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PULLEY, S., FOSTER, I. D. L. and ANTUNES, A. P. M. (2015) The dynamics of sediment-

associated contaminants over a transition from drought to multiple flood events in a lowland 

UK catchment. Hydrological Processes. 0885-6087. 

 

Abstract:  

Fine sediment in suspended form, recently deposited overbank and in temporary storage on or 

in channel beds was collected in the Nene basin during a period of drought through to a 

period of four high flows. The sediment was analysed for arsenic, copper, lead, phosphorus 

and zinc concentrations with the aim of investigating their sources, movement, temporary 

storage and potential for environmental harm. 

Copper, lead and zinc probably originated from urban street dusts, phosphorus (originally in 

dissolved form) from sewage effluent and arsenic from natural soils developed over 

ironstone. There was little difference in the metal or arsenic concentrations in the sediment 

under different flow conditions; instead proximity to pollutant sources appeared to control 

their concentrations. Phosphorus in tributary sub-catchments probably adsorbed to sediment 

during periods of low flow but these sediments were flushed away during high flows and 

replaced by sediment with lower concentrations. However, concentrations of all pollutants in 

overbank sediments along the Nene’s main channel were not reduced in successive flood 

events, suggesting no first flush effect. Only phosphorus accumulated on sediment at 

concentrations exceeding those of its catchment – based sources (e.g. street dusts, channel 

banks, catchment soils). This scavenging of aqueous phosphate by sediment explained the 

difference in behaviour between phosphorus, arsenic and heavy metals. The surface area and 

organic matter content were shown to have a small effect on contaminant concentrations. 

Street dust contaminants only exceeded predicted effect levels (PELs) in close proximity to 

urban areas, suggesting a small potential for harm to the aquatic environment. Arsenic 

concentrations exceeded PELs in most sediment samples. However, it has been shown to be 

largely non-bioavailable in previously published research on the Nene, limiting its potential 

for significant environmental harm. Phosphorus concentrations in river sediments are high in 

comparison to the soils in the catchment and in comparison with sediment-P concentrations  

in other published lowland catchment studies, indicating a large potential for eutrophication 

should the Phosphorus be, or become, bioavailable. 
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Introduction 

 

The European Union Water Framework Directive (2000/60/EC) requires National 

Governments to achieve good chemical and ecological status of water bodies, and recognises 

the importance of sediment-associated contaminants when complying with environmental 

quality guidelines. Heavy metals and metalloids (subsequently referred to here as trace 

elements) such as arsenic have commonly been considered to be major pollutants in 

urbanised river catchments and have been shown to have toxic, genotoxic, mutagenic and 

carcinogenic effects (e.g. Mouvet, 1984; Von Burg and Liu, 1993; Gurrieri, 1998). Unlike a 

variety of other pollutants, trace elements are generally not degraded by natural processes or 

decomposed by bacteria, making them persistent in the environment over historical time 

scales (Wang et al., 2012).  

Primary production in aquatic ecosystems in the UK is primarily limited by bioavailable 

phosphate (Jarvie, et al., 1998).  As a result, excess phosphate inputs to rivers and lakes will 

lead to an increase in algae and macrophyte growth, which is symptomatic of the 

eutrophication of rivers and lakes. Eutrophication causes a loss of biodiversity and a 

reduction in water appearance and chemical quality (Carpenter et al., 1998). For these 

reasons phosphorus and heavy metal inputs to surface waters have become a focus attention 

for both researchers and catchment managers. 

Nutrients and trace elements have been shown to originate from a variety of sources, such as 

the natural diffuse weathering of bedrock and the erosion of soils and river channel banks 

(Wragg et al., 2007; Charlesworth et al., 2010). They may come from a variety of diffuse 

anthropogenic sources, such as urban street dusts and run-off from agricultural land, as well 

as point source inputs such as sewage and industrial effluent discharges (Foster and 

Charlesworth, 1996; Charlesworth et al., 2010).  

After entering fluvial environments trace elements and nutrients have been shown to be 

primarily transported in particulate form, in association with fine sediment and organic matter 
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(Gibbs, 1973; Salomons and Förstner, 1984; Horowitz and Elrick, 1987; Horowitz, 1991; 

Walsh and O'Halloran, 1996; Foster and Charlesworth, 1996; Ernstberger et al., 2004; 

Macklin et al., 2006). Within the fluvial environment sediment and its associated 

contaminants can be considered to be in transport in suspended form or in temporary channel 

bed storage. Walling et al. (1998) and Owens et al. (1999) calculated that between 4 and 10% 

of the annual suspended sediment load of the rivers Ouse, Wharfe and Tweed, UK resided in 

temporary channel bed storage.  However, it has been shown by Walling et al. (2003) that 

only <3% of the total annual contaminant flux of the rivers Aire, Calder and Swale resided in 

temporary channel bed storage. Contaminants stored on channel beds are, however, 

considered to be important for benthic habitat quality (Poulton et al., 2011). Concentrations 

of pollutants in suspended and / or temporarily stored sediment have been shown to be 

controlled by proximity to sediment sources (Foster and Charlesworth, 1996; Walling et al., 

2003). For example, phosphate pollution in the Warwickshire Avon, UK has been shown to 

primarily originate from point source sewage effluent inputs and highest concentrations have 

been found close to the point of sewage effluent discharge (Bowes et al. 2005). Once within 

the fluvial environment, inputs from such point pollution sources have been shown to be 

dispersed and diluted downstream of initial inputs (Wolfenden and Lewin, 1978; Macklin and 

Dowsett, 1989). However, in contrast, downstream enrichment in pollutants has been shown 

to occur in some catchments due to the selective transport of the finer particle sizes where 

trace metal concentrations are usually highest (Walling et al., 2000).  

Flow has also been shown to be a key control on contaminant concentrations and fluxes. For 

example phosphate inputs from point sources are considered most important during dry 

summer months when flows and dilution potential are at their lowest (Jarvie et al., 2006). 

During high flows there may be either the dilution of sediment-associated contaminant 

concentrations by ‘clean’ sediment inputs or the mobilisation of stored contaminated 

sediment, resulting in either an increase  or decrease in  concentrations (Carton et al., 2000; 

Davide et al., 2003). Seasonal relationships between flow and contaminant concentrations 

have also been observed, with a ‘first flush effect’ causing a peak in contaminant runoff in 

the first high flow event after sustained periods of little or no rainfall, where pollutants 

accumulate on street surfaces or within combined sewer systems (Geiger 1987; Buffleben et 

al., 2002). 
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The dynamics of fine sediment and pollutants have been shown to be highly variable in 

different catchments (Walling et al., 2007), therefore there is a need to investigate pollutant 

dynamics in individual catchments. At present the dynamics of sediment-associated 

contaminants have been investigated in highly urbanised catchments (e.g. Walling et al., 

1998; Owens et al., 1999) and mineralised areas (e.g. Macklin et al., 1997) as well as in 

permeable lowland agricultural catchments (e.g. Collins et al., 2005). However, a paucity of 

information exists in many other catchment types.  

The aim of this paper is to investigate the dynamics of arsenic, copper, lead, phosphorus and 

zinc during the transition from a period of drought through to a period characterised by 

multiple successive high flows. Pollutant inputs, movement, temporary storage and the 

potential for environmental damage are investigated using the following three objectives. 

1: To describe the movement and storage of the pollutants from different sources during the 

period of drought through to the high flow events. 

2: To determine the major controlling factors on sediment-associated pollutant 

concentrations.  

3: To assess the potential for the pollutants to cause environmental harm by comparing 

concentrations found in a range of sediment compartments with published sediment -

associated quality guidelines. 

 

Study catchment 

 

The Nene river basin is located in the East Midlands region of the UK and has a catchment 

area of 1,634 km2. It is a lowland agricultural catchment with a low sediment yield calculated 

at between 6 t km-2 yr-1 and 18 t km-2 yr-1 (Wilmott and Collins 1981; Walling et al., 2007; 

Pulley, 2014). It has a maximum elevation of 226m above Ordnance Datum. The river 

channel is heavily modified and flood defences are found extensively along the main channel, 

and locks downstream of Northampton produce a navigable stretch of river. 

A variety of potential pollutant sources exist within the Nene basin. The 2007 UK Land 

Cover Map indicates that land utilisation in the catchment at the time was 56% cultivated 

land, 22% improved grassland and 9% urban, with the remainder of the catchment covered by 
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woodland, rough grassland and surface water bodies (Morton et al., 2011).  There therefore 

exists potential for an input of trace metals and nutrients associated with different land 

utilisation, including urban surface water runoff and a range of industrial and manufacturing 

point source discharges to the river. There is also potential for phosphorus inputs from the 

erosion of agricultural land as well as from sewage effluent inputs from major treatment 

plants in urban areas and septic tanks in rural environments. High phosphorus concentrations 

have been measured in the fluvial sediments of the Nene, and have been attributed to the 

combination of diffuse agricultural inputs and sewage treatment inputs (Tye et al., 2013). The 

Environment Agency Anglian river region basin management plan highlights inputs of 

phosphorus-rich sewage effluent to the Nene to be one of the major influences on water 

quality (Environment Agency, 2009). The primary sewage treatment facilities in the basin 

include tertiary effluent treatment to comply with the requirements of the Urban Wastewater 

Directive (91/271/EEC) (River Nene Regional Park, 2013).  

Arsenic is a pollutant which is regionally important in the UK. In former mining regions, 

such as Devon and Cornwall, high arsenic concentrations have been found in soils, river and 

estuarine sediments (e.g. Garelick et al., 2008). In addition to these regions of the UK Wragg 

et al. (2007) havefound arsenic concentrations of between 20 and 100 mg kg−1 in soils around 

the town of Wellingborough in the Nene basin.  The arsenic within the Nene basin is 

primarily associated with Middle Jurassic oolitic ironstones and their overlying soils (Cave et 

al., 2003). The iron oxide minerals associated with the ironstone have been shown to have a 

high affinity for arsenic and molecularly similar phosphorus, resulting in the high 

concentrations which have been found within the basin (Palumbo-Roe et al., 2005). 

Figure 1 shows the locations of potential contaminant sources present in the Nene basin. 

Ironstone bedrock is primarily located in the in the centre, north eastern and south western 

parts of the basin. These ironstone deposits are capped by glacial diamicton at high altitude.   

The major towns of Daventry, Kettering, Wellingborough and Rushden, as well as many 

small villages and the road network, represent potential sources of urban street dust pollutants 

present in the basin. Sewage treatment facilities are located throughout the Nene basin, the 

large facility at Billing processes a large proportion of sewage from Northampton and the 

surrounding area.  

The basin has a mean annual rainfall of 638mm (standard deviation of 67mm) and mean 

monthly rainfall of 53.1mm measured at Althorp over the previous 140 years. Little rain fell 
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during the initial part of the study period from January 2011 to April 2012 (a mean of 

23.7mm per month; measured at the Northampton, Moulton Park climatological station) 

(Figure 2).  The period from April 2012 to December 2013 was then characterised by high 

rainfall (a mean of 88.7mm per month), therefore the study period represents a transition 

from a period of drought to a period of successive high flows, with major overbank flows 

occurring during April, July, October, November and December 2012. Rainfall in the 

monitoring period was therefore a-typical when compared to historical averages. 

Methods 

 

Fine sediment sampling was conducted in the upper and middle Nene basin between the 

source of the Nene, south of Daventry, to downstream of Wellingborough and Rushden Error! 

Reference source not found.. Samples of suspended sediment were collected using time-

integrated suspended sediment traps based on the design of Philips et al. (2000). The traps 

were deployed at 8 locations in the major tributaries of the Nene at 0.6 of the water depth at 

the time of trap installation Error! Reference source not found.. The traps were emptied at 

monthly intervals between September 2011 and March 2013. 

Overbank sediment was collected from the leaves of riparian vegetation (Comfrey; 

Symphytum officinale and Stinging Nettle; Urtica dioica) following the methods of Walling 

et al. (1997) immediately after water levels had receded after each of four overbank events in 

April, July, October and November 2012. The vegetation was washed using native river 

water into a 5l plastic container before the sediment and water were transported to the 

laboratory for analysis. 

Sediment stored on channel beds was sampled using the re-suspension method developed by 

Lambert and Walling (1988). A plastic tube of ~0.4m diameter was pushed into the river bed 

to create a seal and prevent sediment escaping during the experiment. The water and channel 

bed were then disturbed to an approximate depth of 5 cm using a wooden pole before a 1l 

sample of the contained water and re-suspended sediment were collected for analysis. The 

depth of water inside the cylinder and mass of recovered sediment was also recorded so that 

the mass of sediment stored on the bed could be determined. Sampling was repeated three 

times at each ~50m river reach and the sediment was amalgamated prior to trace metal and 
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nutrient extraction and analysis. Sampling was performed quarterly for six repetitions in June 

2011, September 2011, January 2012, June 2012, September 2012 and February 2013. 

Samples of potential sediment sources were recovered from the upper and middle Nene basin. 

Sediment sources were classified as surface agricultural land, channel banks and urban street 

dusts. In total 247 samples were collected from the top 2cm of agricultural land of which 39 

were from the ironstone lithology. Sixty five samples were collected from areas of visibly 

eroding channel banks and 21 samples were collected from the dusts deposited at the sides of 

major streets and roads within the catchment. Samples of agricultural topsoils and channel 

banks were retrieved using a non-metallic trowel. Road dust samples were collected using a 

dustpan and brush.  

In the laboratory all samples were oven dried at 40°C before being manually disaggregated 

using a pestle and mortar. Sediment source samples were sieved to <63um to produce a 

particle size distribution comparable to that of the fine sediment transported or deposited by 

the Nene. Concentrations of arsenic (As), copper (Cu), lead (Pb), phosphorus (P) and zinc 

(Zn) were measured using a Thermo Scientific iCAP 6500 Duo View inductively coupled 

plasma optical emission spectrometer. Around 0.8g sub-samples of sediment were digested in 

10ml of Aqua Regia at 180°C for 20 minutes in a CEM Mars 6 microwave digestion unit. 

The percentage of each element recovered by the analysis was determined using Canadian 

Stream Sediment Reference Material STSD-1 (Table 1). The results presented were not 

corrected for extraction efficiency. 

Sediment particle size was quantified as specific surface area which was measured using a 

Malvern instruments mastersizer 2000 laser granulometer. Prior to analysis, organic matter 

was removed using hydrogen peroxide pre-treatment for 24 hours, followed by 4 hours of 

heating at 80°C (Gray et al., 2010). The sediment was then disperesed with sodium 

hexametaphosphate and 2 minutes of ultrasonic dispersal in a Malvern 2000 MU wet sample 

dispersal unit.Sediment particle size was quantified as specific surface area (SSA) calculated 

on the assumption that the sediment particles were roughly spherical. 

Organic matter content was determined using loss on ignition at 450°C. Approximately 1-2g 

of soil or sediment was placed into a Carbolite muffle furnace and LOI was calculated using 

the pre combustion dry sample mass and the post combustion sample mass (Grimshaw et al. 

(1989). 
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The concentrations of the pollutants found in the sediment were compared to the 

Environment Agency draft sediment quality guidelines sediment quality criteria for England 

and Wales predicted effect levels (PELs). The PELs determine the potential of the pollutants 

to cause adverse environmental impacts. The PELs determine the potential of the pollutants 

to cause adverse environmental impacts. The PELs, are specified as As 17 mg kg-1, Cu 197 

mg kg-1, Pb 91 mg kg-1 and Zn 315 mg kg-1 (Hudson-Edwards et al., 2008). The PEL 

represents the lower limit of the range of concentrations associated with adverse biological 

effects. 

 

Results 

 

The results are structured into four sections, the first examines the pollutant concentrations in 

the sediment source samples. The dynamics of sediment associated pollutants originating 

from urban street dusts, sewage effluent and natural geological inputs are then investigated in 

the subsequent three sections. In each section the spatial locations of the highest pollutant 

concentrations were examined before the changes in concentration between the period of 

drought and high flow were identified. The relationships between sediment particle size, 

organic matter and pollutant concentration were then examined. The concentrations of the 

pollutants found in the sediment were finally compared to the Environment Agency draft 

sediment quality guidelines sediment quality criteria for England and Wales predicted effect 

levels (PELs).  

 

Pollutant sources and concentration distributions 

 

An examination of the concentrations of the six trace metals and nutrients in the potential 

sources of fine sediment identified in Figure 1 show that high As and P concentrations are 

predominantly associated with Ironstone soils (Table 2). Cu, Pb, and Zn have high 

concentrations in urban street dusts. No sample of sewage effluent could be obtained from 

within the Nene basin, however, Edwards and Withers (2008) estimate dissolved P (PO4) 

concentrations in sewage effluent in the UK to be typically 2.90 mg l-1 with an upper limit of 

13.1 mg l-1. Foster et al. (1997) showed dissolved P concentrations in the nearby River Avon 
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(Warwickshire) did not exceed 10 mg l-1 over a one year period (1995) prior to the 

implementation of the Urban Waste Water Treatment Directive. A major decrease in PO4 in 

the water of the Nene was recorded after 1998, where concentrations were reduced from 2 - 3 

mg l-1 to 0.1 - 0.2 mg l-1 (Tye et al., 2013).While discharges are primarily in dissolved form as 

opposed to particulate form, P has been shown to adsorb to particulate sediment from 

solution (Fox et al., 1989). 

 

The concentrations of Cu, Pb and Zn in the sediment are most similar to the non-ironstone 

topsoils and channel banks within the basin (Figure 3), higher concentrations are however 

present in some sediment samples. The range of As concentrations in the sediment are 

comparable to those found in the non-ironstone topsoils and channel banks. Phosphorus 

concentrations in the sediment follow a distribution comparable to the ironstone topsoils, 

however, some concentrations exceed those found in these soils. There is little difference 

between the range of contaminant concentrations found in the channel bank sediment and 

found in the suspended sediment.  

 

 

Urban street dust pollutants 

 

In this section analysis will focus on Pb concentrations as Pb behaves in a very similar way to 

Cu and Zn as all three appear to be closely associated with street dust inputs. Pb 

concentrations in channel bed sediment were highest close to Northampton (Figure 4; Figure 

6), supporting the suggestion in Table 2 that urban street dusts are the primary source of these 

pollutants. Likewise, in overbank sediment, concentrations were low in the sampling sites 

upstream of Northampton and reached their peak in the centre of the town (Figure 5). The 

concentrations in overbank sediment then reduced with increasing distance downstream of 

the town.  

The changes in sediment-associated Pb concentration over the study period were examined in 

more detail in the channel bed T10 and T11 samples and suspended sediment at the 

Northampton and Wellingborough sites, where they were highest (Figure 4 site locations are 

marked in Error! Reference source not found.). Concentrations in channel bed sediment 
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and at the Wellingborough suspended sediment sampling site did not show a clear difference 

between the periods of drought (before April 2012) and high flows (after April 2012) (Figure 

6). In contrast, Pb concentrations in the Northampton suspended sediment sampling site 

declined consistently throughout the study period.  The result suggests that the stores of 

contaminants present in street dusts within the almost entirely urbanised T10, T11 and 

Wellingborough catchments are not being depleted by the successive periods of heavy 

rainfall and high flows, with the possible exception of the T11 sampling site in February 

2013. There was no significant reduction in mean Pb, Cu or Zn concentrations in the 

overbank sediment deposited in the four overbank events (Kruskal Wallis p >0.05) (Figure 

10). 

Lead, copper and zinc concentrations are significantly correlated (p <0.05) with LOI and SSA 

upstream of Northampton (see online supplementary material), but with low r2 values (15% 

and 29% respectively). LOI and SSA are not significantly correlated downstream of 

Northampton, where high pollutant concentrations were found or in the urban street dust 

source samples. Therefore the LOI and SSA of the sediment appears to have little impact on 

urban street dust concentrations. 

 

Natural Arsenic inputs 

 

Arsenic concentrations appear to originate from natural diffuse inputs and concentrations in 

channel bed sediment in June 2011 were the highest in the two sampling sites at T10 and T11 

(Figure 4, site locations are given in Error! Reference source not found.), which are 

catchments with lithologies dominated by ironstone (Figure 1). In overbank sediment As 

concentrations remained fairly constant throughout the entire catchment and are generally 

lower than concentrations found in the ironstone soils.  

Arsenic concentrations in the temporarily stored channel bed sediment, suspended sediment 

and overbank sediment remained fairly consistent throughout the study period (Figure 8; 

Figure 10), and concentrations were not significantly correlated with either LOI or SSA (see 

online supplementary material). 
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Sewage effluent discharges 

 

Phosphorus concentrations in the June 2011 channel bed sediment are highest in the sampling 

locations close to Dodford and Heyford (Figure 4site locations are given in Error! 

Reference source not found.). The Heyford site is in close proximity and downstream of a 

sewage treatment plant, and Dodford includes the large town of Daventry in its upstream 

catchment (Figure 1).. Low As / P ratios were found in this sediment (0.0025) compared to 

those in the ironstone soil (0.0230), agricultural soils (0.0167) or channel bank sediments 

(0.0245) suggesting that inputs from soils were not the primary source of the P. Phosphorus 

concentrations in overbank sediment are also low upstream of Northampton and increase 

within the town (Figure 6). However, unlike Pb, concentrations of P continued to increase 

downstream of the town, suggesting large inputs of dissolved phosphorous from around the 

vicinity of Billing sewage treatment works. 

The sampling locations at Dodford and Heyford had the highest P concentrations and were 

selected for further investigation.  Prior to the April 2012 flood very high concentrations of P 

was found in sediment stored  in the channel beds (Figure 7). After the first high flow in 

April 2011, P concentrations in channel bed sediments at both sites were reduced by ~30-

40%. At Heyford concentrations continued to gradually reduce during the subsequent high 

flows between July 2012 and February 2013 while at Dodford concentrations remained 

relatively constant. The concentrations in suspended sediment follow a comparable trend to 

the channel bed sediment. Concentrations are elevated prior to the high flow in April 2012 

before being reduced by ~30 % to 50% after the event. Like channel bed sediment, 

concentrations remained fairly consistant in the months of sampling prior to the April 2012 

flood and the period after the April 2012 flood. P concentrations in the overbank sediment do 

not significantly decrease over the four flood events (Kruskal Wallis p >0.05; Figure 10) 

Phosphorus concentrations are significantly correlated (p <0.05) with LOI and SSA upstream 

and downstream of Northampton. However, R2 values are fairly low (upstream 25% and 21% 

respectively) (downstream 23% and 23% respectively).  

Comparisons with predicted effect levels 

 

Concentrations of the urban street dust pollutants were below the draft predicted effect levels 

(PEL) in 96.25% (Pb), 92% (Zn) and 100% (Cu) of sediment samples. The Pb and Zn PELs 



12 

 

were exceeded in sampling sites close to urban areas (Northampton and Wellingborough 

suspended sediment and T10 channel bed and St Georges and Bridge street sampling sites.  

Arsenic concentrations exceed the PEL (of 17 mg kg-1) in 60% of sediment samples. 

However, the average concentration of 24.95 mg kg-1 found in channel banks is only 

exceeded in 13.5% of overbank, suspended and channel bed sediment samples, indicating 

inputs are mostly below concentrations found in sediment sources which are not associated 

with the Ironstone geology. Flow had no observable effect on when As PELs were exceeded 

(Figure 7). 

Sediment quality guidelines are not available for P, however P concentrations could be 

compared to the soil and channel bank samples to determine if in-stream enrichment in P is 

taking place through the adsorption of dissolved P that probably derives from sewage effluent 

discharges. For sediment stored on the channel beds the median P concentration of 1354 mg 

kg-1  in surface agricultural soils was exceeded in 91% of samples in June 2011, 84% in June 

2011, 91% Jan 2011, 66% in June 2012, 25% in September 2012 and 28% in February 2013. 

The reduction in exceedances over the study period represents the previously shown flushing 

and dilution of P during high flows. The concentration of phosphorous in sediment also 

exceeded the concentration found in soils in 55 of the 58 overbank sediment samples 

collected. In suspended sediment, P concentrations exceed those found in agricultural soils in 

almost all cases. Exceptions are the Wellingborough sampling site where 46% of samples are 

below the median concentration found in soils and the Knuston site where concentrations are 

lower in 25% of samples. The Wellingborough site is the only sampling location with no 

sewage treatment works present in its upstream catchment, and probably explains the lower 

concentrations of sediment P. The mean concentration of P in all sediment samples was 2308 

mg kg-1 (standard deviation of 1408 mg kg-1) with a maximum concentration of 9819 mg kg-

1. 

Discussion  

 

 

 

The concentrations of all contaminants appeared  to be primarily controlled by proximity to 

their source; which is a finding that has previously been identified in other catchments such 

as in the Rivers Aire and Calder by Walling et al. (2003) and in the Warwickshire Avon UK 

by Bowes et al. (2005). The concentrations of urban heavy metals and As were shown to 

decrease with increasing distance from pollutant inputs. In contrast a slight downstream 

increase in sediment-associated P concentration was found, which is a finding also described 
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by Owens and Walling, (2002) in the river Swale and by Owens et al. (2001) in the rivers 

Aire and Calder. 

There were different trends in the contaminant concentrations during different flow 

conditions. Sediment-associated heavy metal contaminants have previously been shown to 

accumulate on urban channel beds during periods of low flow (Foster and Charlesworth, 

1996; Ballantine et al., 2006). Within the Nene during the period of drought in June 2011, P 

had accumulated to concentrations well in excess of those in soils and channel banks or in 

effluent discharges. In contrast As and the urban road dust pollutants showed no evidence of 

having accumulated to concentrations in any of the river sediment samples to levels higher 

than their potential sources. None of the contaminant concentrations were significantly higher 

in the first April flood that occurred after the period of drought, than in the subsequent floods 

taking place during a sustained period of high flows (Kruskal Wallis p >0.05) (Figure 10). 

The ‘first flush’ effect is based upon the likelihood of a greater supply of pollutants being 

available for transport after a period of drought (Lee et al., 2002) and is often used to explain 

the well documented hysteresis effect in urban rivers (Lawler et al., 2006). The findings 

observed for overbank sediment in the Nene therefore suggest that there was no ‘first flush’ 

effect. Likewise, examination of Pb and As concentrations in suspended and channel bed 

sediment showed that there was no significant difference in concentration in suspended and 

channel bed sediment under different flow conditions. The exception is Pb in the 

Northampton suspended sediment sampling site where a reduction in concentration was 

found in higher flows which may be a result of the dilution of urban inputs by cleaner 

sediments from the rest of the catchment. The potentially unlimited As stores available in the 

channel banks and surface agricultural soils provide a potential explanation as to why there 

was little variability in its concentration through time and under any flow condition. The lack 

of temporal variability also suggests that inputs from As-rich ironstone soils, or changes in 

sediment sources, are not causing changes in sediment- associated As concentration. Low 

connectivity is therefore suggested between the ironstone soils of the basin and the river 

channel. There was no clear reduction in P concentration over the study period in the 

overbank sediment collected from the Nene’s main channel; however there was a clear 

reduction in the suspended and channel bed sediments in the Nene’s tributaries. A possible 

explaination for this pattern is that either the stores of channel bed sediment trapped between 

the locks along the main channel are not depleted during sucessive floods, or that fresh 

sewage effluent discharges are replenishing P stores in the Nene’s main channel between or 
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during flood events. The absence of locks in the Nene’s tributaries likely mean that stored P 

can be more readily flushed from channel beds than in the main channel with the presence of 

extensive locks installed to aid navigation. The wash load paradigm (Garcia, 2007) ignores 

sediment storage and assumes that sediment moves directly with flow. However, it has been 

shown that a sediment particle is at any given time is more likely to be in storage than in 

active transport (Meade, 2007). A downstream reduction in sediment-associated reduced 

mercury inventories in the South River, Virginia, USA, indicated that sediment typically 

moves 10 km (95% confidence interval: 5–25 km) before entering storage (Pizzuto, 2014). 

The downstream reduction in Cu, Pb and Zn concentrations observed in the Nene suggests 

that sediment may be entering storage shortly downstream of Northampton. The implication 

of this finding is that where catchment management seeks to reduce suspended pollutant 

loads, the long-term storage of pollutants on channel beds or off-channel may require the re-

evaluation of the best management practices (Pizzuto et al., 2014).  

Contaminant concentrations have previously been shown to be positively correlated with 

decreasing sediment particle size, or increasing specific surface area (Horowitz 1991; 

German and Svensson, 2002). Therefore, selective transport processes can often cause 

different particle sizes to be transported and therefore different pollutant concentrations to be 

observed in different parts of a catchment (Owens et al., 2001). Within the Nene, sediment 

SSA was shown to have little impact on any of the pollutant concentrations. Horowitz and 

Elrick (1987) showed that pollutants such as Pb and Zn are often associated more with larger 

particles within the <63µm fraction of urban dusts, providing a possible explanation for this 

lack of effect. A second explanation is that only a small proportion of Pb transported to 

oceans (<1%) has been shown to be in soluble form (Meybeck and Helmer, 1989). The lack 

of dissolved Pb inputs, which can bind to the surface river sediments (Horowitz 1991), likely 

is the reason that concentrations were not shown to increase in sediments to concentrations in 

excess of the street dust sources. Similarly, As has been shown to primarily be associated 

with the iron oxide fraction of soils within the Nene basin (Cave et al., 2003) and therefore is 

bound within the mineral structure of transported sediments. Therefore, As also has little 

opportunity to adsorb to the surface of sediment particles, explaining its lack of correlation 

with SSA. Palumbo-Roe et al. (2005) showed that the iron oxide minerals in the soils and 

sediments of the Nene basin have a high chemical affinity for P. The scavenging of the 

dissolved P in discharged effluent by sediment is a likely explanation for the very high 

concentrations of P found in the river sediment in comparison to the potential sediment 
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sources. It also explains the different dynamics observed between P and other pollutants. 

Particle size had only a small impact on P concentrations and the chemical affinity of the 

sediment for P shown by Palumbo-Roe et al. (2005) therefore appears to be of greater 

importance than its surface area alone. 

It has been previously demonstrated that Cu, Pb, and Zn can be enriched by up to three orders 

of magnitude within the organic fraction of sediments (Hirner et al., 1990) and have also 

been shown to be associated with the organic fraction of urban street dusts (Robertson et al., 

2003). Relationships between As and Pb and LOI are very weak in the Nene (R2 0.0055 - 

0.02) (see online supplementary material). Therefore, the association of pollutants with the 

organic fraction of the sediment is probably not an important control on these contaminant 

concentrations within the Nene basin. LOI was shown to be more strongly related to sediment 

P concentration. This relationship may be the result of the association of P with organic 

matter or the scavenging of P by aquatic organisms. 

The urban contaminants were below the PELs in the majority of sediment samples, except for 

those samples collected from close proximity to urban areas. Therefore, these contaminants 

are unlikely to have a large detrimental effect on environmental quality extensively 

throughout the Nene catchment. Cave et al. (2003) showed that only ~ 2 to 9% of As in the 

ironstone soils close to Wellingborough is bioavailable. Therefore, there is a reduced 

potential for environmental harm from As pollution than its high concentrations suggest. The 

P concentrations of up to 9000 mg kg-1 in the Nene’s sediments are very high in comparison 

to previously investigated lowland agricultural catchments. For example concentrations of 

783 to 1355 mg kg-1 were found in the Pang and Frome catchments by Collins et al. (2005). 

Concentrations of P were shown to be fairly constant before and after the April 2012 flood 

suggesting that an equilibrium may have been reached between P discharges and the capacity 

of the sediment so adsorb it. Research in the River Swale in Yorkshire has indicated in the 

mass balance of a 55 km river section that up to 50% of the soluble reactive phosphorus 

(SRP) load was lost from the water column (House and Warwick, 1998). Therefore, given the 

high chemical affinity of the Nene’s sediment for P (Palumbo-Roe et al., 2005) it would be 

expected that P would rapidly associate with the sediment. In the Anglian District River 

Basin Management Plan it was determined that phosphate is a leading cause of environmental 

degradation in the river Nene (Environment Agency 2009). This study has shown that the 

sediment is scavenging very high concentrations of phosphorus in the Nene. The role of this 
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accumulation on environmental quality was explored by Tye et al. (2013) who determined 

that sediment is acting to decrease soluble reactive phosphorus (SRP) concentration in the 

river water. However, it was identified that there was potential for sediment to act as a source 

of SRP if its concentration in river water falls. Further research is therefore required to 

determine if sediment is likely to act as a P source when sediment with a very high 

phosphorus concentrations (up to 9819 mg kg-1) is flushed from channel beds during high 

flow events. Additionally, it should be identified if the sediment within the Nene is able to 

become fully saturated by P during periods of extreme drought, removing its ability to act as 

a P sink. 

Conclusions 

 

It was found that proximity to sediment source was the dominant factor controlling sediment-

associated As, Cu, Pb, and Zn concentrations in the Nene catchment. Phosphorus 

concentrations were also heavily controlled by proximity to source, however, concentrations 

did not decrease with increasing distance downstream of the source. Concentrations of As, 

Cu, Pb, and Zn were not significantly higher during periods of low flow than during periods 

of high flow and did not decrease over successive flood events. Phosphorus concentrations 

accumulated to very high concentrations in tributary bed sediment during periods of low 

flow, before the contaminated sediment was flushed away during high flows. There was, 

however, no reduction in P concentration in the Nene’s main channel over successive flood 

events. The accumulation of P to very high concentrations was explained by the discharge of 

dissolved sewage effluent into the river and the scavenging of P by the sediment. The other 

pollutants originated primarily in particulate form so were limited in concentration by that of 

their original sources. Sediment particle size and organic matter content were suggested to be 

more minor controls on sediment-associated contaminant concentrations than proximity to 

sediment source, or flow. The lack of a reduction in sediment concentration over successive 

flood events suggests that the stores of pollutants in the catchment were not depleted by 

multiple floods or that they were replenished between flood events. 

Concentrations of Cu, Pb and Zn were indicated to be predominantly below PELs and pose 

little risk of environmental damage in the Nene basin. Whilst concentrations of As were 

found to be very high; previously published research has shown that the majority of the As is 

not bioavailable and therefore poses little risk. Sediment associated P was found in very high 
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concentrations and poses a significant environmental risk if the P is or should become 

bioavailable. 
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Figure 1: The Nene basin showing potential sources of pollutants (A) and the suspended 

sediment, recently deposited overbank and channel bed sediment sampling locations (B). 

 

 

Figure 2:  Total monthly rainfall and the highest daily total rainfall per month throughout 

the monitoring period.  The historical average total monthly rainfall measured at Althorp 

over the previous 140 years is also plotted for comparison. 

 

 

 

Figure 3: Distributions of the contaminants in pollutant sources, suspended sediment 

(including overbank deposits) and channel bed sediment. 

 

Figure 4: Concentrations of arsenic, lead and phosphorus in channel bed sediment in June 

2011 (mg kg-1).  

 

Figure 5: Concentrations of arsenic, lead and phosphorus in recently deposited overbank 

sediment (mg kg-1).  

 

Figure 6: The relationships between distance from Northampton and As, Pb and P 

concentration in overbank deposited sediment, negative values are upstream of 

Northampton, based upon the methodology used by Pizzuto (2014). 

 

 

 

Figure 7: Sediment-associated lead concentrations in channel bed sediment at the T10 

and T11 sampling sites (A) and suspended sediment of the Northampton and 

Wellingborough sampling sites (B and C). 

 

 

Figure 8: Phosphorus concentrations and storage in channel bed sediment (A) and 

suspended sediment (B and C) of the Dodford and Heyford sampling sites. 
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Figure 9: Arsenic concentrations and storage in channel bed sediment (A) and 

suspended sediment (B and C) of the Weedon 2 and Northampton sampling sites. 

 

 

Figure 10: Mean concentrations of trace elements in sediments deposited overbank after 

the April, July, October and November high flow events, with standard deviation. 

 

 

Table 1: The amount of sediment element concentration recovered by the microwave 

digestion and ICP analysis procedure, determined using a certified reference material 

analysed for three repetitions (a certified concentration for phosphorus was not available).  

Element 
(mg kg-1) 

Measured concentration 

 

Certified 

concentration 

Percentage 

recovered 

 Average Standard deviation   

As  17.50 0.12 23 76.17 

Cu 19.51 1.41 36 54.19 

Pb 28.75 0.35 35 82.14 

Zn 126.32 3.09 178 70.97 

 

Table 2: Median and median absolute deviation (MAD) concentrations of trace metals and 

nutrients present in potential sediment sources in the Nene basin. 

 

Surface agricultural 

soils (n = 247 ) 

Channel banks      

(n= 65 ) 

Ironstone soils      

(n = 39 ) 

Urban street dusts        

(n = 21 ) 

Source property 

(mg kg-1) 
Median MAD Median MAD Median MAD Median MAD 

As 22.62 9.23 24.95 9.44 56.83 12.3 17.68 1.64 

Cu 21.62 4.2 20.75 4.52 20.36 4.68 222.47 49.74 

P 1354 374 1018 249 2431 519 1319 160 

Pb 30.98 7.83 26.47 7.18 42.9 9.77 107.45 17.62 

Zn 85.27 23.06 85.82 12.68 127.18 19.85 853.82 290.51 
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Table 3: Spearman rank significance and correlation coefficients for pollutants, SSA and LOI 

upstream and downstream of Northampton. 

Upstream of Northampton 

  
Pollutant LOI 

 

SSA 

 

 
p r2 p r2 

As .087 0.018 .615 0.002 

Cu .000 0.109 .000 0.126 

P .000 0.250 .000 0.211 

Pb .000 0.149 .000 0.288 

Zn .000 0.113 .000 0.206 

     

Downstream of Northampton 

  

Pollutant LOI 

 

SSA 

 

 
p r2 p r2 

As .354 0.012 .979 0.000 

Cu .000 0.262 .136 0.030 

P .000 0.234 .000 0.235 

Pb .091 0.039 .510 0.006 

Zn .003 0.112 .410 0.009 

 

 

Figure S1: Relationships between Lead, LOI and SSA in sediment samples upstream and 

downstream of Northampton. 

 

 

Figure S2: Relationships between Arsenic, LOI and SSA in sediment samples upstream 

and downstream of Northampton. 

 

 

Figure S3: Relationships between Phosphorus, LOI and SSA in sediment samples upstream 

and downstream of Northampton. 
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