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Abstract— This paper describes the framework for modelling a 

multi-agent approach for assessing dynamic pricing of 

electricity and demand response. It combines and agent-based 

model with decision-making data, and a standard load-flow 

model. The multi-agent model described here represents a tool 

in investigating not only the relation between different dynamic 

tariffs and consumer load profiles, but also the change in 

behaviour and impact on low-voltage electricity distribution 

networks. 

Index Terms—agent based modelling, electricity tariffs, time of 

use tariffs 

I. INTRODUCTION 

Demand response programmes communicate with consumers 
and enable or encourage them to lower or shift consumption. 
For electricity use, it involves some combination of (a) 
dynamic pricing, (b) improved feedback of information to the 
end-users on the amount and timing of their consumption (and 
generation, if applicable); and (c) some appliance automation 
such as water heating. Real-time electricity pricing has the 
potential to smooth out demand to improve network 
management and reduce emissions where peak demand is met 
by carbon-intensive generation [1]. In the UK, real-time prices 
are applied only to large consumers. Residential users 
contribute significantly to the diurnal peak demand, but as yet 
there is no compelling argument for involving them in load-
shifting. Indeed, reducing load is likely to provide greater 
environmental benefit [2]. This may change as more 
distributed generation, and electric vehicles come on stream. 
The agent-based model (ABM) proposed here was designed to 
investigate simultaneously (1) consumer behaviour to pricing 
patterns which develop as a result of near-to-real-time utility 
use of metering information and (2) the impact on demand on 
the distribution grid. 

The ABM is a dynamic test bed between the human / 
social systems analysis and the coarse-grained considerations 
of network operations. The interaction of these agents with the 
grid can be non-intuitive, and ABM is an appropriate tool to 
examine these effects. ABMs have been used for other power 
systems applications such as network control [3,4], protection 
[5], and wholesale market analysis [6]. Some work has been 
undertaken to use an ABM on electricity infrastructure 

incorporating domestic CHP [4] or heat storage capabilities 
and emissions reductions, and the trade-off between 
electricity-led and heat-led paradigms [7]. To the best of our 
knowledge there are no reported studies which explicitly 
incorporate network topology.  

An understanding of dynamic tariffs and their potential 
limits of acceptance was developed by using focus groups and 
interview data to inform the global rules for the ABM from 
the viewpoint of both electricity producer and consumers in 
the UK [8]. A general description of the model specification is 
detailed in Section II. The outcomes of electricity users focus 
groups were used as direct inputs to the multi-agent model and 
the methodology is described in Section III.  Section IV 
presents results that validate the implementation of the 
proposed model and Section V contains the conclusions. 

II. GENERAL FRAMEWORK 

A.  Agents definition and goals 

Each agent represents a household that is performing its usual 
tasks (cooking, washing etc). The inputs are previous bills and 
past consumption patterns. Agents also have access to tariff 
ratings from other agents within the same social community. 
There are two types of goals: conservative and proactive. 

The conservative goal is to maintain the life satisfaction 
level and bill values from epoch to epoch:  

Satisfaction=f(maintain_lifestyle & perform_usual_chores) 
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where λ is the willingness to change behaviour, γ is the 
price responsiveness of agent k, and nrt is the number of tariff 
intervals. 

The satisfaction is quantified from the lifestyle and the 
household tasks that are fulfilled. This approach was derived 
from the outcomes of discussions during focus groups with 
consumers, that highlighted the importance of being able to 
maintain their usual behaviour irrespective of electricity 
tariffs. A tariff that would require shifting loads to avoid bill 
increases during meals preparation would result in a poor 
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satisfaction factor for large families, while for single 
occupants a shift of this load would not be considered too 
disruptive [8]. 

The proactive goal is to minimize the bill value while 
maintaining life satisfaction: 
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Energy consumption can be divided into rigid load 
(inelastic base load) and elastic demand. Willingness to 
change behaviour relates to elastic demand.  

B. Behavioural classes 

An agent’s behaviour is determined by its order of actions 
and its strategies for achieving the goal. There are two 
behavioural classes that can be taken into account here: 
optimization of an objective and learning from experience. 

The willingness to change behaviour can be limited by: 
- Type of household (large family with children – high 
inelastic demand). 
- Financial status (wealthy and less responsive to price). 
- Restricted information (not aware of potential benefits 
from changing behaviour). 

Enablers in changing behaviour: 
- Technology adoption (smart house control). 
- Policy and regulation. 
- Potential financial savings awareness created by: 

o Suppliers. 
o Media. 
o Other agents. 

- Environmental awareness education. 

C. Agent specification 

The aim of the modelling framework is to allow the 
investigation of different tariffs impact on consumers and on 
power network loading. Each agent can be specified by a set 
of 14 characteristics: 

1. Price responsiveness level of agents: min and max levels 
is set by the user and the simulation distributes values 
between these limits to agents in a random manner. 

2. Distributed generation: agents can have distributed 
energy resources with a probability given by the user. 

3. Max memory: number of months an agent looks back to 
compare bills. 

4. Agents mobility: how often agents move house and in 
what proportion. 

5. Agent types distribution: category an agent belongs to 
and in what proportion (single occupancy, family etc.). 

6. Trustworthiness: to what degree an information from an 
agent can be used by other agents. 

7. Environmental awareness: informational incentive to 
reduce demand. 

8. Technological acceptance: to what degree an agent 
adopts new technologies. 

9. Financial status: resulting in the price responsiveness 
(wealthy agents do not minimize the bill value). 

10. Percentage of load reduction: min and max percentages 
with which an agent accepts to reduce its load 

11. Number of appliances an agent is willing to time-shift. 
12. Size of social community: max number of agents with 

whom an agent communicates. Each agent has a 
randomly distributed number of agents it interacts with. 

13. Social community resilience: proportion of agents 
remain in a social community of an agent moving house. 

14. Community integration: how many new agents are 
added to an agent’s social community after moving 
house and after how long. 

III. MODELLING APPROACH 

The role of the proposed model is to provide a tool in 
assessing different electricity tariff structures and their impact 
on power network loading. Therefore, the tariff structures to 
be investigated are presented to a pool of agents connected to 
a distribution network. The results of the model power flows, 
voltage levels, loading, losses, and the number of switches to a 
certain tariff (giving the tariff popularity). The modelling 
approach is depicted in Figure 1. 

 

Figure 1.  Modelling approach 

The agents are based on a template designed to emulate 
real-life households. This was ensured by using characteristics 
derived from clustering load profiles of real consumers. The 
data set used was derived from 197 UK and Bulgarian 
households [9]. Behaviours for different household-types were 
identified with cluster analysis using a Dirichlet Process 
Mixture Model [10] that does not require the number of 
cluster to be declared a priori. Each agent’s load profile is 
initialized with random values around one of three cluster 
centroids. Agents are then distributed into an electric power 
network to make up the load of the network analysed. 

The tariff structures that are presented to the pool of agents 
are specified by electricity prices for each time slot during the 
day. The time slots dimension can be set from 15 minutes to 
one hour intervals. Alongside prices, each tariff is specified 
through a set of non-monetary characteristics that account for 
user difficulties in adopting, using, or understanding a tariff. 
These characteristics were determined during focus groups [8] 
with different types of consumers and different tariff designs 
inspired from time-of-use tariffs tested by European and North 
American suppliers. They emulate the involvement of users 
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necessary to adopt each tariff. Moreover, the technical skills 
necessary for understanding and using a tariff are taken into 
account. The tariff characteristics used were social and 
technical involvement, and complexity of the structure. 

The general ABM routine is presented in Figure 2, where 
Max represents the total number of agents in the simulated 
pool. The routine that each agent follows (AGENT) is shown 
in Figure 3. The parameters affecting the agents’ behaviour 
are set once at the initialization stage.  

Each epoch in the model is represented by 24 hours and 
the simulation time is given by the number of days that the 
model is run for. Therefore, the agent routine is called Max 
times for each day simulated. The initialization is run once, at 
the beginning of the main routine, as showed in Figure 2.  

 

Figure 2.  Main ABM routine outline 

The second part of the algorithm described in Figure 3 is 
run for the current simulated day. Several steps presented in 
Figure 3 are accompanied by a letter (a-i). These indicate 
where parameters are used and they are described here. 

Each day, each agent decides if it will shift load during 
the current day. This decision is implemented as a random 
process, based on the parameter (a) load_shift_threshold (0-
100%), which defines the probability of agents to perform 
load shift. For example, a setting of 40% indicates 40% 
chance of shifting load each day. If a load shift is to be 
performed, then the agent decides from where and what load 
will be displaced. This load is then shifted to a new time slot. 
The parameters involved in this decision are: (b) 
Max_shift_time (0..24): maximum duration of the time slot 
that an agent is willing to shift. Example: 6 hours -> actual 
shifted time slot duration between 0 and 6 hours; (c) 
Max_shift_distance (0..24): denotes by how many hours an 
agent is willing to defer its load. Direction of shift: random 
(before or after the initial time slot). Example: shift time slot= 
17, shift time=2, shift distance=4, direction:positive-> the 
load curve will be modified by subtracting load_shift_value 
from initial load curve starting from hour 17 to hour 19 and 

adding this amount starting from hour 21 to 23 (Figure 4); (d) 
Max_load_shift_value (0.100%): percentage of power that an 
agent will be willing to shift. For example: agent power 
600W, max_load_shift_value=40% -> value to actually shift 
between 0 and 240W. 

Figure 3.  ABM behaviour 

 
Figure 4.  Example of load shifting 

 Once the load profiles of all agents are reconstructed, the 
power flow routine is called with the new network loading, 
resulting in the daily power flows, losses and voltages.  

As it is unlikely that real consumers will spend time daily 
to evaluate their electricity tariffs, a probability to calculate the 
score of the current tariff at each iteration is specified by 
parameter (e), Scoring_probability (0-100%). For example, a 
scoring probability of 100% would mean that the tariff is 
evaluated every day by the agent, calculating the tariff score. 

For all agents (Initialization): 
▫ Get initial load profile 
▫ Get initial tariff 
▫ Get position in network 
▫ Calculate probability to change behaviour based on 

 Policy/media 
 Internal factors (household type, income etc.) 

For each time epoch: 
For all agents: 
• Decide whether to perform load shift today (a) 
• If yes, choose 

▫ Time slot from where to defer load 
▫ For how long (b) 
▫ Time slot to which to defer load (c) 
▫ Percentage of load to shift (d) 

• Reconstruct load profile 
• Calculate power flows, losses, voltages in network based on 

new profiles (re-aggregated) 
For all agents: 

• Calculate daily bill based on current tariff and save results 
• Decide whether to evaluate/score current tariff (e) 
• If yes,  

▫ Calculate tariff score 
▫ Memorize score 

• Decide whether to consider switching tariffs 
▫ Look back for a certain number of days and check 

whether the tariff was switched (f) 
▫ If not, consider switching (g) 

 Find a friend to get information from 
 If friend knows a tariff with a better (h) score 

than the current one of the agent, with an 
acceptable score difference (i) then 
- Switch to friend’s tariff with best score 

- Record switch 
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Thus it is unlikely that agents would switch to different 
electricity tariffs every day, so the tariff switching is 
controlled by a set of parameters (f-i). Firstly, it is expected 
that each agent lets a certain amount of time to pass between 
two consecutive tariff switches. This is specified for each 
agent randomly based on parameter (f) 
Tariff_switch_min_frequency (1-365), representing the 
minimum number of days that an agent waits until considering 
switching tariffs. For example: 40 days-> the actual minimum 
wait time will be a random duration between 40 and 365 days. 
When an agent exceeds the waiting period, it considers 
switching based on parameter (g) Switching_probability (0-
100%).  Finally, based on a Score_difference_threshold (h) 
and a Tariff_scoring_method (i), the agent chooses a new 
tariff and switches to it. The Score_difference_threshold (0-
100%) represents the minimum difference between the agent’s 
own tariff score and the maximum score of another agent’s 
tariff that leads to switching tariff. This controls the sensitivity 
of agents to tariff scores and emulates the human behaviour to 
make a change only if the difference would be significant.  

The parameters (a) to (i) can be adjusted by the model user 
allowing investigation of a wide range of agent behaviours 
and policies that would affect tariff-switching in real life. The 
values generated inside the routine are based on normal 
distributions. 

IV. USING THE MULTI-AGENT IMPLEMENTATION 

To validate the ABM implementation several tests were 
performed with a pool of 10,000 agents. The cluster centroids 
used for creating the agents profiles are shown in Figure 5, 
with the resultant load profiles in Figures 6-8.  
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Figure 5.  Initial cluster centroids 

As the initial dataset was divided into the three clusters in the 
proportions 36% (cluster 1), 53% (cluster 2), and 11% (cluster 
3), the agents were created randomly to maintain the same 
proportions. Figures 6-8 show that the load profiles for the 
agents are correctly created with normal distributions around 
the centroids. 

0 5 10 15 20 25
200

300

400

500

600

700

800

900

t[hour]

[W
]

Cluster 1 - derived agents profiles

 
Figure 6.  Load profiles of agents created based on Cluster 1 (3600 profiles) 
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Figure 7.  Load profiles of agents created based on Cluster 2 (5280 profiles) 
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Figure 8.  Load profiles of agents created based on Cluster 3 (1120 profiles) 

For testing purposes, the 10,000 agents were distributed 
randomly in the IEEE 69-bus radial network. The load profiles 
obtained with this setup, during the same simulated day in one 
of the runs, are presented in figures 9-11. 
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Figure 9.  Load profiles for each bus in the network during one simulation 

day 
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Figure 10.  Aggregated bus loading of the network during one simulation day 
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Figure 11.  Total loading of the network in each bus 

For comparison, the model was run for several parameter 
values. Two of the setups, where only one parameter differs, 
are presented here. Table I shows the values used for the 
parameters during the two runs. Figures 12 and 13 present 
results for the first setup and Figures 14 and 15 for the second 
setup. 

The simulation time is set to one year (365 days) in both cases. 
The only parameter that is varied is the switching probability. 
The agents are presented three tariff structures, with 
complexities of 40, 80 and 65% respectively. The results show 
that for the same tariff structures presented to the agents, the 
number of switches for each of the tariffs is different during 
the two runs. Figures 12 and 14 show that no switches are 
performed in the first 60 days of the simulation, as expected 
from the parameter tariff_switch_min_freq value. 

Table I. Parameter setting 

Parameter name Setup1 Setup2 

load_shift_threshold [%] 50 50 

max_load_shift_value [%] 40 40 

max_shift_time [0-24] 4 4 

max_shift_distance [0-24] 6 6 

scoring_probability [%] 60 60 

tariff_switch_min_freq [1-365] 60 60 

switching_probability [%] 30 10 

score_difference_threshold [%] 10 10 

sim_time [no of days] 365 365 

tariff_scoring_method (min,max) 1 1 
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Figure 12.  Number of tariff switches each day of simulation – setup1 
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Figure 13.  Number of witches to each tariff – setup1 
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Figure 14.  Number of tariff switches each day of simulation – setup2 
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Figure 15.  Number of witches to each tariff – setup2 

V. CONLCUSIONS 

Demand side response can facilitate improved network 
management and reduce costs across the electricity system by 
allowing investment in new capacity to be deferred. One tool 
to enable DSR is time varying tariffs – whether time-of-use or 
dynamic with near-to-real-time pricing. The role of demand 
side response is likely to increase as distributed generation and 
new loads such as electric vehicles and heat pumps. The new 
loads will, if left unchecked, increase the size of daily demand 
peaks. Distributed generation will increase the complexity of 
network management. In both cases, new tariffs reacting to 
retail market conditions may inadvertently create perverse 
incentives or unexpected outcomes. 

To this end, an ABM is a flexible tool to investigate 
potential effects on the low-voltage distribution network. 
Static time of use tariffs which reflect the underlying 
electricity system costs by time of day, can help reduce system 
costs by providing incentives to customers to shift demand to 
times when system costs are lower. 

This paper investigated dynamic electricity tariffs by 
modeling a multi-agent framework. The agents and 

interactions are designed, implemented and tested and the 
results are presented to validate the proposed model.  

This tool can be used by both social scientists and those 
looking into the technical implications of electricity tariffs by 
allowing the user to specify a wide range of parameters that 
help in emulating households and their behavior in relation 
with load shifting patterns. 

Future work can focus on several questions, including: 
• Social community size – how many friends to take 

into account before switching. 
• Use the type of household and load factor to 

determine flexibility instead of shifting load 
randomly. 

• Different network topologies. 
• Include distributed generation – agent profiles 

changing depending on weather. 
• Take into account communication issues. What 

happens if at some point an agent does not receive 
tariff information? 
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