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There has been significant interest in distributed testing from an input output
transition system. Previous work introduced an implementation relation dioco
that was defined in terms of an equivalence relation on traces (sequences
of observations). This paper considers an alternative approach in which an
observation made in testing is a tuple of local traces, one for each tester. This
paper defines such an implementation relation diocoo in terms of the possible
observations regarding the system under test and the specification. It shows that
diocoo is strictly weaker than dioco but is equivalent to dioco if processes cannot be
output-divergent. Interestingly, this shows that the previous definition of dioco is
too strong for output-divergent processes. We also prove that the Oracle problem
is NP-complete but can be solved in polynomial time if there is an upper bound

on the number of local testers.
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1. INTRODUCTION

Software testing is an important form of verification and
validation used in software development but is often
manual, expensive, and error prone. This has led to
the development of methods that allow parts of testing
to be automated, with there being significant interest
in model based testing (MBT). In MBT, automation is
based on a model, with the model often being state-
based (see, for example, [1, 2]). There has been
particular interest in testing from a model in the form
of a finite state machine (FSM) [3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13] or an input output transition system (IOTS)
[14, 15, 16, 17, 18]; while the developer might produce
a model in some other formalism, MBT tools often
analyse an FSM or IOTS that represents the semantics
of the model. This paper concerns testing from an IOTS
model.

Most MBT work assumes that a single tester interacts
synchronously with the system under test (SUT).
However, in some situations the SUT has multiple
physically distributed interfaces at which it interacts
with its environment and testing involves placing a
separate tester at each interface. If the testers cannot
synchronise their actions then we are testing in the
ISO standardised distributed test architecture [19]. In
such situations a local tester will only observe the
actions at its interface (port) and so the overall global
sequence of inputs and outputs is not observed. This
reduces the ability of testing to distinguish between the
SUT and specification and so requires the definition of

implementation relations (notions of correctness) that
reflect the nature of testing. It is important to use a
suitable implementation relation since otherwise testing
might be unsound (it might declare a correct SUT
to be faulty) and might also be inefficient (we might
use test cases that cannot lead to faults being found).
The implementation relation dioco has been defined
for distributed testing from an IOTS, with this initially
requiring that processes are not output-divergent1 [20],
and then being generalised to allow output-divergent
processes [16]. The initial definition compared the
quiescent traces2 of the SUT with the quiescent traces
of the specification using an equivalence relation ∼. If
a process is output-divergent then it may have a trace
σ that is not a prefix of a quiescent trace: the initial
definition of dioco then has the problem that it would
effectively ignore σ. The generalisation [16] instead
compared a class of infinite traces of the SUT with
infinite traces of the specification.

The implementation relation dioco is defined in
terms of how the global traces of the SUT and the
specification relate: dioco requires that certain global
traces of the SUT are observationally equivalent to
global traces of the specification. However, the notion
of observation in distributed testing is not a global
trace and instead is a tuple (σ1, . . . , σn) of local traces:
one for each local tester. In testing, the problem of

1A process is output-divergent if it has a state from which
there is an infinite path that contains no inputs.

2A trace σ of a process p is a quiescent trace if it can take p
to a state from which the only possible transitions involve input.
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checking an observation against a specification (the
Oracle problem) is thus that of determining whether
an observation (σ1, . . . , σn) is consistent with the
specification s. Note that another piece of work
independently considered the case where an observation
is a tuple of local traces, but for situations in which the
SUT consists of a set of components and we can observe
messages sent between these components [21].

In this paper we define a verdict function (that acts
as an oracle) that maps an observation to a verdict
(pass or fail). We then prove that for processes that are
not output-divergent, the power of the verdict function
exactly corresponds to dioco: a process r conforms to
a process s under dioco if and only if all observations
that can be made of r are allowed for s using the verdict
function. This shows that the oracle is suitable for
processes that are not output-divergent. Interestingly,
it transpires that this property does not hold for the
more general setting in which processes can be output-
divergent. In particular, it is possible to construct
processes r and s such that r does not conform to s
under dioco but where no (finite) observation can show
this. Since testing always makes finite observations, this
suggests that the more general definition of dioco is too
strong for testing and instead it may be better to use
an alternative definition, that we call diocoo, which is
defined in terms of finite observations. However, we
prove that dioco and diocoo coincide for processes
that are finitely-branching3 and do not allow starvation:
where every infinite global trace, that contains only
finitely many inputs, has infinitely many events at all
ports.

The paper is structured as follows. Section 2 provides
required definitions and Section 3 then defines the
notion of an observation and defines a corresponding
implementation relation. Section 4 then defines a
verdict function for the case where an observation is
a tuple of local traces and proves that this is consistent
with dioco for processes that are not output-divergent.
It also defines the new implementation relation diocoo.
Section 5 shows that the problem of computing a verdict
is NP-complete but can be solved in polynomial time if
there is an upper bound on the number of ports. Section
6 then describes related work. Finally, Section 7 draws
conclusions.

2. PRELIMINARIES

Throughout this paper we assume that the SUT has
m ports, with the set of names of ports being denoted
P = {1, . . . , n}. We assume that the (countable) input
alphabet I is partitioned into sets I1, . . . , Im such that
for all p ∈ P the SUT can receive inputs in Ip at p.
Similarly, the (countable) output alphabet O will be
partitioned into O1, . . . , Om. We assume that the sets
I1, . . . , Im, O1, . . . , Om are pairwise disjoint.

3A process s is finitely branching if for every state q of s we
have that only finitely many transitions leaving q.

Given a set A we will let A∗ denote the set of finite
sequences of elements of A and Aω be the set of infinite
sequences of elements of A. We will be interested in
infinite sequences since the generalised version of the
implementation relation dioco is defined in terms of
infinite traces. Given a sequence σ we will let pref(σ)
denote the set of prefixes of σ. A sequence is a prefix
of itself and the set of prefixes of an infinite sequences
include both finite and infinite sequences.

In this paper we assume that any specification or
SUT can be represented as an input output transition
system.

Definition 2.1. An input output transition system
(IOTS) s is defined by a tuple (Q, I,O, T, q0) in which
Q is a countable set of states, q0 ∈ Q is the initial
state, I is a countable set of inputs, O is a countable
set of outputs, and T ⊆ Q × (I ∪ O ∪ {τ}) × Q,
where τ represents internal (unobservable) actions, is
the transition relation. A transition (q, a, q′) ∈ T should
be interpreted as meaning that from state q it is possible
to move to state q′ with action a ∈ I ∪ O ∪ {τ}. We
assume that I and O are disjoint and τ 6∈ I ∪ O.
State q ∈ Q is said to be quiescent if from q it is not
possible to change state or produce output without first
receiving input and quiescence is represented by δ. We
can extend T , the transition relation, to Tδ by adding
the transition (q, δ, q) for each quiescent state q. We
assume that quiescence can be observed and so the set
of observations is Act = I ∪ O ∪ {δ}. Given port
p ∈ P, the set of observations that can be made at p
is Actp = Ip ∪Op ∪ {δ}.

Figure 1 gives a previously defined IOTS M0 that
represents a distributed majority voting system [16].
The model interacts with two agents that we call U and
L. We included the initial state s0 twice to simplify the
diagram. Initially the system should send !rU to U and
then !rL to L, with these telling the agents that a poll
is to start. Each agent then sends a message to the
system with this message giving its vote: ?l0 and ?l1
denote agent L voting 0 and 1 respectively and ?u0 and
?u1 denote U voting 0 and 1 respectively. If the system
receives identical votes then it sends confirmation to
the agents and this is either !0L and !0U (to L and U
respectively) if the vote was 0 and otherwise !1L and
!1U . If the votes differ then the process is repeated.
Where a state s has no transition with an input ?i there
is an implicit self-loop transition from s to s with input
?i.

IOTS s is input-enabled if for all q ∈ Q and ?i ∈ I
there exists q′ ∈ Q such that (q, ?i, q′) ∈ T . As usual, we
assume that any process that models the SUT is input-
enabled. Thus, the SUT does not block input and it is
normal to similarly assume that the environment does
not block output produced by the SUT. If an IOTS s
is not input-enabled then we say that it is partial. We
will largely focus on the case where the specification is
input-enabled but in Section 4 we briefly discuss the
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FIGURE 1. IOTS M0

case where it is partial. We will therefore use the term
IOTS to denote an input-enabled IOTS; where an IOTS
might not be input-enabled we use the term partial
IOTS. A path is a sequence (q1, a1, q2)(q2, a2, q3) . . . of
consecutive transitions, whose label is the trace produce
by removing all instances of τ from a1a2 . . .. For
example, M0 has a path with label !rU !rL?i1. An
IOTS is divergent if it has a state from which there
is an infinite path whose transitions are all internal
transitions (have label τ); as usual we assume that any
IOTS considered is not divergent. An IOTS is output-
divergent if it can reach a state from which there is an
infinite path that contains outputs and internal actions
only. An IOTS s is said to be finitely-branching if for
every state q of s there are only finitely many transitions
with starting state q.

Given IOTS s = (Q, I,O, T, q0) we use the following
notation.

Definition 2.2. 1. If (q, a, q′) ∈ Tδ, for a ∈
Act ∪ {τ}, then we write q a−−→ q′.

2. We write q
a

==⇒ q′, for a ∈ Act, if there exist
q1, . . . , qk+1 and i ≥ 0 such that q = q1, q′ = qk+1,
q1

τ−−→ q2, . . . , qi−1
τ−−→ qi, qi

a−−→ qi+1, qi+1
τ−−→

qi+2, . . . , qk
τ−−→ qk+1.

3. We write q
ε

==⇒ q′ if there exist q1, . . . , qk, for
k ≥ 1, such that q = q1, q′ = qk, q1

τ−−→
q2, . . . , qk−1

τ−−→ qk.

4. We write q
σ

==⇒ q′ for σ = a1 . . . ak ∈ Act∗ if
there exist q1, . . . , qk+1, q = q1, q′ = qk+1 such

that for all 1 ≤ i ≤ k we have that qi
ai

==⇒ qi+1.

5. If q0
σ

==⇒ q for some σ ∈ Act∗ then q is said to
be reachable.

6. Given σ ∈ Act∗, we write q
σ

==⇒ if there exists
q′ such that q

σ
==⇒ q′ and we say that σ is a trace

of s if q0
σ

==⇒ . We let T r∗(s) denote the set of
(finite) traces of s.

7. Given σ = a1a2 . . . ∈ Actω, we write q
σ

==⇒ if
there exist q1, q2, . . . with q1 = q such that for all

1 ≤ i we have that qi
ai

==⇒ qi+1. We then say that

σ is an infinite trace of s if q0
σ

==⇒ . We let T rω(s)
denote the set of infinite traces of s.

8. We say that trace σ of s is a quiescent trace if
there is a quiescent state q of s such that q0

σ
==⇒ q.

We can define the projection function πp, such that
πp(σ) is the sequence of observations made at port p
if the SUT produces σ ∈ Act∗ ∪ Actω. For example,
!rU !rL?l0 is a trace of M0 and this has projections
πL(!rU !rL?l0) =!rL?l0 and πU (!rU !rL?l0) =!rU . The
projection function is defined as follows.

1. πp(ε) = ε
2. If a ∈ Actp then πp(aσ) = aπp(σ)
3. If a ∈ Act \ Actp then πp(aσ) = πp(σ)

In distributed testing, if the SUT produces trace σ
then the tester at p ∈ P observes πp(σ). Thus, two
global traces σ and σ′ are observationally equivalent if
and only if they have the same set of projections and
this is denoted σ ∼ σ′. Thus, σ ∼ σ′ if πp(σ) = πp(σ

′)
for all p ∈ P. For example, the traces !rU !rL?l0?u0 and
!rU !rL?u0?l0 of M0 are observationally equivalent since
they both have projection !rU?u0 at U and projection
!!rL?l0 at L.

3. IMPLEMENTATION RELATIONS AND
VERDICTS

In distributed testing, the local tester at port p only
observes events at p. If the testers can ensure that
they stop making observations at the same time then
between them they have observed the set of local
projections of a global trace of the SUT. Unfortunately,
often it is not possible to ensure that the testers have all
stopped making observations at the same time since this
requires physically distributed entities to synchronise:
some degree of synchronisation may be possible through
the testers exchanging messages but message latency
introduces imprecision into this. However, the testers
can certainly know that they have all observed prefixes
of projections of a common global trace of the SUT.
This leads to our notion of an observation regarding
the SUT.

Definition 3.1. Given SUT r, (σ1, . . . , σm) is an
observation of r if there exists a global trace σ ∈ T r∗(r)
such that for all p ∈ P, σp ∈ pref(πp(σ)). We let
Obs(r) denote the set of possible observations of r.

Recent work has independently considered a similar
notion of an observation, with such an observation being
called a multi-trace [21]. However, multi-traces were
defined for the situation in which there are multiple
components and the messages between the components
are observed.
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Given an observation obs ∈ Obs(r) made in dis-
tributed testing, a specification s and implementation
relation imp, we want to know whether obs is allowed
by s under imp. If we have a decision procedure for de-
termining whether obs is allowed by s under imp then
this defines a Test Oracle and, equivalently, a verdict
function [40]. We therefore say that a verdict function
is a mapping from Obs(r) to {pass, fail}. Given speci-
fication s and observation obs, ideally we want a verdict
function to map obs to pass if and only if there is some
IOTS r′ such that obs is an observation of r′ and r′

conforms to s under the implementation relation used.
As discussed in the literature on formal testing,

ideally we want testing to have the following properties:
it can never declare a correct implementation to be
faulty (testing is sound); and if the SUT is faulty then
testing can demonstrate this since the SUT will fail
some test case (testing is exhaustive/complete). We
can define similar properties for verdict functions.

Definition 3.2. Let us suppose that we have verdict
function v for specification s and implementation
relation imp. We say that v is sound if for all r such
that r imp s and observation obs ∈ Obs(r) we have
that v(obs) = pass. Further, v is exhaustive if for all
r such that r does not conform to s under imp, there
exists an observation obs ∈ Obs(r) for which we have
that v(obs) = fail.

It is crucial that verdict functions are sound:
otherwise we might declare a correct SUT to be faulty.
However, we would also like them to be exhaustive since
otherwise it might not be possible for testing to show
that a particular faulty SUT is non-conforming.

We now give implementation relations that have been
defined for distributed testing [16].

Definition 3.3. Let r, s be IOTSs with the same
input and output alphabets. We write r diocoδ s if for
every trace σ ∈ T r∗(r) such that σδ ∈ T r∗(r) we have
that there exists a trace σ′ ∈ T r∗(s) such that σ′ ∼ σ.

The definition of diocoδ refers to quiescent traces of
the SUT (traces that end in quiescence) since we can
know that the projections observed are all projections
of the same global trace of the SUT and so we can
compare the set of projections observed with global
traces of the specification. If we consider M0 then
the observation !rU !rL takes the model to a quiescent
state. If in testing the testers at U an L observe !rU
and !rL respectively and this is followed by quiescence
then the testers can conclude that the SUT produced a
global trace that has projection !rU at U and projection
!rL at L. In contrast, if the local testers are allowed
to stop recording observations before quiescence occurs
then the local traces observed need not be projections
of a single global trace. For example, if the local tester
at U stops testing before !rU is observed and the local
tester at L observes !rL then we have two projections
of different global traces.

Note that quiescent traces of the SUT and
specification are compared under ∼ and thus we require
that if the SUT produced quiescent trace σ then
the specification has a quiescent trace with the same
projections. We might, instead, have considered the
implementation relation p-dioco under which it is
sufficient for the projection of σ at p to be identical
to the projection at p of some quiescent trace of the
specification [16] (for all p). However, p-dioco is
strictly weaker than dioco since, for example, under
p-dioco the SUT would be allowed to produce the
quiescent trace !o1!o′2 even if the specification does not
have global traces equivalent to this under∼ but instead
has quiescent traces !o1!o2 and !o′1!o′2. If observations
made at different ports might later be brought together
then one should use dioco rather than p-dioco even
though the use of dioco requires the local testers to
log their observations and for these logs to be brought
together after testing finishes.

It has been observed that sometimes the SUT can
follow a path where it never reaches a quiescent state,
or after some quiescent state it does not reach another
quiescent state. This is the case if the SUT has an
infinite path from some state where all of the transitions
on this path are labelled with outputs or τ (the SUT
is output-divergent). The implementation relation
diocoδ is not suitable in such situations since some
behaviours of the SUT are not considered (the traces
that cannot later be followed by quiescence). As a result
of this, diocoδ has been generalised to processes that
might be output-divergent and this was achieved by
defining an implementation relation in terms of (some
of) the infinite traces of the SUT [16]. In the following,
a run of a process is an infinite trace that includes only
finitely many inputs and for process s we have thatR(s)
is the set of runs of s.

Definition 3.4. Let r, s be IOTSs. We write
r dioco s if and only if for all σ ∈ R(r) there exists
some σ′ ∈ R(s) such that σ ∼ σ′.

Importantly, every finite trace of a process r is a
prefix of a run of r since in any state where output
is not enabled we can observe δ arbitrarily many times.
Thus, in contrast to diocoδ, every finite trace of the
SUT is considered under dioco.

The restriction to infinite traces of r that contain
only finitely many inputs is important [16]. To see
why, consider an SUT that can initially loop with input
?i1 and can also produce output !o1 from the initial
state. Then one of its infinite traces is the sequence
that contains only (infinitely many) ?i1. However, this
trace corresponds to the repeated input of ?i1 blocking
the output of !o1 and so is not consistent with the
standard assumption, for testing from IOTSs, that the
environment/tester cannot block output. Naturally this
restriction, that we only consider traces that contain
finitely many inputs, is consistent with testing.
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4. DEFINING VERDICT FUNCTIONS

The definitions of diocoδ and dioco are relatively
simple and have the nice property that they correspond
to relationships between languages. This has the
benefit that we can use theory, results, and algorithms
developed for formal languages. However, in distributed
testing each tester observes a local trace and there is
the need to decide upon a verdict. For diocoδ, there is
the potential to use quiescence to know that the local
testers stopped testing at the same point. We can then
compare the set of projections of a quiescent trace of the
SUT with the projections of the quiescent traces of the
specification. Thus, there is a well defined procedure
for deciding whether a particular type of observation
made in testing is allowed under diocoδ, although
deciding this is an NP-complete problem [35]. However,
the testers might not stop making observations in a
common quiescent state, and verdict functions have
not been defined for this situation. In particular, if
the SUT is output-divergent then it has states from
which it is possible to take an infinite sequence of
transitions such that the label of a transition from this
sequence is either an output or τ . For such systems
we may have that some traces of the SUT are not
prefixes of quiescent traces and so cannot be assessed
in the manner described above4. We also require a
method for assigning verdicts for dioco; this certainly
cannot involve comparing infinite traces of the SUT and
specification since we do not observe infinite traces in
testing. We therefore propose the following, alternative,
approach to defining a verdict function.

Definition 4.1. Observation obs = (σ1, . . . , σm) is
allowed by s if and only if there is a trace σ ∈
T r∗(s) such that σp ∈ pref(πp(σ)) for all p ∈ P.
Given specification s, we call the corresponding verdict
function vs and so if obs = (σ1, . . . , σm) then vs(obs) =
pass if and only if there is a trace σ ∈ T r∗(s) such that
σp ∈ pref(πp(σ)) for all p ∈ P.

The idea simply is that although the testers do not
know that the local traces they have observed are all
projections of the same global trace of the SUT, they
do know that they are all prefixes of projections of
some global trace of the SUT. A verdict function vs
is a function from the set of observations to the set of
verdicts and the above requires that all observations
made regarding the SUT are also observations that
could be made when interacting with the specification.
We can now define an alternative implementation
relation on the basis of the above: it essentially says
that an SUT conforms to a specification if and only if
all observations regarding the SUT are also observations
regarding the specification.

Definition 4.2. Given IOTSs r and s with the same

4This possibility motivated the use of infinite traces in the
definition of dioco.

input and output alphabets, we write r diocoo s if and
only if Obs(r) ⊆ Obs(s).

We will now prove that vs defines a suitable verdict
function for both diocoδ and dioco. We first consider
specifications that are not output-divergent and the
corresponding implementation relation diocoδ, showing
that in this case the verdict function is both sound
and exhaustive. For the verdict function to be sound
we require that all observations of correct SUTs are
mapped to pass; for it to be exhaustive we require that
if the SUT r does not conform to the specification s
then some possible observation of r is mapped to fail.
However, first we prove the following Lemma.

Lemma 4.1. Given global trace σδ and IOTS r, if
r allows (π1(σδ), . . . , πm(σδ)) then r has a global trace
that is equivalent to σδ under ∼.

Proof. Since r allows (π1(σδ), . . . , πm(σδ)) we have that
r has some global trace σ′ such that for all p ∈ P, πp(σδ)
is a prefix of πp(σ

′). Let σ′ be some minimal such trace.
Since each πp(σδ) ends in δ, by the minimality of σ′ we
know that σ′ ends in δ. Further, from the definition
of the projection function πp we must have that σ and
σ′ have the same number of instances of δ. The result
therefore follows.

We now prove that our verdict function is sound and
exhaustive for diocoδ.

Proposition 4.1. Let r, s be IOTSs that are not
output-divergent. We have r diocoδ s if and only if
every observation of r is allowed by s.

Proof. We will start by proving left-to-right and so
assume that r diocoδ s. Let us suppose that
(σ1, . . . , σm) is an observation of r. Since r is not
output-divergent, there exists a quiescent trace σ ∈
T r∗(r) such that for all p ∈ P we have that σp ∈
pref(πp(σ)). Further, since r diocoδ s, there exists
some quiescent trace σ′ ∈ T r∗(s) such that σ′ ∼ σ.
Thus, for all p ∈ P we have that πp(σ

′) = πp(σ) and so
(σ1, . . . , σm) is allowed by s as required.

We now prove the right-to-left result and assume
that all observations of r are allowed by s. Let σ be
a quiescent trace of r: it is sufficient to prove that
s has a quiescent trace that is equivalent to σ under
∼. Since σ is a quiescent trace of r, we have that
(π1(σδ), . . . , πm(σδ)) is an observation of r and this
must be allowed by s. Thus, by Lemma 4.1, s has a
global trace that is equivalent to σ under ∼. The result
therefore follows.

The following is an immediate consequence of the
above result.

Corollary 4.1. Given IOTSs r and s that are not
output-divergent, r dioco s if and only if r diocoo s.

We now consider the implementation relation dioco,
which is defined for cases where IOTSs might be output-
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FIGURE 2. IOTSs s and r

divergent. First, we prove that our verdict function is
sound for this.

Proposition 4.2. Given IOTSs r, s, if r dioco s
then every observation of r is allowed by s.

Proof. Let us suppose that (σ1, . . . , σm) is an obser-
vation of r. By definition, there exists a finite trace
σ ∈ T r∗(r) such that for all p ∈ P we have that
σp ∈ pref(πp(σ)). Further, we have that σ is a pre-
fix of a run σ1 of r. Since r dioco s there exists some
run σ′1 of s such that σ′1 ∼ σ1. Since σ is a prefix
of σ1 we have that σp ∈ pref(πp(σ1)) for all p ∈ P.
Thus, since σ′1 ∼ σ1 we have that πp(σ

′
1) = πp(σ1) for

all p ∈ P and so σp ∈ pref(πp(σ
′
1)) for all p ∈ P. As

a result, there exists a finite prefix σ′ of σ′1 such that
σp ∈ pref(πp(σ

′)) for all p ∈ P. Thus, since σ′ is a
trace of s we have that (σ1, . . . , σm) is allowed by s as
required.

The question now is whether our verdict is exhaustive
for dioco.

Example 1. Consider the IOTSs shown in Figure
2 that have three ports and only one input ?i1. It is
straightforward to see that they are input-enabled.

Consider the finite traces of r that are not traces of
s. These are of the following forms:

• Traces of the form ?i1σ1σ2 for σ1 in the regular
language defined by ?i1!o∗2 and σ2 in the language
defined by ?i∗1. Such a trace is equivalent under ∼
to the trace σ1σ2?i of s.
• Traces of the form ?i1σ1σ2 for σ1 in the language
defined by ?i1!o∗2 and σ2 in the language defined by
!o3?i∗1. Such a trace is equivalent under ∼ to the
trace σ1σ2?i of s.

As a result, all finite traces of r are equivalent to
finite traces of s under ∼. However, the infinite trace
?i1?i1!oω2 of r is not equivalent to any trace of s under
∼. Thus, we have that r does not conform to s under
dioco but in distributed testing we cannot demonstrate
this using finite observations.

As a result, we know that no verdict function that
only uses finite observations can be exhaustive for
dioco. We therefore obtain the following result.

Theorem 4.1. Implementation relation dioco is
strictly stronger than diocoo.

Since diocoo is defined exactly in terms of the
observations made in testing, this result suggests that
dioco is too strong for processes that are output-
divergent. Thus, diocoo is more suitable that dioco
for testing, though it may well be that dioco is useful
for other activities such as refinement.

If we consider the above example we can see that the
run ?i1!oω2 that distinguishes the processes has a port p
at which there are only finitely many events.

Definition 4.3. An IOTS s allows starvation if it
has some run σ and port p such that πp(σ) is finite.

Here it is important that we consider runs of s and not
all infinite traces of s since every input-enabled IOTS
that has one or more inputs contains an infinite trace
whose projection is empty at some port: to construct
such an infinite trace it is sufficient to choose an input
?ip at some port p and use ?iωp .

Since a run contains only finitely many inputs we have
the following property.

Proposition 4.3. IOTS s allows starvation if and
only if it has a reachable state q from which there is an
infinite path whose label σ contains no inputs and such
that there is a port p such that πp(σ) = ε.

Proof. First assume that s allows starvation and so it
has an infinite path ρ with label σ that contains only
finitely many inputs such that there is a port p where
πp(σ) is finite. Then ρ = ρ1ρ2 for some minimal path
ρ1 that contains every element of πp(σ) and all of the
inputs from σ. Clearly, ρ2 starts at a reachable state
and has a label such that πp(σ) = ε as required.

Now let us suppose that s has a reachable state q
from which there is an infinite path ρ whose label σ
contains only outputs and such that πp(σ) = ε. Since
q is reachable there is some finite path ρ1 that reaches
q. As a result, ρ1ρ is an infinite path of s such that
the label σ1σ has finite projection at p. Further, σ1σ
has only finitely many inputs and so is a run. Thus, s
allows starvation as required.

Thus, processes that allow starvation have a port p
and state q from which they can continue to produce
output indefinitely without p making any observations.
Below we prove that if the specification does not
allow starvation then the verdict function for dioco
is exhaustive and so dioco and diocoo coincide. The
proof will use König’s Lemma which is the following (as
quoted in [41]).

Lemma 4.2. An infinite tree in which every node has
finite arity contains an infinite path.

We now prove that vs is exhaustive for dioco if the
SUT and the specification s are finitely-branching and
do not allow starvation.
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Proposition 4.4. Let r, s be IOTSs that do not
allow starvation and are finitely-branching. If every
observation of r is allowed by s then r dioco s.

Proof. We assume that every observation of r is allowed
by s and it is sufficient to prove that given run σ of r, σ
is equivalent under ∼ to a run of s. We will use proof by
contradiction and suppose that no run of s is equivalent
to σ under ∼. For i ≥ 1 let σi denote the prefix of σ
with length i. Since every observation of r is allowed
by s, for every σi we have that (π1(σi), . . . , πm(σi)) is
allowed by s. Further, for all p we know that πp(σi) is
a prefix of πp(σ).

Let σ′i denote a longest trace of s such that for all
p we have that πp(σ

′
i) is a prefix of πp(σi). Since

(π1(σi), . . . , πm(σi)) is allowed by s, the length of σ′i
is at least that of the shortest πp(σi). Let sσ denote
the acyclic graph produced when we unfold the IOTS
formed by restricting s as follows: identify the set of
paths of s that start at the unique initial state of s and
have label σ′i for some i and retain only transitions that
occur in these paths. Since r does not allow starvation,
and the length of σ′i is at least the minimum of the
lengths of the πp(σi), there is no upper bound on the
lengths of the σ′i. Thus, sσ is a tree with finite arity
(since s is finitely-branching) and so by König’s Lemma
(Lemma 4.2) we know that sσ contains an infinite path
ρ. Let σ′ denote the label of ρ. Now consider a port
p ∈ P and the projection πp(σ

′). If πp(σ
′) 6= πp(σ) then

there is some finite prefix σ′′ of σ′ such that πp(σ
′′) is

not a prefix of πp(σ). But, by definition, σ′′ must be a
prefix of some σ′i and this contradicts the definition of
the σ′i. This provides a contradiction as required and
so the result follows.

We therefore obtain the following.

Theorem 4.2. Given IOTSs r, s that do not allow
starvation and are finitely-branching, r dioco s if and
only if r diocoo s.

To summarise, for dioco the verdict function is sound
but need not be exhaustive. However, if processes are
finitely-branching and do not allow starvation then the
verdict function is both sound and exhaustive for dioco.
It is natural to ask whether the verdict function is as
close to being exhaustive as it could be for specifications
that allow starvation. This requires that not only can
a non-conforming SUT fail a test but also that it fails
any tests where the observation made is not allowed
by any conforming IOTS. The following shows that it is
since if there is a finite trace of the SUT that cannot
be extended to form an infinite trace that is equivalent
to one in T rω(s) then there are observations of r that
lead to verdict fail.

Proposition 4.5. Let r, s be IOTSs and let us
suppose that r has a finite trace σ such that for every
run σ′ ∈ Actω we have that σσ′ is not equivalent to any
infinite trace of s. Then observation (π1(σ), . . . , πm(σ))

of r is given verdict fail.

Proof. Proof by contradiction: assume that σ is a
finite trace of r, observation (π1(σ), . . . , πm(σ)) is given
verdict pass, and for every run σ′ ∈ Actω we have
that σσ′ is not equivalent to any infinite trace of s.
Since (π1(σ), . . . , πm(σ)) is given verdict pass we have
that (π1(σ), . . . , πm(σ)) is an observation allowed by the
specification. But this means that the specification has
a finite trace σs such that πp(σ) ∈ pref(πp(σs)) for all
p. Further, σs can be extended to a run σ′s of s. By the
definition of σ′s we have that πp(σ) ∈ pref(πp(σ

′
s)) for

all p. Thus, there exists some σ′ such that σσ′ ∼ σ′s.
Finally, since σ′s is a run we also have that σ′ is a run.
This provides a contradiction as required and so the
result follows.

The implementation relation diocoo is defined for
IOTSs that are input-enabled. It is natural to ask
how we can relax this for the case where an IOTS
need not be input-enabled. In order to do so for
an IOTS that represents the SUT we need to give a
semantics for an IOTS being partial and typically this
involves concepts such as refusals (the observation of
the SUT refusing an input). In this paper we do not
include refusals as observations and we follow the ioco
approach of assuming that the SUT is input-enabled;
the extension to partial SUTs is a topic for future work.
We now consider the case where the specification might
be partial but the SUT is input-enabled.

One approach to providing a semantics for partial
specifications is to say that if an input ?i is received
when the specification is in a state q where there is no
transition with label ?i then all behaviours are allowed
after ?i. We take this approach here and define a
corresponding closure operation on partial IOTSs as
follows.

Definition 4.4. If s = (Q, I,O, T, q0) is a partial
IOTS then the closure of s, denoted C(s), is the IOTS
(Q ∪ {qc, q′c}, I, O, T ′, q0) in which T ′ is T with the
following transitions added:

• Given state q and ?i ∈ I, if there is no transition
from q with label ?i then we add the transition
(q, ?i, qc).
• For all a ∈ I ∪O, we add the transition (qc, a, qc).
• We add the transitions (qc, τ, q

′
c) and (q′c, δ, q

′
c).

• For all ?i ∈ I, we add the transition (q′c, ?i, qc).

The basic idea is that if ?i is received in a state q for
which there is no corresponding transition then ?i takes
C(s) to state qc and from this state there are self-loops
for all inputs and outputs. From state qc it is possible
to take a τ transition to a state q′c where it is possible to
observe δ but from which we cannot observe an output
without first receiving an input. The use of q′c as well as
qc is to ensure that we do not include traces that follow
δ with an output; such traces are not valid observations.

We then obtain the implementation relation diocopo.
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Definition 4.5. Given partial IOTS s and IOTS r,
r diocopo s if and only if Obs(r) ⊆ Obs(C(s)).

The following is clear from the definition.

Proposition 4.6. Given partial IOTS s and IOTS
r, r diocopo s if and only if r diocoo C(s).

Thus, if we can solve the Oracle problem for diocoo
then we can also solve the Oracle problem for diocopo;
we simply generate C(s) and then apply the verdict
function for diocoo. In addition, the closure does not
significantly increase the size of the specification. As a
result, we will focus on the case where the specification
is input-enabled.

König’s Lemma (Lemma 4.2) was used to prove the
following well-known result [41] (Lemma 2.1).

Proposition 4.7. Given finitely-branching IOTS s
and infinite sequence σ, if all proper prefixes of σ label
paths of s then σ labels a path of s.

Proposition 4.4 suggests that we might be able to
generalise Proposition 4.7 to the case where we are
interested in the set of runs that are equivalent to runs
of s under ∼ and we now show how this can be done.
First we will define the languages produced by applying
a commutation operator to T r∗(s) and R(s).

Definition 4.6. Given IOTS s, languages L(s) and
Lω(s) are defined as follows.

L(s) = {σ ∈ Act∗|∃σ′ ∈ T r∗(s).σ ∼ σ′}

Lω(s) = {σ ∈ Actω|∃σ′ ∈ R(s).σ ∼ σ′}

We now show that a version of Lemma 4.2 holds for
L(s) and Lω(s).

Proposition 4.8. Given IOTS s that is finitely-
branching and does not allow starvation and run σ ∈
Actω, if every finite prefix of σ is in L(s) then σ is in
Lω(s).

Proof. For i ≥ 1 let σi denote the prefix of σ with length
i. Since σi ∈ L(s) there exists some σ′i ∈ T r

∗(s) such
that σ′i ∼ σi. Let sσ denote the acyclic graph produced
when we unfold the IOTS formed by restricting s as
follows: identify the set of paths of s that start at the
unique initial state of s and have label σ′i for some i and
retain only transitions that occur in these paths. There
is no upper bound on the lengths of the σ′i. Thus, sσ
has an infinite number of states and is finitely-branching
and so by König’s Lemma (Lemma 4.2) we know that
sσ contains an infinite path ρ. Let σ′ denote the label
of ρ. Now consider a port p ∈ P and the projections
πp(σ

′) and πp(σ). Clearly σ′ is an infinite trace of s
and has no more inputs that σ and so σ′ is a run of s.
Since no infinite trace being considered contains only
finitely many events at a port, we have that πp(σ

′) is
infinite and so πp(σ

′) is not a proper prefix of πp(σ).
Thus, if πp(σ

′) 6= πp(σ) then there is some finite prefix
σ′′ of σ′ such that πp(σ

′′) is not a prefix of πp(σ). But,

by definition, σ′ must be a prefix of some σ′i and this
contradicts the definition of the σ′i. This provides a
contradiction as required and so the result follows.

5. THE COMPLEXITY OF THE ORACLE
PROBLEM

We have defined a verdict function for distributed
testing and proved that it has the expected properties.
This section explores the complexity of the associated
Oracle problem, of deciding whether an observation is
allowed. We prove that this problem is NP-complete
but can be solved in polynomial time if we have an
upper bound on the number of ports. Previous work has
shown that the Oracle problem for finite state machines
is NP-hard [35] but this is different from the problem
considered here since finite state machines are quiescent
after each input/output pair and so we essentially use
diocoδ.

We will relate the Oracle problem to the one-in-three
SAT problem.

Definition 5.1. Given boolean variables z1, . . . , zr
let C1, . . . , Ck denote sets of three literals, where each
literal is either a variable zi or its negation. The one-in-
three SAT problem is: does there exist an assignment to
the boolean variables such that each Ci contains exactly
one true literal.

The one-in-three SAT problem is NP-complete [42].
The proof that the Oracle problem is NP-hard will

take an instance of the one-in-three SAT problem and
construct an IOTS s and observation obs = (σ1, . . . , σm)
such that obs is allowed under diocoo if and only if
the instance of the one-in-three SAT problem has a
solution. Let us suppose that the instance of the one-in-
three SAT problem has boolean variables z1, . . . , zr and
clauses C1, . . . , Ck. The IOTS s will have initial state
qin and for each variable zx it will have a corresponding
input ?ix at port x. Further, for each cause Ci, s will
have a unique output !ok+i at port k + i. As a result,
the inputs and outputs are at different ports. The ‘core’
of the IOTS has, for each input ?ix, two cycles in state
qin: one cycle (ρTx ) has input ?ix followed by output
!ok+i for all i such that Ci has literal zx; the other
cycle (ρFx ) has input ?ix followed by output !ok+i for
all i such that Ci has literal ¬zx. Before explaining
the construction further, we give a simple example in
which we have four boolean variables z1, z2, z3, z4 and
clauses C1 = z1 ∧ z3 ∧ ¬z4, C2 = z2 ∧ ¬z3 ∧ ¬z4, and
C3 = z1 ∧ z2 ∧ z4. The construction explained above
leads to the partial IOTS outlined in Figure 3 in which
the central state is the initial state.

Now let us suppose that the input of
?i1?i2?i3?i4 in this examples leads to path
ρT1 ρ

T
2 ρ

F
3 ρ

T
4 . Then the resultant quiescent trace is

?i1!o5!o7?i2!o6!o7?i3!o6?i4!o7 and so to the observation
(?i1, ?i2, ?i3, ?i4, !o5, !o6!o6, !o7!o7!o7). From this we can
see that if z1, z2, z4 take on the value of true and z3
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FIGURE 3. Finite State Machine M0

takes on the value of false then: C1 contains one true
literal (since the observation has one instance of !o5);
C2 contains two true literals (since the observation has
two instances of !o6); and C3 contains three true literals
(since the observation has three instances of !o7). More
generally, if the input of ?i1?i2?i3?i4 leads to paths of
the partial IOTS being followed then it can lead to an
observation of the form (?i1, ?i2, ?i3, ?i4, !o

n1
5 , !on2

6 , !on3
7 )

if and only if there is some assignment to the boolean
variables z1, . . . , z4 such that Ci contains ni true lit-
erals 1 ≤ i ≤ 3. More specifically, if the input of
?i1?i2?i3?i4 leads to paths of the partial IOTS being
followed then it can lead to an observation of the form
obs = (?i1, ?i2, ?i3, ?i4, !o5, !o6, !o7) if and only if there
is some assignment to the boolean variables z1, . . . , z4
such that each Ci contains exactly one true literal (and
so there is a solution to this instance of the one-in-three
SAT problem). The proof essentially takes this partial
IOTS and completes it in such a manner that this
observation obs can only occur through a path in the
partial IOTS being followed.

Lemma 5.1. The problem of deciding whether an
observation obs = (σ1, . . . , σm) is allowed by an IOTS
s that has finite sets of states, inputs and outputs is
NP-hard.

Proof. To show that the problem is NP-hard we will
show that we can reduce an instance of the one-in-three
SAT problem to this. We therefore suppose that we
have variables z1, . . . , zr and clauses C1, . . . , Ck. We
will define an IOTS s with r+k ports, inputs ?i1, . . . , ?ir
at ports 1, . . . , r and outputs !or+1, . . . , !or+k at ports
r + 1, . . . , r + k.

From the initial state qin of s, for each input ?ix there
are two cycles:

1. A cycle ρTx that starts with ?ix and, for all
1 ≤ j ≤ k, has (one) output !or+j at port r + j
if and only if Cj contains literal zx and otherwise
has no output at port r + j. For all 1 ≤ p ≤ r ρTx
has no output at port p.

2. A cycle ρFx that starts with input ?ix, for all
1 ≤ j ≤ k, has (one) output !or+j at port r + j
if and only if Cj contains literal ¬zx and otherwise
has no output at port r + j. For all 1 ≤ p ≤ r ρTx
has no output at port p.

We also add an ‘error state’ qe and from every state
except qin all inputs take s to qe. From qe there are self-
loop transitions labelled with inputs and also a self-loop
transition labelled with ‘error’ output !oe at port 1 that
is not produced by any other transition.

Now consider the observation obs =
(?i1δ, ?i2δ, . . . , ?irδ, !or+1δ, . . . , !or+kδ). In this, each
input is received once by s and each output of the form
!or+l is observed once. Since the observations all end
in δ, the projections observed are all projections of the
same global trace of s. Thus, obs is allowed by s if and
only if s has a trace with these projections. Further,
since !oe is not observed we must have that each input
was received when s was in state qin. Thus, since each
input is received exactly once, obs is allowed by s if
and only if it is the set of projections of the label of
a path ρ of s that consists of loops from qin and so
ρ ∼ ρB1

1 . . . ρBr
r for some B1, . . . , Br ∈ {true, false}.

By the definitions of the ρ
Bj

j , this is the case if and only
if the assignment zj = Bj for all 1 ≤ j ≤ r is a solution
to the instance of the one-in-three SAT problem. Thus,
this instance of the one-in-three SAT problem has a
solution if and only if obs is allowed by s. The result
thus follows from the one-in-three SAT problem being
NP-hard and the fact that it is possible to construct s
and obs in polynomial time.

We now show that the problem is in NP by showing
how a non-deterministic Turing machine can solve it in
polynomial time.

Lemma 5.2. Given IOTS s that has finite sets of
states, inputs, and outputs, the problem of deciding
whether an observation obs = (σ1, . . . , σm) is allowed
by an IOTS s is in NP.

Proof. We will design a non-deterministic Turing
Machine T that operates as follows. We will construct
T so that it essentially guesses a path and checks obs
against the label of this path. T stores the current
state q of s and the part obs′ of obs not yet processed in
the path being guessed and so starts with these values
being the initial state of s and obs. Thus, if the path
current guessed has label σ and ending state q then T
stores state q and the observation obs′ = (σ′1, . . . , σ

′
m)

such that (for port p): if πp(σ) is a prefix of σp then
σp = πp(σ)σ′p (σ′p is the remaining local trace to be
observed at port p); and otherwise we must have that all
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observations in σp have been made at p and so σ′p = ε.
At each step T guesses a transition (q1, a, q2) of s where
q1 is the current state of s stored by T . T then applies
one of the following steps in which a ∈ Actp ∪ {τ} and
obs′ = (σ′1, . . . , σ

′
m) is the current observation stored

(the projections of the label of the currently guessed
path).

1. If a = τ then the values stored by T are updated
as follows: q is assigned the value q2 and obs′ is not
changed.

2. If σ′p = aσ′′p for some σ′′p then the values
stored by T are updated as follows: q is
assigned the value q2 and obs′ is assigned
(σ′1, . . . , σ

′
p−1, σ

′′
p , σ

′
p+1, . . . , σ

′
m). This case simply

removes a from the sequence of observations still
to be made at p and updates the current state. If
obs′ = (ε, . . . , ε) then T terminates with success
and otherwise processing continues.

3. If σ′p = ε then processing continues and the values
stored by T are updated as follows: q is assigned
the value q2 and obs′ remains unchanged. This is
the case where the local trace σp in obs is already
a prefix of the projection (on p) of the path being
guessed.

4. If σ′p 6= ε and σ′p does not start with a then this
execution of T terminates with failure. Here it has
been determined that the path being guessed has a
label whose projection at p does not start with σp.

We also have that T stores the set of states visited
since obs′ was last changed. If T visits a state q
that has been met since obs′ was last changed then it
terminates with failure (this stops T from taking a cycle
in which obs′ does not change since such a cycle could
be repeated, leading to non-termination).

We now show that T solves the Oracle problem.
First, let us suppose that obs = (σ1, . . . , σm) is an
observation of s and so the verdict should be pass.
There therefore exists a minimal trace σ of s such that
σp ∈ pref(πp(σ)) for all 1 ≤ p ≤ m. Recall that a non-
deterministic Turing Machine terminates with success
if one of its possible executions (‘guesses’) terminates
with success. Thus, T terminates with success since
it can guess a minimal path of s that has trace σ.
Now, consider the case where the verdict should be fail.
Since s has finitely many states and T cannot visit a
state of smore than once with the same obs′, if obs is not
an observation of s then T must terminate (it cannot
follow an infinite sequence of steps) and terminates with
failure. Thus, T solves the verdict problem.

Finally, consider the time complexity of T . Since
T cannot visit a state of s more than once with the
same obs′, the number of steps taken cannot exceed
the number of states of s multiplied by the sum of the
lengths of the local traces in obs. Thus, T terminates in
polynomial time. We therefore have that the problem
is in NP and so the result follows.

Finally, we prove that the problem is NP-complete
for IOTSs with finite sets of states and input/output
alphabets.

Theorem 5.1. Given IOTS s that has finite sets
of states, inputs, and outputs, the problem of deciding
whether an observation obs = (σ1, . . . , σm) is allowed
by s is NP-complete.

Proof. This follows from Lemmas 5.1 and 5.2.

We now consider the case where there is an upper
bound on the number of ports. This is an interesting
case since in practice there are normally only a few ports
but the IOTS may have many states and the local traces
observed may be relatively long.

Let us suppose that we have observation obs =
(σ1, . . . , σm) and for p ∈ P let σp = ap1a

p
2 . . . a

p
`p

.
Then any trace that has a prefix whose projection at
p is σp must be in the regular language Lp(σp) =
(Act \ Actp)∗ap1(Act \ Actp)∗ . . . (Act \ Actp)∗ap`pAct

∗.
Thus, in order to determine whether obs is allowed by
IOTS s it is sufficient to decide whether the language
T r∗(s)∩L1(σ1)∩ . . .∩Lm(σm) is empty. The following
proves that this works.

Proposition 5.1. Observation obs = (σ1, . . . , σm) is
allowed by IOTS s if and only if T r∗(s)∩L1(σ1)∩ . . .∩
Lm(σm) 6= ∅.

Proof. First let us suppose that σ ∈ T r∗(s) ∩ L1(σ1) ∩
. . . ∩ Lm(σm). Thus, σ is a trace of s. Further, for all
p ∈ P we have that σ ∈ Lp(σp) and so σp is a prefix of
πp(σ). Thus, obs is allowed by s as required.

Now assume that obs is allowed by s and let σ be a
finite trace of s such that for all p ∈ P we have that
σp is a prefix of πp(σ). However, by the definition of
Lp(σp), this is the case if and only if σ ∈ Lp(σp). Thus,
σ ∈ T r∗(s) and for all p ∈ P we have that σ ∈ Lp(σ).
We therefore have that σ ∈ T r∗(s) ∩ L1(σ1) ∩ . . . ∩
Lm(σm) and so T r∗(s) ∩ L1(σ1) ∩ . . . ∩ Lm(σm) 6= ∅ as
required.

In order to construct a finite automaton that accepts
T r∗(s) ∩ L1(σ1) ∩ . . . ∩ Lm(σm) it is sufficient to take
the product of the separate automata. The states of this
product automaton are tuples of states of the individual
finite automata and so the number of states of the
product automaton can be the product of the numbers
of states of the individual automata. Thus, the product
automaton can take exponential space and the problem
of deciding whether there is some common sequence in
the languages of a set of finite automaton (the FA-Int
problem) is PSPACE-complete [43]. However, we now
show that if we have an upper bound on the number
of ports m then we can produce a FA that represents
the language L1(σ1)∩ . . .∩Lm(σm) in polynomial time;
a similar result has been shown for the corresponding
problem when testing using dioco and IOTSs are not
output-divergent [44].
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In order to represent the language L1(σ1) ∩ . . . ∩
Lm(σm) we can construct an FA M(σ1, . . . , σm) as
defined below. The essential idea is that a state of
M(σ1, . . . , σm) is defined by a tuple (x1, . . . , xm) that
represents the situation in which the first xp elements
of σp have been observed at port p and if xp = `p then
additional observations might have been made at p.

Definition 5.2. Let us suppose that σi = ap1 . . . a
p
`p

,

1 ≤ p ≤ m. Then M(σ1, . . . , σm) is the FA
(S, s0,Act, h, F ) in which:

1. S is the set of states defined by tuples of the form
(x1, . . . , xm) in which for all 1 ≤ p ≤ m we have
that 0 ≤ xp ≤ `p.

2. s0 is the initial state (0, . . . , 0).
3. Act is the alphabet.
4. h is the transition relation defined by
((x1, . . . , xm), a, (x′1, . . . , x

′
m)) ∈ h for a ∈ Act if

and only if one of the following conditions hold:

(a) a ∈ Actp, xp < `p, a = apx1+1, x′p = xp + 1
and for all 1 ≤ q ≤ m we have that if p 6= q
then x′q = xq.

(b) a ∈ Actp, xp = `p, and for all 1 ≤ q ≤ m
have that if p 6= q then x′q = xq.

5. F = {(`1, . . . , `m)} is the set of final states.

It is clear that the number of states ofM(σ1, . . . , σm)
is (|σ1|+ 1)(|σ2|+ 1) · · · (|σm|+ 1) and so is polynomial
in terms of the size of the problem if we have an upper
bound on the number of ports. The problem then
becomes one of deciding whether the intersection of the
regular languages defined by s and M(σ1, . . . , σm) is
non-empty, a problem that can be solved in time that
is polynomial in the sizes of s and M(σ1, . . . , σm). We
therefore obtain the following result.

Theorem 5.2. If we have an upper bound on the
number of ports then the problem of deciding whether an
observation obs = (σ1, . . . , σm) is allowed by an IOTS
s can be solved in polynomial time.

6. RELATED WORK

Distributed testing was initially explored in the context
of testing from an FSM. This was in the area of
protocol conformance testing in which there are two
ports: the upper tester U interacts directly with
the implementation of a layer of the protocol stack
(by using its features) while the lower tester sits
on another machine. The initial work identified the
potential for distributed testing to introduce additional
controllability problems [12, 4] and observability
problems [5]. A controllability problem occurs when
the tester at a port p cannot know when to supply an
input since it did not observe events in the previous
input/output pair. Let us suppose that the tester at
port 1 should send input ?i1, this should lead to output
!o1 to port 1, and the tester at port 2 should then send

Tester 1 SUT Tester 2

?i1

!o1

?i2

msc MSC1

FIGURE 4. A controllability problem

?i2. This scenario is shown in Figure 4 in which vertical
lines represent processes, time progresses as we move
down, and arcs represent messages. The tester at port
2 does not know when to send its input since it does
not observe the previous input and output.

An observability problem occurs if the global trace
σ that occurred in testing is not a trace of the
specification but is observationally equivalent to a trace
σ′ of the specification (each local tester makes the same
observation in σ and σ′ despite σ and σ′ differing). An
example of this is given in Figure 5: in both scenarios
the tester at port 1 observes ?i1!o1?i1!o1 and the tester
at port 2 observes !o2.

Sometimes the local testers can be synchronised by
the exchange of coordination messages[22, 23, 24]. In
such situations, when testing from an FSM it is possible
to overcome controllability and observability problems.
For example, if input ?ik at p is to be followed by
input ?ik+1 at port q 6= p and there is a controllability
problem then this can be overcome by the tester at
p sending a message to the tester at q after it sends
input ?ik: this tells the tester at q that it can now
supply its input. It is also possible to overcome
observability problems when testing from an FSM. This
observation has led to interest in two optimisation
problem (when testing from an FSM): minimising the
number of coordination messages used [25, 26]; and
also minimising the number of channels between testers
that are required [27, 28]. Unfortunately, however,
there are some disadvantages associated with the use of
coordination messages. First, their use leads to testing
taking longer and requiring an additional network
infrastructure. If there are timing constraints then
it may not be possible for a tester to wait for a
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Tester 1 Spec Tester 2

?i1

!o1 !o2

?i1

!o1

msc MSC2

Tester 1 SUT Tester 2

?i1

!o1

?i1

!o1 !o2

msc MSC3

FIGURE 5. Observationally equivalent scenarios

coordination message and still satisfy these constraints.
Second, if the coordination messages are sent using a
network that is utilised by the SUT then this might
change the network load and thus the behaviour of the
SUT.

Much of the focus of work in distributed testing
was on producing test sequences (from an FSM
specification) that are controllable and also potentially
that do not suffer from observability problems (see,
for example, [24, 29, 30, 31, 32, 33]). However, the
nature of observation in distributed testing leads to a
different notion of correctness and this was reflected
in the definition of an implementation relation for
FSMs (when testing is controllable) [7] and later the
implementation relation dioco for IOTSs [16]. Some
recent work has explored test generation for these
implementation relations [34, 16].

The use of these different implementation relations

changes the nature of the Oracle problem. When testing
from an FSM or IOTS, if testing is not distributed
then the Oracle problem is that of determining whether
a given sequence σ of inputs and outputs is also a
trace of the specification and this is a classic (language)
membership problem. In contrast, under dioco it is
sufficient that the trace of the SUT is observationally
equivalent to a trace of the specification. It has been
shown that, as a result, the Oracle problem is NP-
complete when applying distributed testing from an
FSM [35]. Other work has looked at distributed testing
from an IOTS and defined the implementation relation
mioco [15]. However, this assumes that there is a global
tester that observes all of the events; mioco differs
from the classical IOTS implementation relation ioco
by allowing the SUT to block all inputs on a channel.
The situation in which the agent at port p only observes
events at p has also been investigated for refinement in
CSP [36].

Most work has focussed on testing from an FSM or
an IOTS and here a behaviour is a sequence of events
and concurrency is modelled using synchronisation and
interleaving. There has also been some work that
includes true concurrency in the model and this includes
work that uses Partial Order Automata. Here, a
transition is labelled by a partially ordered multi-set
of inputs and outputs [37, 38]. There has also been
interest in distributed testing from Petri Nets [39]. The
main contribution of this line of work is that the models
include true concurrency and, as a result, can be much
more compact. For example, if we have three events
a1, a2, and a3 and these can occur in any order then
an IOTS model would have to include all permutations
while a Partial Order Automaton could include one
transition with these events. For this example, using
ioco leads to a combinatorial explosion but dioco need
not since it is sufficient to model only one of the possible
permutations, with the use of dioco implying that
the others are allowed (since they are observationally
equivalent). This paper considers the problem of testing
from an IOTS model but it would be interesting to
extend the work to models that allow true concurrency.

The work presented in this paper differs from
previous work as follows. First, in the context of
testing from an IOTS, this paper is the first to
explore the notion of a tuple of local traces being an
observation and to define an implementation relation
in terms of this. Note, however, that one other
piece of work independently considered the case where
an observation is a tuple of (timed) local traces and
investigated timed testing from timed models [21].
This other piece of work [21] assumed that the SUT
and specification both have a component at each port
and that we can observe messages sent between these
components. Thus, the implementation relation dtioco
defined requires there to be this structural similarity
and also for internal events (message exchange) to be
observed. It is thus very different from both dioco and
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diocoo. Importantly, we presented the first results that
formally compare dioco with the alternative approach
encapsulated in diocoo and thus to show that dioco is
too strong when processes might be output-divergent.
The results regarding the complexity of the Oracle
problem are new but are related to previous results. An
earlier piece of work proved that the Oracle problem
is NP-hard for distributed testing but this concerned
testing from an FSM [35]. FSMs differ significantly from
IOTSs since, for example, input and output alternate
and an FSM is quiescent after an output has been
produced. A similar result has been shown for the
corresponding problem when testing using dioco and
IOTSs but is restricted to the case where the IOTSs are
not output-divergent and also where the observation is
a quiescent trace and not a tuple of local traces [44].

7. CONCLUSIONS

If testing involves physically distributed testers inter-
acting with the SUT and these testers do not synchro-
nised then we have distributed testing. Despite the
growing importance of distributed systems, only rela-
tively recently has an implementation relation dioco
been defined for distributed testing. This paper ex-
plored the problem of determining whether an observa-
tion made in testing is allowed under dioco, with this
being an instance of the Oracle problem.

In distributed testing each local tester observes a local
trace and so an observation is a tuple (σ1, . . . , σm) of
local traces. The Oracle problem is thus that of deciding
whether an observation obs = (σ1, . . . , σm) is allowed
by the specification s. This defines a verdict function
vs that maps (σ1, . . . , σm) to pass if s has a trace σ
such that each σp is a prefix of the projection πp(σ)
of σ onto p and otherwise the observation is mapped to
fail. We proved that this verdict function is both sound
and exhaustive for dioco if processes are not output-
divergent: r dioco s if and only if all observations
that can be made when testing r are mapped to pass.
Thus, for processes that are not output-divergent we
have that dioco is equivalent to the implementation
relation diocoo implied by the verdict function.

We found that if we consider output-divergent
processes then dioco is strictly stronger than diocoo.
In addition, there are cases where an IOTS r does
not conform to IOTS s under dioco but this cannot
be determined based on finite observations. This
suggests that the definition of dioco is too strong for
testing when processes might be output-divergent and
diocoo may be more suitable. We then proved that
dioco and diocoo are identical for output-divergent
processes if we restrict attention to processes that are
finitely-branching and do not allow starvation. Finally,
we considered the problem of computing the verdict
function and proved that this is NP-complete but can
be solved in polynomial time if we have an upper bound
on the number of ports.

There are several lines of future work. First, there
may be additional interesting conditions under which
the Oracle problem can be solved in polynomial time.
There may also be additional sensible classes of IOTSs
that are output-divergent but where dioco and diocoo
converge. It would also be interesting to explore
what happens if we add features such as time and
probabilities. Finally, there is the issue of considering
true concurrency models.
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