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Spatial dynamics, thermalization, and gain clamping in a photon condensate
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We study theoretically the effects of pump-spot size and location on photon condensates. By exploring
the inhomogeneous molecular excitation fraction, we make clear the relation between spatial equilibration,
gain clamping, and thermalization in a photon condensate. This provides a simple understanding of several
recent experimental results. We find that as thermalization breaks down, gain clamping is imperfect, leading to
“transverse spatial hole burning” and multimode condensation. This opens the possibility of engineering the gain
profile to control the condensate structure.
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I. INTRODUCTION

The laser has long served as a prototype for phase transitions
in driven-dissipative systems [1,2]. While for a single-mode
cavity the transition is mean-field-like, in a multimode cavity
[3] spatial fluctuations are possible, enabling nontrivial critical
behavior. In the last decade, there has been much interest
in other examples of phase transitions in driven-dissipative
systems. In part, this has been motivated by experiments
on polariton condensation [4–6]. However, there are also
experiments on cold atoms in optical cavities [7,8] and
proposals for experiments in “coupled cavity arrays” [9–11] of
superconducting circuits [12] or hybrid quantum systems [13].
There are also intriguing connections between the dynamics
of these quantum systems and the study of similar questions
on the dynamics of classical “active matter” [14], as studied
in photoexcited colloidal systems [15]. These systems all
address common questions of how a flow of energy through
the system affects the collective dynamics of the system and
the emergence of spatial structures.

Closely related to both polariton condensates and photon
lasers are experiments on Bose-Einstein condensation (BEC)
of photons [16] in organic-dye-filled microcavities. Unlike
polaritons, these systems have no strong matter-light coupling
and so the normal modes are noninteracting photons. However
thermalization is possible [17] via the dye molecules. If a
photon can be absorbed and emitted many times before it
leaves the cavity, the photon gas achieves thermal equilibrium
with the dye. Thus, by adjusting the rates of absorption and
emission or cavity decay, one may interpolate between an
equilibrium BEC and a strongly dissipative dye laser [18]. We
will refer to condensation throughout this paper, but we present
phenomena that can be interpreted either as lasing or BEC.
Following these experiments many theoretical works [19–31]
explored topics including equilibration, phase coherence, and
photon statistics of the photon BEC, and later experiments
studied photon statistics [32].

Recently, two experiments [33,34] studied the spatial
profile and dynamics of the photon BEC and their dependence
on pump-spot size and location, observing behavior beyond
the scope of existing models. Spatial profiles below threshold
were also previously studied in [17]. These works motivate
this paper. Studying spatially varying systems moves away
from the domain of simple “mean-field” models of lasing
or phase transitions: spatial modes allow for non-mean-field

critical behavior at phase transitions, and for spatial decay of
coherence. This has been explored experimentally for polari-
tons in one [35] and two dimensions [36]. Considering such
critical behavior in extended systems, theoretical work has
shown that features beyond the equilibrium classification [37]
can arise, such as new critical exponents in three dimensions
[38], the destruction of algebraic order in two-dimensional
systems [39], and potential novel universality classes in one
dimension [40]. Multimode cavity systems—i.e., spatially ex-
tended systems—also allow for transverse pattern formation,
as has been studied in lasers [3] and for polaritons [41–44].
Very recently, there has been an experimental realization
of a system of cold atoms in a multimode optical cavity
[45]. An important distinction exists between such atomic
experiments, where photons couple to density or spin waves of
the atoms, with the atom number being conserved, vs exciton-
polaritons where photons couple to the exciton itself, creating
or destroying excitons. Nonetheless, these systems provide
an additional complimentary perspective on the physics of
driven-dissipative matter-light systems.

The aim of this paper is to introduce a model capable of
describing how the size and shape of the pump profile affects
the spatial profile of a photon BEC. In order to describe the
spatial profile of a condensate, a widely used approach is to
derive order parameter equations, i.e., a partial differential
equation determining the time evolution of a field �(r),
representing the condensate order parameter. The equations
determining the spatial profile of a condensate are distinct
for closed (conservative) and open (dissipative) systems. In a
closed BEC, this equation is the Gross-Pitaevskii equation [46]
(GPE), which can be written in the form i�∂tψ = δE[�]/δ�∗.
Such an equation conserves an energy functional E[�], with
corresponding phase evolution of the order parameter. In
contrast, for a purely dissipative system, the time-dependent
Ginzburg-Landau equation [47] (GLE) describes irreversible
relaxation, ∂tψ = −�δE[�]/δ�∗, so that the final state is a
state of minimum energy. A classification of such order pa-
rameter equations has been given by Hohenberg and Halperin
[37]. Combining both conservative and dissipative terms leads
to the complex GPE or GLE [48], widely used for polariton
condensates [49–51]. In some cases, such equations can show
critical behavior outside the Hohenberg-Halperin classification
[38]. Similar equations also arise in nonlinear optics [3], where
dispersive shifts (i.e., nonlinear dielectric functions, depending
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on the field amplitude |�|2) compete with dissipative terms
describing loss and gain; for example, in a class-A laser, the
dynamics of the gain medium can be adiabatically eliminated,
leading to a complex Ginzburg-Landau equation of motion for
the field amplitude [1].

In this paper we make use of a different approach,
considering density matrix equations of motion, rather than
order parameter equations. This is because order parameter
equations generally only crudely model relaxation to a
thermal state; in particular, the order parameter normally
only describes the macroscopically occupied mode(s), and
neglects thermal fluctuations. For many examples of pattern
formation in nonlinear optics this is entirely appropriate: no
thermalization occurs, and this is accurately reproduced by
the order parameter equation. However, for photon BEC,
thermalization is a key feature of the observed behavior, and so
a complete model should be able to explain how this interacts
with spatial pattern formation. Extensions of order parameter
equations to include energy-dependent gain rates have been
developed to address this for polaritons [52,53]. By including
also noise terms phenomenologically, these can yield thermal
distributions. In this paper we instead follow an approach
that proceeds directly from our microscopic model [22,29].
We show that for weak coupling one can derive a tractable
model combining spatial dynamics with energy relaxation.
This model describes how the spatial profile is determined by
the competition between energy relaxation and loss, and can
explain the recent experiments [33,34].

The remainder of this paper is organized as follows.
Section II describes our model of the experiments, and derives
a master equation for the photon modes and electronic state
of the molecules, eliminating the fast dynamics of molecular
vibrations. From this model, we derive coupled equations for
the population of excited molecules, and the populations and
coherence of photon modes. Using these equations, Sec. III
discusses the steady-state properties of the photon cloud.
In Sec. III A we first show how, far below threshold, the
occupation of photon modes depends both on their energy
(controlling the rate of emission and absorption for that mode)
and on the overlap between the photon mode and the profile of
the pump. This behavior occurs at weak pumping because there
the excitation profile of molecules follows that of the pump.
The same approach allows us to understand how the pump
profile affects the threshold power required for condensation,
discussed in Sec. III B. Once above threshold, the profile of
excited molecules is significantly modified by the condensed
photons, via a kind of transverse spatial hole burning. We
discuss the consequences of this in Sec. III C. In Sec. IV
we then turn to study the early-time transient dynamics of
a condensate following an off-center pump. We show how the
spatial oscillations evolve due to reabsorption of cavity light,
leading ultimately to thermalization. Finally, Sec. V provides
some conclusions and outlook from our work.

II. MODEL

The photon BEC system consists of dye molecules cou-
pled to photon modes in an optical cavity [see Fig. 1(a)].
Each molecule has a complex optical spectra, due to the
rovibrational dressing of the electronic spectrum. Despite

(a) (b)

FIG. 1. (a) Cartoon of model system: molecules are represented
by two electronic states (HOMO and LUMO levels), dressed by
rovibrational excitations. (b) Gauss-Hermite eigenfunctions of a
harmonic oscillator.

this, one can nonetheless consider only two electronic states,
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO). Each of these levels
is however dressed by ladder(s) of rotational and vibrational
excitations of the molecules. As discussed in our previous
work [22,29], one may adiabatically eliminate the vibrational
states, leading to absorption and emission rates �(±δ) for
photon modes detuned by δ = ω − ωZPL from the zero-phonon
line (ZPL) of the molecule. This results in a model in which
the electronic state (HOMO or LUMO) of each molecule is
explicitly represented, while the effects of the rovibrational
excitations appear implicitly in the structure of the rates �(±δ)
discussed further below.

To incorporate inhomogeneous pumping we must consider
the overlap ψm(ri) between the transverse mode function of
photon mode m and a molecule at ri . We do not include
here effects of the longitudinal mode profile, as we consider
cases where only a single longitudinal mode is relevant (i.e.,
close enough to resonance with the gain medium). In these
cases, except for very high order modes, the longitudinal
mode profile does not vary significantly between the modes,
and so any effects of overlap between the longitudinal mode
profile and the excited molecules can be absorbed into a
constant factor in the definition of emission and absorption
rates. For the transverse modes, curvature of the cavity
mirrors leads to an in-plane harmonic trap, so that ψm(r) are
Gauss-Hermite functions [see Fig. 1(b)] in two dimensions
and the corresponding frequencies are harmonically spaced,
ωm = ωc + (mx + my)ε, where m combines both mx and my

indices. The “cavity cutoff” ωc is set by the cavity length. We
write the master equation describing the system as two terms,
∂t ρ̂ = M0[ρ̂] + Mint[ρ̂]. The bare part is

M0[ρ̂] = −i
∑
m

[ωmâ†
mâm,ρ̂] +

∑
m

κ

2
L[âm,ρ̂]

+
∑

i

�↑(ri)

2
L[σ̂+

i ,ρ̂] +
∑

i

�↓
2
L[σ̂−

i ,ρ̂], (1)

where L[X̂,ρ̂] = 2X̂†ρ̂X̂ − [X̂†X̂,ρ̂]+. The operator â
†
m cre-

ates a photon in mode m, and we assume all modes have decay
rate κ . The electronic state of molecule i is represented by
Pauli operators σ̂

x,y,z

i . In addition to coupling to the cavity
(see below), each molecule has a pumping rate �↑(ri), and
a noncavity decay rate �↓ incorporating fluorescence into all
modes other than the confined cavity modes. Other than the
inhomogeneous pump, M0[ρ̂] matches Refs. [22,29].
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The term Mint[ρ̂], describing molecule-photon interaction,
can be treated at various levels of approximation, according
to whether we include coherence between different photon
modes. Including such intermode coherence is numerically
expensive, and is only necessary when significant coherence
exists. The numerical cost arises because, if we truncate the
equations to consider Nm photon modes, the full coherence
matrix scales as N2

m. As discussed later, in order to keep all
significantly populated modes (when kBT � �ε), we need
relatively large values of Nm. Thus, with the full equations, it
is only feasible to simulate a few hundred picoseconds of time
evolution, far shorter than the time scale required to reach the
steady state. In what follows, we therefore first present the full
equations of motion, used to study transient dynamics, and then
introduce the “diagonal approximation,” providing a more ef-
ficient approach when intermode coherence can be neglected.

A. Fully coherent model

We denote the most complete form of the molecule-photon
interaction Mint[ρ̂] = Mfull

int [ρ̂], which takes the form

Mfull
int [ρ̂] ≡

∑
m,m′,i

ψ∗
m(ri)ψm′(ri)

(
K(δm′)[âm′ σ̂+

i ρ̂,â†
mσ̂−

i ]

+K(−δm)[â†
mσ̂−

i ρ̂,âm′ σ̂+
i ]

) + H.c. (2)

The complex function K(±δm), discussed next, encodes the
molecular absorption (emission) rate vs the detuning δm =
ωm − ωZPL between mode m and the molecular zero-phonon
line (see dashed line in Fig. 2).

For simple molecules, K(δ) can be calculated explicitly
[29]. Alternatively, one may use experimentally measured
spectra �(δ), and find K(δ) by analytic continuation; causality
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FIG. 2. (a) Absorption and fluorescence spectrum of rhodamine
6G on a (a) linear or (b) logarithmic scale. Points are experimental data
[54] (for dye in ethylene glycol); lines show the fits �(±δ) satisfying
�(δ) = �(−δ)eβδ at room temperature. Here and throughout, we plot
angular frequency, ω = 2πf . To indicate this we write the units as
2π THz.

requires that K(δ) be analytic in the lower half plane. As noted
previously [16,17,22], thermalization of photons requires
that �(δ) obey the Kennard-Stepanov (KS) relation [55–57],
�(δ) = �(−δ)eβδ . We therefore use a function �(δ), shown
in Fig. 2, that fits the experimental spectra, while satisfying
the KS relation. The procedure used to find this function is
described in the Appendix. This determines �(δ) up to a
prefactor. We denote �max = max[�(δ)], and discuss below
how to estimate �max from experimental results. The function
K(δ) is then found by standard analytic continuation of �(δ)
to the lower half plane.

Note that while Eq. (2) includes coherence between photon
modes, it neglects coherence between molecules. This is
because dye and solvent molecules collide frequently caus-
ing rapid dephasing. Intermode coherence will be required
to understand the dynamics, as studied experimentally in
Ref. [34]. It is important also to note that by including
intermode coherences, Eq. (2) does not make the “secular
approximation,” which discards those bath-induced terms
which are time dependent in the interaction picture. The secular
approximation is often introduced as a necessary condition for
having a completely positive master equation [58]. However
several recent papers suggest that the secular approximation
can lead to incorrect predictions [59–61]. As discussed later,
the current model falls into this class: the experimentally
observed oscillations of the photon density can only occur
if the molecular emission produces intermode coherence; an
incoherent state would show no beating. Beyond the secular
approximation, there may be instabilities, particularly at large
�max. However, for large �max the Markov approximation fails
[61]. For the parameters we consider, our equations are stable.

Rather than explicitly simulating the density matrix ρ̂, we
use the master equation above to write coupled equations
of motion for the (Hermitian) photon correlation matrix
[n]m,m′ = 〈â†

mâm′ 〉 and the coarse-grained excitation den-
sity, f (r) = ∑

i δ(r − ri)〈σ̂+
i σ̂−

i 〉. Within the semiclassical
approximation [29] [n]m,m′ and f (r) obey a closed set
of equations. The semiclassical approximation means that
we neglect correlations between the state of the photons
and the dye molecules, so that expectations of products
of operators can be replaced by products of expectations.
These semiclassical equations can be written in a particularly
compact form by defining a number of other quantities.
We define the matrices [K±]m,m′ ≡ δm,m′K(±δm), the mode
function matrix [�(r)]m,m′ ≡ ψm(r)ψm′(r), the overlap matrix
f ≡ ∫

ddrf (r)�(r), and [h]m,m′ ≡ δm,m′ (iωm − κ). We thus
write the equations

∂tn = hn + fρ0K−(n + 1) + (f − 1)ρ0K†
+n + H.c., (3)

∂tf (r) = −�tot
↓ (n,r)f (r) + �tot

↑ (n,r)[1 − f (r)], (4)

where ρ0 is the density of molecules. Note that in the first
equation, while n,f are Hermitian, the matrices h,K± are
not. In the equation for the excitation density f (r), the total
absorption and emission rates are

�tot
↑ (n,r) = �↑(r) + 2Re{Tr[�(r)nK+]}, (5)

�tot
↓ (n,r) = �↓ + 2Re{Tr[�(r)K−(n + 1)]}, (6)
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incorporating also stimulated emission to and absorption from
the cavity modes. To simulate these equations numerically,
we discretize f (r) on a grid of Nx spatial points, and then
use an adaptive time-step Runge-Kutta approach to evolve the
coupled equations.

From these equations, we are typically interested in deriving
quantities such as the photon spectrum and the photon density
profile I (r), which is our focus in this paper. These quantities
can be directly extracted from the photon correlation matrix.
The spectrum is given by the diagonal elements [n]m,m and the
photon density by

I (r) =
∑
m,m′

ψ∗
m(r)ψm′(r)[n]m,m′ .

Simulating the full state of the system would thus require
solving N2

m + Nx coupled differential equations. One can
reduce this requirement by noting that elements of [n]m,m′ that
are far from the diagonal are however very small. As discussed
earlier, the value of Nm required is however relatively large;
and even with reduction to terms with small |m − m′|, we find
it is only feasible to simulate short-time transient behavior,
and only in one spatial dimension. The results presented later
involved 150 ps of simulated time requiring four hours of
computer time, while the time scale to reach steady state is of
the order of microseconds.

B. Diagonal approximation

As noted at the end of the last section, the full equations are
too computationally costly to allow numerical exploration of
how the steady-state profile depends on control parameters. To
overcome this limitation, we introduce here the “diagonal ap-
proximation,” which is accurate as long as coherence between
photon modes is small and allows numerical exploration of the
steady state. This corresponds to using the molecule-photon
interaction Mint[ρ̂] = Mdiag

int [ρ̂] with

Mdiag
int [ρ̂] ≡ −i[H�,ρ̂] + 1

2

∑
m,i

|ψm(ri)|2
(
�(δm)L[âmσ̂+

i ,ρ]

+�(−δm)L[â†
mσ̂−

i ,ρ]
)
, (7)

where �(±δ) ≡ 2Re[K(±δ)] are the absorption (emission)
rates, and H� is a Lamb shift from the imaginary part of
K(±δ). This Lamb shift will however be irrelevant for the
equations of motion as discussed next.

In this approximation, we may write closed equations for
the populations of the photon modes, neglecting coherences,
and thus have only Nm + Nx equations. Denoting the diagonal
elements of the correlation matrix as nm = [n]m,m and the di-
agonal overlap elements as fm ≡ [f]m,m = ∫

ddrf (r)|ψm(r)|2,
these coupled equations take the form

∂tnm = ρ0�(−δm)fm(nm + 1)

− [κ + ρ0�(δm)(1 − fm)]nm, (8)

∂tf (r) = −�tot
↓ ({nm},r)f (r) + �tot

↑ ({nm},r)[1 − f (r)]. (9)

Note here that the second equation, Eq. (9), is identical to
that seen previously; however the total molecular excitation

and decay rates are now written in terms of the diagonal
populations:

�tot
↓ ({nm},r) = �↓ +

∑
m

|ψm(r)|2�(−δm)(nm + 1), (10)

�tot
↑ ({nm},r) = �↑(r) +

∑
m

|ψm(r)|2�(δm)nm. (11)

In all the equations above we have kept the spatial
dimension general, writing generic wave functions ψm(r). The
experiments are in two dimensions, in which case the mode
functions should take the form

ψm(r) =
Hmx

(
x

�HO

)
Hmy

(
y

�HO

)
e−r2/2�2

HO

�HO
√

π2mx+my mx!my!
,

where we take m = (mx,my) as a combined index and Hm(x)
is the mth Hermite polynomial. In certain cases, it is possible
to efficiently find the steady states in two dimensions, and
where this is possible, we follow this approach. However,
when directly solving the equations of motion, it is intractable
to keep all two-dimensional modes with energies �ω < kBT ,
and so in some cases below we instead restrict ourselves to
one dimension, for which

ψm(x) = 1√
�HO

√
π2mm!

Hm

(
x

�HO

)
e−x2/2�2

HO .

In the following we will present analytic results for general
dimension d, and specify d = 1 or d = 2 for the numerical
results.

III. STEADY STATE

In the following we explore the consequences of a finite-size
Gaussian pump spot,

�↑(r) = �int
↑(

2πσ 2
P

)d/2 exp

[
− (r − rP )2

2σ 2
P

]
,

where �int
↑ is the integrated intensity, σP the spot size, rP the

offset, and d the dimension. Note that �int
↑ has dimensions

of [T ]−1[L]d . Similarly, since �(±δ) are multiplied by ρ0 or
|ψm(r)|2, this means �max also has dimensions [T ]−1[L]d . We
measure all lengths in units of the oscillator length �HO of
the harmonic trap potential, and measure all (d-dimensional)
densities in units of �−d

HO. For comparison to Ref. [33], in the
first part of this paper we set rP = 0.

A. Far below threshold

Far below threshold, when �↑(r = 0) � �↓, both nm and
f (r) are small, so the steady state of Eqs. (8) and (4) is

f (r) � �↑(r)

�tot
↓ ({nm = 0},r)

, nm � fm

�(−δm)

�(δm) + κ/ρ0
. (12)

Note that in the denominator of the expression for f (r) we have
not written �↓, but rather �tot

↓ ({nm = 0},r), which includes
also the spontaneous emission into empty cavity modes.
However, for relevant parameters (see below), the cavity mode
contribution to �tot

↓ ({nm = 0},r) is small, so f (r) � �↑(r)/�↓,
and the overlaps fm depend on the pump shape. In this limit
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FIG. 3. (a) Photon cloud size and (b) photon number (per unit
power) vs pump-spot size, for various η ≡ κ/ρ0�max. Note that in
panel (a), the lines for the two smallest values of η lie on top of each
other. Plotted for d = 2, far below threshold using the closed-form
solution in Eq. (12) with ωc = 3200 THz. Dashed lines in (a) show
thermal size σT (see text) and pump size σP . The points marked by
the symbols correspond to the points for which cross sections are
shown in Fig. 4.

the shape of I (r) depends only on the shape of the pump,
the normalized spectrum �(±δ)/�max, and the dimensionless
parameter η ≡ κ/ρ0�max. If η � 1 and the KS relation is
obeyed, then nm = fme−βδm . If one also has σP � �HO, then
fm is independent of m, and so there is a thermal photon
distribution leading to a thermal photon cloud profile:

I (r) ∝
∑
m

e−βδm |ψm(r)|2 ∝ exp

(
− r2

2σ 2
T

)
,

with σT = lHO/
√

2 tanh(βε/2), which recovers the classical
thermal cloud size if kBT � ε; see Fig. 3(a).

Thermalization fails for small σP or large η. This can be
seen by looking at the actual cloud profiles, as shown in Fig. 4.
At small σP this failure is due to the mode dependence of
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FIG. 4. Photon cloud profile far below threshold for various η ≡
κ/ρ0�max. Note that in all panels, the lines for two smallest values of η

are indistinguishable. The gray dashed line indicates the equilibrium
profile, and the dash-dotted line indicates the profile of the pump
spot. Plotted for σP /�HO = 1,5,9, respectively [(a)–(c)], and other
parameters as in Fig. 3.

fm: A small pump spot populates only the low-order photon
modes, leading to an unnaturally small (i.e., cold) photon
cloud, even when η � 1 [see Fig. 4(a)]. Note that for this
nonthermal distribution to occur in this limit, the presence of
the noncavity decay rate �↓ is crucial: if both sources of loss
�↓ and κ are small, repeated absorption and reemission of
photons will occur, producing a thermal distribution. For large
η thermalization fails because nm � fm�(−δm)/κρ0, and so
no Boltzmann factor arises. In Fig. 3(a) this gives a photon
cloud which is larger than σT [see outermost (cyan) line in all
panels of Fig. 4].

Figure 3(b) shows the total photon number (per unit of
incident power) vs pump spot size. For large spots, the number
falls off as (σP )−d . This is because for all modes m with extent
much smaller than σP , one may approximate

fm � �↑(r = 0)

�↓
= �int

↑
�↓(

√
2πσP )d

, (13)

thus giving Ntotal/�int
↑ ≡ ∑

m fme−βδm/�int
↑ ∝ σ−d

P . In con-
trast, for small spots, the number saturates; here σP is much
smaller than the extent of the relevant modes and so fm �
|ψm(r = 0)|2�int

↑ /�↓, independent of σP . This expression
clearly means that the occupation of all odd modes (which
have a node at r = 0) will vanish. Even modes however have
a non-zero value for ψm(r = 0), and so Ntotal clearly saturates
at a finite value. Once σP � �HO, this overlap with even
modes becomes independent of σP , leading to the saturation
observed in Fig. 3. In experiment [33], the total photon number
initially increases with spot size, an effect not seen here. Such a
discrepancy could perhaps arise if the coupling of small pump
spots into the cavity is less efficient due to some aspect of the
pumping optics: given the above arguments about overlaps for
small pumping spots, it is hard to explain such a low efficiency
when considering purely light trapped inside the cavity.

The behavior in Fig. 3(a) for η � 10−3 is very similar to the
experimental results of Ref. [33]. Using other known parame-
ters of this experiment, ρ0 � 108 �−2

HO and κ = 500 MHz, this
gives �max = 5 kHz �2

HO. We use these parameter values below
unless otherwise stated. In order to verify the assumption made
earlier that we may replace �tot

↓ ({nm = 0},r) � �↓, we use
these values to estimate the effect of loss into empty cavity
modes. Comparing the rate of emission into the lowest cavity
mode, �(−δm)|ψ0(r = 0)|2 < �max/(

√
π �2

HO) � 2.8 kHz, to
the observed background decay rate �↓ � 250 MHz, this
implies that even if the first 1000 cavity modes contributed to
the emission equally, the cavity-mediated contribution would
be far smaller than the background. The contribution of
high-order cavity modes however falls off due both to the
overlap ψm(r) and the eventual decay of �(−δm) at large m.
Thus, the assumptions made at the start of this section are
indeed justified.

So far in this section we have explored dependence on
the properties of the pump spot. Another relatively easy
parameter to tune is the cavity cutoff frequency ωc. Indeed,
as discussed extensively by [34], tuning this parameter can
be used to control the degree of thermalization. A large value
of ωc will enhance reabsorption of the cavity and thus lead
to thermalization, while a smaller value reduces reabsorption
and prevents equilibration. Later in this paper we discuss this
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FIG. 5. (a) Photon cloud size and (b) photon number (per unit
power) vs cavity cutoff ωc for various η ≡ κ/ρ0�max. For comparison
to later figures, this is plotted for d = 1. Spot size σP = 16 �HO; all
other parameters as in Fig. 3.

behavior at and above threshold. Figure 5 shows the effect of
cutoff frequency on properties far below threshold. One can
clearly see in Fig. 5(a) that at large ωc, the photon cloud size
approaches the equilibrium cloud size. Similarly, considering
the total number of photons, one sees that at large ωc the
behavior asymptotically approaches the equilibrium result
N = ∑

m fme−βδm indicated by the gray dashed line [where
fm is given by Eq. (13) as we consider a large cloud size,
σP � �HO]. At smaller ωc, the photon number decreases as
N � ∑

m fm�(−δm)ρ0/κ , hence the strong dependence seen
upon the value of η = κ/ρ0�max.

B. Threshold pump power

We next turn to the behavior at threshold, and explore
how this depends on the pump size. As with any finite-size
system, the threshold is not perfectly sharp; for definiteness
we use the same threshold condition defined in Refs. [22,29].
Figure 6 shows the threshold value of �int

↑ vs cavity cutoff, ωc,
and vs pump spot size, σP . These calculations, time-evolving
Eqs. (8)–(11) numerically, are computationally expensive in
d = 2 so we consider d = 1 from here on. In equilibrium
the threshold condition is �↑(r = 0) = �↓eβδc , where δc =
ωc − ωZPL (see [22]). This condition has a simple meaning:
it identifies when the effective chemical potential of the
molecules, μeff(r) = ωZPL + kBT ln[�↑(r)/�↓], reaches the
lowest photon mode [29], ωc.

As has been discussed previously [22,29,62], it is notable
that the lasing transition, normally associated with inversion,
can be described here as corresponding to a thermal distribu-
tion with a positive temperature, and chemical potential μeff <

ωZPL. The fundamental reason why electronic inversion is not
required here is the different rates of absorption and emission,
�(±δ). Net inversion of the electronic state is normally re-
quired for lasing because absorption and emission coefficients
match, so net gain requires an inverted population. Here,
for modes with δ = ω − ωZPL < 0, we have �(−δ) > �(δ),
and so for these modes, emission exceeds absorption even
without electronic inversion. If one considers the microscopic
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FIG. 6. Threshold (integrated) pump power, calculated in d =
1 for various values of �max, (a) vs cavity cutoff, ωc, and (b) vs
pump spot size. Simulations performed in one spatial dimension with
Nm = 200 photon modes, and Nx = 300 spatial grid points. The
dashed line shows the equilibrium result �int

↑ ≡ √
2πσP �↑(r = 0) =√

2πσP �↓eβδc . At large spot sizes, the threshold power increases
as (σP )d and so is linear for this 1D simulation. Panel (c) shows
the ratio of threshold power vs equilibrium threshold power for the
region highlighted in panel (a), illustrating the asymptotic approach
to equilibrium. Panel (d) shows an enlarged region from panel (b) as
indicated.

rovibronic levels of the molecule, there is inversion between
the lowest rovibrational level of the electronic excited state and
the higher rovibrational levels of the electronic excited states,
and it is these transitions that have net gain [18]. However, in
our model, the fast dynamics of the rovibrational levels have
been adiabatically eliminated.

The thermal equilibrium prediction of threshold at μeff(r =
0) = ωc is shown as the dashed line in Fig. 6. The actual
threshold in Fig. 6(a) is however nonmonotonic. At large
ωc the system is thermal, and so threshold increases ex-
ponentially with ωc. Figure 6(c) illustrates the asymptotic
approach to the equilibrium behavior by plotting the ratio
�int

↑ /(
√

2πσP �↓eβδc ), which approaches 1 at large ωc. At small
ωc the absorption and emission rates are too small to compete
with cavity loss, and so the threshold pump increases. Such
nonmonotonic dependence has been seen experimentally [33].
The minimum of threshold becomes more pronounced as one
increases the cavity loss rate κ or decreases the peak emission
rate �max.

In Figure 6(b), we see that in d = 1, �int
↑ ∝ σP at threshold,

except for small spot sizes where it saturates [see the enlarged
region in Fig. 6(d)]. From the asymptotic form of the equations
it is straightforward to see that in d dimensions this result
becomes �int

↑ ∝ (σP )d . Such a dependence on spot size occurs
because threshold is reached first at the trap center, where
μeff(r) is greatest. As such, it is the peak pump power
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∝�int
↑ σ−d

P that enters the threshold condition. It is however
important to note that the simple power law arises only for
large enough spot sizes, whereas for spot sizes comparable
to the harmonic oscillator length, saturation of the critical
integrated power occurs. In the (two-dimensional) experiment
of Ref. [33] a phenomenological power law with exponent
∼1.5 was extracted from a least-squares plot to data on a
log-log scale over one decade of spot size.

C. Above threshold—transverse hole burning

Once threshold is reached, in equilibrium, the chemical
potential locks at μeff = ωc. This means that the “gain profile”
f (r), i.e., the fraction of excited molecules, must saturate,
f (r) � fE = [e−βδc + 1]−1. Such a saturation of f (r) is also
expected for a laser, and is known in that context as gain
clamping. As noted above, because of the different rates
�(±δ), no electronic inversion is required for lasing, and so
net gain exists even though f (r) < 1/2. As such, for a photon
BEC, the laser concept of gain clamping and the thermal
concept of chemical potential locking are the same. Gain
clamping or chemical equilibrium also imply that f (r) should
become uniform at threshold, and we next turn to explore
whether and how this occurs. Figure 7 shows f (r) slightly
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FIG. 7. Clamping of the gain profile for sufficiently large �max (in
d = 1). Panels (a), (b), and (c) show �max = 5 kHz �HO, panels (d),
(e), and (f) �max = 100 kHz �HO. Top panels show the gain profile
f (r) (solid), the value set by the pump, fP (r) = �↑(r)/[�↓ + �↑(r)]
(short dashed), and the clamped value fE = [e−βδc + 1]−1 for the
cavity cutoff ωc = 3200 THz. Middle panels show the (normalized)
photon density plotted on a logarithmic scale. For comparison the
blue dashed line shows the profile of the ground mode |ψ0(r)|2.
Bottom panels show the mode populations nm in comparison to
an equilibrium Bose-Einstein distribution, demonstrating multimode
condensation. Simulations performed in one spatial dimension with
Nm = 200 photon modes, and Nx = 300 spatial grid points.

above threshold for two values of �max. At �max = 100 kHz
�HO, clamping is seen near the trap center, but for �max = 5
kHz �HO it is absent. The dependence on �max follows from
the steady-state result,

f (r) = �tot
↑ ({nm},r)

�tot
↓ ({nm},r) + �tot

↑ ({nm},r)
,

and the form of �tot
↑,↓({nm},r) in Eqs. (10) and (11). If nm is a

Bose-Einstein distribution with chemical potential μ and �(δ)
obeys the KS relation then

�(−δm)(nm + 1) = �(δm)nme−βμ.

This means that if both the following are obeyed,∑
m

|ψm(r)|2�(−δm)(nm + 1) � �↓,

∑
m

|ψm(r)|2�(δm)nm � �↑(r),

then one has a uniform gain profile f (r) = fE . We thus see
that gain clamping requires large �(±δ). Moreover, since the
condensed mode(s) are concentrated at the trap center, gain
clamping is spatially restricted, as seen in Fig. 7(d). In the
terminology of lasers, this is analogous to spatial hole burning
[63]. In standard laser resonators, hole burning is discussed in
terms of competition among different longitudinal modes, as
typically laser resonators are much longer than the wavelength
of light, but designed to support few transverse modes. In
the photon BEC the situation is opposite: the microcavity
supports only one longitudinal mode nearly resonant with the
gain medium, but many transverse modes. As such, one has
“transverse spatial hole burning,” leading to patterns in the
gain medium as a function of the transverse coordinate, as
opposed to the more standard patterns along the cavity axis.

As the gain clamping is imperfect, other modes may reach
threshold leading to multimode condensation. In Fig. 7 panels
(c) and (f) show the mode populations nm, demonstrating
that several modes are macroscopically occupied. For values
of �max larger than those shown, multimode condensation is
suppressed. Both the inhomogeneous f (r) and multimode con-
densation are signatures of imperfect thermal equilibrium. An
interesting question for future work is how such hole burning
might be used to engineer the photon condensate profile.

IV. DYNAMICS

Having discussed the effects of the pump profile on steady-
state properties, we now turn to consider dynamics and the
transient response following a pump pulse. The calculations in
this section are motivated particularly by the work of Schmitt
et al. [34], who studied the dynamics of the photon condensate
after an off-center pump pulse and observed oscillations of the
photon condensate. These oscillations correspond to transverse
motion of a photon wave packet in the effective harmonic
trap potential of the mirrors. Schmitt et al. [34] showed in
particular that for a higher frequency cavity cutoff ωc (closer to
the peak of the molecular emission and absorption spectrum),
thermalization occurred, while for a lower cutoff, oscillations
persisted to later times. Schmitt et al. [34] also provided a
theoretical discussion of their results, making use of a set
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of semiclassical equations for quantities nm(r), i.e., spatially
dependent population of a given mode. Such a quantity does
not appear within the model discussed above: a given mode
has a given spatial profile |ψm(r)|2, and as discussed earlier,
this means that within the diagonal model one cannot have
asymmetric distributions, since the mode profiles |ψm(r)|2
are all even. Our aim in this section is therefore to show
that our model can reproduce the behavior seen by Schmitt
et al. [34], while considering the full covariance matrix
[n]m,m′ , or equivalently its spatial representation n(r,r′) =∑

m,m′ [n]m,m′ψm(r)ψm′(r′).
To explore both thermalization and oscillations, it is crucial

to use the model as presented in Eq. (2), i.e., without the
secular approximation. This can be seen from quite general
arguments. First, in order to describe an off-center photon
pulse, we must allow emission into wave packets, not just
populations of eigenstates, since |ψm(r)|2 is symmetric for all
modes, and so cross terms ψ∗

m(r)ψm′(r) are crucial to give
an off-center photon distribution I (r). Including cross terms
is also crucial in order to describe oscillating wave packets
since time dependence occurs via beating between modes.
This is incompatible with the standard approach of secularizing
master equations to produce a Lindblad form: secularization
is appropriate if one may assume that any cross terms between
different modes oscillate fast, and so should be removed. The
result is an equation which can only produce populations of
modes. Physically it is however clear that the beating between
modes is not a fast process to be eliminated, but a process on
time scales comparable to emission and absorption.

Naively, including cross terms between photon modes
might suggest an alternate phenomenological equation which
is of Lindblad form:

Mint[ρ̂] = �(−δ)L
[∑

m,i

ψ∗
m(ri)â

†
mσ̂−

i ,ρ̂

]

+�(δ)L
[∑

m,i

ψm(ri)âmσ̂+
i ,ρ̂

]
. (14)

However, such a form is not able to describe thermalization and
its dependence on cutoff wavelength. As discussed earlier, such
thermalization relies on the fact that emission and absorption
rates depend on the detuning of a given mode, m, but by its
form, Eq. (14) has rates independent of mode. Modeling both
the emission into wave packets (i.e., inclusion of cross terms)
and the mode-frequency dependence of emission rates requires
an equation of the form of Eq. (2).

Using Eqs. (3) and (9), we simulate the dynamics following
a short, high-intensity, off-center pump pulse. The resulting
photon density I (r) and excited molecule fraction f (r) are
shown in Fig. 8. The behavior differs according to the cavity
cutoff ωc as seen experimentally [34]. Oscillations occur
initially in both cases, but at late times, they are replaced by a
cloud near the trap center when ωc is large enough. Note that,
as seen in experiment, the switch to the thermal condensate
does not occur through a continuous damping of the amplitude
of the oscillations but rather through a growing intensity of the
central cloud and decaying intensity of the oscillating cloud.

As first shown by Schmitt et al. [34], the origin of
thermalization is that thermalization occurs when reabsorption

-10

-5

0

5

10

r/
H

O

0

0.005

0.01
(a) f(r) ωc=3200THz

-10

-5

0

5

10

0 50 100 150

r/
H

O

t (ps)
0

1×106

2×106

3×106(b) I(r) ωc=3200THz
0

0.005

0.01
(c) f(r) ωc=3250THz

0 50 100 150
t (ps)

0

2×105

4×105
(d) I(r) ωc=3250THz

FIG. 8. Oscillations following an off-center pump pulse (in d =
1). Panels (a) and (b) are for ωc = 3200 THz, where thermalization
is not sufficient to suppress the oscillations. Panels (c) and (d) are for
ωc = 3250 THz, showing a transition to a central time-independent
photon cloud at late times. Panels (a) and (c) show f (r), and (b) and
(d) show I (r). The pump pulse is a Gaussian at rP = 7 �HO, with width
σP = 0.3 �HO, duration 5 ps, and intensity �int

↑ = 24 GHz �HO. Other
parameters: κ = 100 MHz, �↓ = 250 MHz, �max = 3 MHz �HO,
mode spacing ε = 0.4 THz. These last two parameters are enhanced
compared to experiments to reduce simulation time. Simulations
performed in one spatial dimension with Nm = 180 photon modes,
keeping intermode coherences for modes with |m − m′| < 40, and
Nx = 300 spatial grid points. This gives 15 000 coupled equations,
and this requires four hours to simulate 150 ps.

of photons leads to a flat gain profile f (r) � fE in the center
of the trap. Our model also reproduces this behavior, as can be
seen from Fig. 8(c), and is also more clearly shown in Fig. 9,
which plots cross sections of f (r) at various time slices.

Figure 10 shows how the photon spectrum evolves with
time for ωc = 3250 THz, where oscillations disappear at late
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FIG. 9. Cross sections of Fig. 8, for ωc = 3250 THz. The black
dash-dotted line in panel (a) is the equilibrium population of
molecules. In panel (b) the blue dashed line shows the profile of
the ground mode |ψ0(r)|2.
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times. As also seen by [34], the high-energy modes rapidly
reach a steady population, while the lower energy modes
evolve more slowly, and are still evolving even after 600
ps of simulation time. Note however that the occupation
of the high-energy photon modes does not match the dye
temperature. This is because of the limited spatial extent
of the gain profile f (r); this extends over a range r/� � 7,
so modes up to m � 50 will be effectively populated. This
corresponds to ωm = ωc + mε � 3270 THz; higher modes
start to be suppressed by spatial overlap, leading to colder
photon distribution, as discussed earlier.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have presented a theoretical model
capable of describing the spatial dynamics, relaxation, and
thermalization of an inhomogeneously pumped photon con-
densate. Using this, we have reproduced recent experimental
results studying the effects of small pump spots. Even without
photon loss, thermalization can be inhibited by small spot
size. Our model gives direct access to the gain profile f (r),
which is hard to access experimentally. By doing so, we see
the observed behavior at and above threshold is related to gain
clamping and spatial hole burning.

In this paper we have presented results only for Gaussian
pump spots and harmonic trapping potentials. However, the
equations we present can easily be generalized to other pump
profiles or trapping potentials, e.g., ring-shaped pumps. As
such, Eqs. (3) and (4), or the diagonal approximation, Eqs. (8)
and (9), provide a useful model to predict how the spatial
and spectral structure of photon condensates is determined
by the properties of the pump. As well as the computational
framework, some general principles can be identified from our
results. Far below threshold, the condensate profile is simply
given in terms of the overlaps fm between the pump profile
and a given trap mode, allowing one to understand how the
cloud will shrink if fm is significant only for low-order modes.
A ring pump would in contrast lead to overlaps for a specific

range of mx,my , and a corresponding ring-shaped thermal
cloud. Far above threshold, the picture of gain saturation and
spatial transverse hole burning can provide an intuitive picture
of which condensate modes are favored or suppressed by a
particular pump profile, and which profile shapes favor single
or multimode condensation.

Mode competition and spatial pattern formation in driven
dissipative systems have recently prompted significant interest
in other contexts, e.g., for random lasers [64,65], where the
role of mode competition and the statistics of multimode
lasing have been studied. Mode competition is the basis of
transverse pattern formation in nonlinear optics [3,66], and
is a prime example of pattern formation out of equilibrium
[67]. The model and results presented in this paper provide the
foundation to study these effects in the photon condensate.

As noted in the introduction, for both lasers and conden-
sates, order parameter equations are widely used to describe
the spatial dynamics. In contrast, our work here is based
on solving equations for the photon density matrix directly.
By solving all elements of the photon density matrix, we
allow for populations of modes in addition to the condensate
mode. Such a treatment is crucial in reproducing thermal
expectations, particularly below threshold. In the absence of
noise terms, this is not possible with standard order parameter
equations. However, thermal fluctuations can be incorporated
into classical field methods by adding stochastic noise terms.
This is discussed extensively in the review article by Blakie
et al. [68]. It is an interesting question for future work
to develop a stochastic order parameter equation that can
reproduce the dynamics studied here.

As compared to work on pattern formation in polariton
condensates [35,41–44], an advantage of the photon conden-
sate system is that we possess a clear model of the processes
leading to the thermalization, and one which is readily tractable
for spatially extended systems. For polaritons, various phe-
nomenological models [52,53] have been developed, and
attempts to derive models microscopically [69] have been
made. However questions remain open about the relative role
of polariton-polariton scattering vs scattering with phonons in
the semiconductor [70,71]. In contrast, the models provided
in this paper for the weak-coupling photon condensate are far
simpler, as the effect of the (localized) rovibrational modes are
well characterized through the function �(δ). An interesting
question arising from this is to explore how to extend the
treatment presented here to the case of strong coupling with
organic molecules [72–74].

ACKNOWLEDGMENTS

We are very happy to acknowledge stimulating discussions
with R. A. Nyman, J. Klaers, M. Weitz, and V. Oganesyan.
We also wish to thank R. Nyman for providing the
measured absorption and luminescence data shown
in Fig. 2. The authors acknowledge financial support
from EPSRC program “TOPNES” (EP/I031014/1) and
EPSRC (EP/G004714/2). J.K. acknowledges support
from the Leverhulme Trust (IAF-2014-025). P.G.K.
acknowledges support from EPSRC (EP/M010910/1).
The research data supporting this publication

013829-9



JONATHAN KEELING AND PETER KIRTON PHYSICAL REVIEW A 93, 013829 (2016)

can be accessed at http://dx.doi.org/10.17630/a2d6f1e3-
127d-4374-921c-ad601ffce133.

APPENDIX: EXTRACTING �(δ) FROM EXPERIMENTAL
SPECTRA

As discussed in Sec. II, we aim to use the full spec-
trum, �(δ), extracted from experimental measurements. This
spectrum includes the effects of all rovibrational modes
automatically. The experimental measurements provide two
functions �abs,exp(ω),�fluor, exp(ω), corresponding to absorption
and fluorescence measurements. This Appendix describes the
procedure we use to find a spectrum consistent with both these
measurements and the Kennard-Stepanov relation.

We first produce a single experimental function �exp(δ),
by averaging the absorption and fluorescence measurements.
This is done by identifying ωZPL from the midpoint between
the peak absorption and emission, and then shifting and
overlapping the experimental spectrum about these points to
produce an averaged experimental function. We use a cubic-

spline fit to the experimental data, and construct the function
�exp(δ) = [�abs,exp(ωZPL + δ) + �fluor, exp(ωZPL − δ)]/2. This
yields a single function, but not one consistent with the
Kennard-Stepanov relation. Furthermore, at large negative δ,
where �exp(δ) is small, it falls below a noise floor, and so the
experimental measurements cannot probe the exponentially
small values that must be present to satisfy Kennard-Stepanov.

To address both the above points, we then construct the
function

�(δ) = 1 + x(δ)

2
�exp(δ) + 1 − x(δ)

2
�exp(−δ)eβδ, (A1)

where x(δ) interpolates smoothly from −1 at large negative δ

to +1 at large positive δ, such that x(−δ) = −x(δ). One may
readily check that this ensures �(−δ)eβδ = �(δ) as required.
The interpolation has the effect that we use �(δ) � �exp(δ)
where �exp(δ) is large, and �(δ) � �exp(−δ)eβδ where �exp(δ)
is small and below the noise floor, but �exp(−δ) is large; see
Fig. 2.
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F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, and E. A.
Ostrovskaya, Nature (London) 526, 554 (2015).

[45] A. J. Kollár, A. T. Papageorge, K. Baumann, M. A. Armen, and
B. L. Lev, New J. Phys. 17, 043012 (2015).

[46] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Clarendon Press, Oxford, 2003).

[47] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064
(1950).

[48] I. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[49] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
[50] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401

(2008).
[51] M. Wouters, I. Carusotto, and C. Ciuti, Phys. Rev. B 77, 115340

(2008).
[52] M. Wouters, T. C. H. Liew, and V. Savona, Phys. Rev. B 82,

245315 (2010).
[53] M. Wouters, New J. Phys. 14, 075020 (2012).
[54] R. A. Nyman and J. Marelic (private communication). The

absorption spectrum is a composite at several concentrations,
to improve the accuracy around 3200 THz.

[55] E. H. Kennard, Phys. Rev. 11, 29 (1918).
[56] E. H. Kennard, Phys. Rev. 28, 672 (1926).
[57] B. I. Stepanov, Dokl. Akad. Nauk SSSR 112, 839 (1957).
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