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Abstract

The extended Kalman filter (EKF) has a long history in the field of non-linear track-

ing. More recently, statistically-based estimators have emerged that avoid the need

for a deterministic linearisation process. The Unscented Kalman filter (UKF) is one

such technique that has been shown to perform favourably for some non-linear systems

when compared to an EKF implementation, both in terms of accuracy and robustness.

In this Thesis, the UKF is applied to a high energy physics particle tracking prob-

lem where currently the EKF is being implemented. The effects of measurement

redundancy are investigated to determine improvements in accuracy of particle track

reconstruction. The relationship between measurement redundancy and relative ob-

servability is also investigated through an experimental and theoretical analysis.

Smoothing (backward filtering), in the high energy physics experiments, is implemented

using the Rauch Tung Striebel (RTS) smoother with the EKF , however, in Unscented

Kalman filter algorithms, the Jacobian matrices required by the RTS method, are not

available. The Unscented Rauch Tung Striebel (URTS) smoother addresses this prob-

lem by avoiding the use of Jacobian matrices but is not efficient for large dimensional

systems such as high energy physics experiments. A technique is implemented in the

RTS smoother to make it suitable for the UKF. The method is given the name the

Jacobian Equivalent Rauch Tung Striebel (JE-RTS) smoother. The implementation

of this method is quite straight forward when the UKF is used as an estimator.
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Chapter 1

Introduction

1.1 Track reconstruction in high energy physics ex-

periments

In High Energy Physics (HEP) experiments such as Large Hadron Collider (LHC) ex-

periments running at CERN [1], millions of particles traverse the particle detectors

and for each particle position, momentum, and energy measurements are needed for

particle identification. Therefore sorting out the measurements for each particle and

estimating them afterwards in such large dimensional problems is a big challenge. Typ-

ically this is achieved using track reconstruction which is decomposed into two tasks;

track finding and track fitting. Track finding deals with sorting out the measurements

in terms of their origin whereas track fitting estimates these set of measurements as

accurately as possible. The desire of high accuracy and the issue of computational

complexity makes track reconstruction a challenging task in HEP experiments.

Currently, in most of the LHC experiments, track finding is achieved through pattern

recognition [2, 3] where measurements are divided into subsets, each subset contains

1
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measurements that belong to the same particle. The subsets are passed to the Ex-

tended Kalman Filter (EKF) for track fitting [4]. The overall description of the track

reconstruction process is shown in figure 1.1. Track fitting problem is a challenging

task and a focus of this thesis. Track fitting mainly depends on track model, how

closely the mathematical function replicates the actual system. This includes mainly

the incorporation of ionization energy loss into the overall system dynamics. Track

fitting also depends on the efficiency of the algorithm, how efficiently an algorithm

deals with the material effects (multiple scattering) inside strong magnetic field and

ionization energy loss. After all the tracks are fitted, smoothing (backward filtering)

is implemented to improve the accuracy [5]. Smoothing is achieved using RTS which

was designed to work with the EKF.

The focus here is to investigate particle tracking problem (track fitting and smooth-

ing) and analyse how it can be improved. One way of achieving the improvement could

be to replace the current track fitting algorithm with a more efficient one by keeping

in mind the challenges related to the system in question.

1.2 Challenges

1.2.1 Uncertainties

The main source of uncertainty, in any engineering problem, that contributes as meas-

urement noise is the accuracy of the sensors. In HEP experiments, highly accurate

sensors are needed since the measurements are subsequently used for particle identi-

fication and the detector alignment [6]. Particle identification is highly important task

since it is the core of such experiments. Alignment on the other hand is important

because it uses the fitted data provided by track fitting to improve the accuracy by

aligning the detector [7]. Data is taken from small sensors, units of the large detector,
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Figure 1.1: Overall structure of the track reconstruction process

to identify the position of each sensor where maximum hits are found and the detector

is accordingly aligned. Typically these sensors have a resolution in microns.

The source of uncertainty in the process is multiple scattering [8], caused by the

very thin detector layers that are in fact used to measure the position and momentum

of a particle. This affects the trajectory of a particle when it hits the detector layers

which does not only affect the position but also the momentum of a particle. Multiple

scattering in fact is a great source of non-linearity as well since it happens inside a very

strong magnetic field.

1.2.2 Non-linearity

Generally strong magnets encapsulates the particle detectors and consequently the

particles traversing the detector follows a helical trajectory due to the uniform mag-

netic field. Multiple scattering inside such strong magnetic field makes track fitting a
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highly non-linear problem. This happens due to the fact that the more the magnetic

field strength is, the more the curvature of the helical path that a particle follows.

Consequently, when the particle hits the detector layer, the particle deviates with

more uncertainty and it becomes difficult for the estimator to provide accurate results.

Moreover, a very small change in the process noise can cause an estimator to diverge

and raises the issue of relative observability.

1.2.3 Large dimensionality

As explained above track fitting is a large dimensional problem since data from mil-

lions of particles has to be fitted and to determine each particle, six measurements are

needed. Since covariances are also needed in order to take account of the accuracies

and for other computation purposes, the storage and computations of the large dimen-

sional matrices are huge computational burdens. Furthermore, these large dimensional

covariances are also needed for smoothing computations which also contributes to-

wards computational costs.

To cope with such challenges, any track fitting algorithm should be accurate and

robust against outliers and non-linearities. The algorithm should achieve this by main-

taining the computational cost. EKF is providing reasonably acceptable results but an

improvement can be achieved by replacing a more efficient algorithm.

1.3 Research objectives

1.3.1 Implementing the suitable algorithm

Investigate different algorithms that can be used to improve track fitting by keeping

minimum the computational cost. Implement the selected algorithm to HEP problem
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and compare it with the EKF, currently being implemented for track fitting, in terms

of accuracy and robustness against non-linearities. Analyse how the selected algorithm

would behave in high non-linearities and what other advantages, apart from good

accuracy, it could provide.

1.3.2 Accuracy and relative observability analysis

After the implementation of an efficient algorithm to track fitting, investigate how

the accuracy and relative observability of the estimates produced by the algorithm can

be improved. Relative observability is a measure of the degree of observability which

means that if a system is observable, how closely observable. The issue of relative

observability is raised by the non-linearities in the HEP experiments and causes an

algorithm to perform badly or even diverge.

1.3.3 Derivation of an efficient smoothing algorithm

Smoothing is an algorithm that is implemented with the estimator to improve the ac-

curacy of the estimates. Currently, RTS smoother [5] is being implemented with the

EKF in almost all the HEP experiments for track fitting, it cannot be directly imple-

mented with the UKF. Although a smoother exists that can be directly implemented

with the UKF, its computational cost is high and therefore is not a suitable choice

for such problems. Therefore, the objective was to derive a smoother that can be

implemented more efficiently with the UKF in large dimensional problems such as HEP

experiments.
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1.4 Contributions

1.4.1 Implementation of the UKF to track fitting and compar-

ison with the EKF

The HEP experiments were studied to understand the structure, dynamics and uncer-

tainties involved in track fitting problem. It also involved the performance analysis

of the existing algorithms currently being implemented. As explained above, EKF is

currently being used as an algorithm for track fitting but an efficient algorithm can

improve track fitting. An implementation of the UKF to track fitting for the MICE is

presented along with its comparison with the EKF. It is worth mentioning here that the

UKF has never been implemented to track fitting problem and, therefore, never been

compared with the EKF in terms of accuracy and robustness against non-linearities

within HEP experiments. The comparison presented shows that the EKF is less robust

against non-linearities and the UKF is a better choice for track fitting.

1.4.2 Accuracy and relative observability analysis and improve-

ment

A detailed mathematical and experimental analysis of the performance of the UKF

is presented in order to shed light on the phenomena of redundancy, accuracy and

observability. The relationship between measurement redundancy and accuracy and

relative observability is investigated and it is presented that measurement redundancy

does not always improve the quality of the estimates. The effects of different redund-

ant measurements on each measurement are discussed and it is presented that the

performance of the UKF in terms of accuracy and observability can be increased by

carefully selecting the redundant measurements. Two cases are considered where firstly

duplicate measurements are introduced as redundant measurements and secondly an
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independent redundant measurement (measurement not included in the state vector)

is introduced. UKF has never been analysed before in such a way according to the

best of our knowledge.

1.4.3 Improvements through time of flight measurement

As explained in the last section, accuracy and relative observability was improved by

introducing duplicate measurements and independent redundant measurements. The

independent redundant measurement that was considered and introduced is Time Of

Flight (TOF) measurement. TOF was introduced due to the fact that firstly it is

already being measured (easily available) and secondly it contains information that

can contribute towards an improvement in position and momentum estimates. This is

a potential contribution because TOF measurement has never been used in such a way

to improve the position and momentum estimates in the HEP experiments. Moreover,

no such theoretical analysis has been presented with an independent redundant meas-

urement according to best of our knowledge.

1.4.4 Derivation of a suitable smoother for UKF in large di-

mensional problems

The thesis presents an improvement over an earlier method called the URTS smoother

[12]. A smoother is derived for the UKF that works more efficiently as compared to

the URTS smoother. The derived smoother is given the name ”Jacobian Equivalent

RTS (JE-RTS) smoother” since it uses, like URTS smoother, the RTS smoother’s

standard update equations. The JE-RTS smoother and URTS smoother have been

implemented using the MICE system of equations and compared in terms of accuracy

and computational cost. These smoothers provide similar accuracy but the JE-RTS

smoother outperforms the URTS smoother in terms of computational cost.
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1.5 Thesis outline

Chapter 2 discusses the track reconstruction problem in HEP experiments. Different

techniques that are currently being used for track finding and track fitting processes

are discussed. Track fitting being the main focus of this research, the EKF as an ex-

isting track fitting algorithm is briefly explained. Other advanced algorithms which are

currently being implemented for tracking outside particle track fitting field are reviewed

in terms of their performance as compared to the EKF. Keeping the main challenges

of HEP experiments, accuracy and computational complexity, in mind each algorithm

is discussed in the context of track fitting. Finally smoothing in HEP experiments is

discussed.

Chapter 3 firstly explains the MICE [11]. Since position and momentum for each

muon is measured by the scintillating fibre trackers and these measurements are passed

to the Kalman filter for track fitting, they are discussed in terms of construction and

measurement uncertainties. Finally track reconstruction in the context of MICE is ex-

plained and the sources of uncertainty inside tracker are discussed. Secondly, the EKF

and the forms of the UKF, augmented and non-augmented UKFs [9], and Spherical

Simplex Sigma point Kalman Filter (SSSPKF) [10] are presented. These algorithms

have been implemented to a two dimensional non-linear system called Van der Pol os-

cillator and compared in terms of robustness against noise and non-linearity. Since the

augmented and non-augmented UKFs and SSSPKF generates and propagate different

number of sigma points, they are compared in terms of computational complexity. And

finally, the UKF and EKF are compared in terms of accuracy and robustness against

non-linearity for track fitting at MICE.

Chapter 4 presents the analysis of the UKF to MICE for track fitting. It is shown

that how UKF works with the measurement redundancy and how this can be used
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to improve the accuracy of the estimates. UKF has also been analysed in terms of

relative observability, and analysis about the relationship between relative observability

and degree of measurement redundancy is provided.

In chapter 5 the RTS smoother is presented and its implementation with the EKF

is discussed. It is explained why RTS smoother cannot directly be implemented with

the UKF and why the URTS smoother is not suitable for large dimensional systems.

A technique, implemented in the RTS smoother to make it suitable for the UKF and

large dimensional systems, is presented and the resulting smoother is given a name

“the JE-RTS smoother”. Finally a comparison of the URTS and JE-RTS smoothers

in terms of accuracy and computational complexity is provided.

Chapter 6 provides a detailed conclusions and discussions of this thesis.
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Chapter 2

Literature review

2.1 Track reconstruction

Track reconstruction, in HEP experiments, is divided into two parts called track finding

and track fitting [4]. Track finding is achieved using pattern recognition or classification

technique. Measurement set provided by the tracking detector is divided into subsets

where each subset contains measurements related to the same particle. These subsets

are called track candidates. Track fitting aims at estimating a set of parameters,

as accurately as possible, describing the state of the particle according to the set of

measurements in a track candidate.

2.1.1 Track finding

Track finding is classified into two types; local and global methods. Hansroul, H.

Jeremie, and D. Savard Global, [13], presented that conformal mapping can be im-

plemented as a global method of track finding. Hough, P. V. C, [14], showed that

Hough transform can be implemented as a global method. And recently T. Alexopoulos

et al., [15], presented that Legendre transform can also be implemented as a global

method. Local methods are track road and track following. Track road is an approach

11
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that needs a measurement set, created by the same charged particle, to be initiated.

Then track model can be used to find the path between different measurements. The

measurements that lie inside the boundaries of the track path (road) are included in a

track candidate. Track following is initiated with a seed build from few measurements.

These seeds are constructed in the inner region of the tracking detector close to in-

teraction region or in the outer region. The purpose of constructing seed in the inner

region is that the measurements are of high precision whereas in the outer region the

track density is lower. The seed is used to extrapolate the track to the next layer of

the detector containing a measurement and the closest measurement to the predicted

one is selected for the track candidate. This is repeated until too many detector layers

with missing measurements are found/encountered or until the whole detector system

is traversed.

2.1.2 Track fitting

In the track fitting algorithm, a set of parameters representing the kinematic state of

the charged particle are estimated using the measurements. Since the measurements

have uncertainties attached to them, the track fit also provides measure of uncertainty

about these measurements in the shape of a covariance matrix. Track fitting process

is decomposed into the following steps.
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Track parametrization

Five parameters may be used to uniquely describe the state of a charged particle

[46, 47, 48]. These parameters can be defines by a vector as follows,

x =

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
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dp
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dz

tanλ

⎤
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.1)

where dp is the signed distance of the pivot from the helix in the x-y plane. φ0 is

an azimuthal angle that specifies the pivot with respect to the center of the helix. k is

the inverse of transverse momentum, it also provides the charge of the track assigned

during the track fitting. dz is a longitudinal parameter that represents a signed distance

of the helix, in z direction, from the pivot. And the final parameter, tanλ represents

track’s slope.

A charged particle follows helical trajectory inside uniform magnetic field and its

position is determined by;

x = x0 + dpcosφ0 + α/κ(cosφ0 − cos(φ0 + φ)) (2.2)

y = y0 + dpsinφ0 + α/κ(sinφ0 − sin(φ0 + φ)) (2.3)

z = z0 + dz − α/κtanλφ (2.4)

where α is the constant of magnetic field. φ is turning angle that is used to determine

the location. φ is an internal parameter with a sign, positive or negative, that repres-

ents the polarity of the charged particle. x0 = (x0, y0, z0)T is the pivot where the helix

parameters and the error covariance matrix are defined. Figure 2.1 shows the dynamics



14

Figure 2.1: A schematic representation of helix parameterization. (a) represents a

track of a negatively charged particle whereas (b) represents a track for a positively

charged particle. It is clear from (a) and (b) that if the particles are oppositely

charged, they travel an opposite direction. The vectors w and v in the figure can

be defined as w = (cosφ0, sinφ0)
T and v = (cos(φ0 + φ), sin(φ0 + φ))T . Adapted

from Yukiyoshi Ohnishi, [48].

of the charged particle in track parametrisation in the case of a helix.

The track parameters are chosen according to the geometry of the tracking detector.

If cylindrical detector layers are used, then the reference surface is often cylindrical and

makes the radius times azimuthal angle the natural choice of one of the position

parameters, whereas in the case of planar detector layers it is shown by L. Bugge and

J. Myrheim, [52], that Cartesian position co-ordinates are frequently used.

Track model

The dependence of a state vector at a given surface k on the state vector at a different

surface i can be determined using the track model,

qk = fk∣i(qi) + vk (2.5)
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Figure 2.2: An illustration of the track model and propagation concepts. The

function fk∣i is the track propagator from surface i to surface k. Its mathematical

form depends on the track model, i.e., the solution of the equation of motion in

the actual magnetic field. Adapted from Are Strandile and Rudolf Fruhwirth, [24].

where fk∣i is the track propagator from surface i to surface k and qi is the state

vector containing parameters explained above and vk is the process noise. The sources

of process noise encountered inside the particle detector are briefly explained in the

Material effects section below where it is also described how different process noises

are treated in the track fitting process. An illustration is provided in figure 2.2.

Error propagation

Track fitting process requires the propagation of the track parameters along with the

corresponding covariances. This linear error propagation is typically achieved using a

similarity transformation between layer i and k.

Ck = Fk∣iCiF
T
k∣i (2.6)

where C is the covariance matrix and Fk∣i is the propagated Jacobian matrix from layer

i to k,

Fk∣i =
∂qk
∂qi

(2.7)

A. Strandlie and W. Wittek, [53], presented that in the case of analytical track
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models the Jacobian is also analytical. Whereas in the inhomogeneous magnetic fields,

the derivatives are calculated purely by numerical schemes. L. Bugge and J. Myrheim,

[54], presented that they can also be calculated by semi-analytical propagation of the

derivatives in parallel with the Runge-Kutta propagation of the track parameters.

Material effects

C. Amsler et al., [8], presented that particle trajectory is mainly affected by, in the

detector volume, ionization energy loss and multiple coulomb scattering. Multiple

Coulomb scattering is considered as an elastic process, which disturbs the direction of

a charged particle traversing a detector in the case of a thin scatterer. However Amsler

et al, [55], presented that in the case of a sufficiently thick scatterer the position in a

plane transversal to the incident direction is also changed. Multiple coulomb scattering

does not only disturbs the direction but also the momentum of a charged particle. To

account the effects of multiple coulomb scattering a covariance is updated in the track

fitting procedure. In order to include the effects of multiple scattering, the reason for

only updating the process covariance matrix is that the mean value of the scattering

angle and eventual offset is zero.

Radiation energy loss also contributes as noise in the case of light particles such

as electrons. Fruhwirth et al, [52], showed that the fluctuation of ionization energy

loss is very small and treated in the track fitting process to correct the state vector.

However in the case of Bremsstrahlung energy loss, H. Bethe and W. Heitler, [56],

presented that it suffers large fluctuations and, therefore, affects both the state vector

and corresponding covariance matrix.
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Measurement model

The measurement model hk represents how actual measurements (hits) mk in a de-

tector layer k are functionally dependent on the state vector qk at the same detector

layer,

mk = hk(qk) +wk (2.8)

Usually, the measurement vector mk contains position measurements but, according

to the requirement of the overall experiment, may also contain other quantities such as

momentum and energy. wk is the measurement noise that occurs due to the accuracy

of the sensors and is considered as Gaussian noise. Since track fitting is typically being

achieved using the EKF and linear least squares method, the Jacobian Hk is essential

and is given by,

Hk =
∂mk

∂qk

(2.9)

In the case of Jacobian containing only rotations and projections, which is mostly the

case, it can be computed analytically.

2.2 Background of track fitting in HEP experiments

Track fitting is mainly achieved using linear least squares method and the Kalman

filtering.

2.2.1 Linear least squares method

Track fitting is generally performed using linear least squares methods which is an op-

timal approach if the system model is linear. In particle physics terms, this approach

is optimal if, in equation 2.5, the track propagator fk∣i is a linear function of the state

vector qi from layer k to i (detector layers) and the noise encountered during estima-

tion process is Gaussian. One of the advantages of using linear least squares method
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is that these are easy to compute. However P. J. Rousseeuw and A. M. Leroy , [16],

showed that they lack robustness.

In the case of thick scatter or substantial multiple scattering, the estimated states,

representing a track, can significantly deviate from the actual track. H. Eichinger and

M. Regler, [57], presented that this issue can be resolved by estimating two projected

scattering angles either at each detector layer or at a set of virtual breakpoints inside a

continuous scatterer. These two methods, global least square method and breakpoint

method, provide similar results for the estimates of the state vector. Therefore in this

sense these algorithms are equivalent [58].

The problem with least squares method is that they require a linearized track model

if the systems dynamics are non-linear. The linearization is normally acquired by an

approximation procedure such as first of approximation using Taylor expansion. Since

an approximated model is used, accuracy is sacrificed. Another issue is that, due to

the static nature of this method, the noise is not taken into consideration locally. The

source of process noise in the HEP detectors is the interaction of the charged particles

with the detector layers.

These methods become numerically inefficient when applied to large dimensional

systems such as track fitting. This inefficiency arises due to the requirement of in-

verting large matrices which also contributes significantly towards computational cost.

However for Kalman filtering, P. Billoir, [59], and R. Fruhwirth, [60], presented that the

kalman filter contains the same features of breakpoint method in terms of estimation

quality and does not require the inversion of large matrices. The additional advant-

age of the Kalman filter is that the material effects (process noise) such as ionization

energy losses and multiple scattering can be incorporated locally.
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2.2.2 Extended Kalman filter

The Kalman filter may be divided into two steps: prediction and update. The track

parameters qk−1∣k−1 are propagated through the track model in order to predict track

parameters qk∣k−1 in the next detector layer containing a measurement:

qk∣k−1 = fk∣k−1(qk−1∣k−1) (2.10)

The associated covariance is calculated as

Ck∣k−1 = Fk∣k−1Ck−1∣k−1Fk∣k−1
T
+Qk (2.11)

where Fk∣k−1 is computed by linearizing the function fk∣k−1. The mathematical function

that is linearized by the EKF is presented by equations (2.2)-(2.4). Ck−1∣k−1 is the

updated covariance computed at detector layer k − 1. Qk accounts for the multiple

scattering after layer k − 1 up to and including layer k.

The update step adds the information from the actual measurement in order to

correct the state vector:

qk∣k = qk∣k−1 +Kk(mk − hkqk∣k−1) (2.12)

where mk is the vector of actual measurements and hk is the measurement function.

Kk is the Kalman gain matrix given by

Kk =Ck∣k−1Hk
T
(vk +HkCk∣k−1Hk

T
)
−1

(2.13)

where Hk is computed by linearising the measurement function hk. The updated

covariance is calculated by

Ck∣k = (I −KkHk)Ck∣k−1 (2.14)

The process of the Kalman filtering can be seen in figure 2.3.
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Figure 2.3: Prediction and filter step of the Kalman filter. The propagation pro-

ceeds in the z direction, while the x coordinate is measured. Adapted from Regler

et al.

2.2.3 Existence of outliers and their removal

Outliers can often be found in a track candidate produced by the track finding al-

gorithm. The origin of these outlying observations can be distorted hits, irrelevant hits

from some other tracks or electronic noise. To deal with such outliers, R. Fruhwirth,

[60], presented that an obvious and more practical way is to continuously analyse the

results (how close the observations and the predicted track positions are) provided by

the estimator using all the measurements but the one under consideration. If only one

outliers is found, it is more feasible solution to reject the outliers.

However, if several outliers are found in a track candidate, the smoothed predictions

become biased and there arises a possibility that good observations are rejected. This

issue can be dealt with by making the track fit more robust, the effect of the outliers

on the overall solution can be reduced by incorporating down-weighting techniques.

Recently, adaptive estimators have been presented that are more robust in a sense

that they automatically down-weight the influence of the outlying observations on the

overall solution. I.A. Golutvin et. al., [61], presented a similar approach that is based
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on a re-descending M-estimator and uses Tukeys bi-square function [62].

Once the track finding process is completed and track candidates have been sorted,

track candidates may be found with one or more hits in common. Mostly, it happens if

the track finding has been done sequentially. Such incompatible tracks has to be sorted

in a way that their maximal or optimal subset is found. This problem can be solved by

finding a graph in which each track corresponds to a node and two nodes are connected

to make an edge if compatibility is found between two corresponding tracks. However,

finding all maximal node sets in a graph was an issue that is resolved by S. R. Das, [63].

Since millions of tracks are being dealt with in the HEP problems, several solutions

may be found when one searches for a maximal set of compatible tracks. Additionally,

it is also required to take into account the quality of the track. To accomplish this,

quality index is assigned to each track which is based on the track length, Chi square

statistics, direction of the track and the distance of the track from interaction region.

The maximal compatible node set, which has the maximum quality index, is considered

the best one. The best node set can be found by using a recurrent neural network

(Hopfield network). R. Fruhwirth, [64], presented this implementation to DELPHI

experiment in its forward chambers. D. Wicke, [65], explained an algorithm which was

developed to provide global solutions for tracking ambiguities faced in DELPHI.

2.2.4 Hybrid methods

To deal efficiently with the outliers, Billoir, P., and S. Qian, [2], presented that the

Kalman filter can be used to perform track finding and track fitting. It starts out

with finding the seed in couple of adjacent layers then follows each seed through the

detector and picks up compatible hits. Figure 2.4 provides an idea about the function

of the hybrid methods.
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Figure 2.4: Example of progressive track recognition with three tracks. Seeds

are formed in layers 1-3 by finding all possible combinations of hits. Each of the

seeds is extrapolated to the outer layers thin circles. Seeds that do not reach the

next layer or are not compatible with an observation in some layer are discarded.

The thick circles represent the three seeds that are successfully propagated to the

outermost layer. Adapted from Are Strandile and Rudolf Fruhwirth, 2010

Combinatorial Kalman filter

If there are many nearby tracks or high density of noisy measurements, the measure-

ment closest to the predicted track might not necessarily belong to the track under

consideration. Mankel, [3], implemented the combinatorial Kalman filter in order to

cope with such issue.

CKF, similar to progressive track finding process, starts from a short track seg-

ment (seed) measured either at the inner end of the tracking detector or at the outer

end. While propagating forward to the first layer after the sees, several Kalman filter

branches are generated if several compatible measurements are found. Each of these

branches contain a unique compatible measurement. Since the detector inefficiencies

in such large dimensional systems are inevitable, a branch, with a missing measure-

ment, is also created to cope with potential detector inefficiencies.
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After all the branches are produced and sorted at the current detector layer, the

branches with at least one compatible measurement are propagated to the next de-

tector layer. At this stage new branches are created for the combinations of predicted

states compatible with the new measurements found. Propagating further by follow-

ing this process of generating new branches makes a combinatorial tree where Kalman

filters run in parallel.

A criteria is defined within the CKF algorithm to assess different branches in terms

of their quality. Branches that fall below a defined quality value are automatically

removed. Figures 2.5 and 2.6 describes the function of the CKF. Since millions of

tracks have to be processed, computational complexity is an issue that is also taken

into account. The way CKF achieves this is by removing the branches that traverse

several consecutive layers without a compatible measurement. The branch with the

highest quality is selected at the end of the process when all the detector layers have

been traversed. Therefore, a complete account of the branches is taken and analysed

in parallel with the track fitting process.

An algorithm which is quite similar to the CKF has been coded in a language called

Cellular Au-tomata [66, 68, 67]. The approach is called Cellular Automaton and can

be regarded as local due to the fact that it generates branches using the measurement

found in the nearby detectors layers. The approach does not need to be initiated

from a seed. Cellular Automaton processes all the measurements in parallel and this

functionality makes it a hybrid approach between a global and local method.
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Figure 2.5: Illustration of the combinatorial Kalman filter for an ambiguous situ-

ation caused by three nearby tracks in a super layer of the HERA-B outer tracker.

The propagation proceeds upstream from the right to the left. It is assumed that

the propagation started with a seed of hits from track T1. From Mankel, [3].

2.3 Role of the Kalman filter in the LHC experi-

ments

CKF is currently being used as a track re-constructor in almost all of the HEP ex-

periments especially in four LHC experiments named ATLAS, ALICE, CMS and LHCb

[1, 50, 51, 49]. These experiments are different in terms of the nature of the experiment

and implementation of the track reconstruction. But the overall track reconstruction

process is decomposed into the following steps irrespective of the nature of the exper-

iment.

2.3.1 Track finding

CKF is being used for track finding in all the LHC experiments except LHCb [1]. In

LHCb, track finding is performed by searching the peaks, representing the distances

from measurement to a parametrised trajectory, in the histogram. Global approaches

are not being used except in ALICE, ATLAS and CMS. ALICE has implemented Hough

transform and Hopfield neural networks in the Time Projection Chamber (TPC) and
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Figure 2.6: (a) Schematic view of the CKF seeding with hit pairs. CKF starts

with the hit in the outer layer and searches for the hits found in a phi window that

corresponds to a minimum pT and are compatible with the beam spot. (b) CKF

starts from the seed, processes compatible hits iteratively leading to trajectory

candidate. The candidate on left can be seen as discarded since no compatible hits

were found whereas the track on right is also stopped because the error becomes

too high after the last hit is added. Red dots shown in the figure are compatible

measurements whereas black dots are incompatible. From G.B. Cerati, [51].
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Inner Tracking System (ITS) respectively, and ATLAS used Hough transform in Trans-

ition Radiation Tracker (TRT). CMS implemented Hopfield net several years ago but

dont currently use it.

2.3.2 Track fitting

Although a global least squares approach is still being used in the ATLAS inner detector

and, by default, in muon system of the ATLAS experiment, as an alternative, the

Kalman filter is by far the most commonly used track fitting algorithm.

2.3.3 Post processing

In the CMS experiment, the track candidates are removed that have too many meas-

urements in common for the purpose of trajectory cleaning. ATLAS implements outlier

rejection at various stages during the track reconstruction process.

Like in any of the LHC experiments, track reconstruction in MICE is divided into

two parts; track finding and track fitting [23]. Space points are constructed from the

hits on different fibre channels. Pattern recognition is used to generate seed which

is subsequently passed to Kalman filter to fit it with the space points in the next

channels. Kalman filter predicts and smooth the given track at the remaining space

points. MICE is briefly explained in chapter 3.

2.3.4 Alignment

The data provided by track fitting is used afterwards in alignment [6, 7]. Alignment is

a problem of aligning the detectors according to the best fit trajectory of the particles

determined in track fitting. The alignment procedure is carried out to optimize the

measurement system. Alignment involves an inversion of large matrices to obtain
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corrections. It is a typical Ax = b problem where any large matrix A makes it difficult

to solve x. To overcome this issue, different methods have been considered that can

be used in order solve large matrix inverses efficiently [6]. The Kalman filter avoids

these large inverses and is currently being used for alignment [24, 25]. Alignment is

out of scope of this thesis and the main focus is track fitting.

2.4 Tracking in non-HEP experiments

Since Gaussian approximate solutions are relatively easier to implement and they

provide modest computational cost, they have gained attention of different scientific

communities over the last 40 years. Under the assumption that system dynamics are

linear and all the probability densities are Gaussian, the Kalman filter [69] is the op-

timal solution for the Bayesian estimation problems. The solution is optimal, if the

assumptions hold, in the Minimum Mean Squared Error (MMSE) sense, the Maximum

Likelihood (ML) sense, the Maximum A Posteriori (MAP) sense and it also asymptot-

ically achieves the Cramer-Rao lower bound [70]. However, the original Kalman filter

can only be implemented to a linear system. Since almost all the systems are non-linear

and the Kalman filter cannot be directly implemented, actual non-linear systems are

linearized using first order Taylor series expansion. The algorithm is known as the EKF

[71, 72, 73].

The EKF has widely been used in nonlinear estimation problems for the last forty

years. It has been successfully implemented to the problems of probabilistic infer-

ence, state estimation, parameter estimation and dual estimation [71, 74, 75]. The

EKF is extensively being used in integrated navigation systems which are used to

measure position, altitude and velocity in the aerospace industry for different aircrafts

[76, 77, 78, 79]. These systems receive measurements from avionic sensors such as
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Global Positioning System (GPS) and magnetic compass, and use the EKF for track-

ing. In tracking, one of the first implementation of the EKF was to the Apollo moon

mission in the navigation computer /citeHoag1963.

In parameter estimation, Puskorius and Feldkamp from Ford Research Laboratories

applied the EKF to the training of recurrent neural networks for real-world automotive

engineering problems such as engine misfire detection, drop-out rejection, sensor cata-

lyst modeling and on-vehicle idle speed control [81]. The results for this work was a

custom VLSI based on a recurrent neural network framework [82].

Sequential Monte Carlo methods often use extended Kalman filters as subcom-

ponents [83] for more powerful inference. However the implementation of the EKF

is suboptimal due to the fact that it uses first order Taylor series linearization, the

EKF ignores the fact that the prior and predicted system state variables are random

variables themselves. This issue of not properly accounting the state variable’s prob-

abilistic spread severely affect the accuracy of the posterior predictions. Subsequently,

updated state estimates provided by the filter are also affected. Consequently, a filter

can diverge in a case if it keeps generating inconsistent estimates of the estimation er-

ror covariance. This happens due to the fact that filter trust more in its own generated

estimates as compared to the true state space evolution and actual measurements.

These issues directly affect the performance of the EKF and also any inference system

that is based on the EKF or uses EKF as a component.

To overcome the issues related to the EKF, new algorithms have been proposed in

the literature that are based on deterministic sampling methods. These methods avoid

the step of linearization, instead they propagate Gaussian random variables through the

actual non-linear systems. Julier and Uhlmann derived the Unscented Kalman Filter
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(UKF) in the general context of state estimation for automatic control applications

[84, 85, 86, 17]. The UKF uses the unscented transformation [35] to transform the

sampling points through the actual non-linear systems by avoiding the need to linear-

ize it. This method works directly with the non-smooth and non-analytical systems

due to the fact that it only need functional evaluations of the true non-linear dynamics.

Two similar algorithms, based on the Stirling’s interpolations formula [87], to the

UKF were introduced in the late nineties. These filters are similar to the UKF in a sense

that firstly they are non-derivative based and secondly they use deterministic sampling

approach to propagate Gaussian mean and covariance through the actual non-linear

system. These approaches were published approximately at the same time by Ito and

Xiong [88], who called their algorithm the Central Difference Kalman Filter (CDKF)

and by Norgaard et al [89], who gave their algorithm a name Divided Difference fil-

ter (DDF). It is worth mentioning here that although these approaches, the CDKF

and the DDF, were published independently at the same time, they are the same al-

gorithm essentially. However, we will be using the CDKF for the review purposes below.

The algorithms discussed above, the UKF, the CDKF and the DDF, are similar in

a sense that they are non-derivative based approaches based on deterministic sampling

framework. All these algorithms generate sigma points and propagate them through

the actual non-linear systems. The similarities in these algorithms allow to group them

together in a family called sigma point kalman filters (SPKFs) [22].

Later on, Rudolph van der Merwe and Eric Wan [90, 91] presented numerically

robust versions of the UKF and CDKF. They applied a technique within these al-

gorithms and due to that technique gave these algorithms a name Square root UKF

(SRUKF) and Square Root CDKF (SRCDKF). They have also shown that there are
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some interesting parallels between SPKFs and a statistical approach called weighted

statistical linear regression (stochastic linearization) [71, 92] and it provides an insight

how SPKFs are a better choice as compared to the EKF in terms of robustness for

Gaussian probabilistic inference problems.

Until now a brief history of the current approaches included in the family of SP-

KFs has been provided to shed some light on their origin. However, now a review

on these approaches in terms of their advantages, disadvantages and comparisons will

be provided. All these algorithms have been published and compared extensively in

literature and it is worth mentioning here that they all have advantages and disadvant-

ages. We will try to cover a decent amount of literature to give an insight into these

algorithms by also keeping in mind their applicability to HEP problems. It is also worth

mentioning here that new tracking algorithms, has not been discussed before in this

thesis, called particle filters will also be reviewed.

Although EKF is widely being used for non-linear state estimation in various ap-

plications, relatively new non-derivative based approaches have been presented in the

literature. SPKFs are a type of algorithms that have extensively been compared with

the EKF in terms of accuracy. The SPKFs perform better because, unlike the EKF, the

actual non-linear function is not linearized and instead the sampling points are used.

Two approaches considered to be within SPKFs framework are the Central Difference

Kalman Filter (CDKF) and the UKF and they are similar in terms of accuracy [21, 22].

Although the UKF and the CDKF provides similar accuracy, the CDKF, as com-

pared to the UKF, is quite complex in its formulation. The difference arises in the

calculations of covariances and the Weights for sigma points. The UKF, therefore, is

frequently being used in several non-linear problems, excluding particle physics, and
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compared with the EKF in terms of accuracy.

Simon J. Julier and Jeffrey K. Uhlmann [17] presented the UKF to avoid the issues

faced by the EKF. The main issue associated with the EKF is its difficult implement-

ation in highly non-linear systems. The other issues are EKF’s less accuracy and its

divergence in severe non-linearities. They compared these algorithms and it is shown

that the UKF performs better. Julier showed how, for the same computational cost,

the UKF consistently outperforms the EKF in terms of state estimation accuracy and

estimate consistency [93].

Eric A. Wan and Rudolph van der Merwe [18] also compared the EKF and UKF

and it is shown that EKF, due to linearization, provides less accurate results. EKF

approximates the actual non-linear system to first order and consequently posterior

mean and covariance of the transformed Gaussian random variable is affected and the

accuracy is sacrificed. It is shown that the UKF provides better results in terms of

accuracy at a comparable computational complexity.

Fredrik Orderud [19] compared the EKF and UKF for a system with non-linear

measurements. Before, these algorithms have been extensively compared when the

process model was non-linear. It is shown that UKF performs better for the radar

model but the results are similar for the tracking model. The reason is that the radar

model is highly non-linear as compared to the tracking model which was relatively linear.

Joseph, J. LaViola [20] compared the EKF and UKF using a non-linear tracking.

Due to the near linearity of the dynamics, EKF is a better choice because it provides

similar results in terms of accuracy but outperforms UKF in terms of computational

complexity. Hence EKF is a better choice for Nearly linear system.
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Rudolph van der Merwe and Eric Wan [22] presented the updated versions of the

SPKFs. It is shown that a technique can be implemented within the UKF and CDKF

frameworks for numerically robust and efficient implementation. The UKF and CDKF

that incorporate it are called Squarer Root UKF (SR-UKF) and Squarer Root CDKF

(SR-CDKF). Square Root SPKF perform more efficiently as compared to their original

forms in terms of robustness.

Although the square root versions of the SPKF are numerically stable and are more

robust as compared to their original counterparts, extra incorporated steps cause com-

putational complexity. So robustness is gained over the additional computational cost.

Moreover an additional inverse in the Kalman gain calculations can be a bottleneck

especially in the case of a system that is not well behaved.

M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp [26] presen-

ted an approach in the non-linear filtering called the particle filters. It is shown that

the particle filters can cope with any non-linearities and Gaussian and non-Gaussian

distribution.

Katalin Gyrgy, Andrs Kelemen and Lszl Dvid [27] has compared the particle filter

with the UKF and EKF. It is shown that the particle filter and the UKF are easier

to implement as compared to the EKF and outperforms it in terms of accuracy. The

UKF and EKF has comparable computational load whereas it is comparatively high in

the particle filters due to a large number of particles involved. Eleni N. Chatzi, and

Andrew W. Smyth [28] has also compared the particle filters with the UKF and has

shown that the UKF is computationally more efficient.
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Kung-Chung Lee, Anand Oka, Emmanuel Pollakis and Lutz Lampe [29] have com-

pared the UKF and particle filters in terms of robustness and concluded that particle

filters are more robust because they can cope with any non-linearities and Gaussian

and non-Gaussian distributions.

Although particle filters, as compared to the UKF, are more accurate, they have

other issues associated with them. One of the main issues is that the particle filters

have a high computational cost. Another issue is that particle filters rely on import-

ance sampling, they require the design of proposal distribution that can approximate

the posterior distribution really well which is difficult to design in general. To overcome

this issue, Rudolph van der Merwe , Arnaud Doucet, Nando de Freitas and Eric Wan

[30] presented the Unscented particle filter (UPF). This method incorporates UKF’s

technique to produce samples which helps in using the latest available information

efficiently. The UPF uses the UKF for proposal distribution to incorporate the latest

observations and match the true posterior distribution more closely. UPF is well suited

for engineering problems where sensors are very accurate but non-linear.

UPF avoids the issue faced by the particle filters at an extra computational cost.

The reason is that each particle uses the UKF to obtain the importance proposal.

Since UPF struggles with the large dimensional problems, its real time capability is

also questionable. To overcome this, Wentao Yu, Jun Peng, Xiaoyong Zhang, Shuo

Li, and Weirong Liu [31] presented a new algorithm called the Adaptive UPF (AUPF)

that adaptively adjust the number of particles during filtering process to reduce the

unnecessary computations.

Although AUPF has been shown to perform better as compared to the UPF in terms

of computational cost, adjusting the number of particles might affect the accuracy.
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Therefore, all the discussed tracking algorithms have merits and DE-merits and they

should be chosen according to the challenges faced due to the dynamics of the system.

In the next section, the above discussed tracking algorithms are discussed in terms of

their suitability to HEP experiments for track fitting.

2.5 A critical review of some tracking algorithms

within HEP experiments

As discussed above, EKF is currently being used for track fitting and is performing reas-

onably well. However, there are some issues related to track fitting that are currently

being faced. One of the main issues are high non-linearity of the track fitting prob-

lem that is caused by the multiple scattering inside a strong magnetic field. Multiple

scattering disturbs the position and momentum of the charged particle and provided

the fact that it happens inside trackers encapsulated in very strong magnets, the EKF

performs badly or even diverges due to the linearization process. The EKF also diverges

due to very small changes that occur in the momentum of the particle caused by the

internal dynamics such as the ionization energy loss.

In the Muon ionization cooling experiment, scintillating fibre trackers are used to

measure the position and the momentum of a particle. The purpose of this experiment

is to reduce the emittance of the muon beam where cooling is typically measured us-

ing these scintillating fibre trackers. This is achieved by installing one tracker at the

start of the experiment (upstream tracker) and one at the end (downstream tracker)

to compare the momentum measurements. If the transverse momentum is decreased,

the muon beam is believed to have been cooled down and obviously the emittance

is reduced. The main issue is that the downstream tracker is expected to receive

straight particle tracks or at least tracks with very low transverse momentum, which
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is not always true. Due to such uncertainty that is very difficult to model, the issue of

observability arises. The current track fitting algorithm, the EKF, performs poorly or

even diverges.

These issues can be resolved by replacing a more efficient tracking algorithm. The

algorithms that can be used to increase the accuracy of the estimates and improve track

fitting are the UKF, CDKF and particle filters and their updated versions. However,

in such large dimensional problems, the filter should be chosen that can improve track

fitting by also keeping the computational cost minimum. This section shed some light

on the algorithms discussed above in HEP experiment’s context.

2.5.1 UKF and track fitting

THE UKF outperforms the EKF in terms of accuracy with a comparable computational

cost. Besides, the UKF is more robust against non-linearities as compared to the EKF.

Therefore, the UKF will be a better choice to cope with the above mentioned issue.

The additional advantage of the UKF is that it is easy to implement and is not going

to rise the computational cost.

2.5.2 CDKF and track fitting

THE UKF and CDKF belong to the same family and perform similarly in terms of

accuracy. Whereas the CDKF, as compared to the UKF, is more complex algorithm

as it involves more steps which obviously contribute towards computational cost rise.

Therefore, the CDKF is not suitable for the track fitting at HEP experiments.
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2.5.3 Particle filters and track fitting

The main issue associated with the particle filters is that they have high computa-

tional cost, and obviously is not very suitable for the HEP experiments where millions

of particles are needed to be processed. Using particle filter for alignment, which is

even worst in terms of computational burden, would make it worst. UPF is even worst

choice for track fitting since it is more computationally complex. Although the particle

filters might outperform the UKF and the CDKF in terms of accuracy and robustness

against non-linearities, the computational cost would be increased substantially.

The above analysis shows that UKF is a more suitable choice for track fitting in

HEP experiments since it outperforms EKF in terms of accuracy and has comparable

computational cost. Whereas all other approaches will give rise to computational com-

plexity. In the next chapter, UKF will be compared to the EKF in terms of robustness

against noise and non-linearities.

2.6 Smoothing

Kalman smoothing has an important role to play in HEP particle tracking experiments

as accurate estimates are essential in order to determine the track of a particle in terms

of position and momentum over time. It should also be noted that detector alignment

using known incidence cosmic rays can be accomplished using either parameter estima-

tion (e.g. non-linear weighted least squares (WLS)) or Kalman filtering. Owing to the

inherent non-linearities, the EKF is used as a track re-constructor for particle tracking

whereas smoothing is typically achieved using RTS smoother in particle tracking prob-

lems [4, 94, 60]. The RTS smoother is implemented using the Jacobian matrices that

are naturally available with EKF.
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The unscented Kalman filter (UKF) is a relatively new and comparatively efficient

form of Kalman filter for non-linear systems, however, since the main benefit of this

algorithm is that Jacobian matrices are not computed, the question of how to imple-

ment an RTS smoother naturally arises.

Eric. A. Wan and R. van der Merwe [96], has implemented a bi-directional UKF

smoother, where firstly it estimates the future states (runs forward) and then estimates

the past states (runs backward). The problem with the backward filtering is that it

involves the inverse of the dynamic model which can lead to inaccurate results [95].

The unscented Rauch Tung Striebel (URTS) smoother is different from RTS in that

sigma points are calculated from the updated estimates and the covariances provided

by the filter are used to calculate smoother gains in place of the Jacobian terms.

Although URTS smoother can be implemented directly with UKF, the calculation

of sigma points and cross covariances for smoother gains is a computational burden.

And keeping in mind the computational issues related to large dimensional systems

such as HEP problem, URTS is not a suitable choice. Therefore a computationally

efficient smoothing algorithms is needed to be used with the UKF.

2.7 Conclusions

The EKF has widely been used in the non-linear tracking applications and recently

sampling based methods has been presented. These methods avoid the linearization

step and instead they generate sampling points and propagate them through the actual

non-linear system. A family of Kalman filters that incorporate this method is called

Sigma Point Kalman Filters (SPKFs) and has been shown to perform better as com-

pared to the EKF in terms of accuracy and robustness against non-linearities in various
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applications except track fitting at HEP experiments.

Although, the EKF is being used for track fitting for the last forty years within

the HEP experiments and is performing reasonably well, there are some inefficiencies

that can be resolved by replacing an efficient tracking algorithm. The EKF starts

performing poorly and even diverges at very small changes in momentum caused by

the internal dynamics of the trackers such as multiple scattering and ionization energy

loss. Multiple scattering inside a very strong magnetic field makes track fitting a highly

non-linear problem and it becomes very difficult for the EKF to predict such changes

reasonably well since it already linearizes the actual non-linear system and the actual

system dynamics are not being taken into account. Another problem that makes the

EKF to perform poorly is ionization energy loss. The particle loses energy and the

momentum is affected. Again, the EKF diverges since it works on approximations and

this fact accumulates towards its bad performance while facing such problems caused

by the internal dynamics.

Different algorithms have been presented and compared with the EKF in the liter-

ature. In a search for a suitable algorithm for track fitting, two challenges should be

considered; accuracy and computational complexity. One of the most suitable type of

algorithms for non-linear particle tracking are SPKFs and particle filters. The SPKFs

are a family of kalman filters that contain two main members, the CDKF and the

UKF. These two algorithms perform similar in terms of accuracy, however the UKF

is relatively easy to implement due to the fact that the CDKF is quite complex in its

formulation. Therefor UKF is a better choice when comparing these two approaches.

On the other hand, the particle filters are more efficient and robust as compared to

the UKF since they cope with any type of non-linearities and work with both Gaussian

and non-Gaussian noises. Undoubtedly, the particle filter would be a better choice
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for track fitting only if the accuracy had to be increased. However, computational

complexity is also a challenge that should not be avoided while choosing a suitable

algorithm for track fitting. Particle filters will improve the accuracy without preserving

the computational cost within a range that is being currently achieved using the EKF.

On the other hand, the UKF provide better accuracy as compared to the EKF while

maintaining similar computational cost. Therefore the UKF is a better choice for track

fitting since it is computationally more efficient as compared to the particle filters.

Smoothing is an algorithm that is implemented with an estimator to improve the

accuracy within track fitting process. Since the EKF is currently being used for track

fitting, smoothing is being achieved using the RTS smoother. RTS smoother uses

Jacobians computed by the EKF and therefore cannot directly be implemented with

the UKF. A smoothing algorithm has to be designed that could efficiently work with

the UKF.
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Chapter 3

A comparison of the UKF and EKF

for particle tracking

The focus of this chapter is, firstly, to explain scintillating fibre trackers used at Muon

Ionization Cooling Experiment (MICE) in terms of construction, measurement specific-

ations and uncertainties.

Secondly, before the UKF is implemented to track fitting at MICE, forms of the

UKF are compared with the EKF in terms of robustness against non-linearity. As

explained in the previous chapter, the extended Kalman filter has widely been used for

non-linear state estimation but the unscented Kalman filter [17, 32, 18], is frequently

being used due to its advantages over the EKF. The forms of the UKF, augmented

and non-augmented UKFs, have previously been analysed [36, 9]. Yuanxin Wu and

Dewen Hu [9] investigated these forms of the UKF and concluded that the augmented

form is more accurate as compared to the non-augmented form, whereas Fuming Sun,

Guanglin Li and Jingli Wang [36] described that augmented UKF does not always have

preference over the non-augmented UKF and that their performance is affected by the

level of noise. However, these algorithms have never been compared with the EKF

41
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in terms of robustness against non-linearity. Therefore we compare the performance

of the forms of the UKF in terms of robustness against non-linearities with the EKF.

The Van der Pol oscillator, a small dimensional problem, is chosen for the comparison

because this will be helpful in investigating and selecting a suitable algorithm for the

particle tracking (track fitting) problem. Although this system does not replicate the

particle tracking system but provides a platform for these algorithms to be tested at

different non-linearity levels.

Finally, the EKF is compared with the UKF in this chapter in terms of accuracy and

non-linearity for a particle tracking problem at MICE. Due to the fact that the UKF

has never been implemented to particle tracking, it has never been compared with the

EKF.

The structure of this chapter is as follows. Section 3.1 briefly explains the muon

ionization cooling experiment. The construction of the scintillating fibre trackers is

discussed in Section 3.2. Sections 3.3 describes the track reconstruction process at

MICE and in Section 3.4, tracker uncertainties are discussed. Section 3.5 provides

the mathematical description of the EKF. In Section 3.6, a general overview about

the UKF is presented which subsequently covers the mathematical description of its

versions, augmented and non-augmented. An approach that requires the computation

of fewer sigma points called spherical simplex sigma point Kalman filters (SSSPKF)

[10], based on its unscented transformation [33], is presented in Section 3.7. These

algorithms are compared in terms of their robustness against measurement and process

noise with the help of a simulation. A comparison of these approaches and the results

are presented in Section 3.8. The implementation of the UKF to particle tracking

within MICE is presented in Section 3.9. The EKF and the UKF are compared in

terms of accuracy and robustness against non-linearity for the MICE in Section 3.10.

Finally the conclusions can be found in Section 3.11.
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3.1 MICE overview

Muon beams, as conventionally produced, occupy a large volume of phase space. A

future particle physics facility, the Neutrino Factory, depends on the ability to produce

beams of muons along with the cost of the accelerator needed to produce such beams

that increases with the volume of phase space occupied be the beam. MICE will use

a novel technique to demonstrate that it is possible to achieve a significant reduction

in the beam’s phase space within the muon’s 2 microsecond lifetime. Conventional

cooling techniques are far too slow and all the muons would have decayed before there

was any reduction in the phase space.

Figure 3.1 shows a schematic of MICE. The upstream instrumentation includes a

particle identification system. Particle identification is achieved using time of flight

hodoscopes, TOF0 and TOF1, and cherenkov counters to select a pure muon beam.

Downstream of the cooling channel, there is a final hodoscope, TOF2, and a calorimeter

that allows muon decays to be identified and rejected. The upstream and downstream

trackers measure the position and momentum of each particle before and after the

cooling channel [37, 38, 39].
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Figure 3.1: Schematic of MICE. Adapted from H. Sakamoto, [11]

3.2 Scintillating fibre tracker

MICE uses two Scintillating fibre trackers that sit inside the spectrometer solenoid,

shown in figure 3.2, that provides a uniform magnetic field of 4T [38]. The center

coil has a uniform magnetic field volume of 1m length and 30cm diameter. Therefore

trackers also cover 1m length and 30cm of diameter. The centre coil can be seen in the

cross section of the spectrometer solenoid shown in figure 3.3. Since the muons follow

a helical trajectory while traversing trackers due to the uniform magnetic field, the

tracker measures the position and momentum in each x, y and z direction. Table 3.1

shows the specifications for the tracker and spectrometer solenoid. The construction

of the scintillating fibre tracker is explained in this section.

3.2.1 Scintillating fibre doublets

The scintillating fibres of 350 µm in diameter are glued with 427 µm pitch to make a

single layer [39]. Such fibres are used because they provide the position measurement

without disturbing the trajectory of the muons. Two layers of sintillating fibres are
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Figure 3.2: MICE spectrometer solenoids magnet. Adapted from D. Rajaram and

P. Snopok, [38]

Figure 3.3: Cross section of a spectrometer solenoid magnet. Adapted from D.

Rajaram and P. Snopok, [38]
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Figure 3.4: (a) Three views per station. (b) Scintillating fibre doublet. Adapted

from P. Kyberd, [39]

glued to make a doublet in order to minimise the dead space between fibres. Figure

3.4(b) shows the arrangement of fibres in a doublet.

3.2.2 Scintillating fibre stations

Each tracker consists of five stations as shown in figure 3.5. Each station is made up of

carbon fibre frame consisting three scintillating fibre doublets arranged at 120 degrees

to each other as shown in figure 3.4(a) [11]. Thus each station provides three views.

Light produced by the fibres due to particle hits is transferred through the light guides

connected to the optical connectors found on the circumference of each station. A

single frame is shown in figure 3.6 where three lines show the arrangement of three

fibre doublets.

3.2.3 Light guide system

The light-guide, a bundle of 128 clear fibres, is decomposed into two parts, internal and

external light-guide. Internal light-guides connect stations to the patch panel whereas

external light-guide connects patch panel and VLPC cassettes [11].
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Figure 3.5: Scintillating fibre tracker. Adapted from P. Kyberd, [39]

Component Parameter Specification

Scintillating fibre tracker

Scintillating fibre diameter 350 µm

Fibre pitch 427 µm

Number of fibres per optical readout channel 7

Position resolution per plane 470 µm

Views per station 3

Stations per tracker 5

Tracking volume
Length 110 cm

Diameter 30 cm

Spectrometer solenoid
Magnetic field in the tracking volume 4 T

Tracking volume’s field uniformity 3 per mil

Table 3.1: Specicifications of the tracking system
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Figure 3.6: Single station where optical connectors can be seen on the circumfer-

ence. Three back lines seen in the double layer corresponds to center fibers in each

views, Adapted from H. Sakamoto, [11]
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Figure 3.7: Visible light photon counter. Adapted from H. Sakamoto, [11]

3.2.4 Photon detecting system

Although scintillating fibres does not disturb the trajectory of the particle, they produce

very little light [39]. To read these low light signals an efficient system was required

and thus VLPCs are used. The light signal is transferred through the light guides to

VLPCs, shown in figure 3.7, which convert it into an electrical signal. Electrical signal

helps in identifying where the hits are and the position resolutuion is 470 µm [38, 39].

3.3 Track reconstruction

3.3.1 Space point construction

Particle hits detected on a given station in one plane make a cluster if the hits are of

the same particle [23]. Clusters are made from the hits found on two or three planes.

Space points are formed using these clusters that intersect each other in at least two

planes from the same station. The space points from distinct stations are analysed

in terms of collinearity and the selected points are extrapolated to the next stations.

Finally the space points are required by the Kalman filter for track fitting.
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3.3.2 Track fitting with Kalman filtering

The Kalman filter requires, along with the group of tracker measurements, the track

model, the resolution for each measurement, the geometry of the detector itself and

the material effects to correct the noise introduced due to multiple scattering. The

space points and the associated tracks are passed to the Kalman filter which produces

fits by also taking into account the multiple scattering.

3.4 Uncertainty analysis

Multiple scattering directly affects the trajectory of the particles and is considered as

non-Gaussian process noise. Apart from disturbing the position of the particle, it also

affects the momentum. However in MICE, the multiple scattering is minimized by

selecting the thin fibres and thus the process noise is negligible [39]. Another source

of uncertainty that could participate as the process noise is the non-uniformity of the

magnetic field strength as it could affect the position and momentum of the particle.

This issue is avoided by using the superconducting magnets that provides a uniform

magnetic field. The uniform field is due to the geometry and design of the coil, and

also the precision with which the coil is wound. On the other hand, the source for

measurement noise is the position resolution which is considered as zero mean Gaussian

noise.

3.5 Extended Kalman filter

Let a general non-linear system represented by the following discrete time equations:
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xk = f(xk−1 + uk−1) + vk (3.1)

yk = h(xk) +wk (3.2)

where xk ∈Rn, and vk and wk are process and measurement noises respectively. uk−1

is the input which is the magnetic field in the case of particle tracking. Predicted state

vector is calculated as,

x̂−k = f(xk−1,uk−1), x̂−k ∈R
n (3.3)

where uk−1 is the input signal. The predicted covariance is calculated as,

P−xk
= FkPxk−1

FT
k +Pv, P−xk

∈Rn×n (3.4)

The Jacobian matrices (Fk) are the first derivative term in the Taylor expansion of the

non-linear function and Pv is the process noise. Predicted measurements are calculated

as,

ŷk = h(x̂
−

k), ŷk ∈R
m (3.5)

Measurement covariance is calculated as,

Pyk =HkP
−

xk
HT

k +Pn, Pyk ∈R
m×m (3.6)

where Hk are calculated by linearising the non-linear measurement function and Pn

is the measurement noise covariance. Finally the Kalman gain, state estimates and

update covariance are calculated using equations below.

Kk = P−xk
HT

k (Pyk)
−1, Kk ∈R

n×m (3.7)

x̂k = x̂−k +Kk(yk − ŷk), x̂k ∈R
n (3.8)

Pxk
= (I −KkHk)P

−

xk
, Pxk

∈Rn×n (3.9)
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3.6 Unscented transformation

In unscented Kalman filtering, sampling points are calculated to completely capture

the mean and covariance of the Gaussian random variable. These sampling points are

called sigma points because of their calculation which is described below in this section.

Sigma points are propagated through the actual non-linear process and measurement

functions. The following non-linear function “h” provides the mapping between the

states (x) and the measurements (y).

y = h(x) (3.10)

The non-linear function is applied to each point in turn to yield a cloud of transformed

points.

3.6.1 Non-augmented UKF

Let a general non-linear system represented by the following discrete time equations:

xk = f(xk−1 + uk−1) + vk, xk ∈R
n (3.11)

yk = h(xk) +wk, yk ∈R
m (3.12)

where vk and wk are process and measurement noise vectors respectively. uk−1 is the

input which is the magnetic field in the case of particle tracking. It is worth mentioning

here that the notation used for UKF are taken from [34]. The n-dimensional random

variable x with mean x̂ and covariance Px ∈Rn×n is approximated by 2n+ 1 weighted

points given by [17]:

Xi,k−1 = x̂k−1, i = 0,

= x̂k−1 + γSi,k−1, i = 1, . . . , n,

= x̂k−1 − γSi,k−1, i = n + 1, . . . ,2n, (3.13)
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where Si,k−1 is the ith column of the matrix Sk−1 =
√

Pxk−1
and γ =

√

n + λ, where

λ = α2
(n + κ) − n and α and κ are tuning parameters. These tuning parameters allow

scaling of sigma points towards or away from the origin. One must choose κ > 0, to

guarantee the positive definiteness of the covariance matrix. And α should be a value

between 0 and 1 to avoid non-local effects when the system is highly non-linear. For

more explanation about these parameters, refer to [22]. The sigma points have weights

assigned by

w0
m =

λ

n + λ
,

w0
c =

λ

n + λ
+ (1 − α2

+ β),

wi
m = wi

c =
λ

2(n + λ)
(3.14)

wm is used to reconstruct the mean and wc the covariance. β is a non-negative

weighting parameter which affects the weighting of the 0th sigma point (the mean)

for the calculation of the covariance. β can be used to incorporate knowledge of the

higher order moments of the distribution. In the case of Gaussian distribution, β = 2

is optimal [35]. The time update is calculated as:

Xi,k∣k−1 = f(Xi,k−1,uk−1), Xi,k∣k−1 ∈R
n (3.15)

x̂−k = Σ2n
i=0(w

i
mXi,k∣k−1) (3.16)

P−xk
= Σ2n

i=0(w
i
c(Xi,k∣k−1 − x̂−k)(Xi,k∣k−1 − x̂−k)

T
) +Pv, P−xk

∈Rn×n (3.17)

where Pv is the process noise covariance. At this stage, sigma points are calculated

again, using x̂−k and P−xk
, to incorporate the effects of process noise.

Map each point through the measurement function to yield the set of transformed

sigma points as,

Yi,k∣k−1 = h(Xi,k∣k−1), Yi,k∣k−1 ∈R
m (3.18)

where superscript m ≥ n is the number of measurements. The mean is given by the
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weighted average of transformed points,

ŷk = Σ2n
i=0(w

i
mYi,k∣k−1) (3.19)

And the measurement covariance is the weighted outer product of the transformed

points,

Pyk = Σ2n
i=0(w

i
c(Yi,k∣k−1 − ŷk)(Yi,k∣k−1 − ŷk)

T
) +Pn, Pyk ∈R

m×m (3.20)

where Pn is the (diagonal) measurement noise covariance matrix. The cross covariance

is calculated as,

Pxkyk = Σ2n
i=0(w

i
c(Xi,k∣k−1 − x̂−k)(Yi,k∣k−1 − ŷk)

T
), Pxkyk ∈R

n×m (3.21)

And finally the Kalman gain, UKF estimates and updated covariance are calculated

using equations below.

Kk = PxkykP
−1
yk
, Kk ∈R

n×m (3.22)

x̂k = x̂−k +Kk(yk − ŷk), x̂k ∈R
n (3.23)

Pxk
= P−xk

−KkPykK
T
k , Pxk

∈Rn×n (3.24)

3.6.2 Augmented UKF

Let a general nonlinear system represented by the following discrete time equations:

xk = f(xk−1,vk,uk−1) (3.25)

yk = h(xk,wk) (3.26)

where xk ∈Rnx , vk ∈Rnv is the process noise vector and wk ∈Rnw is the measurement

noise vector. uk−1 is the input which is the magnetic field in the case of particle

tracking. The superscripts nx, nv and nw are the dimension of the state, process noise

and measurement noise vectors respectively.
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The augmented state vector and covariance at step k are structured as,

xa
k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk

vk

wk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈RN (3.27)

Pa
k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Px 0 0

0 Pv 0

0 0 Pw

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈RN×N (3.28)

where superscript ”a” in (3.27) and (3.28) is an abbreviation of augmented and N =

nx + nv + nw is the dimention of the augmented state vector. It should be noted here

that 2N + 1 sigma points are required as compared to the non-augmented form where

only 2n + 1 sigma points are computed. Sigma points are calculated using (3.13) and

the sigma point vector is structured as,

Xa
i,k−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xx
i,k−1

Xv
i,k−1

Xw
i,k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.29)

where Xx
i,k−1, Xv

i,k−1 and Xw
i,k−1 are the sigma points belong to states, process noise

and measurement noise respectively. Time update is calculated as,

Xx
i,k∣k−1 = f(X

x
i,k−1,X

v
i,k−1,uk−1), Xx

i,k∣k−1 ∈R
nx (3.30)

x̂−k = Σ2n
i=0(w

i
mX

x
i,k∣k−1) (3.31)

P−xk
= Σ2n

i=0(w
i
c(X

x
i,k∣k−1 − x̂−k)(X

x
i,k∣k−1 − x̂−k)

T
), P−xk

∈Rnx×nx (3.32)

Sigma points are propagated through the measurement function to yield the set of

transformed sigma points as,

Yi,k∣k−1 = h(X
x
i,k∣k−1,X

w
i,k∣k−1), Yi,k∣k−1 ∈R

nw (3.33)

The mean is given by the weighted average of transformed points,

ŷk = Σ2n
i=0(w

i
mYi,k∣k−1) (3.34)



56

And the measurement covariance is the weighted outer product of the transformed

points,

Pyk = Σ2n
i=0(w

i
c(Yi,k∣k−1 − ŷk)(Yi,k∣k−1 − ŷk)

T
), Pyk ∈R

nw×nw (3.35)

The cross covariance is calculated as,

Pxkyk = Σ2n
i=0(w

i
c(X

x
i,k∣k−1 − x̂−k)(Yi,k∣k−1 − ŷk)

T
), Pxkyk ∈R

nx×nw (3.36)

And finally the Kalman gain, UKF estimates and updated covariance are calculated

using (3.22), (3.23) and (3.24) respectively.

3.7 Spherical simplex unscented Kalman filter

SS-UKF is a relatively new approach of the unscented transformation that allows the

computation of fewer sigma points as compared to the general UKF. Like the UKF,

SS-UKF can also be implemented in augmented and non-augmented forms.

3.7.1 SS-UKF additive noise case

In SS-UKF formulation, only n+2 sigma points are required for a system described by

(3.11) and (3.12). The sigma points are calculated by:

Xi,k−1 = x̂k−1 +

√

Pk−1Zi, i = 0, . . . , n + 1, Xi,k−1 ∈R
n (3.37)

The weights are calculated by following the steps below,

1) Choose the value of W0 between 0 and 1

2) The rest of weights are chosen as;

Wi =
1 −W0

n + 1
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3) The scaling parameters are used to control sigma point spread

4)

wi = 1 +
W0 − 1

α2
, i = 0 (3.38)

=

Wi

α2
, i /= 1 (3.39)

In order to incorporate higher order information and minimize higher order errors,

another parameter β is included in the weights.

w0
m = w0,

w0
c = w0 + (1 − α2

+ β),

wi
m = wi

c = wi (3.40)

where wm and wc are used to reconstruct the mean and covariance respectively.

5) The vector sequence zi is initialized as;

z10 = [0],

z11 = [
−1
√

2w1
] ,

z12 = [
1

√

2w1
]

6) The sequence is expanded for j = 2, . . . , n as;

Zj
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

zj−10

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, i = 0

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

zj−1i

−1
√

j(j+1)w1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, i = 1, . . . , j,

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0j−1

j
j(j+1)w1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, i = j + 1
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The prediction calculations can be calculated by (3.15)-(3.20). The cross covariance

can be calculated by (3.21) and Kalman gain by (3.22). And finally the standard Kal-

man update equations are used to calculate the estimate and its covariance described

by (3.23) and (3.24).

3.7.2 Augmented SS-UKF

For an n-dimensional system represented by (3.25) and (3.26), N + 2 sigma points are

required. Sigma points are calculated as,

Xa
i,k−1 = x̂a

k−1 +

√

Pa
k−1Zi, i = 0, . . . , n + 1, Xa

i,k−1 ∈R
N (3.41)

The vector Zi is the ith column of spherical simplex sigma point matrix and their

calculation procedure is given in the section above. These sigma points are transformed

through the non-linear process function, as described by (3.30). The predicted state

and its covariance is calculated using (3.31) and (3.32) respectively. Then the sigma

points are transformed through the measurement model described by (3.33). The

mean and measurement covariance are calculated using (3.34) and (3.35). The cross

covariance is calculated using (3.36). The Kalman gain is calculated by (3.22), and

SS-UKF estimate and its covariance are calculated using standard Kalman filter update

equations represented by (3.23) and (3.24).

3.8 Simulation

The EKF, augmented, non-augmented and spherical simplex UKFs were implemented

on a 2-dimensional non-linear system called Van der Pol (VdP) oscillator. The purpose,

firstly, is to test the EKF and forms of the UKF under different levels of non-linearity,

and secondly to analyse the forms of the UKF in terms of accuracy and computational

complexity. This analysis will help in selecting the suitable form for track fitting,
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comparatively large dimensional problem, at MICE. VdP oscillator has a non-linearity

parameter “µ” that can be varied to change the non-linearity of the system. The state

and measurement equations for VdP oscillator are,

ẋ1 = x2,

ẋ2 = µ(1 − x
2
1)x2 − x1 + vk (3.42)

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+wk (3.43)

where vk and wk are the process and measurement noise respectively.

3.8.1 Problem formulation

The scaling parameters were chosen as, κ = 0, α = 0.7 and β = 2. A sampling interval

of 0.1 is selected to discretize the system. The initial state estimate and covariance is

chosen as,

x̂0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Px0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The process and measurement noise covariances are chosen as,

Pv = Pn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

10−3 0

0 10−3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Since the performance of the augmented UKF, non-augmented UKF and SS-UKF is

being compared in terms of their robustness against process and measurement noises,

the uncertainty is worth explaining here. In the following analysis weak and strong

noise terms are used, where weak and strong additive noises are N(0,1) and N(0,5)

respectively.
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Figure 3.8: Van der Pol phase plot at µ = 0.001

3.8.2 Comparison in terms of robustness against non-linearity

The EKF, augmented and non-augmented UKFs and SS-UKF have been tested by

varying the non-linearity parameter “µ” in (3.42). Figures 3.8-3.16 show the phase

space diagrams of VdP oscillator plotted for different values of “µ”. It should be noted

here that the behaviour of the system changes as the value of “µ” changes. In fact as

“µ” increases, the system becomes more discontinuous especially after µ = 1.

The tests initially started with µ = 0.001 and gradually increased up to µ = 3.8.

For each value of µ the MSEs were recorded for these algorithms in table 3.2 and 3.3

for position and velocity respectivly. It is clear from these tables that EKF is affected

badly in terms of accuracy between µ = 0.001−0.2 and eventually diverges at µ = 0.25
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Figure 3.9: Van der Pol phase plot at µ = 0.05

Figure 3.10: Van der Pol phase plot at µ = 0.2
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Figure 3.11: Van der Pol phase plot at µ = 0.5

whereas the forms of the UKF are robust until the system becomes highly non-linear

(µ ≥ 2.5). The SS-UKF, the non-augmented UKF and the augmented UKF diverge at

µ = 3, µ = 3.3 and µ = 3.8 respectively.

3.8.3 Comparison in terms of accuracy

The estimates for the algorithms are plotted with the real trajectory for position and

velocity in figures 3.17 and 3.18 respectively with guassian noise of vk N(0,1) and

wk N(0,1). In figures 3.19 and 3.20, the MSEs are plotted with guassian noise of

vk N(0,5) and wk N(0,1).

It can be observed from the figures 3.17 and 3.18 that the non-augmented UKF

is more accurate as compared to augmented and spherical simplex UKFs. But in the

case of strong noise, the augmented UKF outperforms the other two forms. The

strong noise affected the SS-UKF the most, as can be observed from figures 3.19
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Figure 3.12: Van der Pol phase plot at µ = 1

Figure 3.13: Van der Pol phase plot at µ = 2
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µ MSE for Aug UKF MSE for Non-aug UKF MSE for SS-UKF MSE for EKF

0.001 288 × 10−9 219 × 10−9 846 × 10−6 188 × 10−3

0.01 374 × 10−9 281 × 10−9 856 × 10−6 1.284

0.05 438 × 10−9 299 × 10−9 866 × 10−6 1.758

0.1 399 × 10−9 323 × 10−9 861 × 10−6 2.650

0.15 429 × 10−9 334 × 10−9 864 × 10−6 4.363

0.175 433 × 10−9 341 × 10−9 871 × 10−6 5.048

0.2 424 × 10−9 344 × 10−9 857 × 10−6 5.560

0.22 454 × 10−9 344 × 10−9 861 × 10−6 5.859

0.24 439 × 10−9 351 × 10−9 853 × 10−6 6.113

0.25 439 × 10−9 351 × 10−9 853 × 10−6 Diverges

0.5 450 × 10−9 371 × 10−9 873 × 10−6 -

1 470 × 10−9 481 × 10−9 883 × 10−6 -

1.5 483 × 10−9 576 × 10−9 959 × 10−6 -

2 494 × 10−9 1.06 × 10−6 3.77 × 10−3 -

2.5 487 × 10−9 2.36 × 10−6 4.91 × 10−3 -

2.8 486 × 10−9 5 × 10−6 7.65 × 10−3 -

3 484 × 10−9 18 × 10−6 Diverges -

3.2 484 × 10−9 154 × 10−6 - -

3.4 497 × 10−9 Diverges - -

3.6 3 × 10−6 - - -

3.8 6 × 10−6 - - -

3.9 Diverges - - -

Table 3.2: MSEs in position estimates for the augmented UKF, non-augmented

UKF, SS-UKF and EKF
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Figure 3.14: Van der Pol phase plot at µ = 3

Figure 3.15: Van der Pol phase plot at µ = 3.5
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µ MSE for Aug UKF MSE for Non-aug UKF MSE for SS-UKF MSE for EKF

0.001 256 × 10−9 271 × 10−9 73 × 10−6 132 × 10−3

0.01 263 × 10−9 273 × 10−9 72 × 10−6 1.032

0.05 260 × 10−9 277 × 10−9 74 × 10−6 1.504

0.1 238 × 10−9 309 × 10−9 74 × 10−6 2.2470

0.15 244 × 10−9 308 × 10−9 76 × 10−6 3.64

0.175 272 × 10−9 331 × 10−9 75 × 10−6 4.228

0.2 266 × 10−9 292 × 10−9 78 × 10−6 4.667

0.22 211 × 10−9 286 × 10−9 79.08 × 10−6 4.924

0.24 204 × 10−9 316 × 10−9 80 × 10−6 5.124

0.25 236 × 10−9 345 × 10−9 81.6 × 10−6 Diverges

0.5 310 × 10−9 335 × 10−9 104 × 10−6 -

1 251 × 10−9 570 × 10−9 220 × 10−6 -

1.5 324 × 10−9 974 × 10−9 447 × 10−6 -

2 276 × 10−9 5.41 × 10−6 3.6 × 10−3 -

2.5 261 × 10−9 35 × 10−6 6 × 10−3 -

2.8 267 × 10−9 98 × 10−6 7.53 × 10−3 -

3 292 × 10−9 289 × 10−6 Diverges -

3.2 270 × 10−9 849 × 10−6 - -

3.4 497 × 10−9 Diverges - -

3.6 7.63 × 10−6 - - -

3.8 13 × 10−6 - - -

3.9 Diverges - - -

Table 3.3: MSEs in velocity estimates for the augmented UKF, non-augmented

UKF, SS-UKF and EKF
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Figure 3.16: Van der Pol phase plot at µ = 3.8

Figure 3.17: Trajectory of real values and estimates for position in the presence of

weak noise
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Figure 3.18: Trajectory of real values and estimates for velocity in the presence of

weak noise

Figure 3.19: Trajectory of real values and estimates for position in the presence of

strong noise

Figure 3.20: Trajectory of real values and estimates for velocity in the presence of

strong noise
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Algorithm Average elapsed time

Non-augmented UKF 0.0398 seconds

Augmented UKF 0.0515 seconds

SS-UKF 0.0381 seconds

Table 3.4: Computational time

and 3.20. These algorithms were analysed by varying different noise levels and it was

observed that none of these always have preference over the other but they are scenario

dependent.

3.8.4 Comparison in terms of computational complexity

Fifteen computer runs were carried out and average elapsed times for the non-augmented,

augmented and spherical simplex UKFs are tabulated in table 3.4. SS-UKF is compu-

tationally efficient as compared to the other two algorithms since fewer sigma points

are calculated and propagated through nonlinear process and measurement functions.

Comparing the augmented and non-augmented UKFs, the non-augmented UKF is

computationally less expensive because less number of sigma points are calculated and

propagated. For a 2-dimensional system, 8, 10 and 13 sigma points are required to

be calculated and propagated through the nonlinear functions on each iteration, for

SS-UKF, non-augmented UKF and augmented UKF respectively.

In the light of this analysis, the non-augmented UKF is more suitable algorithm for

particle tracking because, firstly, the noises are additive and secondly implementing an

augmented UKF would increase the computational cost.
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3.9 Particle tracking problem and simulation of MICE

EKF is currently being used for track fitting in the MICE experiment and is performing

reasonably well [23, 40, 41]. However there is a room for improvement in the process

of track fitting which can be achieved by selecting an algorithm that can cope more

efficiently with the scintillating fibre tracker wrapped in a very strong magnetic field,

a highly non-linear system. It is evident from the previous literature [17, 42] and the

comparison made in this chapter that the EKF under-performs in terms of accuracy,

as compared to the UKF, when the system is highly non-linear. A detailed analysis

on the performance of the UKF and EKF in different levels of non-linearity is provided

above in this chapter where it is shown that an increase in non-linearity affects the

performance of the EKF and it diverges when non-linearities become severe. However,

the EKF and the UKF has never been compared on a particle tracking problem. In this

section, firstly the MICE tracking problem is explained with initial conditions. Secondly

the implementation of the EKF and UKF to particle tracking on MICE is described

where these are compared in terms of accuracy and non-linearity.

The states pertinent to a charged particle in a uniform magnetic field following a

helical trajectory may be represented by a 6-dimensional state vector, known as the

track vector.

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

y

z

px

py

pz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.44)

where x, y and z are the coordinates and px, py and pz are the quantities of momentum
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in each x, y and z direction respectively. The track vector is transformed through the

track propagator “fk” that defines how a state vector at surface k − 1 determines the

state vector at surface k.

xk = f(xk−1) + vk, xk ∈R
6 (3.45)

where vk is the process noise. Figure 3.21 shows the direction of the particle through a

tracker which clearly demonstrates that the particle traverse the fibre trackers towards

z direction whereas the x and y directions represents the helical path. The stations

in the diagram measures the moving particle in terms of its position and momentum.

These stations are in fact the source of process noise as well since the particle deviates

in terms of direction while hitting each station. A detailed analysis of the structure,

dynamics and uncertainties for MICE has already been discussed earlier in this chapter,

reader is referred to the beginning of this chapter for more explanation.

Figure 3.21: Direction of the particle moving through a tracker, Adapted from H.

Sakamoto, 2010.
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3.9.1 Process model

The track propagator provides a 3-dimensional vector of the position coordinates (x,

y and z) and another 3-dimensional vector of momentum. The process function (helix

equation) is as below,

rk = rk−1 +
γ

ρ
(θ − sin θ)b +

sin θ

ρ
uk−1 +

α

ρ
(1 − cos θ)nk−1 (3.46)

uk = γ(1 − cos θ)b + cos θuk−1 + α sin θnk−1 (3.47)

Equation (3.46) provides the position (x, y and z) and (3.47) gives momentum (px,

py and pz). Therefore, track vector represented by the equation (3.44) can also be

written as,

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

rk

uk

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.48)

b =
B
∣B∣ , where B is magnetic field strength vector which can be written as, B =

[Bx,By ,Bz ]
T

and ∣B∣ is the 2-norm. γ and α are cosine and sine of the angles between

momentum and magnetic field respectively, where α =

√

1 − γ2. ρ = −q( ∣B∣p0
)c, where ρ

is the curvature, q is charge, p0 is the transverse momentum and c is a constant that

is calculated as, c = 0.3GeV
Tm . θ = ρl, where l is the length. nk−1 is the cross product of

b and uk−1.

3.9.2 Measurement model

The measurement model hk describes the functional dependence of the measurement

vector yk in layer k on the state vector at the same layer.

yk = h(xk) +wk, yk ∈R
m (3.49)

where wk is the measurement noise. In the MICE detector, positions and corresponding

momenta are measured by scintillating fibre trackers more details of which are in [41].
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Visible light photon counters (VLPC’s) convert the light, produced by charged particles

passing through scintillating fibres, to electrical signals with a position resolution of

470 µm.

3.9.3 Initial setup

The UKF and EKF is used to estimate the track vector. The initial track vector (xk)

and covariance (Pxk
) are chosen according to the initial data provided by MICE as,

xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎣

0

0

0

−0.2573

−2.8230

1

⎤
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⎥
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⎥
⎥
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⎦

(3.50)

Pxk
=
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⎢
⎢
⎣

0.0001 0 0 0 0 0

0 0.0001 0 0 0 0

0 0 0.0001 0 0 0

0 0 0 0.0001 0 0
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⎥
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⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.51)

The charge is set to 1 and the magnetic field strength is 4T hence B = [ 0,0,4 ]
T

.

The UKF scaling parameters are chosen as α = 0.7, κ = 0 and β = 2. The pro-

cess noise is chosen as 10−6 × In, where In represents an identity matrix of dimension

of the state vector. Measurement noise is 0 mean with a standard deviation of 0.001m.

The position estimates are plotted in figure 3.22 and the quality of each estimate is
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shown in table 3.5 for the UKF and EKF, where Mean Squared Error (MSE) for each

of the state estimates is given.

Figure 3.22: Particle moving in a uniform magnetic field

3.10 Comparison of the EKF and UKF for MICE

The EKF and the UKF has been implemented to MICE and are compared in this

section. It is clear from the table 3.5 that UKF outperforms the EKF in terms of

accuracy. However, it will be more helpful to see how these algorithms behave when the

measurement noise is increased. It would also be helpful to analyse these algorithms in

terms of robustness against non-linearities in MICE. The experiments has been carried

out to shed some light on these question.
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System’s statesMSE for the UKFMSE for the EKF

x 6.74 × 10−7m 3.8 × 10−3m

y 7.93 × 10−7m 0.6 × 10−3m

z 2.27 × 10−7m 4.5 × 10−3m

px 7.49 × 10−7MeV /c 4.2 × 10−3MeV /c
py 9.33 × 10−7MeV /c 3.9 × 10−3MeV /c
pz 7.26 × 10−7MeV /c 2.7 × 10−3MeV /c

Table 3.5: Mean squared error of each state estimate

3.10.1 Comparison in terms of accuracy

In this section, the effects of increased measurement noise on the performance of the

EKF and UKF are investigated. Table 3.6 shows the MSE in the estimates for the

EKF and UKF when the measurement noise was increased to 0 mean with a standard

deviation of 0.01m. A better performance and consistancy of the UKF can be observed

in this table. The measurement noise was further increased to 0 mean with a standard

deviation of 0.1m and the results are provided in table 3.7. It is clear from these

tables that, although the performance of both the algorithms is affected as the noise

is increased, in the case of higher noises the EKF is more likely to diverge.

3.10.2 Comparison in terms of robustness against non-linearity

In this section, the effects of non-linearities on the performance of the EKF and UKF

are analysed. As explained above, the main source of non-linearity in the MICE is the

process noise (multiple scattering) inside the strong magnetic field. The non-linearity

increases as the magnetic field strength increases due to the fact that the curvature of

the helix increases with the magnetic field strength and consequently, a small change

in the process noise can substantially deviate the path of a charged particle. This drift
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System’s statesMSE for the UKFMSE for the EKF

x 7.01 × 10−5m 5.18 × 10−2m

y 5.86 × 10−5m 4.6 × 10−2m

z 3.63 × 10−5m 3.7 × 10−2m

px 8.41 × 10−5MeV /c 6.1 × 10−2MeV /c
py 7.12 × 10−5MeV /c 3.4 × 10−2MeV /c
pz 6.37 × 10−5MeV /c 3.1 × 10−2MeV /c

Table 3.6: Mean squared error of each state estimate for 0 mean with a standard

deviation of 0.01 of measurement noise

System’s statesMSE for the UKFMSE for the EKF

x 8.07 × 10−4m 8.18 × 10−1m

y 7.46 × 10−4m 6.5 × 10−1m

z 6.83 × 10−4m 5.3 × 10−1m

px 8.81 × 10−4MeV /c 7.4 × 10−1MeV /c
py 6.82 × 10−4MeV /c 4.8 × 10−1MeV /c
pz 5.71 × 10−4MeV /c 3.9 × 10−1MeV /c

Table 3.7: Mean squared error of each state estimate for 0 mean with a standard

deviation of 0.1 of measurement noise
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Figure 3.23: Particle moving in a uniform magnetic field of 1T

in the path does not only affect the position but also the momentum of the particle.

Figures 3.23-3.25 show that how the curvature of the helix changes as the magnetic

field strength increases from 1T to 3T respectively. It is clear from these figures that

the less the magnetic field strength is, the less the path that a particle follows is curved

and consequently the less the measurements would be affected. In other words, the

deviation in the position and momentum will be less in a relatively weak magnetic field

strength as compared to a system with a strong magnetic field strength for the same

level of process noise. The non-linearity also increases if the process noise increases

within a uniform strong magnetic field.

The EKF and UKF were tested, in terms of robustness against non-linearity, by

varying the process noise in the uniform magnetic field strength of 4T . The process

noise was increased to 0 mean with a standard deviation of 0.00001m and the results

are recorded in table 3.8. It can be observed that a very small change in the process

noise has significantly increased the MSE for the EKF and UKF, comparing it with table
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Figure 3.24: Particle moving in a uniform magnetic field of 2T

3.5. The process noise was further increased to 0 mean with a standard deviation of

0.0001m and the results recorded in table 3.9 show that a further small change in

the process noise again affect the performance of the algorithms badly as is apparent

by the MSE. Although the EKF is still trying to estimate but these results are not

acceptable in such systems where high level of accuracy is essential. It can also be

inferred from these tables that the EKF is less robust against such non-linearities and

is more likely to diverge if process noise is further increased. Therefore, the UKF is a

better choice for MICE and other particle tracking problems since it is more accurate

and robust against non-linearities.
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System’s statesMSE for the UKFMSE for the EKF

x 5.41 × 10−4m 6.48 × 10−1m

y 6.46 × 10−4m 7.6 × 10−1m

z 4.08 × 10−4m 5.7 × 10−1m

px 9.11 × 10−4MeV /c 5.5 × 10−1MeV /c
py 5.72 × 10−4MeV /c 4.3 × 10−1MeV /c
pz 4.82 × 10−4MeV /c 3.6 × 10−1MeV /c

Table 3.8: Mean squared error of each state estimate for 0 mean with a standard

deviation of 0.00001 of process noise

System’s statesMSE for the UKFMSE for the EKF

x 4.47 × 10−2m 3.18m

y 3.16 × 10−2m 3.8m

z 2.82 × 10−2m 2.4m

px 5.21 × 10−2MeV /c 4.3MeV /c
py 4.22 × 10−2MeV /c 3.4MeV /c
pz 3.61 × 10−2MeV /c 3.1MeV /c

Table 3.9: Mean squared error of each state estimate for 0 mean with a standard

deviation of 0.0001 of process noise
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Figure 3.25: Particle moving in a uniform magnetic field of 3T

3.11 Conclusions

There is a trade-off between accuracy and computational complexity when augmented

and non-augmented UKFs and SS-UKF are compared. Non-augmented UKF performs

better in the presence of weak additive noise, whereas augmented UKF provides better

results when the noise is strong. SS-UKF is computationally less expensive as com-

pared to the augmented and non-augmented UKFs, but is less accurate.

The non-augmented UKF is implemented to track fitting problem at MICE, where

currently EKF is being used. The UKF is clearly a better choice for the MICE as it

has outperformed the EKF in terms of accuracy and robustness against non-linearity.

Due to the fact that the EKF does not use the actual non-linear system, it cannot

cope well with the uncertainties that occur due to the internal dynamics of the system.

The UKF will be analysed in terms of accuracy and relative observability in the next

chapter.



Chapter 4

Accuracy and observability analysis

of the UKF

In high energy physics (HEP) experiments, as discussed previously in this thesis and

in chapter 3, accurate observations are essential in order to determine the momentum

of a particle. Trajectories of charged particles are non-linear in a magnetic field owing

to the quantum nature of decay and particle interactions. Tracking a single particle

can be quite computationally expensive despite the low dimensionality but a particle

collider can produce millions of events and each one with hundreds of tracks, so the

accuracy and computational efficiency of any algorithm is of paramount importance.

Track fitting (particle tracking) has typically been accomplished using non-linear

weighted least squares (WLS), Kalman filtering and extended Kalman filtering (EKF)

[4], as is the case for Muon Ionization Cooling Experiment (MICE), is obtained using

EKF. It has been explained in chapter 3 that the EKF is less robust against non-linearity

and the UKF is a better algorithm for MICE. Therefore in this chapter, UKF is further

analysed for MICE in order to better understand the performance of the UKF with

particle tracking problem.
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The main work of this chapter is to investigate the effects of measurement re-

dundancy on the performance of the UKF, and to analyse the relationship between

measurement redundancy and observability. The structure of this chapter is as fol-

lows. Measurement redundancy and the performance of the UKF in terms of accuracy

is discussed in Section 4.1. Section 4.2 discusses the relationship between measure-

ment redundancy and relative observability where it is shown how a weak state can be

observed with a good accuracy. And finally conclusions are presented in Section 4.3.

4.1 Effects of measurement redundancy on the per-

formance of UKF

It is worth mentioning here that the results and analysis presented here are based on

the data provided by MICE set-up as described in chapter 3, where an implementation

of the UKF to MICE is also provided. Before the effects of measurement redundancy

[43] on UKF’s performance are discussed, we explain how the UKF accommodates

redundancy quite naturally.

4.1.1 UKF and measurement redundancy

Consider a redundant system whose measurement covariance (Pyk) is computed using

3.20, represented by Pyk ∈ Rm×m. The cross covariance (Pxkyk) is calculated using

3.21 is represented by Pxkyk ∈ Rn×m. Then computing the Kalman gain using 3.22

gives Kk ∈ Rn×m. Then Kk is directly substituted in 3.23 and 3.24 to calculate

the updated estimates and covariance. It is clear from the above dimensions that

measurement redundancy is incorporated quite naturally by the UKF without using

projection techniques.
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4.1.2 Problem formulation

Two cases are being considered. The first is the fairly trivial but unrealistic addition

of one or more measurements of the same quantity (using the same type of sensor).

This is unrealistic in the context of the MICE detector because it would require an

independent fibre bundle. Nevertheless, of interest here is to understand the effect of

redundancy irrespective of practicalities. Essentially, adding a duplicate measurement

reduces measurement noise by virtue of its averaging effect.

The second and more realistic case is where we add measurements of otherwise

unmeasured variables. In what follows we choose a measurement of the “Time Of

Flight” (TOF) of a particle moving through the detector. Such information is available

independently of the other measurements.

4.1.3 Case 1: Effects of measured redundant measurements

on accuracy

In general, increasing the degree of redundancy further improves the results. But it

is not always the case. Effects of different redundant measurements on every single

estimate are investigated and it is noted that measurement redundancy doesn’t always

improve the results. If a specific measurement i is affected by comparatively high noise

and has a high residual, ∝ ∥yi− ŷi∥, it is not the case that this residual will be reduced

by the effect of some other redundant measurement elsewhere. Clearly, measurement

noise related residuals associated with measurement i will be reduced if the redundant

measurement simply duplicates the affected measurement with a different noise pro-

cess. To demonstrate this, the effects of measurement redundancy on the accuracy of

z measurement are discussed.
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red. degree nored z1red z2red z3red

MSE ×10−5 5.11m 3.48m 2.16m 1.77m

Table 4.1: Mean squared error in z measurements

It is worth mentioning here that the initial setup and results for MICE are presented

in chapter 3 which are being taken as a reference. A comparatively high noise (0 mean

with a standard deviation of 0.01m) is affecting the z measurements at each time

step. Table 4.1 shows the relationship between the MSE in z direction and degree of

redundancy. In this table nored, z1red, z2red and z3red represent no redundancy, 1, 2

and 3 redundant measurements of z respectively. It is clear from the tabulated results

that in the presence of measurement redundancy, a comparatively low mean squared

error (MSE) is achieved which is further reduced if more redundant measurements are

introduced.

4.1.4 Case 2: Effects of independent redundant measurement

“TOF” on accuracy

Time of flight (TOF) is taken as an independent redundant measurement to ana-

lyse its effects on the quality of measurements. With the following choice of units,

TOF is measured in nanoseconds, and using a relativistic formula for particle velocity,

v = p.c/E we can calculate the time of flight, along a helical path, between two detect-

ors separated by a distance D, [44], where D is the distance between two detectors,

v and p are velocity and momentum vectors respectively, E is energy and c the speed

of light.

In the MICE experiment, the distance between two successive hits is dominated by

the z measurement, whereas the effect of the curved path on the TOF, although much
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Degree of redundancy nored 1redTOF 2redTOF

MSE in p̂z (MeV /c) 8.6 × 10−4 1.01 × 10−5 9.4 × 10−6

Table 4.2: MSE in pz measurement

smaller, depends on the amount of curvature, which is determined from px and py.

A comparatively high noise (0 mean with a standard deviation of 0.01MeV/c) is

affecting the measurement of pz at each time step. The effects of TOF on each meas-

urement have been investigated and it is concluded that this independent redundant

measurement has smaller effects on all the estimates except p̂z, which is significantly

improved. Table 4.2 shows the MSE in p̂z for the system with and without the redund-

ant measurements of TOF . nored, 1redTOF and 2redTOF represents no redundancy, 1

redundant measurement of TOF and 2 redundant measurements of TOF respectively.

It can be seen that the MSE error is low when a measurement of TOF is introduced as

a redundant measurement. Another measurement of TOF further reduces the MSE.

4.2 Measurement redundancy and relative observ-

ability

A relationship between the measurement redundancy and relative observability is dis-

cussed in this section. Again, two cases are being considred. Firstly, in case 1, relative

observability in the presence of redundant measurements (directly measured) is dis-

cussed. Secondly, in case 2, the effects of an independent redundant measurement

(TOF) on the relative observability are discussed. However before we present these

results, it is necessary to discuss relative observability in relation with the convergence

of an algorithm. The next section briefly discusses relative observability for particle
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physics problems and its effects on the performance of an algorithm in terms of con-

vergence.

4.2.1 Relative observability and convergence

As discussed previously in this thesis, the main challenge faced in particle tracking is

the divergence of the EKF due to multiple scattering and ionization energy loss. Mul-

tiple scattering, that affects position and momentum of each particle inside a strong

magnetic field, is a non-linear problem and in addition the uncertainty caused by mul-

tiple scattering at each sensor accumulates and also causes the EKF to diverge.

On the other hand, ionization energy loss is caused by a particle that loses energy

while traversing a tracker. A particle might decay and do not hit the sensor or sig-

nificantly drift from its actual path due to delays. Consequently, uncertainty caused

by ionization energy loss is very difficult to model since the estimator have no data or

only inaccurate data available to it.

We define a system being unobservable if a particle decays and does not hit a sensor.

On the other hand, we define a system as weakly observable in the case of inaccurate

data due to particle delays. Since in the MICE decayed particles that do not hit the

detector are of no interest and are discarded, we will be discussing relative observability.

Before the performance of the UKF is analysed for weakly observable states, it is

necessary to discuss relative observability theoretically. A system can become weakly

observable if the system of equation is ill-conditioned to an extent that computer pre-

cision prevents convergence. Weak observability also arises when the measurement

uncertainty is large with respect to some measure such as the condition number.
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On the other hand, for convergence of an algorithm sufficient data of good quality

is required. In the case of insufficient data the issue of unobservability arises whereas a

poor quality data makes a system weakly observable. In other words, a system must be

observable in order for an estimation algorithm to converge. This implies that observ-

ability is a necessary condition for convergence. However, an algorithm might diverge

even if the system is practically observable. An algorithm might fail to converge for a

system with severe non-linearity and another efficient algorithm might still converge.

For instance the UKF still provides reasonable solutions for the systems where the EKF

diverged.

The above implies that observability is a property of a system and convergence is

a property of an algorithm. Divergence of an algorithm can be avoided by increasing

the relative observability of a system. The focus here is to analyse the performance of

the UKF in relation with relative observability and redundancy.

4.2.2 Measure of relative observability

The well-known Kalman observability test is a stop/go test but two phenomena make

the situation less clear in practice. If an extra measurement is added to a system with

observability rank(Ob) = n−1 such as to take Ob to full rank, the practical value of this

depends on the both the signal to noise ratio of that measurement and whether the

new hyperplane leads to a system that is not ill-conditioned. The former point relates

directly to measurement noise but the latter tends to amplify the effect of process

noise and can lead to computational difficulties.

An observable system can become unobservable due to any of its weakly observable

states. A state is said to be weak or weakly observable if its corresponding singular

value of the Fisher information matrix (FIM) [45] (inverse of the covariance matrix)
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is comparatively small. The singular values of the Fisher information matrix provide

information about the relative observability of the corresponding part of the estimated

state. An estimated state associated with a strong (comparatively large) singular value

indicates good accuracy whereas an estimated state with a weak corresponding singular

value implies that it could become unobservable under certain conditions.

As explained above, there is a strong relationship between the accuracy of an

estimate and relative observability. If measurement residuals corresponding to the

weak state can be reduced to minimise its difference from the strongly observable

state’s residuals, then the condition number of the updated covariance and FIM can

be improved. Therefore, MSE is being used as a measure of relative observability.

4.2.3 Case 1: Relationship between measured redundant meas-

urements and relative observability

A duplicate measurement of the weak state reduces the measurement residual and

helps in estimating the state with good accuracy. And if a redundant measurement

(not a duplicate of weak mode) exists in a system, then the residuals of the weak state

are not reduced and its observability can’t be improved. For example, if the above

described tracking system is weakly observable due to (say) weak state x, then an

additional measurement of x improves the quality of this measurement by virtue of

its noise reduction effects (averaging). But if the duplicate measurement is of y then

more weight is given to y instead of x and the measurement residuals are still high for

x.

To demonstrate, the relative observability of the weak state px is being discussed with

different redundant measurements. Figures 4.1, 4.2, 4.3 and 4.4 show the MSE in px

for each combination of redundant measurements for 0 ≤ ρ ≤ 1.5, ρ =
m
n , where m

and n represent the number of measurements and states respectively. In these figures,
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Figure 4.1: MSE in the presence of different redundant measurements

Figure 4.2: MSE in the presence of different combinations of 2 redundant meas-

urement

each entry on x-axis starts with the abbreviation “red” indicating a redundant meas-

urement. The abbreviation “red” is written with different combinations of redundant

measurements such as red0, redx,y and red2y representing no redundant measurement;

redundant measurements of x and y; and 2 redundant measurements of y, respectively.

It is clear from these figures that the MSE is low when the duplicate measurement of

px or a combination of redundant measurements with duplicate Px are introduced.

Figure 4.1 shows the MSE in the measurement px for different redundant meas-

urements. A lower MSE can be observed when the duplicate measurement of px is
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Figure 4.3: MSE in the presence of different combinations of 3 redundant meas-

urement

introduced whereas no other redundant measurement decreased the MSE. Figure 4.2

shows the MSE in the measurement px for every possible combination of 2 redundant

measurements. Again the MSE is low when a combination of redundant measurements

with duplicate measurements of px is introduced. It can also be observed that MSE is

further reduced when 2 duplicate measurements of px introduced. No improvements

can be seen when a combination of redundant measurements, that doesn’t involve a

duplicate px, is introduced.

Figures 4.3 and 4.4 show the effects of each combination of 3 redundant measure-

ments on the MSE of measurement px. A lower MSE is obtained by introducing a

duplicate measurement of the weak state (px) or any of its combinations with other

redundant measurements. The MSE is further decreased when more duplicate meas-

urements of px are introduced. Again, the MSE is not decreased when a combination

that doesn’t involve duplicate measurement of px is introduced.

In figures 4.1-4.4 the bars that represent MSE switch between two levels: high or

low. The reason is that when the system is weakly observable or has not converged,

measurement residuals are high. Whereas in the presence of the duplicate measure-
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Figure 4.4: MSE in the presence of different combinations of 3 redundant meas-

urement

ments, the measurement error is comparatively low before convergence. It should

be noted at this stage that once the system has converged or becomes completely

observable, measurement redundancy doesn’t affect the system in terms of reducing

measurement residuals. So the difference in MSEs comes from the error reduction

before convergence.

4.2.4 Case 2: Relationship between measurement redundancy

of TOF and relative observability

TOF is being introduced to the system to analyze its effects on relative observability.

Figure 4.5 shows the MSE in z and pz measurements when system is weakly observable

due to the state pz. In this figure, z0red and pz0red represents MSE in z and pz when

there is no redundant measurement of TOF present in the system. Similarly, z1red

and Pz1red represents MSE in z and pz measurements when there is one redundant

measurement of TOF present in the system, and z2red and Pz2red represents the

MSE when two redundant measurements introduced. It is clear that a redundant
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Figure 4.5: TOF as a redundant measurement and it’s effects on z and Pz meas-

urements

measurement of TOF improves the quality of the measurements by decreasing the

MSE. MSE is further reduced when another redundant measurement is introduced to

the system.

4.3 Conclusion

UKF does not need any projection techniques to cope with measurement redundancy,

it’s incorporated naturally. Accuracy of UKF and degree of redundancy has direct

relationship; an increase in degree of redundancy also increases estimator’s accuracy.

But the accuracy of an estimate is only increased when a redundant measurement of

itself is present in the system. Relative observability of a weakly observable state can

be improved by reducing its measurement residuals. If a weak state is present in a set

where all other states are strongly observable, then a large difference in measurement

residuals can cause a condition number of the updated covariance to become too
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large and make the overall system ill-conditioned. Therefore the condition number can

be reduced by introducing redundant measurements. A redundant measurement of a

weakly observable state strengthens the weak state, and its estimate is obtained with

good accuracy. The quality of the estimate corresponding to a weakly observable state

can further be increased by carefully selecting redundant measurements and increasing

the degree of redundancy. For instance, TOF measurement improved the results of pz

because TOF measurement depends on the momentum in z direction.
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Chapter 5

Smoothing

The UKF was implemented in a particle tracking problem, explained in chapter 3.

Particle tracking, in HEP experiments, is improved by implementing an algorithm called

smoothing [5] (backward filtering) with the estimator. The overall idea of smoothing is

to improve the accuracy of the estimates by using the data acquired during the estima-

tion process (forward filtering). Since the smoothing algorithm is given converged data

(data provided by the estimator) at the start, it does not only provide more accurate

results by running backwards in time but also gives an insight about any events that

were missed otherwise during the estimation process. Smoothing is currently being

achieved by implementing the RTS smoother [5] with the EKF in these experiments.

The RTS smoother is provided with all the necessary data computed by the estimator

(EKF), hence the RTS smoother works directly with the EKF.

On the other hand, the RTS smoother cannot be directly implemented in the UKF

formulation since Jacobians are not used. An extension of RTS smoother that can

directly be implemented in the UKF formulation is called the URTS smoother [12].

Although URTS smoother can be implemented directly with UKF, the calculation of

sigma points and cross covariances for smoother gains is a computational burden. In
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this chapter, a technique is presented that enables the RTS smoother to be implemen-

ted in the UKF using a Jacobian equivalent (JE) and the resulting algorithm is termed

as JE-RTS smoother. The JE-RTS smoother is compared with the URTS smoother

in terms of accuracy and computational complexity.

The sructure of this chapter is as follows: In Section 6.1 the EKF-based smoothing

algorithm is described. In Section 6.2 smoothing is discussed in the context of UKF.

The URTS and JE-RTS methods of smoothing are compared in section 6.3, and their

implementation on particle tracking problem and results are presented in Section 6.4.

5.1 EKF and smoothing

The full information at the end of track as provided by the filter can be propagated

back to all previous estimates by another iterative procedure, the Kalman smoother.

This is also known as RTS smoother. A step of the smoother from layer k + 1 to layer

k for the state vector is given as,

xs
k = x̂k +Ak(xs

k+1 − x̂−k+1), xs
k ∈R

n (5.1)

where xs
k+1 is the smoothed vector at step k+1 and Ak is smoother gain matrix given

by:

Ak = Pxk
FT
k+1∣k(P−xk+1

)
−1, Ak ∈R

n×n (5.2)

where Fk+1∣k and P−xk+1
are the Jacobian and predicted covariance at step k + 1 re-

spectively. The smoothed covariance matrix is given by:

Ps
k = Pxk

−Ak(P−xk+1
−Ps

k+1)AT
k , Ps

k ∈R
n×n (5.3)

where Ps
k+1 is the smoothed covariance at step k + 1. The RTS smoother works

directly with the EKF since the information (vectors and covariances) required in 5.1
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-5.3, except xs
k+1 and Ps

k+1, are calculated and stored during estimation process. This

information is then available to the RTS smoother. Hence, No new calculations are

needed.

5.2 UKF and smoothing

As described above, the RTS smoother uses Jacobian matrices in its smoother gain

calculations. These Jacobian terms are stored during the estimation process and sub-

sequently used in smoothing. Whereas in the UKF formulation, the Jacobian terms are

not available and hence the RTS smoother can not directly be implemented. Hence,

in order for smoothing to be implemented with UKF, a Jacobian equivalent of EKF for

UKF is required. Section 6.2.1 explains an existing smoothing algorithm, the URTS

smoother, that avoids Jacobian terms and can directly be implemented with UKF.

Section 6.2.2 describes a new extension of the RTS smoother in the context of the

UKF termed the JE-RTS smoother.

5.2.1 URTS smoother

In the URTS smoother, sigma points instead of Jacobians are computed for smoother

gain calculations. These sigma points are calculated as,

Xi,k = x̂k, i = 0, (5.4)

= x̂k + γSi,k, i = 1, . . . , n, (5.5)

= x̂k − γSi,k, i = n + 1, . . . ,2n, (5.6)

x̂k is the updated state vector and Si,k is the ith column of the matrix Sk, where

Sk =

√

Pxk
, the square root is solved using Cholesky decomposition. Pxk

is the

updated covariance. These sigma points are propagated through the dynamic model,

Xi,k+1 = f(Xi,k,uk), Xi,k+1 ∈R
n (5.7)
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Predicted mean x̂−k+1, predicted covariance P−xk+1
and cross covariance Cxk+1

is calcu-

lated as,

x̂−k+1 = Σ2n
i=0(w

i
mXi,k+1) (5.8)

P−xk+1
= Σ2n

i=0(w
i
c(Xi,k+1 − x̂−k+1)(Xi,k+1 − x̂−k+1)

T
) +Pv (5.9)

Cxk+1
= Σ2n

i=0(w
i
c(Xi,k − x̂k)(Xi,k+1 − x̂−k+1)

T
) (5.10)

where Cxk+1
∈Rn×n. Smoother gain is calculated as,

Dk = Cxk+1
(P−xk+1

)
−1, Dk ∈R

n×n (5.11)

And finally the standard RTS smoother equations (5.1) and (5.3) are used to calculate

smoothed state and covariance respectively.

5.2.2 JE-RTS smoother

The Jacobian equivalent is derived by comparing (3.4) and (3.17), and is given by:

P−xk
= FkPxk−1

FT
k = Σ2n

i=0(w
i
c(Xi,k∣k−1 − x̂−k)(Xi,k∣k−1 − x̂−k)

T
) (5.12)

assuming process noise being equal for both the estimators. Simplifying (5.12) gives;

FkF
T
k = (P−xk

−Pv)(Pxk−1
)
−1 (5.13)

Further simplification gives;

FT
k =

√

(P−xk
−Pv)(Pxk−1

)
−1 (5.14)

The Jacobian equivalent is substituted in (5.2) in order to calculate smoother gains

which are subsequently required in (5.1) and (5.3) for smoother state and covariance

computations. From now on the EKF’s equivalent Jacobian for the UKF will be written

as FUKF . Some tests carried out to compare the Jacobian and its eqivalent. Both the

estimators implemented on Van der Pol oscillator and the updated covariances were

found equal in terms of eigenvalues and structure.
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5.3 A comparison of URTS and JE-RTS smoothers

The URTS smoother is different from the JE-RTS smoother in smoother gain calcu-

lations. In the URTS smoother, the smoother gain is calculated as,

Dk = Cxk+1
(P−xk+1

)
−1

where Cxk+1
represented by (5.10) can also be written as;

Cxk+1
= Σ2n

i=0(w
i
c(Xi,k−1 − x̂k−1)(Xi,k∣k−1 − x̂−k)

T
) (5.15)

It should be noted here that (5.15) is an equivalent of (5.10) and that the difference

is only in subscripts. Cxk+1
is being written differently in this section so that the

smoother gains in URTS smoother can be compared with the ones in JE-RTS smoother.

Substituting (5.15) into (5.11);

Dk = Σ2n
i=0(w

i
c(Xi,k−1 − x̂k−1)(Xi,k∣k−1 − x̂−k)

T
)(P−xk+1

)
−1 (5.16)

whereas in JE-RTS smoother, smoother gain is calculated as;

Ak = Pxk
(FUKF

k+1∣k)
T
(P−xk+1

)
−1 (5.17)

Substituting FUKF
k+1∣k gives;

Ak = Pxk

¿

Á
ÁÀ

(P−xk+1
−Pv)

Pxk

(P−xk+1
)
−1 (5.18)

Now substitution of (P−xk+1
−Pv) gives;

Ak =
Pxk

√

Pxk

(P−xk+1
)
−1
√

Σ2n
i=0(w

i
c(Xi,k∣k−1 − x̂−k)(Xi,k∣k−1 − x̂−k)

T
) (5.19)

Pxk
can be written as;

Pxk
= Σ2n

i=0(w
i
c(Xi,k−1 − x̂k−1)(Xi,k−1 − x̂k−1)

T
) (5.20)
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Substituting (5.20) into (5.19);

Ak = Σ2n
i=0(w

i
c(Xi,k−1 − x̂k−1)(Xi,k∣k−1 − x̂−k)

T
)(P−xk+1

)
−1 (5.21)

Equations (5.16) and (5.21) provide an insight about the smoother gains of URTS and

JE-RTS smoothers respectively. It is clear from these equations that smoother gain

DK (for URTS smoother) and Ak (for JE-RTS smoother) are equivalent. Therefore

these approaches are similar in terms of the information that they add to the system

for smoothing.

The difference arises when these approaches are analysed in terms of computational

cost. The URTS smoother involves the calculation and propagation of sigma points

which are calculated using the updated states and covariances provided by the filter.

These sigma points are required for cross covariances which are used in smoother gain

calculations. So the information required in (5.1) and (5.3) is calculated during the

smoothing process. Whereas in the JE-RTS smoother the information required for

smoothing, except xs
k+1 and Ps

k+1, in (5.1) and (5.3) is stored while filtering process.

5.4 Implementation of URTS and JE-RTS smooth-

ers

The URTS and JE-RTS methods of smoothing are implemented with the UKF in the

particle tracking problem briefly described in chapter 5. In this section, firstly, the JE-

RTS and URTS smoothers are being compared in terms of accuracy. The measurement

noise is 0 mean with a standard deviation of 0.01m for position measurements and

0.01Mev/c for momentum measurements. Secondly these smoothing algorithms are

analysed in terms of computational cost.
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MSE UKF URTS JE −RTS
x 1.20mm 1.19mm 1.18mm

y 4.36mm 4.34mm 4.29mm

z 3.68mm 3.50mm 3.64mm

px 0.000349MeV /c 0.00034MeV /c 0.00029MeV /c
py 0.00132MeV /c 0.00133MeV /c 0.00137MeV /c
pz 0.00038MeV /c 0.000373MeV /c 0.000371MeV /c

Table 5.1: Mean squared error in each measurement for UKF, URTS smoother

and JE-RTS smoother

5.4.1 Accuracy analysis

Table 5.1 shows the Mean Squared Error (MSE) in each measurement. The second

column of 5.1 shows the MSE in the estimates achieved using the UKF with no

smoothing applied. The third and fourth column of table 5.1 represents MSEs in each

smoothed estimate achieved using the URTS and JE-RTS smoothers respectively. It

is clear from these results that smoothing provides better results when compared to

the original UKF estimates. This happens because the smoothers are provided with

more accurate estimates at the start. The MSEs of the smoothed estimates achieved

using URTS and JE-RTS mothods of smoothing are similar. None of the presented

approaches have advantages over the other when their accuracy is analysed, as can be

seen from the analytical comparison presented in section 6.3.

5.4.2 Computational cost analysis

Table 5.2 shows the time consumed by the estimator (UKF), URTS smoother and

JE-RTS smoother. The second row of this table represents the time consumed by the

estimator when required to be implemented with these smoothing approaches. Time
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Time consumed URTSsmoother JE −RTSsmoother
Estimator 2.866sec 2.946sec

Smoother 0.456sec 0.219sec

Estimator+Smoother 3.322sec 3.165sec

Table 5.2: Average time consumed by URTS smoother and JE-RTS smoother

while estimation and smoothing processes

consumed by the estimator is important since the URTS and JE-RTS smoothers are

different in terms of their dependence on the data stored during the estimation process.

It should be noted here that time consumed by the estimator includes the time taken

for information storage required for smoothing. It is clear from table 5.2 that estim-

ator consumes less time when it is required to be implemented with URTS smoother

as compared to JE-RTS mothod. The reason is that URTS smoother does not rely

heavily on stored information.

The third row of table 5.2 represents the time consumed by the smoothers. Clearly

JE-RTS smoother outperforms the URTS in terms of the time consumed. JE-RTS

smoother is fast because, unlike URTS smoother, it does not require the recalculation

and propagation of sigma points for its smoother gain calculation.

The fourth row of table 5.2 shows the addition of the time consumed by the

estimator and smoothers. The overall time consumed is less when JE-RTS smoother

is implemented with UKF. Reader is refered to section 6.3 that briefly discusses these

approaches in terms of accuracy and computational complexity.
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5.5 Conclusion

URTS and JE-RTS smoothers perform similarly in terms of accuracy since the inform-

ation added by the smoother gains is approximately the same. The smoother gains in

the JE-RTS smoother are calculated using the states and covariances stored during the

filtering process, whereas sigma points are re-calculated in URTS smoother. There-

fore, JE-RTS smoother requires fewer computations than URTS. On the other hand,

the UKF (as an estimator) when required to be implemented with URTS smoother

requires less storage of states and covariances. JE-RTS smoother, when implemented

with UKF, performs better in terms of overall time consumed.
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Chapter 6

Discussions and conclusions

6.1 Concluding summary

In HEP experiments, EKF is currently being used for track fitting. The main challenges

in track fitting are the large dimensionality, high non-linearity due to magnetic field

and multiple scattering and requirement of high accuracy. Therefore, any track fitting

algorithm should be computationally efficient, accurate and robust against outliers and

non-linearities. Although the EKF has been implemented for track fitting for almost

forty years, but research shows that it is less accurate and diverges when exposed to

severe non-linearities. Implementation of an efficient algorithm could improve the track

fitting and therefore UKF was selected due to its better performance and comparable

computational cost to the EKF.

The UKF is implemented to MICE and is analysed in terms of accuracy against

outliers. It is shown that how the UKF works with measurement redundancy and how

this can down-weight the effects of an outlier. Each measurement is introduced as a

redundant measurement and it is concluded that not all the redundant measurements

improve the results of the affected measurement but only the duplicate one. Degree
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of redundancy further improve the results, but again, if the redundant measurement is

the duplicate one.

The relationship between measurement redundancy and relative observability is

analysed. And it is concluded that the relative observability of a weakly observable

state can only be improved if its duplicate measurement is introduced as a redundant

measurement. Relative observability is also investigated by increasing the degree of

redundancy, different combination of redundant measurements introduced. The relat-

ive observability of the weakly observable state improved whenever the combination of

the redundant measurements had involved its duplicate measurement. To have more

insight about this relationship, an independent redundant measurement, TOF, intro-

duced as a redundant measurement and its effects on the quality of the measurement

are investigated. TOF, as a redundant measurement, only improves the quality of z

and Pz measurements. It was concluded that since TOF measurement involves Pz

measurement in its calculations, the information added by it is in z direction.

Smoothing is achieved using RTS smoother within the EKF framework. Since

UKF has never been implemented to HEP problem before, no efficient smoother was

available. Although a smoother existed that could have been implemented with the

UKF called URTS, it is less efficient in terms of computational cost. A technique

incorporated in the RTS smoother to make it suitable for the UKF and large dimensional

problems. We gave it a name “JE-RTS smoother”. JE-RTS smoother outperforms

the URTS smoother in terms of computational complexity by preserving the similar

accuracy.
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6.2 Discussions

When an extra measurement is added as a redundant measurement, it adds new in-

formation. But the question arises how this information affects different existing meas-

urements, which measurements are affected and which ones remain unchanged or are

least affected.

The UKF works naturally with measurement redundancy. When a redundant meas-

urement is added to the system, its associated column appears in the measurement

error covariance of the UKF where each column reflects the uncertainties in the asso-

ciated measurement. When the redundant measurement is a duplicate of one of the

existing measurements, there will be two identical columns in the measurement covari-

ance. This implies that the column vector associated to the redundant measurement is

not linearly independent to its identical column but to all the column vectors associated

to the other measurements. Therefore, the redundant measurement only affects its

duplicate one (information is added only in one direction) and all other measurments

are preserved.

In the case of measurement redundancy, the Kalman gain matrix also becomes a

nonsquare matrix containing two identical columns. Now in the innovation step of the

UKF, the information for redundant measurement is added twice and the results are

improved. The extra column in the Kalman gain does not add information into any

other measurement.

Having said that, a redundant measurement can have affects on some of the meas-

urement which are not duplicate ones due to the system dynamics or measurement de-

pendencies. To analyse measurement dependencies, an independent redundant meas-

urement, TOF, was introduced. TOF only affects Pz, momentum is z direction. The
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reason is that TOF measurement depends on the momentum in z direction.

It can be inferred from the above findings that measurement redundancy does not

always improve the results in terms of accuracy and observability and that before in-

troducing it a careful consideration should be given to the available measurements,

system dynamics and measurement dependencies.

Although the EKF handles redundancy, it does it at the cost of projection. So

adding redundancy in the EKF framework also invites the extra computational cost

whereas the UKF does not use any projection technique and works naturally with the

measurement redundancy. This is an additional advantage of the UKF especially in

large dimensional problems.

6.3 Conclusions

The UKF is a more efficient algorithm as compared to the EKF in terms of accuracy

and robustness against non-linearities such as faced in particle physics problems. The

EKF performs poorly when compared with the UKF for weak observability that arises

due to ionisation energy loss.

A system must be observable in order for an algorithm to converge. However an

algorithm might fail to converge even if the system is practically observable. This

happens if the system is not well behaved (badly conditioned) or the algorithm is not

efficient enough to deal with it. The convergence of an algorithm can be improved by

improving the relative observability of the system. One way of doing this is through

introducing measurement redundancy. It is worth mentioning here that measurement

redundancy is incorporated naturally in the UKF. An independent redundant measure-
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ment (not from the state vector) improves the relative observability of the system and

subsequently helps an algorithm to converge to an improved solution.

The RTS smoother cannot directly be implemented with the UKF. Although the

URTS smoother is suitable for the UKF, it is not computationally efficient especially

in large dimensional systems. The JE-RTS smoother is computationally more efficient

as compared to the URTS smoother and provides similar accuracy. Therefore JE-RTS

smoother is a better choice in the large dimensional systems such as HEP experiments.

6.4 Future work

The extension of this research is to take UKF forward and analyse it in the LHC experi-

ments which, as compared to MICE, are very large dimensional. It would be interesting

to see how the UKF will work with such systems where million of particle traverse the

detectors simultaneously and several kalman filters are implemented.

Another possible extension is to implement UKF as an alignment algorithm, a

hugely large dimensional problem. To deal with the issue of computational complexity,

UKF can be parallelized and this also is possible area of future research.
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