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Abstract— Ultrasonic Guided Wave inspection is widely used for scanning 

prismatic structures such as pipes for metal loss. Recent research has investigated 

focusing the sound energy into predetermined regions of a pipe in order to 

enhance the defect sensitivity. This paper presents an active focusing technique 

which is based on a combination of numerical simulation and time reversal 

concept. The proposed technique is empirically validated using a 3D laser 

vibrometry measurement of the focal spot. The defect sensitivity of the proposed 

technique is compared with conventional active focusing, time reversal focusing 

and synthetic focusing through an empirically validated finite element parametric 

study. Based on the results, the proposed technique achieves approximately 10dB 

improvement of signal-to-coherent-noise ratio compared to the conventional 

active focusing and time reversal focusing. It is also demonstrated that the 

proposed technique to have an amplitude gain of around 5dB over synthetic 

focusing for defects <0.5𝜆𝑠. The proposed technique is shown to have the 

potential to improve the reliably detectable flaw size in guided wave inspection 

from 9% to less than 1% cross sectional area loss. 

 

Keywords : ultrasonic guided waves, active focusing, defect sensitivity, finite 

element analysis, pipe inspection 

 

Introduction 

 

Pipelines are used extensively in the industry for large-scale distribution of fluids such 

as crude oil and water. As pipelines age, corrosion flaws can develop and it is therefore 

important to find techniques to inspect them efficiently. Defective pipelines can lead to 

fatalities, property damage, litigation and damage to the environment. Pipelines are also 

often inaccessible and insulated. Because of this, Ultrasonic Guided Wave (UGW) 

inspection has attracted a great deal of interest as a non-destructive testing technique in 

the past two decades [1]. The UGW based techniques offer the advantage of full 

volumetric inspection of tens of metres of pipeline from a single test location. However, 

the behaviour can be complex and must be understood in order to apply the technique 

effectively. Initially, the UGW was developed as a low resolution rapid scanning 

technique to find relatively large defects. However, there is a demand to expand 

knowledge on the UGW inspection to allow more complex structures to be inspected 

and smaller defects to be detected i.e. pitting corrosion. The Cross Sectional Area 

(CSA) loss of pitting corrosion is smaller than that which can be detected due to the low 

resolution of the UGW. The UGW focusing is one of the techniques that can be used to 

detect smaller defects (defect circumferential extent ≤ 1.5λ).  
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UGWs in cylindrical structures  

 

Early research into the use of UGW to inspect cylindrical structures was performed by 

Silk and Bainton [2]. They investigated the use of UGW to inspect small diameter tubes 

and discussed the equivalence of the waves in tubes to Lamb waves in plates. 

Nomenclature for identifying UGW modes in cylindrical structures is essential as there 

are an infinite number of UGW modes possible. The nomenclature used throughout this 

paper is that which was popularized by Silk and Bainton [2] and initially suggested by 

Meitzler [3]. According to this nomenclature, the wave modes in cylindrical structures 

can be represented in the following format, X(n,M). Where, X denotes whether the wave 

modes are Torsional, Longitudinal or Flexural, n is the positive number of cyclic 

variations of displacement around the circumference and M is an index which also 

relates to the level of complexity of vibration within the pipe wall.  

A general solution of harmonic wave propagation of infinitely elongated hollow 

cylinders was presented by Gazis in 1959 [4]. His study has become one of the 

foundations in the understanding of UGW behaviour in cylindrical structures. There are 

a higher number of possible axisymmetric modes and an infinite number of non-

axisymmetric (flexural) modes with propagation behaviour corresponding to their 

axisymmetric mode [5]. For example, the axisymmetric wave mode with torsional 

displacement characteristics, T(0,1), has a so-called family of flexural wave modes with 

torsional displacement characteristics and velocities that tend to the T(0,1) velocity: 

F(i,2), i = {1, 2..}. 

The dispersion curve diagram illustrates the velocity of the wave mode in 

relation to the frequency (or wavenumber) with separate curves for each of the existing 

modes in a frequency region. Sample dispersion curves for an 8inch Schedule 40 

(219.1mm outer diameter, 8.18mm wall thickness) steel pipe are presented in Fig. 1 [6]. 

The three main axisymmetric wave modes (L(0,1), T(0,1) and L(0,2)) are shown in 

black lines and their respective families of flexural wave modes are shown in blue lines. 

The dispersion is the signal spreading out or distorting throughout time and space while 

it propagates through a structure. The dispersion can limit inspection resolution because 

of losses in signal amplitude relative to the noise level. Also, the level of dispersion in a 

particular wave mode can affect data interpretation [7, 8]. As can be seen in Fig. 1, The 

T(0,1) wave mode is non-dispersive at all frequencies and the L(0,2) wave mode 

exhibits very little dispersion at higher frequencies (approximately above 30kHz in this 

example). For this reason, these are the modes that are most commonly used for UGW 

inspection of hollow cylinders. 

In the present study, the T(0,1) wave mode and its family of flexural modes 

(F(i,2), i = {1, 2..}) are used. Fig. 2, illustrates the displacement characteristics of the 

T(0,1) wave mode and its first flexural wave mode, F(1,2) in a short section of 8inch 

Schedule 40 steel pipe (outer diameter – 219.1mm and wall thickness – 8.18mm). The 

images show, the standing waves calculated using a Finite Element (FE) procedure for 

dispersion curve calculation developed by Sanderson [9]. The standing waves are 

calculated using boundary conditions to ensure they have identical characteristics to 

propagating waves [9]. It can be seen that the T(0,1) mode is dominated by 

circumferential displacements  [10]. 

 

  



Comparison of focusing techniques  

 

Focusing is a relatively new technique where the UGW energy is concentrated at a 

particular position both along the axis and around the circumference of a pipe. A 

number of focusing techniques have been presented in the literature: time reversal 

focusing [11], active focusing [12–16] and synthetic focusing [17]. Each of these 

techniques has its own benefits and limitations which are discussed here. 

Prada and Fink [18] carried out early research on the time reversal concept. The 

conventional time reversal process takes advantage of several aspects of piezoelectric 

transducers such as transmit and receive reciprocity, linearity and capability of 

instantaneous measurement of the waveforms. A so-called Time Reversal Mirror 

(TRM) is used. Pressure wave forms, 𝑝(𝑟𝑖, 𝑡) are recorded at each transducer location 𝑟𝑖 

over time, 𝑡 from a potential defect. This data is stored over a selected time period, 𝑇. 

The pressure wave is then retransmitted with the data chronologically reversed which is 

equivalent to the transmission of   𝑝(𝑟𝑖, 𝑇 − 𝑡) [19]. When applied to guided waves, the 

time reversal focusing uses the sound energy that was reflected back to the transmitted 

position after the incident pulse has interacted with a non-axisymmetric feature or 

defect [11, 20, 21]. The received signal is then time reversed and retransmitted, and this 

result in the signal re-converging at the defect location as a superposition of the 

individual wave modes reflected from the feature [11]. The time reversal focusing is 

useful for testing components of irregular geometries or anisotropic materials as the 

unpredictable distortions and dispersion of the signal will be automatically corrected by 

the time reversal function due to the elastic properties of UGWs. However, the time 

reversal focusing relies on the signals from conventional UGW inspection and for 

smaller defects (pitting corrosion) the reflected signal amplitude will be close to, or 

even below the noise level. Therefore, for signal amplitudes close to the noise level, the 

performance of the time reversal focusing will be compromised. 

Excitation of non-axisymmetric modes by applied non-axisymmetric loading 

was studied by Shin and Rose [22]. Based on this study, the active focusing concepts 

were developed [12–16, 23]. Angular profile tuning of a transducer was studied by Li 

and Rose [24] to detect defects at a focal spot where the UGW energy was concentrated 

at a given axial location as a function of circumferential position. The active focusing 

technique calculates the input parameters required for focusing at a preselected location 

prior to testing [13-16, 23]. The calculations use the phase velocities of the 

axisymmetric wave mode and non-axisymmetric modes to determine time delays and 

amplitude scaling factors to apply to the array with the aim of making all the wave 

modes arrive at the same location at once resulting in the focal spot [23]. However, in 

this technique, dispersion of the waves is not taken into account. Therefore, the active 

focusing tends to operate well at higher frequencies and/or in larger diameter pipes 

where there are a large number of relatively non-dispersive flexural wave modes are in 

existence. But not at low frequencies (or in smaller diameter pipes) where there are 

fewer flexural wave modes and dispersion is more significant. Furthermore, in the 

UGW inspection, the capability of focusing at lower frequency (20-100 kHz) is 

significant. Also the active focusing techniques need extensive hardware, separate 

signals generators and amplifications for each transmitting point.  

On the other hand, the synthetic focusing technique is a post processing 

approach where the results can be obtained from conventional UGW inspection data 

where, different pairs of transducers are used to transmit and receive signals. Therefore, 

the data acquisition time required to inspect the whole volume of the pipe will be 

considerably shorter compared with the other techniques [17, 25]. However, the time 



saved at the data acquisition step is partially counteracted by increased computation 

time required for post processing the received signals. With the evolution of technology, 

this can be compensated as the synthetic focusing method is ideally suited for parallel 

processing algorithms. However, there is a reduction in the SNR of the synthetic 

focusing compared with the active focusing techniques [26].  

The proposed hybrid focusing technique is based on a combination of numerical 

simulation with active focusing and time reversal concept which is referred to as Hybrid 

Active Focusing (HAF) from hereon in. The proposed technique is designed for 

application in a typical UGW frequency range (20-100 kHz). The HAF compensates for 

dispersion as it adopts the time reversal concept due to the elastic properties of UGWs 

[18]. Therefore the HAF technique can be used at any frequency to enhance the UGW 

resolution to detect defects. The FE results of the performance of the proposed 

technique have been empirically validated using modified commercially available UGW 

hardware and 3D Laser Doppler Vibrometry (3D-LDV) [27]. The proposed technique is 

compared with active focusing [23] and time reversal focusing [11] and the comparison 

is based on Signal-to-Coherent-Noise-Ratio (SCNR) for a range of defects 

(circumferential extent ≤ 1.5λ). Furthermore the proposed technique is compared to the 

synthetic focusing based on the input signal to defect amplitude presented by Davies 

and Cawley [25].    

The paper is organized as follows: In Section II, the theory behind the proposed 

focusing technique is presented. Then, the FE analysis and empirical validation of the 

performance of the proposed technique against unfocused UGW is presented in Sections 

III and IV respectively. Section V presents, the performance of the HAF compared to 

the active focusing, time reversal focusing and the synthetic focusing against a range of 

circumferential crack-like defects. 

 

Proposed focusing theory 

 

The proposed focusing technique is a hybrid active focusing technique which combines 

FE modelling with time reversal concept [11, 19]. With the continual increase in 

computational power and the introduction of semi analytical finite element methods [28, 

29], it is becoming possible to obtain wave propagation predictions in realistically sized 

structures in a few seconds. This makes the computation of the input signals required to 

achieve focusing possible as part of a practical inspection procedure. 

The HAF technique proposed in this paper can be explained as follows: 

Step I - focusing input signals are calculated by exciting a non-axisymmetric 

pressure wave at a point at the desired focal location in a FE model. In this example, a 

Hann-windowed pulse has been used and the excitation was applied in the 

circumferential direction as follows: 

 

𝑈𝜃(𝑡) =
1

2
sin(2𝜋𝑓𝑡) [1 − cos (

2𝜋𝑓𝑡

𝑛
)],      (1)  

 

where, t is time, f is the central frequency and n is the number of cycles. 

 

Step II - record the transmitted input signals in the FE model at the locations 

where the transducers will be placed in the experiment. A typical signal received at a 

single transducer at a distance from the applied non-axisymmetric excitation is shown in 

Fig. 3-a.  

Step III - Then, a temporal gate is applied to the received signals as illustrated 

by the dashed red vertical lines in Fig. 3-b. The limits of the temporal gate are 



dependent on a compromise between excitation time and refinement gained from the 

inclusion of higher order (but most likely lower amplitude) flexural wave modes. The 

lower limit of the temporal gate is the Time-of-Fight (ToF) of the excited axisymmetric 

mode and the upper limit of the gate is related to the ToF of the highest desired flexural 

mode in the selected frequency. The signal can also be truncated based on using an 

assumed amplitude ratio as a cut-off. 

Step IV - the set of recorded signals are time reversed (as shown in Fig.3-c) and 

applied as excitations to the actual transducers.  

Step V - finally, the signals are recorded at the transducers as in any standard 

inspection (sum the signals around the circumference and account for directionality 

using a number of rings of transducers) and the received level of the axisymmetric wave 

mode is assessed. 

 

Finite element analysis 

 

FE analysis has been performed to study the performance of the HAF technique 

compared with unfocused axisymmetric excitation. A 3D model was built using 

ABAQUS/EXPLICIT version 6.13 [30]. The geometry modelled was an 8inch Schedule 

40 steel pipe (outer diameter – 219.1mm and wall thickness – 8.18mm) with an axial 

length of 2.5m. The assumed material properties for steel were as follows: Density (ρ) = 

7830kg/m
3
, Young’s modulus (E) = 207GPa and Poisson’s ratio () = 0.3. Linear eight 

node brick elements with reduced integration (ABAQUS element type C3D8R) were 

used to achieve efficient computation time and the mesh refinement was such that there 

were at least eight elements for the smallest possible wave length in the main lobe of the 

frequency bandwidth. This level of mesh refinement was validated in previous studies 

[31- 33]. Excitation and reception were performed using 24 equally spaced 

circumferential points to match with the number of transducers around the 

circumference in the tooling used in the empirical study. The use of points in the current 

FE method is considered to be sufficient for the present study since the wave length of 

the T(0,1) is larger than the size of the transducers elements [34] used in the empirical 

study.  The simulation of the transducers as a point source for guided wave applications 

have also been previously validated by a number of authors [10, 29, 35]. In the next 

section, we present the initial model used to calculate the focusing parameters required 

for the HAF technique as well as the models used to study the performance of the HAF 

compared with unfocused axisymmetric excitation.  

 

Calculating focusing inputs for HAF technique 

 

As explained in Section II, a point excitation was simulated in an FE model in order to 

generate the focusing parameters required for the HAF technique. The excitation used 

for this study was a 10-cycle 50 kHz (length of the shear wavelength (𝜆𝑠) = 64mm) 

Hann-windowed pulse with loading in the circumferential direction at a propagation 

distance of 1.5m from the reception points. The received displacements are therefore 

multimodal signals, which contain a mixture of the axisymmetric mode and its 

corresponding flexural modes. In this case, due to the circumferential loading, the signal 

will be dominated by T(0,1) and its family of corresponding flexural modes, F(i,2), i = 

{1,2,…}. 

The layout of the FE model is illustrated in Fig. 4. To avoid reflections from the 

free ends of the pipe, absorbing boundary conditions were used as shown in Fig. 4. This 

avoids the need for simulation of a longer pipe and therefore reduces the required 



computation time. The absorbing boundary was achieved by use of the 'infinite element' 

((ABAQUS element type CIN3D8) [30]) in Abaqus. This consists of elements defined 

over semi-infinite domains with suitably chosen decay functions [36]. The input signals 

were then processed following the procedure described in Section II and illustrated in 

Fig. 3. 

 

Performance of the HAF compared with standard unfocussed axisymmetric 

excitation 

 

Two FE models were generated to study the performance of the HAF compared with 

the standard unfocused excitation. The two cases studied are summarised as follows: 

 

Case 1 (unfocused axisymmetric excitation): The input tone-burst was a 10-cycle 50 

kHz Hann windowed pulse excited at 24 transmitting points spaced evenly around the 

circumference. 

 

Case 2 (HAF): The time reversed displacement inputs produced by the model described 

in Section III-A, were used. Separate input signals were applied to each of the 24 evenly 

spaced points around the circumference corresponding to the same circumferential 

position from which they were collected. 

Fig. 5 shows the results of the two cases. Figs. 5-a & b show the contour plots of 

the displacement magnitude at the time of focusing 1.5m from the transmission 

location. Fig. 5-c shows a polar plot of the normalized amplitude (normalized to the 

max amplitude of the results) 1.5m from the transmission location. The amplitude gain 

can be observed between the focused case with a well-defined peak at the 0° location 

and the unfocused case which is uniform around the circumference as expected. 

 

Experimental validation 

 

In order to validate the results based on the FE analysis in Section III, laboratory 

experiments were performed on an 8inch Schedule 40 steel pipe (outer diameter – 

219.1mm and wall thickness – 8.18mm). A 3D-LDV was used to measure the vibration 

of the pipe surface and obtain measured amplitudes and time of arrival information. The 

3D-LDV is equipped with three laser sensor heads in order to detect the surface 

vibration caused by UGW propagation through the structure. The laser beam from the 

3D-LDV was focused at the surface of interest, and used to extract the velocity 

amplitude from the “Doppler shift” of the laser beam frequency arising from the 

displacement of the surface [27, 37].  

 

Experimental setup 

 

The overall experimental setup is illustrated in Fig. 6-a, and commercially available 

hardware (Teletest® Focus+ [34]) was used for the experiment. A modified version of 

the software was used to excite the non-standard signals required to achieve focusing 

(see Section III-A). The hardware was also modified from the conventional set up so 

that a single ring of 24 evenly spaced individually addressable piezoelectric transducers 

can be used for excitation instead of three rings of transducers grouped into octants. As 

per the standard UGW testing procedure, the piezoelectric transducers were dry-coupled 

to the specimen. The pipe was resting on two rubber pipe rollers throughout the 

experiment to avoid interference and loss of energy into the surroundings and to allow 



the pipe to be easily rotated. 

In order to capture an appropriate region of the waveform, the minimum length to scan 

was calculated as follows, 

 

𝐿 = 𝑛(
𝑉𝑔𝑟

𝑓
) ,           (2) 

where, n is the number of cycles, Vgr is the highest possible group velocity at the 

selected frequency, f and therefore, the length of line scan required can be calculated as 

equal to, or greater than L. The highest possible group velocity was 3800m/s, and so the 

3D-LDV was therefore used to scan along a 0.95m line on the pipe surface. 

Two types of data collections were carried out to measure the performance of 

the focusing technique both qualitatively and quantitatively: 

 

Data collection 1: to extract qualitative data, an area scan of the pipe surface was 

collected over an axial length of 0.95m and covering 90° of the pipe circumference as 

illustrated in Fig. 6-b.  

 

Data collection 2: to extract quantitative data, a line scan along an axial length of 0.95m 

was collected. The pipe was rotated 24 times at 15° intervals using pipe rollers to obtain 

24 individual line scans at different circumferential positions as illustrated in Fig. 6-c. 

 

Experimental results  

 

The measured surface velocity of the pipe at a fixed point in time collected using the 

area scan is shown in Fig. 7 for both the unfocused axisymmetric excitation (Fig. 7-a) 

and focusing using the HAF (Fig. 7-b). Since the velocity is the rate of change of 

displacement with time, it is possible to use either when assessing the characteristics of 

the waveforms. There is a good qualitative agreement between the patterns and those 

predicted by the model (Fig. 5). Fig. 7-c, shows the normalized amplitude obtained from 

the line scans measured at different circumferential positions 1.5m away from the 

excitation location directly compared with the FE predictions.  

The expected shape of the focal spot as measured by the 3D-LDV agrees well 

with that predicted using FE analysis in Section III-B. There is also good agreement 

between the measured amplitudes of the focal spot at different circumferential locations 

and the FE predictions at those locations. This gives confidence in the validity of both 

the FE model and the practical application of proposed HAF technique. 

 

Parametric study 

 

An empirically validated FE model (see Sections III and IV) has been used to further 

investigate the performance of the HAF. A parametric study has been performed to 

investigate defect sensitivity of the HAF compared to the active focusing [23], time 

reversal focusing [11] and synthetic focusing [25] techniques. A set of fully penetrating, 

part-circumferential crack-like defects were considered in an 8inch Schedule 40 steel 

pipe (outer diameter – 219.1mm and wall thickness – 8.18mm). The dimensions of the 

defects modelled can be found in Table 1 and Fig. 8 illustrates the geometry of the 

defects modelled.  

The HAF is an active focusing technique which is used to enhance the resolution 

at a particular location. Therefore, the performance of the HAF is compared to the 

active focusing [23] and also compared to the time reversal focusing [11] as it adopts 

the time reversal concept. This comparison is based on SCNR for a range of defects 



with circumferential extent of 3.5°, 7°, 15°, 30° and 60° (0.08𝜆𝑠, 0.16𝜆𝑠, 0.32𝜆𝑠, 

0.72𝜆𝑠 and 1.44𝜆𝑠 respectively). Furthermore the proposed technique is compared to the 

synthetic focusing based on the input signal to defect amplitude ratio published by 

Davies and Cawley [25].    

 In each case (Table 1), the crack-like defect was placed exactly at the desired 

focal spot location (1.5m from the excitation and centered at 0°). In a real application, 

the defect location may be an unknown. If this is the case, the excitation location of the 

focusing parameters can be easily rotated to enable a sweep of the circumference to be 

obtained. However, in order to cover different axial locations, additional models to 

calculate the focusing inputs would need to be performed. This could be performed 

relatively rapidly if a semi analytical model is used. However, in such a case it may be 

faster to use a synthetic focusing technique to map the condition of the pipe [38]. 

In a standard UGW inspection, where an unfocused axisymmetric excitation is 

used, generally the reliably detectable defect size is commonly accepted to be 9% CSA 

loss [11]. Therefore, depending on the test conditions, defects smaller than this may be 

below the noise level and therefore remain undetected.  The noise is made up of a 

mixture of randomized noise such as that arising from electrical interference or coherent 

noise which is the presence of unwanted wave modes appearing as the results of events 

such as reflection from the structural features i.e. pipe supports, transmission, mode 

conversion and dispersion [39]. The level of random noise can be mitigated by taking an 

average of a number of repeat tests. Therefore, it is commonly the coherent noise that 

contributes more significantly to the noise level. It is also the coherent noise that is 

predicted by the FE models, as the random noise cannot be predicted using FE models. 

In this study the coherent noise is caused by the propagation of unwanted modes and the 

dispersive behaviour (refer Fig. 1) of the higher order modes. In this FE study, the 

detectability has therefore been assessed using SCNR. The calculation of SCNR is 

graphically illustrated in Fig. 9 using the time-domain response from Defect ID: D-3 

and SCNR is calculated as follows: 

 

 𝑆𝐶𝑁𝑅 = 20𝑙𝑜𝑔10 (
𝐴𝐷

𝐴𝑁
),         (3) 

 

where, 𝐴𝐷 is the max amplitude of the defect signal and 𝐴𝑁 is the max amplitude of the 

nearby coherent noise.  

The results of the parametric study to compare the performance of the HAF with 

the active focusing and the time reversal focusing are illustrated in Fig. 10 and 

summarised in Table 2. It can be seen that the active focusing technique has a higher 

defect sensitivity compared with the time reversal focusing technique particularly for 

smaller defects and that the HAF technique is a significant improvement upon that.  

Furthermore, the HAF is compared to unfocused axisymmetric excitation and 

the synthetic focusing based on the input signal to defect amplitude presented by Davies 

and Cawley [25]. The input and defects amplitudes are calculated using eq-(4). The 

reflection of the T(0,1) wave mode from cracks in pipes has been thoroughly 

investigated by Demma et al. [40]. The reflection ratio of the T(0,1) wave mode from 

through-thickness cracks was found to be equal to the crack circumferential extent as a 

fraction of the pipe circumference. The results are illustrated in Fig. 11 and shows that 

the HAF has around 5dB amplitude gain over the synthetic focusing. Based on a 6dB 

criterion for detection [34], the HAF technique improves the reliably detectable flaw 

size from 9% to less than 1% CSA loss. Further discussion on the results of the 

parametric study can be found in Section VI. 



Further analysis 

 

As seen in the previous section, the HAF technique achieves at least 10dB SCNR 

improvement over the active focusing and the time reversal focusing. Furthermore, the 

0.08𝜆𝑠 circumferential extent defect could not be detected using the active focusing and 

the time reversal focusing due to the lack of sensitivity, but the proposed technique was 

able to detect the 0.08𝜆𝑠 circumferential extent defect with 13dB SCNR. Furthermore, 

the synthetic focusing and the HAF techniques perform similarly at defects over 

1𝜆𝑠 circ. extent. However, the proposed method achieves around 5dB amplitude gain 

when the circ. extent of the defect is less than 0.5𝜆𝑠. The HAF performs well for smaller 

defects (circ. extent 0.5𝜆𝑠). This is because the HAF technique uses a controlled non-

axisymmetric pulse (contains all the non-axisymmetric modes in the frequency 

bandwidth) with high defect sensitivity. This does not depend on experimentally 

gathered data unlike the time reversal focusing and synthetic focusing. However, the 

results examined to the date are based a limited number of cases and further work 

involving a larger modelling and experimental study would be beneficial in establishing 

the potential of the HAF method to detect smaller defects.  

The time reversal focusing depends on data gained from an axisymmetric 

excitation (received non-axisymmetric wave modes depend on the size of the defect). It 

is therefore difficult to detect defects using the time reversal focusing, if the defects are 

not detectable by unfocused axisymmetric excitation in the first place. 

 Furthermore, the HAF technique compensates for dispersion by using time 

reversal concept, whereas the active focusing technique neglects dispersive behaviour. 

Therefore, the HAF technique has the advantage of operating well at low frequencies or 

in small diameter pipes. Yet, the HAF technique requires a different set of input signals 

for every axial position. Therefore, there are many tests required to cover a large area 

which could be time consuming. However, analytical models for wave propagation in 

pipes can be used to provide fast calculations of the input signals required [29] which 

can be incorporated into the inspection process. As the HAF is an active focusing 

technique, it is likely to have a higher SNR compared to synthetic focusing techniques 

[26].  

However, the performance of  the HAF technique in the field trials can be 

compromised if the size of the pipe deviate largly from the modelled pipe. Therefore, 

further studies need to take place on-site to quantify this effect. Furthermore, the 

stability of the HAF technique needs to be experimentally studied on varying defect 

profiles, operating temperatures and focusing beyond known featuers i.e welds and 

branches.     

 

Conclusion 

 

A high sensitivity focusing technique has been presented that is useful in low frequency 

UGW inspection of cylindrical structures which compensates for dispersion and 

operates in low frequency. The proposed technique, termed hybrid active focusing is 

based on a combination of numerical simulation with the active focusing and time 

reversal concept. The defect detection performance of the new technique was compared 

with the active focusing, the time reversal focusing and the synthetic focusing using an 

empirically validated FE method. The FE analysis was validated against 3D laser 

vibrometry measurements of the focal spot and UGW unfocused excitation.  

It was shown that the proposed technique is expected to have a 10dB SCNR 

improvement over the active focusing and the time reversal focusing. Furthermore, 



based on the comparison of the HAF and the synthetic focusing it was shown that the 

both methods perform similarly at defects > 1𝜆𝑠 circ. extent. However, The HAF 

expected to have an amplitude gain of 5dB over the synthetic focusing for defects 

smaller than 0.5𝜆𝑠. These results exhibit the potential of using the HAF for refined 

inspection of pipelines.   
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Table 1: Description of the crack-like defects considered in the study 

 

 

  

Defect ID Depth, mm Circ. extent, mm Axial length, 

mm 
Circ. Extent 𝜆𝑠 

D-1 8.18 6.85 (3.75°) 1 0.08 

D-2 8.18 13.7 (7.5°) 1 0.16 

D-3 8.18 27.4 (15°) 1 0.36 

D-4 8.18 54.75 (30°) 1 0.72 

D-5 8.18 109.5 (60°) 1 1.44 

D-5 8.18 172.1(90°) 1 2.15 



Table 2: Comparison between the proposed method and previous methods 

 

Circ. Extent 𝜆𝑠 Time Reversal 

Focusing [11]  

SCNR, dB 

Active Focusing 

[23]SCNR, dB 

Hybrid Active 

Focusing  

SCNR, dB 

0.08 0* 0* 13.31 

0.16 3.16 6.06 21.73 

0.36 8.63 15.91 30.32 

0.72 18.72 22.24 33.14 

1.44 22.24 25.92 34.21 

    * Defect not detected above the noise level. 
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Figure 1:  Phase velocity dispersion curves for an 8inch schedule 40 (outer  

  diameter: 219.1mm and wall thickness: 8.18mm) steel pipe. 

 

  



Figure 2:  Displacement characteristics of the (a) T(0,1) and (b) F(1,2) wave  

  modes. 

 

  



Figure 3:  Multimodal excitation (a) predicted displacement received from 1.5m 

  away from the point source excitation (b) Gated pulse (c) Gated-time 

  reversed multimodal pulse used as an input to produce a focal spot. 

 

  



Figure 4:  Layout of the FE model to calculate focusing parameters. 

 

  



Figure 5:  Displacement magnitude results from the FE analysis at the time and 
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Figure 6:  (a) 3D LDV experimental setup (b) area scan data collection (red line) 

  (c) line scan data collection (dashed red line). 

 
  



 

Figure 7:  Experimental results (a) Isometric view of surface velocity from an 

  unfocused excitation (b) Isometric view of surface velocity from the 

  HAF excitation and (c) Polar plot comparing normalized amplitude from 

  the FE analysis with experimental results at the focal point. 

 

 
  



Figure 8:  Schematics of the crack-like defects studied. 

 

 
  



Figure 9:  Illustration of SCNR calculation (using time-domain response from 

  Defect ID: D-3). Defect range 𝐷𝑟 and coherent noise range 𝑁𝑟. 

 

 
  



Figure 10:  SCNR against crack circ.extent, 𝜆𝑠 of active focusing, time reversal 

  focusing and HAF. 

 

 
  



Figure 11:  Normalized defect amplitude against crack circ.extent, 𝜆𝑠 of unfocused 

  axisymmetric excitation, synthetic focusing and HAF. 

 

 


