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Abstract. In earlier work, the problem of generating a preset distin-
guishing sequence from a finite state machine (FSM) was converted into
a Boolean formulae to be fed into a SAT solver, with experiments suggest-
ing that such approaches are required as the size of input alphabet grows.
This paper extend the approach to the NP-hard minimum height adap-
tive distinguishing sequence construction problem for partially specified
FSMs (PSFMSs). The results of experiments with randomly generated
PSFSMs and case studies from the literature show that SAT solvers can
perform better than a previously proposed brute-force algorithm.
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1 Introduction

The potential practical benefits of automatically deriving test sequences from a
finite state machine (FSM) has led to the development of a number of approaches
and their use in various fields such as sequential circuits [1], lexical analysis [2],
software design [3], communication protocols [3–6], object-oriented systems [7],
and web services [8]. The purpose of generating such test sequences is to decide
whether an implementation under test (IUT) conforms to its specification M ,
where the IUT conforms to M if they have the same behaviour.

In testing one might use a checking sequence (CS): an input sequence that is
guaranteed to determine whether the IUT conforms to specification M as long as
the IUT satisfies certain well-defined conditions. The typical assumption made
is that the IUT can be described by an FSM N with at most m states (some
predefined m). A CS x̄ is applied to the IUT and the output sequence produced is
compared to that produced by M when executed with x̄. If the output sequences
are identical then the IUT is deemed to be correct; otherwise it is faulty.

Many CS construction techniques use distinguishing sequences (DSs): a class
of input sequences that can be used to identify the state of the FSM M . Essen-
tially, a CS leads to a different output sequence from any two states of M . As one
can construct a relatively short CS when using a DS [9]1, most CS generation

1 While the upper bound on PDS length is exponential, test generation takes polyno-
mial time if there is a known PDS.
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approaches rely on the existence of such sequences. While other approaches such
as Unique Input Output (UIO) sequences or Characterising Sets (W-Set) can be
used to identify the current state of the IUT, these lead to longer CSs [10].

FSM specifications are often Partially Specified FSMs (PSFSMs): some state-
input combinations do not have corresponding transitions [11, 12]. Much of the
FSM based testing literature applies the Completeness Assumption [13, 14] that a
PSFSM can be completed to form an FSM. This might be achieved, for example,
by adding transitions with null output. However, there are situations in which
one cannot complete a PSFSM and generate a CS from the resultant FSM [15].
For example, there being no transition from state s with input x might corre-
spond to the case in which x should not be received in state s and testing should
respect this restriction. This might be the case if the tests are to be applied by a
context that cannot supply unspecified inputs [15]. It has been observed that it
is possible to test the IUT via another PSFSM (tester PSFSM) that may never
execute the missing transitions, which partially bypasses the need for the com-
pleteness assumption [16]. Nevertheless, in the FSM based testing literature we
know of only one paper [17] in which the CS generation problem is addressed for
PSFSMs. Although the previously proposed method [17] provided a polynomial
time algorithm, the algorithm assumes that DSs are known in advance but does
no report how one can derive DSs for a PSFSM.

There are two types of DSs: Preset Distinguishing Sequences (PDSs) and
Adaptive Distinguishing Sequences (ADS). A PDS is an input sequence for which
different states of M produce different output sequences. On the other hand, an
ADS can be thought as a decision tree (ADSs are defined in Section 2). There
are some benefits to using an ADSs rather than a PDS. Türker and Hierons show
that checking the existence and computing a PDS from a PSFSM is a PSPACE-
complete problem. They also showed that, for a given PSFSM M with n states
and p inputs, the existence of an ADS can be decided in time of O(pn log n) [18].

As the length of the checking sequence determines the duration/cost of test-
ing, Türker and Yenigün [19] investigated corresponding optimisation problems.
For completely specified FSMs they provided three notions of the “cost” of an
ADS: (i) the height of the ADS (MinHeightADS problem), (ii) the sum of the
depths of all leaves in the ADS (external path length) (MinADS problem), and
(iii) the sum, over the leaves, of the product of the depth and weight of the leaf
(MinWeightADS problem). They showed that constructing a minimum ADS
with respect to one of these metrics is NP-complete and NP-hard to approximate.

As far as we are aware, no previous work has investigated the problem of
generating a minimum height ADS from a PSFSM. On the other hand, Gunicen
et al. produced an algorithm that receives a completely specified FSM and an
integer ` and converts the PDS generation problem into a Boolean formula to
be fed into a SAT solver [20]. This paper investigates the use of SAT solvers
to generate a minimum height ADS from a PSFSMs. We encode the minimum
height ADS generation problem as a Boolean formula and use a SAT solver to
check the satisfiability of this formula. We also report on the results of initial
experiments. The experiment subjects included randomly generated PSFSMs
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and PSFSMs drawn from a benchmark. The results suggest that in terms of
scalability and the amount of time required to construct an ADS, SAT solvers
are better than the brute-force approach.

The paper is structured as follows: Section 2 introduces terminology and
notation used throughout the paper. Section 3 presents the SAT formulation and
Section 4 presents the results of experiments. Finally, in Section 5 we conclude.

2 Preliminaries

A PSFSM M is defined by tuple (S,X, Y, δ, λ,D) where S = {s1, s2 . . . sn} is
the finite set of states, X = {a, b, . . . , p} and Y = {1, 2, . . . , q} are finite sets
of inputs and outputs, D ⊆ S × X is the domain, δ : D → S is the transition
function, and λ : D → Y is the output function. If (s, x) ∈ D then x is defined
at s. Given input sequence x̄ = x1x2 . . . xk and s ∈ S, x̄ is defined at s if there
exist s1, s2, . . . sk+1 ∈ S such that s = s1 and for all 1 ≤ i ≤ k, xi is defined at
si and δ(si, xi) = si+1. M is completely specified if D = S ×X and otherwise is
partially specified. If (s, x) ∈ D and x is applied when M is in state s, M moves
to state s′ = δ(s, x) and produces output y = λ(s, x). This defines transition
τ = (s, x/y, s′) with label x/y, start state s, and end state s′.

We use juxtaposition to denote concatenation. The transition and output
functions can be extended to input sequences as follows in which ε is the empty
sequence, x ∈ X, x̄ ∈ X?, and xx̄ is defined at s: δ(s, ε) = s and δ(xx̄) =
δ(δ(s, x), x̄); λ(s, ε) = ε and λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄). If there exists x̄ ∈ X∗
defined in s and s′ such that λ(s, x̄) 6= λ(s′, x̄), then x̄ distinguishes s and s′.
We now define Preset DSs and Adaptive DSs.

Definition 1. Given PSFSM M , x̄ ∈ X∗ is a Preset Distinguishing Sequence
for M if all distinct states of M are distinguished by x̄.

Definition 2. Let M be an FSM with n states. An adaptive distinguishing se-
quence is a rooted tree T with n leaves; the nodes are labeled with input symbols,
the edges are labeled with output symbols and the leaves are labeled with distinct
states such that: (1) output labels of edges emanating from a common node are
different. (2) for every leaf of T , if α, β are the input-output sequences respec-
tively formed by the node–edge labels on the path from the root node to the leaf
and if the leaf is labeled by a single state s, then λ(s, α) = β.

An ADS defines an experiment ending in a leaf. Applying ADS A in s ∈ S
leads to the input/output sequence that labels both a path from the root of A to
a leaf and a path of M with start state s. From the definition, the input/output
sequences for distinct states differ and so A distinguishes the states of M .

3 SAT formulation for the Minimum Height ADS
problem

In this section we formulate the constraints of an ADS in the form of Boolean
formulae to be fed into a SAT solver. The set of formulae generated depends on
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the PSFSM, and also on the height of the ADS that we would like to find. The
question asked to the SAT solver is thus: is there an ADS of height `? We will
now explain how we convert this question into a Boolean formula. For each class
of formula that we introduce, we provide the number of clauses generated.

We use ¬, ∧, ∨, and ⇒ to denote negation, conjunction, disjunction, and
implication, respectively. Additionally we used an operator called exactly-one-
OR (5(O1, O2, . . . , Om)) introduced in [20]. This operation evaluates to true if
exactly one of its operands is true. Otherwise it evaluates to false. The formulae
and the number of clauses to construct an ADS are given in Table 1.

Formula Number of clauses

ϕ1 = ∧l≤`,i∈S(5{Xi,l,x|x ∈ X}) `np(p− 1)/2 + 1
ϕ2 = ∧i∈S{Si,0,i} n
ϕ3 = ∧l≤`,i∈S(5{Si,l,j |j ∈ S}) `n(n(n− 1)/2 + 1)
ϕ4 = ∧x∈X(∧i,j∈S(Xi,0,x ⇒ Xj,0,x)) pn2

ϕ5 = ∧i,j∈S,l<`,x∈X((Si,l,j ∧Xi,l,x)⇒ Si,l+1,k) `n2p
ϕ6 = ∧l≤`,i∈S(5{Yi,l,k|k ∈ Y }) `n(q(q − 1)/2 + 1)
ϕ7 = ∧i,j∈S,l≤`,x∈X((Si,l,j ∧Xi,l,x)⇒ Yi,l,y) `n2pq
ϕ8 = ∧i,j∈S,i<j,l≤`,y∈Y ((Yi,l,y ∧ Yj,l,y)⇒ Ei,j,l) `n((n− 1)/2)q
ϕ9 = ∧i,j∈S,i<j,l≤`,y,y′∈Y,y 6=y′((Yi,l,y ∧ Yj,l,y′)⇒ ¬Ei,j,l) `n((n− 1)/2)q2

ϕ10 = ∧l<`(∧i,j∈S,i<j((∧z≤lEi,j,z)⇒5({χi,j,l+1,x|x∈X})) `2n2(p(p− 1)/2 + 1)
ϕ11 = (∧i,j∈S,1<l≤`,x∈X(χi,j,l,x ⇒ (Xi,l,x ∧Xj,l,x))) `n2p
ϕ12 = ¬(∨i,j∈S,i<j(∧l≤`Ei,j,l)) `n(n− 1)/2

Table 1. The proposed formulae and the number of clauses introduced.

The algorithm begins by forming the input clauses (ϕ1). These clauses use
Boolean variables (Xi,l,x) to let the SAT solver guess an input sequence for each
state. The guessed input sequences are checked to see if they form an ADS. If
the length we are trying is `, for each l < `, for each state si ∈ S and for each
input x ∈ X, we generate a Boolean variable Xi,l,x. Variable Xi,l,x should be
true only if at step l (after we have applied l − 1 inputs) the input x is used if
we started from state si. Since we are considering deterministic PSFSMs, the
query ensures that at each step only one input is applied. Note that a given
exactly-one-OR operator with m operands introduces m(m − 1)/2 + 1 clauses.
Therefore ϕ1 introduces `n(p(p− 1)/2 + 1) new clauses.

The algorithm uses variable Si,l,j being true to represent the first l inputs
taking M from state si to state sj . The formula φ2 ensures that when l = 0 (the
application of the ADS has not started), Si,l,j is true if and only if i = j. As the
PSFSM has n states, n clauses are introduced by ϕ2 (i.e. for l = 0).

As the PSFSM is deterministic, we have ensured that when we start applying
an ADS from a state s, there is a unique ‘current state’ at level l. This restriction
is enforced by formula ϕ3. As we use the exactly-one-OR operator ` times, ϕ3

introduces `(n2(n− 1)/2 + 1) clauses. Besides, note that from each initial state,
the same input should be applied; formula ϕ4 enforces this. Since there are p
inputs and n states, ϕ4 introduces pn2 clauses.

In order to represent the ending states of transitions of the PSFSM, the
algorithm uses another set of clauses (ϕ5). Let t = (sj , x/y, sk) be a transition
of M . No matter which state we started from, at a step l ≤ `, if the current state
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is sj and the input guessed for step l is x, then for step l + 1 the current state
should be sk. The formula ϕ5 enforces this. Note that for each pair of states,
for each input symbols and for each step we introduce a clause. Therefore the
number of clauses introduced in ϕ5 is `n2p.

In the next step we trace outputs, using variables Yi,l,y, constrained to be
true if we observe output y at step l when we start at si. We have three concerns
similar to those we had for states. First, we have to ensure that, for each starting
state and each step, the guessed input produces exactly one output. Second, we
have to ensure that this is the correct output. The first concern is handled
using formula ϕ6. Note that we need to construct `n exactly-one-OR operator
for output symbols therefore ϕ introduces n`q(q − 1)/2 + 1 clauses. For the
second and third concerns, we use the transition information of M . Again let
t = (sj , x/y, sk) be a transition of M . No matter which state we started from, if
the current state is sj at step l ≤ ` and the input guessed at step l is x, then the
output produced in step l must be y. This constraint is enforced by ϕ7. As we
need to introduce a clause for each pair of states and for each input and output
and for each step, we need to introduce `n2pq clauses in the formula ϕ7.

In order to check that states are distinguished, the algorithm uses variables
{Ei,j,l|i, j ∈ S, i < j, l ≤ `}. Ei,j,l is true if, starting from states si, sj , we observe
the same output at level l. In order to achieve this we use output variables. If
variables Yi,l,y and Yj,l,y are true then Ei,j,l should be true. This is achieved by
the formula ϕ8. Note that in ϕ8 we consider states with indexes i < j therefore
the number of clauses introduced is `n(n − 1)/2. Thus the number of clauses
introduced by ϕ8 is `n(n−1)/2q. Conversely, we have to consider the case when
output symbols are not identical: in such cases Ei,j,l should be false. Formula
ϕ9 achieves this. Since for every pair of outputs and steps, we need to compare
outputs, ϕ9 introduces `n(n− 1)/2q2 clauses.

Note that for a given ADS, the sequences retrieved from the ADS for two
different states si and sj share a common prefix x̄ if λ(si, x̄) = λ(sj , x̄). We
introduce a Boolean variable χi,j,l,x to preserve this condition. Variable χi,j,l,x is
set to true if at level l, states si and sj have not been distinguished and we then
apply input x. This condition is enforced using formula ϕ10. If outputs observed
from a pair of states until step l are the same, then the same input should be
applied at step l+ 1. Note that there are `2n2 exactly-one-OR introduced. Thus
the number of new clauses introduced by formula ϕ10 is `2n2(p(p− 1)/2 + 1).

After the input to be applied for a pair of states is selected, we need to set
the corresponding variables to true. We use formula ϕ11 to set these variables
to true. In ϕ11 we use χi,j,l,x as follows: χi,j,l,x implies Xi,l,x and Xj,l,x. Since
there are p inputs ` steps and n states ϕ11 introduces n2`p number of clauses.

The algorithm ends by checking if all states produce unique outputs in re-
sponse to the guessed input sequences. This is achieved by formula ϕ12 which
introduces n(n− 1)/2 clauses. The overall formula for checking the existence of
an ADS of length ` is

φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5 ∧ φ6 ∧ φ7 ∧ φ8 ∧ φ9 ∧ φ10 ∧ φ11 ∧ φ12
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Note that the number of clauses introduced by each formula can be given
by a polynomial function (see Table 1). Therefore the proposed algorithm can
construct the formulae using polynomial time and space.

4 Experimental Evaluation

We conducted a set of experiments to compare the performance of the brute-
force algorithm (called BF below) as given in [21] and the SAT based approach
(called SAT below) outlined in this paper.

All PSFSMs were constructed as described in [18]. We constructed four sets of
FSMs with 14 inputs and 2 outputs and with 10, 20, 30 and 40 states. Moreover,
in order to explore how the performance varied with respect to varying input
sizes, we also construct three additional sets of PSFSMs with 30 states, 2 outputs,
and input alphabets of size 64, 130 and 260. We used 100 PSFSMs in each of
these seven sets and so a total of 700 PSFSMs. All machines were strongly
connected, minimal, and had an ADS. In the experiments we set a time limit of
300 seconds: if an approach did not derive an ADS in 300 secs., it terminated.

The experiments were carried out using MiniSat 2.2.0 on a machine with
a 3.30GHz Intel Core I5-4590 and 8GB RAM running Windows 7 Enterprise.
For each PSFSM, we measured the time taken by BF and by SAT. Table 2
summarises the results of our experimental study.

Algorithm n = 10, p = 14 n = 20, p = 14 n = 30, p = 14 n = 40, p = 14

BF (secs.) 3.390 12.409 154.442 −−
SAT (secs.) 0.801 1.309 1.920 1.341

Algorithm n = 30, p = 14 n = 30, p = 66 n = 30, p = 130 n = 30, p = 260

BF (secs.) 154.442 296.298 −− −−
SAT (secs.) 1.920 8.100 19.101 56.214

Table 2. Computation times used for randomly generated FSMs.

The results are as expected. The BF algorithm gets slower and slower as the
number of states and inputs increases. Although we can observe the same trend
in the SAT-based approach, it requires much less time to construct an ADS.

Since randomly generated PSFSMs need not be representative of real PSF-
PSMs, we used PSFSMs drawn from an ACM/SIGDA benchmarks [22] and
repeated the experiment on these. Table 3 presents the size of the PSFSMs and
the time required to compute ADSs.

Name |S| |X| SAT (secs.) BF (secs.)

ex1 20 29 79.240 −−
ex4 14 26 7.904 −−
ex6 8 25 5.427 261.372
opus 10 25 4.137 287.634

Table 3. Computation times required for constructing ADSs for Benchmark FSMs.

The results from the benchmarks are similar to the results with randomly
generated PSFMSs. These results have two implications. First, the SAT method
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outperformed the brute-force method especially as the size of the input alphabet
grows. Note that in Tables 2 and 3, there are cases (indicated −−) where we
could not present computation time values. In two of the cases this is because
none of the experiments returned an ADS within the 300 second. However, for
n=30 and p=130, the BF approach did construct an ADS for one of the 100 FSMs
(in 287.45 secs). Although the SAT based approach scales well when compared
to the brute-force approach, clearly, we should investigate heuristics for deriving
minimum height ADSs from PSFMSs.

5 Conclusion

In this paper we addressed the problem of deriving minimum height adaptive dis-
tinguishing sequences (ADSs) from partially specified deterministic finite state
machines (PSFSMs).

We proposed an algorithm that converts the bounded ADS generation prob-
lem for PSFMs into a Boolean formula to be fed into a SAT solver. We carried
out a set of experiments. The results of experiments suggest that the time re-
quired to construct short ADSs is lower when the proposed SAT based ADS
construction method is used.

As the class of completely specified FSMs is a subset of the class of PSFSMs,
the proposed approach can also be used for constructing minimum height ADSs
for completely specified FSMs. For completely specified FSMs we might compare
the proposed approach with a previously defined exponential algorithm [23].
Moreover, it would be interesting to investigate SAT based approaches and
heuristics of other problems related to ADSs such as the MinWeight and Mi-
nADS problems introduced in Section 1.
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Approaches for Minimizing Adaptive Distinguishing Sequences. In Testing Software
and Systems - 26th IFIP WG 6.1 International Conference, ICTSS 2014, Madrid,
Spain, September 23-25, 2014. Proceedings,32–47,2014.


