disturbance, small–disturbance voltage stability can be seen as the ability of the power 

system to maintain voltage control after a small disturbance such as a load change, whilst 

large–disturbance voltage stability can be defined as the ability of the power system to 

maintain voltage control after a large disturbance such as big generation tripping. Regarding 

to time, short–term voltage stability considers the dynamics of the fast acting loads, whereas 

long–term voltage stability takes into consideration slower acting equipment. Generally, 

closeness to voltage collapse can be used to measure voltage stability of a power system. By 

definition, a voltage collapse is a sequence of events following voltage instability that leads to 

a blackout or severe low voltage condition in a network. Voltage collapse can be seen as a 

static phenomenon which is associated with reactive power imbalance [4]. In other words, 

transmission lines, transformers and loads are sinks of reactive power. Accordingly, if a 

sufficient reactive power compensator is not available in the power system, voltage instability 

may occur. Since voltage stability problem is seen as a static phenomenon, it can be addressed 

by off-line study through the initial design or during network improvement process. 

Additionally, issues such as the loadability limit of the network, fault ride through capability, 

reactive power reserve and time respond of these reserves, are all included in voltage stability 

studies. Furthermore, many distribution networks still operate in an open ring system. Power 

is restored during faults by moving open points. Hence, the power system network needs to be 

stable under these new operating conditions. 

At the present time, in order to improve the voltage profile, power electronics based devices 

called Flexible AC Transmission Systems, or FACTS, are being used. FACTS is a family of 

power electronics devices that is involved in the control of bulk flow of both active and 

reactive powers [5]. FACTS devices can provide both series and shunt compensation to 

improve the system's voltage profile and increase loadability of the transmission systems. 

FACTS may also address other issues in the future, such as sub-synchronous oscillations or 



dynamic voltage control [6]. The most common devices that can provide shunt compensation 

are the Static Synchronous Compensators (STATCOMs) and the Static Var Compensators 

(SVCs). 

In the literature, fault ride through capability has been checked in [7] using a fixed speed 

induction generator with STATCOM and SVC. Other works on dynamic analysis can be 

found in [8].  Induction generators need reactive power to operate, thus, they draw it from the 

grid unless fitted with local reactive power source. On the other hand, the doubly fed 

induction generator (DFIG) or the synchronous generator can regulate their own power factor 

from leading to lagging. Mathematical techniques are available to give an insight of the 

closeness of a system to voltage collapse. They can be classified either static or dynamic. In 

[4], static voltage analysis was performed using UWPFLOW for P-V curve analysis in order 

to identify voltage collapse using the Continuation Power Flow (CPF). STATCOM and SVC 

have been used to improve voltage stability. Tangent vector analysis was used to allocate 

compensators to the weakest buses. Related works have been done in [9-13].  

This paper demonstrates that a combination of both static and dynamic analyses should be 

used for voltage stability studies. One of the objectives is to devise a systematic approach for 

voltage stability analysis, which can be used by engineers during network planning. 

Specifically, load flow analysis, V – P curves and Q – V modal analysis, are used for the 

static voltage stability analysis. Dynamic analysis is used to re-evaluate the performance of 

the STATCOM and SVC during contingencies. Time domain simulation for differential 

algebraic equations for power systems are solved for the dynamic analysis.  

2. Wind Farm Modelling 

Basically, a wind turbine (WT) is a device that extracts kinetic energy from the air and feeds 

it to a generator to generate electricity. The axis of the wind turbine can be either horizontal 

or vertical. In horizontal axis wind turbines, the blades rotate on an axis that is parallel to the 

ground, whilst in vertical axis wind turbines, the blades rotate on an axis that is perpendicular 

to the ground. According to [14], wind turbines can be classified into five types, as follows: 



(i) Type 1: fixed speed WT with squirrel cage induction generator directly connected to the 

grid via a step up transformer, (ii) Type 2: limited variable speed WT with wound rotor 

induction generator, (iii) Type 3: variable speed WT with partial power electronic conversion 

and Doubly-Fed Induction Generator (DFIG), (iv) Type 4: variable speed WT with full power 

electronic conversion with both synchronous or induction generators may be used, and (v) 

Type 5: variable speed with mechanical torque converter between low speed and high speed 

shaft and synchronous generator. Ref. [15] demonstrated that the most common types are 

Type 1, Type 3 and Type 4. Nowadays, DFIG is widely being installed because of the 

following advantages: 

 It can operate at variable wind speeds (±33% around synchronous speed). This allows 

production of electricity at low wind speeds. 

 The cost of the inverter is reduced as it handles around 30 % of the total power. 

 It can control the amount of reactive power to be supplied or absorbed from the grid, 

hence controlling the power factor. 

 It is more efficient than conventional induction generators. 

 

Figure (1) shows a schematic diagram of a DFIG equipped WT. The stator is directly 

connected to the grid. The rotor windings are connected to the grid using a back-to-back 

voltage source converter (VSC) and via slip rings. The VSC is able to deliver a variable 

frequency source, while permitting a variable speed rotation. The magnetic field, produced in 

the rotor windings, rotates due to the rotation of the generator’s rotor plus the rotational 

effects produced by the converter AC current. This gives rise to two possibilities where the 

rotor’s magnetic field rotates opposite and in the same direction as the rotor. Super-

synchronous operation occurs when the rotor magnetic field is in the same direction as the 

generator rotor. Sub-synchronous operation occurs when the rotor magnetic field is in the 

opposite direction of the generator rotor. The magnitude of the induced stator voltage depends 

on the magnetic flux density passing through the stator windings. A constant voltage can be 



maintained at the stator by applying a voltage to the rotor winding which is proportional to 

the frequency. This implies maintaining the voltage-frequency (V/f) ratio constant [16].    

 
Figure 1. Schematic diagram of a DFIG equipped WT [15] 

 

The steady state model of the DFIG is shown in Figure (2). Subscripts ‘d’ and ‘q’ refer to 

the direct and quadrature axis components. The remaining terms in the equations that follow 

are described in Figure (2) itself, in addition to the Nomenclature. A detailed analysis is 

provided in [17]. It is assumed that the stator and rotor flux dynamics are much faster 

compared to the grid dynamics. The converter decoupled the DFIG from the grid. Under these 

assumptions, the stator circuit is represented by Equations (1) and (2). 

 ds s ds s m qs m qrv   r i x  x i x i    (1) 

 qs s ds s m ds m drv   r i x  x i x i    (2) 

Additionally, the rotor circuit is described by Equations (3) and (4). 

    dr r dr m r m qr m qsv   r i 1   x  x i x i     (3) 

    qr r qr m r m dr m qsv   r i 1   x  x i x i     (4) 

The per-unit real power (P) injected into the grid, when the losses are ignored, is the sum of 

the stator and rotor powers as shown in (5). 

ds ds qs qs dr dr qr qrP  v i  v i v i v i      (5) 

Similarly, the per-unit reactive power is given by the sum of the stator reactive power and 

that of the grid side converter. Equation (6) represents the reactive power that the stator will 



either absorb or release to the grid.  

qs ds ds qsQ  v i  v i    (6)  

 

Figure 2. Equivalent circuit (per-phase) of the DFIG [15] 

Furthermore, two control modes can be applied to the DFIG, as follows: 

Power Factor Control mode – the real and reactive powers of the stator are controlled in 

order to maintain a constant voltage at the point of connection with the grid. Accordingly, in 

the load flow studies, the DFIG is modelled as a PQ-bus [4]. 

Voltage Control mode – the voltage is kept constant at the point of common coupling. 

Accordingly, in the load flow studies, the DFIG is modelled as a PV-bus [18]. 

In this work, the DFIG is modelled as a PV-bus, for the static voltage analysis, because of its 

ability to maintain a constant voltage at the point of connection to the utility. 

3. Voltage Stability Analysis Techniques 

Load flow is used to compute voltage magnitudes and phase angles at all buses. Hence, 

techniques such as V – P curves, V – Q Sensitivity Analysis, Q – V modal analysis, Q – V 

curves and minimum singular value method may be applied for voltage stability studies. 

Voltage stability analysis can be classified as static and dynamic analyses. In the static 

analysis,  ‘snapshots’ of the system are taken from different time instances in the time domain 

trajectory, hence, useful information such as voltage stability and proximity to voltage 

collapse can be derived. Static techniques are sufficient to analyze the voltage stability of a 



system. In the dynamic one, a series of first order differential equations are derived and can 

be solved using any integration method such as Euler Method, Runge-Kutta Methods, 

numerical stability of explicit integration methods or the implicit integration method [19, 20].  

In dynamic analysis, the sequence of events that leads to voltage instability can be analyzed. 

A complete study period would include the action of equipment with slow dynamics such as 

tap changers. Only the techniques used in this work are summarized below. 

3.1. V – P curves Analysis 

The V – P curve at a bus shows the voltage variation versus the real power. The nose point 

corresponds to the point of voltage collapse (PoVC), or the Saddle-node bifurcation point. 

The margin between the actual operating point and the PoVC corresponds to the voltage 

stability margin. Continuation power flow algorithms can be used to obtain the V – P curves. 

3.2. Bifurcation Analysis 

Both qualitative and quantitative information about the behavior of nonlinear systems close 

to their ‘critical’ or bifurcation equilibrium point after variations of the system parameters can 

be analyzed using the bifurcation theory. In power systems, at least two types of bifurcation 

have to be discussed [18]: 

 Saddle-node Bifurcation (SNB): This type of local bifurcation occurs as two 

equilibrium points, normally one unstable and one stable, merge and disappear. 

Mathematically, this corresponds to the singularity of the Jacobian matrix. In the V – 

P curve, this will correspond to the nose point. 

 Hopf Bifurcation (HB): This occurs as a result of two conjugate pair of eigenvalues 

becoming pure imaginary. Consequently, more oscillatory becomes the system, 

hence, stability may be lost by increasing the amplitude of the oscillation [18]. 



3.3. Q – V Modal Analysis 

Voltage is strongly related to the reactive power. Real power may be kept constant at each 

operating point and voltage stability may be evaluated using the incremental relationship 

between Q and V. The reduced Jacobian matrix (JR), derived from the Jacobian matrix, can be 

expressed as follows: 

RΔQ  J ΔV (7) 

In addition, JR can be factored as follows: 

-1

RJ  xΛ η (8) 

where: (x) is the right eigenvector matrix of JR, (ʌ) is the diagonal eigenvector matrix of JR 

and (η) is the left eigenvector matrix of JR. Equations (9) and (10) show the voltage variation 

with the reactive power. 

1ΔV  xΛ ηΔQ (9) 

i  i

i i

x η
ΔV  ΔQ

λ
 (10) 

where: xi is the ith
  
column of the right eigenvalue of JR, ηi is the ith

  
row of the left eigenvalue 

of JR, λi is the ith
  
eigenvalue of JR obtained from the diagonal matrix ʌ

-1
. For the ith

  
mode, 

the modal voltage variation is given by (11). 

i i

i

1
v q

λ
 (11) 

Eigenvalues of the reduced Jacobian matrix are used as indicators of voltage stability. If all 

the eigenvalues are positive, the system is considered voltage stable. On the other hand, the 

system is considered voltage unstable if at least one of the eigenvalues is negative or equals 

zero. Accordingly, the smaller the value of positive λ, the closer the system is to voltage 

instability. However, the magnitude of the eigenvalue may not provide an absolute measure to 

voltage instability due to the nonlinearity of the power flow problem. Consequentially, the V 

– Q sensitivity at a bus k is given by (12). 



ki  kik

ik i

x ηV
 

Q λ





 (12) 

If the V – Q sensitivity is negative, this implies that the system is unstable. Smaller the 

sensitivity, the more stable is the system. Another quantity which can be derived is the 

participation factor of the bus k. It determines the areas associated with each mode as given in 

(13). Additionally, the entire bus participation factors for each mode sum up to unity.  

ki ki  kiP  x η (13) 

Generally, there are two modes. In the first one, only few buses have large participation 

factors and the others will have participation close to zero. In the second mode, many buses 

have small and similar participation factors, whilst the others have participations close to 

zero. Mode one occurs if a load is connected to a very strong network. Mode two occurs when 

a region is heavily loaded with the reactive power reserve exhausted.    

3.4. Dynamic Analysis 

This involves performing time domain simulations. Power system and its components are 

usually represented by a set of nonlinear differential algebraic equations. Time integration 

methods are used to solve equations these nonlinear equations. Methods exist are the Euler 

method, Runge-Kutta Methods and Trapezoidal Rule. These methods are described in [20].  

In this work, trapezoidal rule is used because of its simplicity and robustness. Besides, it is 

used in many commercial softwares [21]. In this paper, dynamic analysis is used to capture 

the time-domain response of the STATCOM and the SVC in response to a contingency. 

4. FACTS and Placement Methods 

By definition, FACTS are alternating current transmission systems consisting of power 

electronic devices and other static controllers that improve controllability and increase power 

transfer capability [6]. They can be interfaced with an energy storage element to supply or 

absorb active and reactive powers. Due to the high speed operation of these controllers; both 



steady-state and dynamic conditions can be controlled. In this paper, STATCOM and SVC 

are used as reactive power compensators, while taking into account maintaining the voltage 

magnitude within its statutory limits.  

The IEEE Working Group on FACTS defines the STATCOM as a static synchronous 

generator connected in parallel with the load, it can control the reactive power with variable 

inductive or capacitive current which does not depend on the system voltage [22]. Figure (3) 

shows the STATCOM and its V – I characteristics. The previous definition of STATCOMs 

can be fragmented into three components. Firstly, it is ‘static’ which implies it has no 

rotational part and is based on solid state switches. Secondly, it is ‘synchronous’ which is 

related to three phase synchronous machines. Thirdly, ‘compensator’ can be seen as providing 

reactive power support. The STATCOM presents several advantages such as quick time 

response, small size, good dynamic characteristics under various operating conditions, and 

accurate voltage control. The voltage source converter (VSC) is the heart of the STATCOM. 

It consists of a self-commutating solid-state turn off devices such as GTO and IGBT together 

with a reverse blocking diode in parallel. The switches operate either in the square wave 

mode, pulse width modulation mode with a high switching frequency or selective harmonic 

elimination modulation technique. A DC capacitor is connected to the input side of the VSC 

to provide the required DC input voltage. The output of the VSC is nearly sinusoidal with the 

use of filters [23] . The main purpose of the STATCOM is to generate sinusoidal waveform at 

the point of common coupling and control the flow of reactive current. The STATCOM can 

inherently supply active power as well. It is controlled by the phase angle between the 

converter output and the AC main voltage. The reactive power is controlled by the voltage 

magnitude of the converter output voltage and the AC main voltage.  

On the other side, the IEEE Working Group on FACTS defines the SVC as a generator that 

is capable of generating or absorbing reactive power (variable reactive current capability) 

when connected in parallel with a load, hence the desired parameters such as voltage can be 

controlled. The SVC and its V – I characteristic are shown in Figure (4). It consists of a 

thyristor-controlled reactor in an arm with a capacitor in the opposite arm. Varying the phase 



angle, a continuous range of reactive power variation can be achieved. The main drawbacks 

of this setting are the production of low-order harmonics and high losses while working in the 

inductive region. The FACTS models present in PSAT are described in [24]. 

 

Figure 3. STATCOM model and its corresponding V – I characteristic [21] 

 

 

Figure 4. SVC model and its corresponding V – I characteristic [21] 

 

In its broadest scene, FACTS placement techniques can be classified into three main 

categories [25-27] which are highlighted and described below.  

Artificial Intelligence Based Techniques: Artificial Intelligence (AI) is human-made systems 



that possess some of the important characteristics of life. The algorithms that have been used 

are the Genetic Algorithm, Tabu Search Algorithm, Simulated Annealing Algorithms, Particle 

Swarm Optimization, Ant Colony Optimization, Fuzzy Logic Algorithm, Harmony Search 

Algorithm and Imperialist Competitive algorithm. 

Optimization Based Methods: Non-linear programming, Integer and Mixed-integer 

programming, and Dynamic programming techniques are all belonging to this category.  

Sensitivity Based Methods: Minimum singular value decomposition and eigenvalue analysis, 

fall into this category. In [28], sensitivity-information such as the rate of change of voltage 

with reactive power and the rate of change of losses with real and reactive power are derived 

from the reduced Jacobian matrix. By 2016, this information will be used for Unified Power 

Flow Controllers (UPFCs) placement in the Iranian network. 

5. Formulation of the Search Algorithm 

A simple algorithm for the placement of the FACTS devices using static analysis is proposed. 

Figure (5) demonstrates a flowchart for the placement of these devices, STATCOM and the 

SVC. Q – V modal analysis is used to check the stability of the system, and the weakest buses 

are identified using the eigenvalues and the participation factors. The target voltage of the 

network is set according to the ANSI Standard C84.1 guidelines [29] given in Table 1. For 

voltage below 46 kV, Range A corresponds to the ideal or optimal voltage limits whereas 

Range B is acceptable but not desirable. For voltage above 46 kV, the two ranges, namely 

normal operating and emergency condition, are defined. Consequentially, the power flow is 

used to find the reactive power requirement so that the STATCOM and SVC can be sized. 

After compensation, all voltage limits in the network are re-checked. If the compensated 

voltage violates its permissible values, the above processes are repeated again. The IEEE 14-

bus test system is used for case studies. The numerical data were primarily taken from [30]. 

The test network with its bus labels is shown in Figure (6).  

The proposed algorithm is implemented by programming in MatLab and PSAT environments. 

PSAT can be run through the MatLab interface using command line technique. This enables 



solving large systems. On the other side, this method may present some computing and time 

challenges in a system comprising of thousands of buses. It becomes financially impractical 

to place a FACTS compensator at each bus to maintain voltage magnitude at its desired level. 

Generally, to overcome this challenge, a network is divided into different regions called pilot 

nodes. These pilot nodes represent the voltage in these regions. Hence, the presented 

flowchart can be applied to maintain voltage within tight tolerances at these nodes.  

 

 

 

Figure 5. Flowchart for FACTS placement 
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End 
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bring its voltage magnitude to the desired range 

ranges 

 

No 



 

Figure 6. IEEE 14-bus test system [27] 

 

Table 1 

Voltage levels, according to ANSI C84.1 

Voltage Levels 

Range A Range B 

Minimum value 

(pu) 

Maximum value 

(pu) 

Minimum value 

(pu) 

Maximum value 

(pu) 

2.4 kV – 35.4 kV 0.975 1.05 0.95 1.058 

Above 46 kV 

Normal Condition Emergency Condition 

Minimum value 

(pu) 

Maximum value 

(pu) 

Minimum value 

(pu) 

Maximum value 

(pu) 

0.95 1.06 0.90 1.10 

6. Simulation Results and Discussion 

6.1 Static Analysis 

Firstly, simulation results are presented without reactive power compensation and the results 

are examined in details. The first study performed is solving the power flow using the full 

Newton-Raphson algorithm, with reactive power limits of the system taken into 

consideration. The results of the uncompensated system are given in Table 2. 



Table 2 

Results of the uncompensated load flow  

Bus No. Initial Bus Type Voltage (pu) Angle (rad) P Injection (pu) Q Injection (pu) 

1 Slack 1.0600 0 1.583 1.49 

2 PV 1.0103 -0.0809 0.183 0.373 

3 PQ 0.9263 -0.2216 -0.942 -0.19 

4 PQ 0.9404 -0.1734 -0.478 -0.04 

5 PQ 0.9529 -0.1462 -0.076 -0.016 

6 PQ 0.9468 -0.2632 -0.112 -0.075 

7 - 0.9305 -0.2381 0 0 

8 PV 1 0.0780 0.78 -0.645 

9 PQ 0.9158 -0.2738 -0.295 -0.166 

10 PQ 0.9127 -0.2783 -0.09 -0.058 

11 PQ 0.9256 -0.2735 -0.035 -0.018 

12 PQ 0.9288 -0.2822 -0.061 -0.016 

13 PQ 0.9222 -0.2833 -0.135 -0.058 

14 PQ 0.8978 -0.301 -0.149 -0.05 

 

Initially, Bus 2 was set as a PV bus with voltage being 1.045 pu. However, after the load 

flow, the voltage is 1.0103 pu, because of the bus-switching occurs from PV to PQ, as a result 

of reactive power limits of the generator at Bus 2 being exceeded. Hence, it can be concluded 

that there is a lack of reactive power support at the generator of Bus 2. The negative sign of 

reactive power injection at Bus 8 reflects the ability of the DFIG to absorb reactive power.  

Additionally, the voltage level is below 0.975 pu, which is the lowest acceptable limit 

according to the ANSI C84.1. Bus 14 has the lowest voltage followed by bus 10 and bus 13. 

This occurs as they are far from generation, and suffer from the voltage drop across 

transformers and transmission lines. 

The second study performed was Q–V modal analysis. The results are given in Table 3. All 

the eigenvalues of the reduced Jacobian matrix are positive with no imaginary part indicating 

that the system is stable. According to Equation (12), the smaller the value of positive λ, the 

closer the system is to voltage instability. Thus, the bus having the highest participation factor 

associated with this eigenvalue is the weakest bus. From Table 3, it can be seen that the 

smallest eigenvalue is number 5 (0.413), and Bus 14 has the largest participation factor 



(0.1388) associated with this eigenvalue. Hence, Bus 14 is the weakest bus. 

Table 3 

Modal Analysis Results 

 

The third study performed was the V–P curve analysis using the Continuation Power Flow. 

It is used to obtain the voltage profile at each bus with the generation limits taken into 

consideration. The results for the PV buses are shown in Figure (7) and the results for the 

buses associated with the lowest eigenvalues are shown in Figure (8). The maximum loading 

parameter λcritical, corresponds to the limit the system can be loaded before voltage instability 

occurs, is found to be 1.425. It can be observed that Bus 14 has the lowest voltage at the SNB 

point and ultimately collapsed to zero. At Bus 2, the voltage profile is not constant as the 

generator is already operating at its upper reactive limit.  

Eigenvalue No. Most Associated Bus Eigenvalue 
Participation factor of 

most associated buses 

1 Bus 04 61.035 0.5315 

2 Bus 02 37.332 0.8671 

3 Bus 09 34.138 0.6392 

4 Bus 06 25.564 0.6405 

5 Bus 14 0.413 0.1388 

6 Bus 05 17.367 0.2664 

7 Bus 13 15.853 0.3491 

8 Bus 12 13.156 0.2289 

9 Bus 12 3.159 0.3199 

10 Bus 11 8.789 0.2868 

11 Bus 14 5.670 0.4418 

12 Bus 03 5.025 0.4059 

13 Bus 01 999 1 

14 Bus 08 9.291 1 



 

Figure 7. V - P Curves for the PV Buses

 

Figure 8. V - P Curves for PQ Buses having worst eigenvalues 

Moreover, Figure (9) shows the different voltage magnitudes at the Saddle Node 

Bifurcation point. This represents the lowest voltage at each bus before voltage collapse. 

Once more, it can be seen that Bus 14 has the lowest voltage magnitude. 



 

Figure 9. Voltage Magnitudes Profile at the Bifurcation Point 

The reactive power required to bring the voltage within limits is calculated using the 

flowchart shown in Figure (5). Two iterations are required to bring the voltage within limits. 

The first iteration places a compensator at Bus 14. The system is re-checked for voltage 

stability. Consequentially, the second iteration places a compensator at Bus 03. Re-checking 

the system for voltage stability, the target voltage has been achieved with the two 

compensators. The voltage magnitudes at each iteration are given in Table 4. Consequentially, 

the power flow results after compensation is shown in Table 5. 

Table 4 

Voltage Magnitude at each iteration 

Bus No. 
Voltage Magnitude (pu) 

1
st
 Iteration 2

nd
 Iteration 

1 1.06 1.06 

2 1.0224 1.0363 

3 0.9481 1.0 

4 0.9680 0.9888 

5 0.9781 0.9944 

6 1.004 1.0154 

7 0.9802 0.9957 

8 1.0 1.0 

9 0.9766 0.9891 

10 0.9734 0.9858 

11 0.9846 0.9967 

12 0.9919 1.0024 

13 0.9901 0.9994 

14 1.0 1.0 



Table 5 

Power Flow results after compensation 

Bus No. Voltage (pu) Angle (rad) P Injection (pu) Q Injection (pu) Q Generation (pu) 

1 1.06 0 1.561 0.847 0.847 

2 1.0363 -0.0858 0.183 0.373 0.5 

3 1.0 -0.2254 -0.942 0.159 0.349 

4 0.9888 -0.1760 -0.478 -0.04 - 

5 0.9944 -0.1494 -0.076 -0.016 - 

6 1.0154 -0.2536 -0.112 -0.075 - 

7 0.9957 -0.2335 0 0 - 

8 1.0 0.0798 0.78 -0.645 -0.645 

9 0.9891 -0.2644 -0.295 -0.166 - 

10 0.9858 -0.2680 -0.09 -0.058 - 

11 0.9967 -0.2632 -0.035 -0.018 - 

12 1.0024 -0.2711 -0.061 -0.016 - 

13 0.9994 -0.2746 -0.135 -0.058 - 

14 1.0 -0.3002 -0.149 0.117 0.167 
 

The V – P curve analysis is used to check the new loadability limit of the system using the 

CPF, without any voltage limits. The new critical loading parameter is 2.756. This represents 

an increase of 93.4%, without reactive power limits enforced, which is calculated using 

Equation (14). Hence, providing reactive power compensation will increase the loadability of 

the system. This is particularly important where system operator wants to defer investment in 

assets, but want to increase capacity of transmission lines The V – P curves for the PQ buses 

are shown in Figures (10) and (11), respectively. 

 critical critical

critical

λ with compensation - λ (without compensation)
% Increasing in Loading=   ×100

λ (without compensation)
  (14) 

 

Figure 10. V - P Curves for compensation for Buses 4 to 7 



 

Figure 11. V – P curves after compensation for Buses 9 to 13 

The load flow results give basic data required to specify the normal operating condition of the 

compensators. However, during the planning, the level to which the system will be stretched 

must be taken into consideration. CPF can be used to find the loading parameter that causes 

the voltage magnitude of a PQ bus to reach the acceptable and emergency rating of the ANSI 

C84.1. The result is depicted in Table 6. It can be observed that during normal operation, the 

system can be loaded up to 1.382 before Bus 11 attains the 0.975 pu of the ANSI C84.1. 

Similarly Bus 11 is the first bus to attend the voltage limits in case of the contingency 

operating condition. 

 

Table 6 

Buses attaining their voltage limits with variations of load parameters 

Acceptable Operating Limit Contingency Operating Limit 

Load Parameter, 𝜆 
Bus number attaining 

its voltage limit 
Load parameter, 𝜆 

Bus number attaining 

its voltage limit 

1.382 11 1.722 11 

1.417 13 1.757 13 

1.451 12 1.791 12 

1.486 10 1.825 10 

1.521 9 1.860 9 

1.893 5 1.894 6 

1.927 6 2.515 5 

1.962 4 2.534 4 

 



When this loadability limit is reached, a load flow is performed again to obtain the reactive 

power limit of the compensators. Their specifications are given in Table 7. Additionally, for 

the compensated system, the real power loss decreases by 12.7% and the reactive power loss 

decreases by 23.7%. The huge decrease of the reactive power loss is that it is being supplied 

locally at Bus 14 and Bus 03. Hence, it does not have to be transmitted via power lines and 

thus no losses.  

Table 7 

Compensators specifications 

 
Q (Mvar) 

V (kV) f (Hz) 
Nominal Rating Emergency Rating 

Compensator at Bus 14 16.7 59.0 13.8 60 

Compensator at Bus 03 34.9 103.6 69.0 60 

 

6.2 Dynamic Analysis (Time Domain) Response of FACTS 

Other parameters that need to be specified are the desired switching technology and 

permissible active power losses. The response time and type of response (maximum 

overshoot and settling time) determines the time required by the compensators to bring 

voltage to its pre-disturbed condition, or to a new stable operating point. These can be 

obtained by performing a dynamic simulation. Consequentially, dynamic analysis is used to 

observe the response of the STATCOM and the SVC under normal and contingency 

conditions.  

The response of the FACTS devices at Bus 03 is observed. Loss of line 2-3 is simulated at a 

time (t) equals 20 seconds. Their performance is analyzed and their limits have not been 

exceeded.  

The STATCOM and SVC responses are compared, as shown in Figure (12). It can be 

observed that both the STATCOM and the SCV are able to bring the voltage at the considered 

buses to 1 pu when neither the STATCOM nor the SVC has attained their limits. Hence, it 

can be concluded that both compensators have the same voltage support capability when they 



are operating within their limits. This corresponds to the linear region of the V – I 

characteristic of theses devices. 

 

Figure 12. Response time of the SVC and the STATCOM at Bus 3   

Furthermore, the simulation is re-performed with the STATCOM and the SVC operating at 

their lowest reactive power limit. The voltage profile at bus 03 is analyzed again, as shown in 

Figure (13). 

 

Figure 13. Bus 03 with FACTS compensators having reduced reactive power 

 



It can be seen that the STATCOM provides better voltage support at its lower limit compared 

to the SVC at the same conditions. The steady voltage magnitude after the line outage with 

STATCOM is 0.914 pu and 0.895 pu with the SVC. When the SVC operates at its low 

reactive power limit, it behaves as a fixed shunt reactance, and the amount of reactive power 

it can provide or sink depends on the voltage of its bus. Theoretically, the reactive power 

output at the limits is proportional to the square of this voltage. On the other hand, the 

STATCOM is a current limited device. It can provide a constant reactive current at its limit. 

Hence, the STATCOM is more useful in preventing voltage collapse than the SVC. 

7. Conclusions 

For proper operation of the grid and power system equipment, maintaining voltage 

stable in a network is crucial. Voltage instability, if not rectified in time, can trigger 

cascaded events, leading to blackout which can leave the power system in the darks 

for days. This paper gives an overview of voltage stability phenomenon with wind 

farm followed by techniques to analyze it. It has been shown that a combination of 

voltage stability techniques, namely V – P curve, modal and bifurcation analysis can 

be used to study voltage stability of a network. A solution to increase stability of the 

system is to use reactive power controllers. Moreover, it has been shown that 

STATCOM has superior performance than SVC during contingencies.   
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