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Abstract This is a tripartite work. The first part is a brief discussion of what it
is to be a logical constant, rejecting a view that allows a particular self-referential
“constant” • to be such a thing in favour of a view that leads to strong normalisation
results. The second part is a commentary on the flattened version of Modus Ponens,
and its relationship with rules of type theory. The third part is a commentary on
work (joint with Nissim Francez) on “general elimination rules” and harmony, with
a retraction of one of the main ideas of that work, i.e. the use of “flattened” general
elimination rules for situations with discharge of assumptions. We begin with some
general background on general elimination rules.

Keywords General elimination rules · Harmony · Strong normalisation

1 Background on General Elimination Rules

Standard natural deduction rules for Int (intuitionistic predicate logic) in the style
of Gentzen [9] and Prawitz [24] are presumed to be familiar. The theory of cut-
elimination for sequent calculus rules is very clear: whether a derivation in a sequent
calculus is cut-free or not is easily defined, according to the presence or absence of
instances of theCut rule. For natural deduction, normality is a less clear concept: there
are several inequivalent definitions (including variations such as “full normality”)
in the literature. For implicational logic it is easy; but rules such as the elimination
rule for disjunction cause minor problems with the notion of “maximal formula
occurrence” (should one include or not include the permutative conversions?), and
more problems when minor premisses have vacuous discharge of assumptions.

The material was presented at the proof-theoretic semantics conference in Tübingen in March
2013; an early version was presented at the proof-theoretic semantics (Arché) workshop in
St Andrews in May 2009.
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One proposed solution, albeit partial, is the uniform use of general elimination
rules, i.e. GE-rules. These can be motivated in terms of Prawitz’s inversion princi-
ple1: “the conclusion obtained by an elimination does not state anything more than
what must have already been obtained if the major premiss of the elimination was
inferred by an introduction” [25, p. 246]. Normality is now the simple idea [39]
that the major premiss of each elimination step should be an assumption; see also
[13, 36].

The standard elimination rules for disjunction, absurdity and existential quantifi-
cation are already GE rules:

A ∨ B

[A]....
C

[B]....
C

C ∨E
⊥
C ⊥E

∃x A(x)

[A(y)]....
C

C ∃E

(with y fresh in ∃E) and the same pattern was proposed (as a GE-rule) in the early
1980s for conjunction

A ∧ B

[A, B]....
C

C

by various authors, notably Prawitz [26, 27], Martin-Löf [15] and Schroeder-Heister
[30], inspired in part by type theory (where conjunction is a special case of the
�-type constructor, with A ∧ B =def �(A, B) whenever B(x) is independent of x)
and (perhaps) in part by linear logic [10] (where conjunction appears in two flavours:
multiplicative ⊗ and additive &).

To this one can add GE-rules for implication2 and universal quantification:

A ⊃ B A

[B]....
C

C
⊃G E

∀x .B(x) t term

[B(t)]....
C

C ∀G E

Rules of the first kind are conveniently called “flattened” [29] (in comparison with
Schroeder-Heister’s “higher-level” rules, forwhich see [30, 32]). López-Escobar [13]
distinguishes between the premiss A of ⊃G E as a “minor” premiss and that of C
(assuming B) as a “transfer” premiss.3

One thus has a calculus of rules in natural deduction style for Int; such calculi, and
their normalisation results, have been studied by von Plato [39], by López-Escobar

1See [19, 31] for discussions of this principle, including its antecedents in the work of Lorenzen.
2Reference [3] has an early occurrence of this.
3On the other hand, Francez and Dyckhoff [8] calls A the “support” and, more in line with tradition
than López-Escobar [13], the remaining premiss the “minor premiss”.
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[13] and by Tennant [36].With the definition (given above) that a deduction is normal
iff the major premiss of every elimination step is an assumption, the main results are:

1. Weak Normalisation (WN): every deduction can be replaced by a normal deduc-
tion of the same conclusion from the same assumptions [13, 20, 36, 39].

2. StrongNormalisation (SN), for the implicational fragment: an obvious set of rules
for reducing non-normal deductions is strongly normalising, i.e. every reduction
sequence terminates [12, Sect. 6], [13, 36, 37].

3. SN, for the full language: a straightforward extension of the proof of [37] for
implication4; also, the proofs for implication “directly carry over” [12] to a system
with conjunctions and disjunctions. An argument (using the ordinary elimination
rule for implication) is given in [35] for the rules for implication and existential
quantification, with the virtue of illustrating in detail how to handle GE rules
where the Tait–Martin-Löf method of induction on types familiar from [11] is not
available. See also [13].

4. Some straightforward arguments for normalisation (by induction on the structure
of the deduction) [40].

5. A 1-1 correspondence with intuitionistic sequent calculus derivations [20, 39].
6. Some interpolation properties [17].
7. Extension of the normalisation results to classical logic [41].

Despite the above results, there are some disadvantages:

1. Poor generalisation of the GE rule for implication to the type-theoretic constant
Π , of which ⊃ can be treated as a special case [15]: details below in Sect. 3.

2. Too many deductions, as in sequent calculus. Focused [aka “permutation-free”]
sequent calculi [5, 6] have advantages. Sequent calculus has (for each deriv-
able sequent) rather too many derivations, in comparison to natural deduction,
since derivations often have many permutations each of which is, when trans-
lated to ordinary natural deduction, replaced by an identity of deductions. The
GE-rules have the same feature, which interferes with rather than assists in root-
first proof search.

3. (For some complex constants, if one adopts the methodology beyond the basic
intuitionistic ones) a “disharmonious mess” [4]: details below in Sect. 4.4.

4. No SN results (yet, in general) for GE-rules for arbitrarily complex constants.

2 Is Bullet a Logical Constant?

Read [28] has, following a suggestion of Schroeder-Heister (with Appendix B of
Prawitz’s [26] and Ekman’s Paradox5 [7] in mind), proposed as a logical constant a
nullary operator • (aka R, for “Russell”) with the single (but impure) introduction
rule

4Personal communication from Jan von Plato, May 2009.
5See [34] for a recent discussion.
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[•]....⊥
• •I

The GE-rule justified by this (along the same lines as for implication) is then

• •

[⊥]....
C

C •G E

which, given the usual ⊥E rule and the unnecessary duplication of premisses, can
be simplified to •

C •E

So, by this •E rule, the premiss of the •I rule is deducible, hence • is deducible,
hence ⊥ is deducible.

There is however a weakness (other than just that it leads to inconsistency) in the
alleged justification of • as a logical constant: it is a circularity.We followMartin-Löf
[15, 16] and Dummett [2] in accepting that we understand a proposition when we
understand what it means to have a canonical proof of it, i.e. what forms a canonical
proof can take. In the case of •, there is a circularity: the introduction rule gives us a
canonical proof only once we have a proof of ⊥ from the assumption of •, i.e. have
a method for transforming arbitrary proofs of • into proofs of ⊥. The reference here
to “arbitrary proofs of •” is the circularity.

There are similar ideas about type formers, and it is instructive to consider another
case, an apparent circularity: the formation rule (in [15]) for the type N of natural
numbers. That is a type thatweunderstandwhenweknowwhat its canonical elements
are; these are 0 and, when we have an element n of N , the term s(n). The reference
back to “an element n of N” looks like a circularity of the same kind; but it is rather
different—we don’t need to grasp all elements of N to construct a canonical element
by means of the rule, just one of them, namely n.

A formal treatment of this issue has long been available in the type theory liter-
ature, e.g. Mendler [18], Luo [14], Coq [1]. We will try to give a simplified version
of the ideas. With the convention that propositions are interpreted as types (of their
proofs), we take type theory as a generalisation of logic, with ideas and restrictions in
the former being applicable to the latter. The simplest recursive case (N ) has just been
considered and the recursion explained as harmless (despite Dummett’s reservations
expressed as his “complexity condition” [2]). What about more general definitions?
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The definition of the type N can be expressed as saying that N is the least fixed
point of the operator ΦN =def λX.(1 + X), i.e. N =def μX.(1 + X). Similarly, the
type of lists of natural numbers is μL .(1 + N × L), and the type of binary trees
with leaves in A and node labels in B is μT .A + (T × B × T ). A unary operator
definition Φ =def λX. ... is said to be positive iff the only occurrences of the type
variable X in the body ... are positive, where an occurrence of X in the expression
A → B is positive (resp. negative) iff it is a positive (resp. negative) occurrence in
B or a negative (resp. positive) occurrence in A; a variable occurs positively in itself,
and occurs positively (resp. negatively) in A + B and in A × B just where it occurs
positively (resp. negatively) in A or in B. A definition of a type as the least fixed
point of an operator is then positive iff the operator definition is positive.

Read’s •, then, is defined as μX.(X → ⊥). This is not a positive definition; the
negativity of the occurrence of X in the body X → ⊥ is a symptom of the circular
idea that • can be grasped once we already have a full grasp of what the proofs of •
might be.

In practice, a stronger requirement is imposed, that the definition be strictly pos-
itive, i.e. the only occurrences of the type variable X in the body ... are strictly
positive, where an occurrence of X in the expression A → B is strictly positive iff
it is a strictly positive occurrence in B; a variable occurs strictly positively in itself,
and occurs strictly positively in A + B and in A × B just where it occurs strictly
positively in A or in B. A definition of a type as the least fixed point of an operator
is then strictly positive iff the operator definition is strictly positive.

With such definitions, it can be shown that strong normalisation (of a suitable set
of reductions) holds [18, Chap. 3]; similar accounts appear in [1, 14].

3 The GE-rule for Implication and the Type-Theoretic
Dependent Product Type

The present author commented [3] that the general (aka “flattened” [29]) E-rule for
implication didn’t look promising because it didn’t generalise to type theory. Here
(after 27 years) are the details of this problem: Recall [15] that in the dependently-
typed context

A type, B(x) type [x : A],

the rule

p : �(A, B)

[z : �(A, B)]....
C(z) type

[x : A, y : B(x)]....
c(x, y) : C((x, y))

spli t (p, c) : C(p)
�E
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with6 semantics spli t ((a, b), c) → c(a, b) is a generalisation of the rule

p : A × B C type

[x : A, y : B]....
c(x, y) : C

spli t (p, c) : C
×E

.

Now, ordinary (but with witnesses) Modus Ponens

f : A ⊃ B a : A
f a : B

⊃ E

has, in the dependently-typed context

A type, B(x) type [x : A],

the generalisation (in which ap2( f, a) is often just written as f a or ( f a)):

f : Π(A, B) a : A
ap2( f, a) : B(a)

Π E

(with Π(A, B) written as A ⊃ B whenever B(x) is independent of x); but the
“flattened” GE rule

f : A ⊃ B a : A C type

[y : B]....
c(y) : C

ap3( f, a, c) : C
⊃ G E

with semantics ap3(λ(g), a, c) → c(g(a)) doesn’t appear to generalise:

f : Π(A, B) a : A

[z : Π(A, B)]....
C(z) type

[y : B(a)]....
c(y) : C(λ(?))

ap3( f, a, c) : C( f )

in which, note the question-mark—what should go there? In the context y : B(a),
the only ingredient is y, which won’t do—it has the wrong type. Addition of an
assumption such as x : A (and making c depend on it, as in c(x, y)) doesn’t help.

6The notation c is used to abbreviate λxy.c(x, y). Similar abbreviations are used below. c(a, b) is
then just c applied to a and then to b.
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One solution is the systemof higher-level rules of Schroeder-Heister [30].Our own
preference, to be advocated after a closer look at flattenedGE-rules, is for implication
(and universal quantification) to be taken as primitive, with Modus Ponens and the
Π E rule taken as their elimination rules, with justifications as in [15].

4 GE-Rules in General

The wide-spread idea that the “grounds for asserting a proposition” collectively form
some kind of structure which can be used to construct the assumptions in the minor
premiss(es)7 of a GE-rule is attractive, as illustrated by the idea that, where two
formulae A, B are used as the grounds for asserting A ∧ B, one may make the
pair A, B the assumptions of the minor premiss of ∧G E . An example of this is
López-Escobar’s [13], which gives I-rules and then GE-rules for implication8 and
disjunction, with the observation [13, p. 417] that:

Had the corresponding I-rule had three “options with say 2, 3 and 5 premises respectively,
then there would have been 2× 3× 5 E-rules corresponding to that logical atom.9 Also had
there been an indirect10 premise, say ∇D/E, in one of the options then it would contribute a
minor premise with conclusion E and a transfer premise with discharged sentence D to the
appropriate11 E-rule.

In practice, there is an explosion of possibilities, which we analyse in order as
follows:

1. a logical constant, such as ⊥, ∧, ∨, ≡ or ⊕ (exclusive or), can be introduced by
zero or more rules;

2. each of these rules can have zero or more premisses, e.g. I has zero, ⊃ I and
each ∨Ii have one, ∧I has two;

3. each such premiss may discharge zero or more assumptions (as in ⊃ I );
4. each such premiss may abstract over one or more variables, as in ∀I ;
5. and a premiss may take a term as a parameter (as in ∃I ).

It is not suggested that this list is exhaustive: conventions such as those of substruc-
tural logic about avoiding multiple or vacuous discharge will extend it, as would
recursion; but it is long enough to illustrate the explosion. The paper [8] attempted12

to deal with all these possibilities and carry out a programme of mechanically gen-
erating GE-rules from a set of I-rules with results about harmony.

7In the sense of “all but the major premiss”.
8He also gives primitive rules for negation; in our view this is best treated as a defined notion, since
even its I-rule is impure, i.e. mentions the constant ⊥.
9In our terminology, “logical constant”.
10∇D/E is the notation of [13] for “E [assuming D]”.
11Surely, in this, D and E are the wrong way round.
12In ignorance, alas, of [13].
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4.1 Several I-Rules

Where a logical constant (such as ∨) is introduced by several alternative13 rules, one
can formulate an appropriate GE-rule as having several minor14 premisses, one for
each of the I-rules, giving a case analysis. This is very familiar from the case of ∨
and the usual ∨E rule:

A ∨ B

[A]....
C

[B]....
C

C

so an appropriate generalisation for n ≥ 0 alternative I-rules is to ensure that “the
GE-rule” has n minor premisses. This works well for⊥, with no I-rules: the⊥E-rule,
as in [9, 24], has no minor premisses.15

4.2 I-Rule Has Several Premisses

Now there are two possibilities following the general idea that the conclusion of a
GE-rule is arbitrary. Let us consider the intuitionistic constant ∧ (with its only I-rule
having two premisses) as an example. The first possibility is as illustrated earlier:
the rule

A ∧ B

[A, B]....
C

C ∧G E
.

The second is to have two GE-rules:

A ∧ B

[A]....
C

C
∧G E1

A ∧ B

[B]....
C

C
∧G E2

and it is routine to show that the ordinary GE-rule for ∧ is derivable in a system
including these two rules, and vice-versa. Tradition goes for the first possibility;
examples below show however that this doesn’t always work and that the second
may be required.

13López-Escobar [13] calls these “options”.
14“Transfer” premises in the terminology of [13].
15López-Escobar [13] does it differently.
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4.3 Premiss of I-Rule Discharges Some Assumptions

Natural deduction’s main feature is that assumptions can be discharged, as illustrated
by the I-rule for⊃ and the E-rule for∨. This raises difficulties for the construction of
the appropriate GE-rules: Prawitz [26] got it wrong (corrected in [27]), Schroeder-
Heister [30] gave an answer in the form of a system of rules of higher level, allowing
discharge not just of assumptions but of rules (which may themselves discharge
…)—but, although much cited, use of this system seems to be modest. As already
discussed, an alternative was mentioned (disparagingly) in [3] and (independently)
adopted more widely by others [13, 36, 39], the “flattened” GE-rule for ⊃ being

A ⊃ B A

[B]....
C

C
⊃G E

Let us now consider the position where two premisses discharge an assumption
(just one each is enough): consider the logical constant ≡ with one I-rule, namely

[A]....
B

[B]....
A

A ≡ B ≡ I

According to our methodology, we have two possibilities for the GE-rule; first, have
the minor premiss of the rule with two assumptions B, A being discharged and some
device to ensure that there are other premisses with A and B as conclusions. There
seems to be noway of doing this coherently, i.e. with A somehow tied to the discharge
of B and vice-versa. The alternative is to have twoGE-rules, along the lines discussed
above for ∧, and these are clearly

A ≡ B A

[B]....
C

C
≡ E1

A ≡ B B

[A]....
C

C
≡ E2

by means of which it is clear that, from the assumption of A ≡ B, one can construct
a proof of A ≡ B using the introduction rule as the last step, implying the “local
completeness” of this set of rules in a sense explored by Pfenning and Davies [22]:

A ≡ B [A]2
[B]1....
B

B
≡ E1, 1

A ≡ B [B]4
[A]3....
A

A
≡ E2, 3

A ≡ B
≡ I, 2, 4
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We are thus committed in general to the use of the second rather than the first
possibility of GE-rules—the use of two such rules rather than one—when there are
two premisses in an I-rule.

4.4 GE Harmony: A Counter-Example

Francez and the present author [8]16 developed these ideas (looking also at the
analogues of universal and existential quantification) by defining the notion of “GE-
harmony” (E-rules are GE-rules obtained according to a formal procedure, of which
parts are as described above) and showing that it implied “local intrinsic harmony”
(local soundness, i.e. reductions, and local completeness, as illustrated above for
≡). The classification in [8] corresponds roughly but not exactly to the different
possibilities enumerated above (1 ... 5): “non-combining” (zero or one premiss[es])
or “combining” (more than one premiss) corresponds to possibility 2; “hypothet-
ical” (a premiss with assumptions discharge) or “categorical” (no such discharge)
corresponds to possibility 3; “parametrized” (a premiss depends on a free variable)
corresponds roughly to a mixture of 4 and 5; “conditional” (e.g. there is a freshness
condition) corresponds roughly to 4.

Let us now consider a combination of such ideas, e.g. two I-rules each of which
discharges an assumption, e.g. the pair

[A]....
B

A � B

[B]....
A

A � B

What is/are the appropriate GE-rule(s)? It/they might be just

A � B A

[B]....
C

C

but that only captures, as itwere, thefirst of the two I-rules (and implies that (A�B) ⊃
(A ⊃ B), surely not what should be the case); so we have to try also

A � B B

[A]....
C

C

16Written in 2007–9, several years before publication.
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but then these two need to be combined somehow. If into a single rule,17 it would be
something like

A � B A

[B]....
C B

[A]....
C

C

which is weird; with only the second and last of these premisses, already C can be
deduced. The meaning of A � B is thus surely not being captured, whether we go
for two GE-rules or just one.

A similar examplewas given in 1968 by vonKutschera [38, p. 15], with two I-rules
for an operator F based on the informal definition F(A, B, C) ≡ (A ⊃ B)∨(C ⊃ B)

but the flattened E-rule failing to capture the definition adequately.

4.5 Another [Counter-]Example

Following Zucker and Tragesser’s [42, p. 506], Olkhovikov and Schroeder-Heister
[21] have given as a simpler example the ternary constant � with two introduction
rules: [A]....

B
�(A, B, C)

�I1
C

�(A, B, C)
�I2

and the “obvious” GE rule18 thereby justified is:

�(A, B, C) A

[B]....
D

[C]....
D

D �G E

which is clearly wrong, there being nothing to distinguish it from �(A, C, B). Their
main point is to show by a semantic argument that there is no non-obvious GE rule
for �, thus defending the “idea of higher-level rules” [30].

17As the formula in [13] implies, since 1 × 1 = 1.
18Again, [13] implies there is just one GE rule.
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4.6 In Other Words

The “flattening” methodology when either the constant being defined has several
introduction rules or one or more of such rules have several premisses can lead

1. to a number (>1) of GE rules, none of which on its own suffices, and
2. to a “disharmonious mess”, i.e. a failure to capture the correct meaning.

Already there are enough problems, before we start considering the cases where the
premiss abstracts over several variables, instantiates a variable as a term or recurses
on the constant being defined.

The solution of Schroeder-Heister [30] is to allow rules to discharge rules. We
prefer, however, to propose instead that one should adopt the standard solution from
(e.g.) Coq [1]: to reject the idea that the rule for handling implication (and other situ-
ations where assumptions are discharged) be treated as illustrated above and instead
to take implication (and its generalisation, universal quantification), together with
an inductive definition mechanism, as primitive, with traditional “special” elimina-
tion rules (e.g. Modus Ponens) but to allow GE rules elsewhere (e.g. for ∧ and its
generalisations � and ∃). This deals with ≡; likewise, it deals with � as if it were

A � B

[A ⊃ B]....
C

[B ⊃ A]....
C

C .

More precisely, we note that with an introduction rule given in Coq by the inductive
definition

Inductive and (A B : Prop) : Prop :=
and_I : A -> B -> (and A B).

we obtain as a theorem

Theorem and_elim : forall A B C : Prop,
(and A B) -> (A -> B -> C) -> C.

and similarly for � we have the inductive definition

Inductive odot (A B : Prop) : Prop :=
| odot_I_1 : (A -> B) -> (odot A B)
| odot_I_2 : (B -> A) -> (odot A B).

and we can obtain as a theorem

Theorem odot_elim : forall A B C : Prop,
(odot A B) -> ((A -> B) -> C) -> ((B -> A) -> C) -> C.

Not only can we obtain such theorems, but Coq will calculate them (and several
variants) from the definitions automatically. Further details of this approach can be
found in [23]. For example, existential quantification can be defined thus (we give
also the obtained theorem representing the elimination rule):
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Inductive ex (X:Type) (B : X -> Prop) : Prop :=
ex_intro : forall (w:X), B w -> ex X B.

Theorem ex_elim : forall X : Type, B : X -> Prop,
C : Prop, (ex X B) -> (forall (x:X) (B x -> C)) -> C.

Short shrift is given to •:
Inductive bullet : Prop :=
bullet_I : ( (bullet -> False) -> bullet).

Error: Non strictly positive occurrence of"bullet" in
"(bullet -> False) -> bullet"

This pushes the problem (of constructing and justifying elimination rules given a
set of introduction rules, and establishing properties like harmony, local complete-
ness and stability) elsewhere: into the same problem for a mechanism of inductive
definitions and for the rules regarded as primitive: introduction and (non-general)
elimination rules for implication and universal quantification. Apart from the issue of
stability, we regard the latter as unproblematic, and the former as relatively straight-
forward (once we can base the syntax on implication and universal quantification).

To a large extent this approach may be regarded as just expressing first-order con-
nectives using second-order logic, and not very different from Schroeder-Heister’s
higher-level rules. The important point is that there are difficulties (we think unsur-
mountable) with trying to do it all without such higher-order mechanisms.

5 Conclusion

The main conclusion is this: although the idea that the “grounds for asserting a
proposition” are easily collected together as a unit is attractive, the different ways
in which it can be done (disjunctive, conjunctive, with assumption discharge, with
variable abstraction or parameterisation, …, recursion) generate (if the GE rules
pattern is followed) many problems for the programme of mechanically generating
one (ormore) elimination rules for a logical constant, other than in simple cases.There
are difficulties with the mechanical approach in [8]; there are similar difficulties in
[13]. Without success of such a programme, it is hard to see what “GE harmony” can
amount to, except as carried out in (e.g.)Coq [1]where strictly positive inductive type
definitions lead automatically to rules for reasoning by induction and case analysis
over objects of the types thus defined, andwith strong normalisation results. A similar
conclusion is to be found in [33].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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