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A beam splitter is a basic linear optical element appearing in many optics experiments and is frequently
used as a continuous-variable entangler transforming a pair of input modes from a separable Gaussian state
into an entangled state. However, a beam splitter is a passive operation that can create entanglement from
Gaussian states only under certain conditions. One such condition is that the input light is suitably
squeezed. We demonstrate, experimentally, that a beam splitter can create entanglement even from modes
which do not possess such a squeezing provided that they are correlated to, but not entangled with, a third
mode. Specifically, we show that a beam splitter can create three-mode entanglement by acting on two
modes of a three-mode fully separable Gaussian state without entangling the two modes themselves. This
beam splitter property is a key mechanism behind the performance of the protocol for entanglement
distribution by separable states. Moreover, the property also finds application in collaborative quantum
dense coding in which decoding of transmitted information is assisted by interference with a mode of the
collaborating party.
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A beam splitter (BS) is an optical device that can
superimpose incident light modes. As quadrature ampli-
tudes of the incoming modes are also superimposed in this
process, correlations may arise between the corresponding
quadratures of the output modes. In particular, if modes
squeezed in conjugate quadratures enter a BS, an entangled
state carrying Einstein-Podolsky-Rosen correlations [1]
emerges at the output [2,3]. This is currently a widely
used experimental method, which finds application in
continuous-variable (CV) quantum teleportation [2], dense
coding [4], or cryptography [5,6].
Whether entanglement will be created by a BS depends

on the nature of the input states. For classical input states
given by statistical mixtures of coherent states, the output
states are also classical [7] and, thus, possess no entangle-
ment. Therefore, to get entanglement on a BS, some
nonclassicality is needed at the input [8,9]. In CV experi-
ments, nonclassicality of Gaussian states [10] is used for
this purpose which is equivalent to squeezing [11]. While,
for pure states, the presence of some input squeezing is
necessary and sufficient for generation of entanglement on
a BS, a more stringent condition [12] must be met if the
input state is mixed. An interesting question that arises is
whether interference on a BS of some states, which do not
satisfy the condition and, hence, do not entangle on a BS,
can still create some entanglement. Remarkably, this is,
indeed, possible if the interfered state is a local state of a
fully separable state of a larger system. This is illustrated by
the protocol for Gaussian entanglement distribution by

separable states [13] where a BS creates entanglement by
acting on two modes of a fully separable three-mode
Gaussian state while leaving the modes individually dis-
entangled. Note that, so far, such a property of a BS has not
been demonstrated, because in the experiment [14] the
additional third modewas independent of the superimposed
modes, whereas in the experiment [15], the third mode was
entangled with one of the modes entering the BS.
In this Letter, we provide an experimental demonstration

of the property of a BS mentioned above using two
examples. In the first example, the initial separable state
is two mode, and it is prepared by correlated random
displacements of a squeezed state and a vacuum state in one
quadrature. By splitting the former state on a BS, we then
create a three-mode state in which the output modes of the
BS are separable individually, but simultaneously, each
output mode is entangled with the remaining two modes.
In the second example, we prepare a three-mode fully
separable state by correlated random displacements of two
orthogonally squeezed states in the squeezed quadratures
and the vacuum state in both quadratures. We then super-
impose the two originally squeezed states on a BS to create
a three-mode entangled state. The two output modes of the
BS are again separable, but one of the output modes is
entangled with the other two. The state from the first
(second) example is a backbone of the CV protocol for
entanglement sharing [16] (distribution [13]) with sepa-
rable states. Moreover, despite being partially separable and
noisy, the states also enable assisted quantum dense coding
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which can beat coherent-state and even squeezed-state
communication capacity.
We demonstrate the aforementioned effect using quan-

tum modes of the electromagnetic field, which are quantum
systems with infinite-dimensional Hilbert spaces. A system
of n modes is described by the vector of quadratures
ξ̂ ¼ ðx̂1; p̂1;…; x̂n; p̂nÞ, the elements of which satisfy the
canonical commutation rules ½ξ̂j; ξ̂k� ¼ iðΩnÞjk, with
Ωn ¼ ⊕n

j¼1iσy, where σy is the Pauli-y matrix. Quantum
states involved in our experiment are well approximated by
Gaussian states [14], i.e., states with a Gaussian Wigner
function, and we resort to the tools of Gaussian quantum
information theory [10] in what follows.
A Gaussian state ρ̂ is fully characterized by the vector of

first moments hξ̂i≡ Trðξ̂ ρ̂Þ, which is always zero in the
present case, and the covariance matrix (CM) γ with
elements γjk ¼ hξ̂jξ̂k þ ξ̂kξ̂ji − 2hξ̂jihξ̂ki. An important
property of a Gaussian state is its nonclassicality. We
say that a state is nonclassical if it cannot be expressed
as a statistical mixture of coherent states [17,18]. In the
Gaussian scenario, nonclassicality is equivalent with
squeezing [11]; i.e., a Gaussian state with CM γ is non-
classical if and only if min½eigðγÞ� < 1 [19].
In the present experiment, we generate three-mode states

with specific separability properties. We certify the proper-
ties using the positive partial transpose (PPT) criterion for
Gaussian states [20–22]. The partial transposition operation
with respect to mode j transforms an n-mode CM γ to

γðTjÞ ¼ ΛjγΛj with Λj ¼ ð⊕n
i≠j¼11

ðiÞÞ⊕σðjÞz , where 1ðiÞ is

the 2 × 2 identity matrix of mode i, and σðjÞz is the Pauli-z
matrix of mode j. The PPT criterion then states that the
state is separable with respect to mode j if and only if

γðTjÞ þ iΩn ≥ 0: ð1Þ

We demonstrate the entangling power of a BS on two
protocols depicted in Fig. 1. First, we focus on a more
simple protocol (yellow circles and ellipses in Fig. 1) which
we shall refer to as protocol 1. Alice initially holds mode A
in a position squeezed vacuum state with quadratures
x̂A ¼ e−rx̂ð0ÞA , p̂A ¼ erp̂ð0Þ

A , where r > 0 is the squeezing
parameter and the superscript “(0)” denotes the vacuum
quadratures, while Bob holds a vacuum mode B with
quadratures x̂B ¼ x̂ð0ÞB and p̂B ¼ p̂ð0Þ

B . Next, modes A and B
are displaced as

x̂A → x̂A þ x; x̂B → x̂B þ x; ð2Þ

where the classical displacement x is Gaussian distributed
with zero mean and variance hx2i ¼ V1≔ð1 − e−2rÞ=2.
The displacements realize a local operations and classical
communication operation and the resulting state is, thus,
separable. Further, the displacements are strong enough to

destroy the initial squeezing and the state of mode A is
classical.
Mode A is then split on a BS realizing a transformation

x̂A;C → ðx̂A � x̂CÞ=
ffiffiffi
2

p
, p̂A;C → ðp̂A � p̂CÞ=

ffiffiffi
2

p
, where

x̂C ¼ x̂ð0ÞC and p̂C ¼ p̂ð0Þ
C are quadratures of the vacuum

mode C entering the empty port of the BS. Application of
the BS results in a three-mode state with CM γ1, which
carries no entanglement between any two modes and across
the BjAC splitting, but which is entangled across the AjBC
and CjAB splittings [16]. Thus, protocol 1 demonstrates the
required entangling property of a BS. Indeed, we have
created entanglement from a fully separable three-mode
Gaussian state by mixing on a BS two modes of the state
while these two modes alone remain separable after the BS.
The entangling capability of a BS can also be illustrated

using a different protocol called protocol 2 in what follows
(blue circles and ellipses in Fig. 1). Alice holds mode A in a
position-squeezed state and mode C in a momentum
squeezed state, and Bob holds mode B in a vacuum state.
The modes are then displaced as

x̂A → x̂A þ x; x̂B → x̂B þ
ffiffiffi
2

p
x;

p̂C → p̂C − p; p̂B → p̂B þ
ffiffiffi
2

p
p; ð3Þ

where x and p are uncorrelated classical displacements
obeying zero mean Gaussian distributions with variances
hx2i ¼ hp2i ¼ V2≔ðe2r − 1Þ=2. In comparison with pro-
tocol 1, the final state with CM γ2 of protocol 2 has
different separability properties. Specifically, the state is
separable across the BjAC and CjAB splittings, which
guarantees absence of any two-mode entanglement, and it
is entangled across the AjBC splitting. Thus, again,

FIG. 1 (color online). Experimental scheme. EOMx and EOMp:
electro-optical modulators implementing displacement of quad-
ratures x̂ (white horizontal arrow) and p̂ (white vertical arrow).
BS: balanced beam splitter, SMj: Stokes measurement on mode j.
The yellow (blue) circles and ellipses represent the states of
protocol 1 (2). The yellow (blue) modulators EOMx (EOMp) are
applied to both protocols (only to protocol 2).
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entanglement is created by mixing on a BS two modes of a
three-mode fully separable Gaussian state, whereas the two
modes at the output of the BS do not get entangled.
The experimental setup for both protocols is shown in

Fig. 1. In both scenarios Alice possesses two modes A and
C and Bob holds mode B. Mode A initially exhibits
−2.14� 0.05 dB squeezing in x̂, which is hidden by a
modulation in x̂. In the simpler protocol, this mode A is
mixed with a vacuum mode C on a BS. Bob prepares mode
B, initially coherent but modulated in the same manner and
correlated to the modulation of mode A of Alice. For
technical convenience, the implementation is realized using
Stokes observables and measurements. A strong excitation
of Ŝ3 (circular polarization), and in contrast hŜ1i ¼
hŜ2i ¼ 0, allows the S1-S2 plane (also called the dark-
plane [23]) to be interpreted as the quadrature phase space.
Within this plane, Ŝθ (Ŝθþπ=2) is identified with the x̂ (p̂)
quadrature. Thus, the squeezing in x̂ is polarization
squeezing in Ŝθ generated by using the Kerr nonlinearity
of an optical fiber (FS-PM-7811, Thorlabs, 13 m) [3,23–25]
pumped by an ultrashort pulsed laser (Origami, One-five,
center wavelength: 1559 nm, pulse length: 200 fs, repetition
rate: 80 MHz), which is also used directly for mode B. The
modulation of modes A and B is realized in two steps. First,
different displacements are realized by slightly modulating
the state of polarization in the Ŝθ direction by applying a
sinusoidal voltage (frequency: 18.2 MHz) to an electro-
optical modulator. By means of a phase matched electronic
local oscillator of the same frequency, the Stokes measure-
ment signal is down mixed, which leads to the desired
displaced states. Second, differently displaced states are
digitally shuffled together in a correlated manner to generate
mixed but correlated Gaussian states in A and B. The CM γ1
was measured to be

γ1 ¼

0
BBBBBBBBB@

5.42 0.23 3.34 −0.73 4.06 0.04

0.23 19.28 0.00 0.00 0.45 17.29

3.34 0.00 3.43 −0.54 3.06 −0.03
−0.73 0.00 −0.54 1.12 −0.67 0.01

4.06 0.45 3.06 −0.67 4.73 0.55

0.04 17.29 −0.03 0.01 0.55 17.70

1
CCCCCCCCCA

:

The measurement errors for the elements of all measured
CMs lie between 0.002 and 0.023.
As for protocol 2, it uses the same mode A as the first

one, but it is extended with a mode C. This mode C is
prepared in the same way as mode A, just the squeezing
and, accordingly, also the modulation, are in the Ŝθþπ=2
direction. Again, these two modes are mixed on a BS. In
this case, Bob’s mode B is independently modulated in both
conjugate Stokes observables Ŝθ and Ŝθþπ=2. For protocol 2,
the CM γ2 was measured to be

γ2 ¼

0
BBBBBBBBB@

20.90 1.10 5.17 −8.59 −7.80 −1.68
1.10 25.31 −5.04 −6.76 1.00 14.64

5.17 −5.04 11.87 −0.45 4.95 4.49

−8.59 −6.76 −0.45 18.88 −8.61 6.04

−7.80 1.00 4.95 −8.61 20.68 0.80

−1.68 14.64 4.49 6.04 0.80 24.65

1
CCCCCCCCCA

:

The architecture of our experimental setup together with
the separability properties of the measured CMs guarantee
that we are able to really observe the predicted entangling
capability of a BS. Note, first, that the three-mode state
before the BS has been prepared by local operations on
independent modes and classical communication (green
wires in Fig. 1), and therefore, it is, by construction, fully
separable. Further, by applying the separability criterion (1)
on CMs γ1 and γ2 and the local CMs γ1;AC and γ2;AC of
reduced states of modes A and C, we can confirm that the
CMs also exhibit the desired separability properties.
The three-mode separability properties of the CMs γ1

and γ2 are summarized in Table I. For CM γ1, the two
negative minimum eigenvalues in the table reveal that the
BS created entanglement with respect to the AjBC and
CjAB splittings, whereas the state is separable across the
BjAC splitting, as predicted by the theory. However, as
required, at the same time modes A and C did not get
entangled according to the criterion (1). This is evidenced
by min½eigðγðTAÞ

1;AC þ iΩ2Þ� ¼ 0.84� 0.01 > 0.
Moving to the CM γ2, one can see from Table I that the

CM represents an entangled state across the AjBC splitting
whereas it exhibits separability across the BjAC and CjAB
splittings in accordance with the theory. Finally, since
min½eigðγðTAÞ

2;AC þ iΩ2Þ� ¼ 9.371� 0.005 > 0 [14], modes A
and C are separable as expected.
Before going further, let us note that a BS can create three-

mode entanglement only if there is some nonclassicality
prior to the BS [12,26] that is preserved throughout the
splitting process. Here, the nonclassicality is global squeez-
ing which is witnessed by the eigenvalues min½eigðγ1Þ� ¼
0.91� 0.01 < 1 and min½eigðγ2Þ� ¼ 0.609� 0.003 < 1.
The present experiment demonstrates that a BS can create

entanglement even by mixing two modes, which alone
cannot be entangled by the BS. The condition under which
this can happen is that the two modes are part of a three-
mode squeezed fully separable system. The entanglement is
created solely by the BS because no entanglement is present

TABLE I. Minimum eigenvalue λ
ðTjÞ
k ≔min½eigðγðTjÞ

k þ iΩ3Þ�.

j A B C

λ
ðTjÞ
1 × 102 −2.2� 0.1 6.9� 0.1 −2.2� 0.1

λ
ðTjÞ
2 × 10 −1.44� 0.01 3.51� 0.02 5.28� 0.03
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before the BS. The entanglement does not occur between the
output modes of the BS, but instead, it emerges between one
output mode and the remaining two modes taken together.
This phenomenon is a key element of the protocols for
entanglement sharing [16] and distribution [13,27] with
separable states. The schemes depicted in Fig. 1 are
effectively the first two steps of these protocols. Thus, a
passive BS operation on a tailored three-mode fully sepa-
rable state not only can generate entanglement across some
bipartite splittings of a global state, but a further BS can
localize this entanglement between modes A and B. This has
been experimentally demonstrated for the entanglement
sharing protocol in [28] and for the entanglement distribution
protocol in [14]. In both cases, the recovery of two-mode
entanglement has been performed electronically on the
outcomes of the measurement on mode C and the presence
of entanglement has been certified by the sufficient condition
for entanglement [29].
Entanglement created in protocols 1 and 2 is not only

useful for sharing and distribution of entanglement, but also
directly finds an application in a collaborative version of
quantum dense coding [30] with continuous variables
[4,31]. The corresponding scheme is depicted in Fig. 2.
Comparing to the standard dense coding schemes contain-
ing only a sender Alice and a receiver Bob, in the
collaborative schemes, Charlie controls the capacity of
information transmission between Alice and Bob. While
previous collaborative schemes [4,32] were based on
genuine tripartite entanglement and the control of capacity
was accomplished by a measurement on Charlie’s mode,
the present scheme relies only on a partially entangled
tripartite state, and it utilizes interference of the collaborator
and receiver’s mode for the control.
The schemes in Fig. 2 start with preparation of the output

state of protocol 1 (2) about which the participants have no
information. To emphasize this, we attribute the preparation
to a separate party, David. After running protocol 1 (2),

David distributes modes A, B, and C of the state with CM
γ1 (γ2) to Alice, Bob, and Charlie. Alice encodes on her
mode classical Gaussian signals x0 and p0 with variance P
by performing displacements x̂A → x̂A þ x0 and p̂A →
p̂A þ p0 and sends the mode to Bob. Upon receiving the
mode, Bob decodes the signal with the help of Charlie in
two steps depicted in Fig. 2. First, he superimposes his
mode with mode C on an unbalanced BS α̂0B;C ¼
R1α̂C;B � T1α̂B;C, α ¼ x; p, measures the quadrature p̂0

C
on output mode C with outcome p̄, and displaces the other
output mode B as p̂0

B → p̂0
B þ gp̄, where a gain g max-

imizes the capacity. In the second step, Bob superimposes
modes A and B on another unbalanced BS with trans-
missivity T2 and measures the quadrature x̂ (p̂) on output
mode A (B). Making use of the formula for capacity of a
communication channel with Gaussian distributed signal
(noise) of power S (N), C ¼ ð1=2Þ lnð1þ S=NÞ [33], we
have then calculated the channel capacity (CC) Cj for the
protocol j.
The CC has been optimized over the transmissivities T1

and T2 for fixed average photon number n̄ and it is plotted
in Fig. 3. For comparison, we also plot the capacities for
coherent-state communication with heterodyne detection,
Ccoh ¼ lnð1þ n̄Þ, and the squeezed-state communication
with homodyne detection, Csq ¼ lnð1þ 2n̄Þ [34]. Besides,
we have also considered a third protocol 3 with the CC C3,
which is the same as protocol 2, but with lower added noise
V3 ¼ V1, causing the entanglement properties of the output
state to be the same as in protocol 1.
In all schemes, if mode B or C is ignored, the CC never

exceeds Ccoh. For the scheme of Fig. 2, C2 and C3 (C1)
exceed(s) Ccoh when n̄ > 0.36 (n̄ > 0.44). Note, also, that
C3 ≥ C2 because protocol 3 has lower noise than protocol
2. C2 ≥ C1 due to the symmetry of protocol 2 with respect
to the quadratures, which allows both signals to be decoded
with equal efficiency. In fact, C3 even exceeds Csq for
n̄ > 11.28, which is a similar result to the CC of controlled
dense coding assisted by a measurement on the collabo-
rator’s mode [35].

FIG. 2 (color online). Collaborative dense coding schemes with
a state from protocol 1 (orange circles and ellipsis) and protocol 2
(blue circle and ellipses). BS: balanced beam splitter, UBS:
unbalanced beam splitters with transmissivities T1 and T2, HM:
homodyne measurement.

FIG. 3 (color online). Channel capacities C1; C2, and C3 for the
protocols 1, 2, and 3 versus the average photon number. Csq

(Ccoh): capacity of squeezed (coherent) state communication.
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In conclusion, we have demonstrated, experimentally,
that there are fully separable and only globally nonclassical
three-mode states that can lead to entanglement using a
beam splitter. A similar effect has been observed in the
qubit case [36], where the CNOT gate can generate entan-
glement by acting on a part of a suitable three-qubit fully
separable state, whereas it leaves the output of the operation
separable [27]. The local state may appear unsuitable as a
quantum resource. However, when being a part of a larger
correlated state, it can become a source of tailored
entanglement. This highlights the relevance of global
correlations in quantum technologies.
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