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Abstract. A finite group G is coprimely invariably generated if there
exists a set of generators {g1, . . . , gu} of G with the property that the
orders |g1|, . . . , |gu| are pairwise coprime and that for all x1, . . . , xu ∈ G
the set {gx1

1 , . . . , gxu
u } generates G.

We show that if G is coprimely invariably generated, then G can be
generated with three elements, or two if G is soluble, and that G has
zero presentation rank. As a corollary, we show that if G is any finite
group such that no proper subgroup has the same exponent as G, then
G has zero presentation rank. Furthermore, we show that every finite
simple group is coprimely invariably generated by two elements, except
for O+

8 (2) which requires three elements.
Along the way, we show that for each finite simple group S, and for

each partition π1, . . . , πu of the primes dividing |S|, the product of the
number kπi(S) of conjugacy classes of πi-elements satisfies

uY
i=1

kπi(S) ≤ |S|
2|OutS| .

1. Introduction

Following [11], we say that a subset {g1, . . . , gu} of a finite group G in-
variably generates G if {gx1

1 , . . . , gxuu } generates G for every choice of xi ∈ G.
Any finite group G contains an invariable generating set (consider the

set of representatives of each of the conjugacy classes). Several papers deal
with the question of bounding the the minimal cardinality of an invariable
generating set for a finite group together with an analysis of the probability
that d independently and uniformly randomly chosen elements of a group G
generate G with good probability (see for example [12], [11], [17], [18], [23],
[29]). The related Chebotarev invariant C(G) of G (defined as the expected
value of the random variable n that is minimal subject to the requirement
that n randomly chosen elements of G invariably generate G) has some
relevance to the problem of determining the Galois group of a polynomial
with integer coefficients (see [11] and [19]).

In this paper we deal with finite groups admitting an invariable generating
set consisting of elements of coprime orders.

We thank the anonymous referee for their helpful suggestions, which have improved the
paper. Colva Roney-Dougal acknowledges the support of EPSRC grant EP/I03582X/1.
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Definition 1.1. A finite group G is coprimely invariably generated if there
exists a set of invariable generators {g1, . . . , gu} of G with the property that
the orders |g1|, . . . , |gu| are pairwise coprime.

Our main result says that a coprimely invariably generated group can be
generated with very few elements. Let d(G) denote the minimal number of
generators of G.

Theorem 1.2. Let G be a coprimely invariably generated group. Then
d(G) ≤ 3.

Notice that coprime invariable generation is the combination of two prop-
erties: the existence of an invariable generating set and the existence of a set
of generators of coprime orders. It is worth noticing than neither of these
properties suffices to obtain an upper bound on the smallest cardinality of
generators of a finite group G. We have already observed that any finite
group G is invariably generated, but conversely for every t ∈ N there exists
a finite (supersoluble) group G with the property that d(G) = t and G can
be generated with t elements of coprime order (see Proposition 3.3).

For general G, the bound on d(G) given in Theorem 1.2 cannot be im-
proved: there exist infinitely many coprimely invariably generated groups
G with d(G) = 3 (see Proposition 3.2). However, better resuls hold under
additional assumptions. For example, we have a stronger result for finite
soluble groups.

Theorem 1.3. Let G be a coprimely invariably generated group. If G is
soluble, then d(G) ≤ 2.

A motivation for our interest in coprime invariable generation is the
fact that this property is satisfied by finite groups without proper sub-
groups of the same exponent (we shall call these groups minimal expo-
nent groups). Indeed, assume that G is a minimal exponent group with
e := exp(G) = pn1

1 · · · p
nt
t . Then for every i, the group G contains an ele-

ment gi of order pnii . Clearly exp〈gx1
1 , . . . , gxtt 〉 = e, for every x1, . . . , xt ∈ G.

Hence our assumption that no proper subgroup of G has exponent e implies
that G = 〈gx1

1 , . . . , gxtt 〉, so G is coprimely invariably generated. In partic-
ular, as a corollary of Theorems 1.2 and 1.3, we deduce a result already
proved in [25] and [10]: each finite group G contains a 3-generated subgroup
H with exp(G) = exp(H), and if G is soluble then there exists a 2-generated
subgroup H of G with exp(G) = exp(H).

Notice that the examples given in Proposition 3.2 of coprimely invariably
generated groups G which are not 2-generated are all not minimal expo-
nent. Indeed, the property of being minimal exponent is much stronger
than coprime invariable generation.

Whereas the bound d(G) ≤ 3 in Theorem 1.2 cannot be improved, we
have no example of a finite minimal exponent group G which cannot be
generated by 2 elements and the following interesting question is open: is it
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true that any finite group G contains a 2-generated proper subgroup with the
same exponent? We think that the study of coprimely invariably generated
groups could help to answer this question.

The minimal exponent property is not inherited by quotients; conversely,
all epimorphic images of a coprimely invariably generated group (and con-
sequently of a minimal exponent group) are coprimely invariably generated.
From this point of view, studying coprimely invariably generated groups
yields information about quotients of minimal exponent groups.

Another result in this paper concerns the presentation rank of coprimely
invariably generated groups. The presentation rank pr(G) of a finite group
G is an invariant whose definition comes from the study of relation modules
(see [6] for more details). Let IG denote the augmentation ideal of ZG, and
d(IG) the minimal number of elements of IG needed to generate IG as a
G-module, then d(G) = d(IG) + pr(G) [28]. It is known that pr(G) = 0 for
many groups G, including all soluble groups, all Frobenius groups and all
2-generated groups.

Theorem 1.4. Let G be a coprimely invariably generated group. Then G
has zero presentation rank.

As an immediate corollary, we get the following.

Theorem 1.5. Let G be a finite group such that no proper subgroup has the
same exponent as G. Then G has zero presentation rank.

As a further contribution to the understanding of coprimely invariably
generated groups, we present the following theorem.

Theorem 1.6. Let G be a finite simple group. The group G is coprimely
invariably generated by two elements if and only if G 6∼= O+

8 (2). The group
O+

8 (2) is coprimely invariably generated by three elements.

In [17] and [18] (independently) it is proved that every finite simple group
is invariably generated by two elements, and it is reasonably straightforward
to check that in almost all cases those elements either have coprime orders,
or can be replaced by powers with coprime orders.

Finally, the following result on conjugacy classes of finite simple groups
may be of independent interest. If G is a group and π = {p1, . . . , pk} a set
of primes, then |G|π denotes the π-part of |G| and an element of G whose
order is pα1

1 · · · · ·p
αk
k , for some α1, . . . , αk ∈ Z≥0, is a π-element. Notice that

the identity is a π-element. We let kπ(G) denote the number of conjugacy
classes of π-elements of G.

Theorem 1.7. Let S be a finite simple group and let π1, . . . , πu be a partition
of π(S). Then

u∏
i=1

kπi(S) ≤ |S|
2|OutS|

.
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This paper is structured as follows. In Section 2 we present some back-
ground information needed for our proofs. In Section 3 we construct two
interesting families of examples, exploring the necessity and sufficiency of co-
prime invariable generation in controlling minimal generation and exponent.
In Section 4 we prove Theorem 1.3, then in Section 5 we prove Theorems 1.2
and 1.4. Finally, in Sections 6 and 7 we prove Theorems 1.6 and 1.7, respec-
tively.

2. Background material

In this section we introduce primitive monolithic groups and crown-based
powers, and collect some information about their minimal number of gener-
ators, and about their presentation rank.

A group L is primitive monolithic if L has a unique minimal normal
subgroup A, and trivial Frattini subgroup. We define the crown-based power
of L of size t to be

Lt = {(l1, . . . , lt) ∈ Lt | l1A = · · · = ltA} = At diag(Lt).

In [6] it was proved that, given a finite group G, there exist a primitive
monolithic group L and a positive integer t such the crown-based power Lt
of size t is an epimorphic image of G and d(G) = d(Lt) > d(L/ soc(L)).

The minimal number of generators of a crown-based power Lt in the case
where A is abelian can be computed with the following formula:

Theorem 2.1. [8, Proposition 6] Let L be a primitive monolithic group with
abelian socle A, and let t be as above. Define

rL(A) = dimEndL/A(A)A sL(A) = dimEndL/A(A)H
1(L/A,A)

and set θ = 0 if A is a trivial L/A-module, and θ = 1 otherwise. Then

d(Lt) = max
(
d(L/A), θ +

⌈
t+ sL(A)
rL(A)

⌉)
where dxe denotes the smallest integer greater or equal to x.

A result of Aschbacher and Guralnick [1] assures us that sL(A) < rL(A):

Theorem 2.2. [1] Let p be a prime and G be a finite group. If A is a faithful
irreducible G-module over Fp, then |H1(G,A)| < |A|.

For soluble G we will use the following (the proof can be found in [30]):

Theorem 2.3 (Gaschütz). Let p be a prime. If G is a finite p-soluble group
and A is a faithful irreducible G-module over Fp, then |H1(G,A)| = 0.

When A is non-abelian, d(Lt) can be evaluated using the following, where
PL,A(k) denotes the conditional probability that k randomly chosen elements
of L generate L, given that they project onto generators for L/A.
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Theorem 2.4. [6, Theorem 2.7] Let L be a monolithic primitive group with
non-abelian socle A, and let d ≥ d(L). Then d(Lt) ≤ d if and only if

t ≤
PL,A(d)|A|d

|CAutL(L/A)|
.

Bounds on PL,A(d) were studied in [10] and [27], achieving the strong
result:

Theorem 2.5. [10] Let L be a primitive monolithic group with socle A.
Then PL,A(d) ≥ 1/2.

We finish this introductory section with a result on presentation rank.

Theorem 2.6. Let G be a finite group and let Lt be a crown based power
of a primitive monolithic group L such that Lt is a homomorphic image of
G and d(G) = d(Lt) > d(L/ soc(L)). If soc(L) is abelian, then pr(G) = 0.

Proof. For an irreducible G-module M , we set

rG(M) = dimEndG(M)M sG(M) = dimEndG(M)H
1(G,M)

and define

hG(M) = θ +
⌈
sG(M)
rG(M)

⌉
where θ = 0 if M is a trivial and θ = 1 otherwise.

Assume that A = soc(L) is abelian. Let δG(A) be the largest integer k
such that the crown based power Lk is a homomorphic image of G, and note
that

d(LδG(A)) = d(Lt) = d(G).
By [9, Proposition 9], the integer δG(A) is the number of complemented chief
factors G-isomorphic to A in any chief series of G. Since

rG(A) = rL(A)

and

sG(A) = dimEndG(A)H
1(G,A) = δG(A) + dimEndL/A(A)H

1(L/A,A)

(see Section 1 in [22], for example), it follows that

hG(A) = θ +
⌈
δG(A) + sL(A)

rG(A)

⌉
.

By Theorem 2.1 we conclude that

d(G) = d(LδG(A)) = hG(A).

By a result of Cossey, Gruenberg and Kovács [5, Theorem 3]

d(IG) = max{hG(M) |M an irreducible G-module}
thus, in particular, d(IG) ≥ hG(A) = d(G). Since d(IG) ≤ d(G), we have an
equality, hence pr(G) = 0. �
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3. Examples

In this section, we start by constructing an infinite family of groups that
show that the bound given in Theorem 1.2 cannot be improved. The same
groups provide examples of coprimely invariably generated groups which
are not minimal-exponent. We then construct a family of examples which
demonstrate that the property of coprime generation alone is not enough to
constrain the minimal number of generators of a finite group.

Lemma 3.1. Let p be a prime and H be a finite group with d(H) = 2
that is invariably generated by elements of order coprime to p. Assume
that V is a faithful irreducible H-module over Fp with |H1(H,V )| > 0,
and set L = V o H. Then the crown-based power Lt ∼= V t o H of size
t = dimEndH(V ) V is coprimely invariably generated and d(Lt) = 3.

Proof. By [15, Lemma 7.12], V t is a cyclic module for t = dimEndH(V ) V .
Since |H1(H,V )| > 0, it follows from [1] that d(Lt) = 3.

If w ∈ V t is a generator for the H-module V t, then w together with the
coprime invariable generators of H of order coprime to p form a coprime
invariable generating set for Lk. �

Proposition 3.2. Let r > 1 be an integer and L = V o SL2(2r), where
V = F2

2r . Then the crown-based power Lr ∼= V r o SL2(2r) of L of size r is
coprimely invariably generated and d(Lr) = 3. Moreover, Lr has a proper
subgroup with the same exponent.

Proof. The simple group H = SL2(2r) is coprimely invariably generated by
two elements of order 2r−1 and 2r+1, respectively. Moreover, |H1(H,V )| >
0 by [20]. Therefore Lemma 3.1 implies that Lr is coprimely invariably
generated and d(Lr) = 3.

Finally, the subgroup {(l, . . . , l) ∈ Lr | l ∈ L} is a proper subgroup of Lr
with the same exponent as Lr. �

Proposition 3.3. For any t ∈ N there exists a finite supersoluble group G
such that G can be coprimely generated with d(G) = t elements.

Proof. Let n = p1 · · · pt be the product of the first t prime integers and let
p be a prime such that n divides p − 1 (the prime p exists by Dirichlet’s
theorem). The cyclic group C = Cn has a fixed point free multiplicative
action on V = Fp; set L to be the monolithic group V o C. Let G be the
crown-based power Lt, then d(G) = t+ 1 by Theorem 2.1.

Consider a generating set {x1, . . . , xt+1} of C with |xi| = pi if i ≤ t and
xt+1 = 1. A well-known theorem of W. Gaschütz [14] states that if F is a free
group with n generators, H is a group with n generators, and N is a finite
normal subgroup of H, then every homomorphism of F onto H/N is induced
by a homomorphism of F onto H. It follows that there exist w1, . . . , wt+1

such that G = 〈x1w1, . . . , xt+1wt+1〉. Clearly |xt+1wt+1| = p; on the other
hand if i ≤ t, then Cxi(V ) = {0}, and this implies that |xiwi| = |xi| = pi. �
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4. Proof of Theorem 1.3

Theorem 4.1. Let L = AoH be a primitive monolithic group with abelian
socle A and let t ∈ N. If Lt is coprimely invariably generated, then

t ≤ dimEndH(A)A.

Proof. Let A be a p-group, and set G = Lt. Assume that {g1, . . . , gu} is a
set of pairwise coprime elements that invariably generate G where gi is a
p′-element for every i 6= 1. Set V = At.

Note that, if |gi| is coprime to p and gi = vh where v ∈ V and h ∈ H, then
gi is conjugate to an element of 〈h〉, since 〈h〉 is a Hall p′-subgroup of V 〈h〉; in
particular gi is conjugate to an element of H. Therefore, as {g1, g2, . . . , gu}
invariably generates G, by taking suitable conjugates of g2, . . . , gu, we can
assume that g2, . . . , gu ∈ H.

Consider g1 = vh, where v ∈ V and h ∈ H, and set K = 〈h, g2, . . . , gu〉.
Since KV = G = HV and K ≤ H, we deduce that K = H = 〈h, g2, . . . , gu〉.
Therefore,

G = 〈vh, g2, . . . , gu〉 ≤ 〈v, h, g2, . . . , gu〉 ≤ 〈v〉HH

hence G = 〈v〉HH and 〈v〉H = V , that is, v is a cyclic generator for the
FpH-module V = At. Let v = (v1, . . . , vt). Switching to additive notation,
the fact that v is a cyclic generator for the FpH-module V implies that the
elements v1, v2, . . . , vt are linearly independent elements of the EndH(A)-
vector space A. In particular t ≤ dimEndH(A)A, as required. �

Proof of Theorem 1.3. Let G be a soluble, coprimely invariably generated
group. Let Lt be a crown-based power such that Lt is a homomorphic image
of G and d(G) = d(Lt) > d(L/A). Then Lt is coprimely invariably generated
and L has abelian socle. Let rL(A) and sL(A) be as in Theorem 2.1.

Since L is soluble, we see from Theorem 2.3 that sL(A) = 0. Moreover
Theorem 4.1 implies that t ≤ rL(A), and thus d(t+ sL(A))/rL(A)e = 1. As
d(Lt) > d(L/A), by Theorem 2.1 we conclude that

d(Lt) = θ +
⌈
t+ sL(A)
rL(A)

⌉
≤ 2,

as required. �

5. Proof of Theorems 1.2 and 1.4

Let L be a finite monolithic group whose socle A is non-abelian and let π
be a set of primes. For every l ∈ L, define al to be the number of A-conjugacy
classes of π-elements L which are contained in lA. Then set

aπ = max{al | l ∈ L}.

As usual, for an integer n, the set of prime divisors of n is denoted π(n).
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Theorem 5.1. Let L be a finite monolithic group whose socle A is non-
abelian and let t be a positive integer. If the set {g1, . . . , gu} invariably
generates Lt, then t ≤

∏
i aπ(|gi|).

Proof. Assume that {g1, . . . , gu} invariably generates Lt, and set π(|gi|) =
πi, for every i. Note that, by the definition of Lt, gi = (xi1, . . . , xit) where
xi1, . . . , xit belong to the same coset liA for some li ∈ L; in particular
xi1, . . . , xit are πi-elements of liA.

If there exist r and s such that xis = xyir for some y ∈ A, then by replacing
gi by a suitable conjugate we can assume that xis = xir (more precisely, we
take the conjugate of gi by the element y = (1, . . . , y, . . . , 1) ∈ Lt, where
y is in the r-th position). Let a =

∏
i aπi . If t > a, then it follows from

the definition of aπ that there exist r, s ∈ {1, . . . , t} with r 6= s such that
xir = xis for every i ∈ {1, . . . , u}. But then 〈g1, . . . , gu〉 ≤ {(l1, . . . , lt) ∈ Lt |
lr = ls} which is a proper subgroup of Lt, a contradiction. �

Lemma 5.2. Let L be a monolithic primitive group with non-abelian socle
A and let π be a set of primes. Then

aπ ≤ kπ(A).

Proof. Let l be a π-element of L such that al = aπ. Set X = 〈l〉A. Let
x ∈ lA. Since X/A = 〈xA〉, we have X = ACX(x) whence every X-
conjugacy class in lA is a single A-orbit. In particular al coincides with the
number of X-conjugacy classes of π-elements in the coset lA.

By [13, Theorem 1.6], al is precisely the number of A-conjugacy classes
of π-elements in A which are invariant under X, whence al ≤ kπ(A). �

Lemma 5.3. Let L be a monolithic primitive group with non-abelian socle
A = Sn, and let π1, . . . , πu be disjoint sets of primes. Then

u∏
i=1

aπi ≤
|A|

2n|OutS|
.

Proof. By Lemma 5.2, we may bound aπi ≤ kπi(A) for all i. As A = Sn,
we get kπi(A) = kπi(S)n. Now consider a partition π̃1, . . . , π̃u of π(|S|) with
the property that π̃i ⊃ πi ∩ π(|S|) : clearly kπi(S) ≤ kπ̃i(S). It follows from
Theorem 1.7 (whose proof is in Section 7) that

u∏
i=1

kπ̃i(S) ≤ |S|
2|OutS|

.

Therefore
u∏
i=1

aπi ≤
u∏
i=1

kπi(A) =
u∏
i=1

kπi(S)n ≤
u∏
i=1

kπ̃i(S)n ≤ |S|n

2n|OutS|n
≤ |A|

2n|OutS|

as required. �
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Lemma 5.4. Let L be a monolithic primitive group with non-abelian socle
A = Sn. If Lt is minimally d-generated (i.e. d(Lt/N) < d(Lt) = d for every
1 6= N � Lt) and

t ≤ |A|
2n|OutS|

then d = 2 (and t = 1).

Proof. Set dL = d(L) and note that dL ≥ 2 since L has non-abelian socle.
Let X be the subgroup of AutS induced by the conjugation action of NG(S1)
on the first factor S1 of A = S1 × · · · × Sn, with S ∼= Si for each 1 ≤ i ≤ n.
As in the proof of Lemma 1 in [7],

|CAutA(L/A)| ≤ n|S|n−1|CAutS(X/S)|

and therefore

|CAutA(L/A)| ≤ n|S|n−1|AutS| = n|A||OutS|.

By Theorem 2.5, PL,A(dL) ≥ 1/2. So the assumptions give that

t ≤ 1
2
|A|

n|OutS|
≤
PL,A(dL)|A|2

n|A||OutS|
≤
PL,A(dL)|A|dL
|CAutA(L/A)|

.

By Theorem 2.4 this implies that d = d(Lt) = dL. As Lt is minimally d-
generated, it follows that t = 1; in particular, L is minimally d-generated.
Now, by the main theorem in [24], d(L) = max{2, d(L/A)}, and again by
minimality, we conclude that d = d(L) = 2. �

Proof of Theorem 1.2. Let G be a coprimely invariably generated group and
let d = d(G). As remarked in Section 2, there exists a monolithic primitive
group L with socle A and an integer t, such that Lt is a quotient of G and
d = d(Lt) > d(L/A). Moreover Lt is coprimely invariably generated.

If A is abelian, then we can apply Theorem 2.1: since d(Lt) > d(L/A)
and, by Theorems 2.2 and 4.1, sL(A) < rL(A) and t ≤ rL(A), it follows that

d(G) = d(Lt) = θ +
⌈
t+ sL(A)
rL(A)

⌉
≤ θ + 2 ≤ 3.

If A is non-abelian and {g1, . . . , gu} are coprime invariable generators of
Lt, then by Theorem 5.1, t ≤

∏u
i=1 aπ(|gi|). Then by Lemma 5.3

u∏
i=1

aπ(|gi|) ≤
|A|

2n|OutS|
.

Thus

t ≤ |A|
2n|OutS|

and by Lemma 5.4 we conclude that d(G) = d(Lt) = 2. �
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Proof of Theorem 1.4. Let G be a coprimely invariably generated group.
Assume, by way of contradiction, that pr(G) > 0. Let L and t ∈ N be such
that L is a monolithic primitive group with socle A and Lt is a homomorphic
image of G, with d(Lt) = d(G) = d and d > d(L/N).

If A is abelian, then pr(G) = 0 by Theorem 2.6, a contradiction. If A is
non-abelian, then arguing as in the proof of the non-abelian case of Theorem
1.2, we conclude that d = d(Lt) = 2. Thus again pr(G) = 0. �

6. Proof of Theorem 1.6

In the following proof, by [a, b] we denote the lowest common multiple of
integers a and b.

Proof of Theorem 1.6. We make use of the invariable generators given in
[18], where it is proved that every finite simple group is invariably generated
by two elements. For the classical groups, the orders given in [18] are for the
quasisimple groups, so we must adjust their values to get projective orders.

For the alternating groups, the generators given in [18, Proof of Lemma
5.2] are of coprime orders.

For the special linear groups in dimension n ≥ 3, the invariable generators
in [18] have orders (qn− 1)/((q− 1, n)(q− 1)) and (qn−1− 1)/(q− 1), which
are coprime. The given generators for PSL2(q) are also always of coprime
order. For the unitary groups and the orthogonal groups other than O−4k+2(q)
with q odd and O+

8 (q) with q ≤ 3, the given generators are coprime. For
O−4k+2(q) it suffices to take the square of the second generator in [18] to
produce coprime invariable generators.

For the symplectic groups in dimension 2m ≥ 4, the given generators have
orders (qm+1)/(q−1, 2) and [qm−1 +1, q+1], which are coprime when m is
even but need not be when m is odd. However, it follows from [16, Lemma
2.8] that except when (n, q) = (6, 2) or (6, 3) we may replace the element of
order (qm+ 1)/(q−1, 2) by its power of order a maximal divisor s of qm+ 1,
subject to being coprime with qi − 1 for i < 2m, and the result will hold.
We may generate S6(2) with an element of order 8 and an element of order
15, since by [4] the unique maximal subgroup (up to conjugacy) to contain
elements of both of these orders is S8, which contains a unique conjugacy
class of elements of order 8, whilst S6(2) contains two. We may generate
S6(5) with an element of order 7 and one of order 13, since by [3, Tables
8.28, 8.29] there are no maximal subgroups whose order is divisible by both
7 and 13.

Of the classical groups, this leaves only O+
8 (2) and O+

8 (3). For G :=
O+

8 (2), it is straightforward to run a computer search in MAGMA [2] which
tests that each pair of G-conjugacy classes of coprime elements intersects at
least one maximal subgroup nontrivially. Running the same test on triples
of conjugacy classes of coprime elements reveals 117 coprime invariant gen-
erating conjugacy class triples (many of which are automorphic twists of
each other). One such consists of class 5A, class 7A, and a choice of four
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of the seven G-classes of order 12. To see this, note that the only maximal
subgroups to contain elements of order 5, 7 and 12 are 26 :A8, S6(2) and A9.
There are three copies of each of these, cycled by the triality automorphism.
Each of them contains exactly one of the three classes of 5-elements, so class
5A selects one G-class of each isomorphism type. The groups 26 :A8 contain
two classes of elements of order 12, the groups S6(2) contain three, two of
which are conjugate in O+

8 (2), and the groups A9 contain only one. Thus
in total we have accounted for at most five of the seven classes of elements
of order 12, leaving at least two (in fact, four) from which to choose a third
coprime invariable generator.

The group O+
8 (3) contains one class of elements of order 7 and fourteen

classes of elements of order 9, which form orbits of lengths 6, 4 and 4 under
the outer automorphisms. We may choose elements from classes 9A, 9G and
9K as Aut O+

8 (3)-orbit representatives, which have centraliser orders 22 · 36,
36 and 34, respectively. We shall show that O+

8 (3) is invariably generated
by classes 7A and 9G. There are three maximal subgroups which contain
elements of order 7 and 9, namely O7(3), O+

8 (2) and 2.U4(3).22. The group
O7(3) contains four classes of elements of order 9. Two have these have even
centraliser orders, so must lie in the 9A orbit. The remaining two can be
checked using MAGMA to lie in the 9K orbit. The group O+

8 (2) contains
three classes of elements of order 9, all conjugate under triality. These all
lie in the 9K orbit. Finally, in the group 2.U4(3).22 all elements of order 9
have even centraliser orders, so lie in the 9A orbit. Thus class 9G lies in none
of these subgroups.

For all of the exceptional groups except E7(q), the invariable generators
given in [18] are coprime. Thus we need only consider E7(q). By [16, Table
6], elements of order (q + 1)(q6 − q3 + 1)/(2, q − 1) are contained only in
a copy of 2E6(q)sc.Dq+1. Since the order of E7(q) is divisible by q14 − 1,
we may find an element of order a Zsigmondy prime for q14 − 1 in E7(q).
Such a prime does not divide the order of 2E6(q) or q + 1, so gives a pair of
invariable generators for E7(q).

For the sporadics and the Tits group, [16, Table 9] lists carefully chosen
conjugacy classes of elements of the sporadics groups, together with a com-
plete list of the maximal subgroups containing those conjugacy classes. It
suffices to check that in each case there exists an element of order coprime
to the given one that lies in none of the listed maximal subgroups. �

7. Proof of Theorem 1.7

In this section we prove Theorem 1.7. First, we need a preliminary lemma.

Lemma 7.1. Assume that G is a finite group and let π ⊆ π(G). Then
kπ(G) ≤ |G|π. In particular if π = {p} ∪ π̃, then kπ(G) ≤ kp(G) · |G|π̃.
Proof. We prove that kπ(G) ≤ |G|π by induction on |π|. The case |π| = 1
is an immediate consequence of the Sylow Theorems. Assume π = {p} ∪ π̃.
Let g by a π-element of G; we may write g = ab where a is a p-element and
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b is a π̃-element and both are powers of g. Up to conjugacy we have at most
kp(G) choices for a. For a fixed choice of a we have to count the number
of b. Notice that b ∈ H = CG(a). Moreover if b1 and b2 are conjugate in
H then ab1 and ab2 are conjugate in G. Hence the number of choices of
b is bounded by the number of conjugacy classes of π̃ elements in H, and
by induction this number is at most |H|π̃ ≤ |G|π̃. Thus kπ(G) ≤ |G|π as
required.

By the same argument, we now have that

kπ(G) ≤ kp(G)kπ̃(H) ≤ kp(G)|H|π̃ ≤ kp(G)|G|π̃.
�

We in fact prove a slightly stronger version of Theorem 1.7, which we
state now. Let S = {An : n ≤ 7} ∪ {L2(q) : q ∈ {7, 8, 11, 27}} ∪ {L3(4)}.

Theorem 7.2. Let S be a finite simple group and let π1, . . . , πu be a partition
of π(S). Then

u∏
i=1

kπi(S) ≤ |S|
2|OutS|

.

Furthermore, if S 6∈ S, then there exists a prime p dividing |S| such that

kp(S) ≤ |S|p
2|OutS|

.

Proof. For groups in S, this is a direct calculation using their conjugacy
classes. For the remaining groups, the first claim follows from the second
and Lemma 7.1. The alternating case is considered in Lemma 7.3, below.
The linear and unitary groups and the symplectic and orthogonal groups
are dealt with in Lemmas 7.4 and 7.5, respectively. The exceptional case
is completed in Lemma 7.6. For the sporadics, this is a straightforward
exercise, using [4]. �

Lemma 7.3. Let S = An for some n ≥ 7. Then there exists a prime r
dividing |S| such that S has at most one conjugacy class of nontrivial r-
elements. Furthermore, if n ≥ 8 then there exists a prime p dividing |S|
such that

kp(S) ≤ |S|p
2|OutS|

.

Proof. First let k = bn/2c. Then Bertrand’s postulate states that for k ≥ 4,
there exists a prime r such that k ≤ n/2 < r < 2k − 2 ∈ {n − 2, n− 3}, so
the first claim follows (after verifying that r = 5 works when n = 7).

As for the second claim, note that |OutS| = 2. For n = 8, we use
k2(S) = 5 whilst |S|2 = 26. For n = 9, we use k3(S) = 6 whilst |S|3 = 34.
For n ∈ {10, 11, 12, 13} we use k5(S) = 3. We may therefore assume that
n ≥ 14 and n− 2 > p = r ≥ 11. Thus kp(S) = 2, whilst |S|p

2|OutS| ≥ 11/4 > 2,
so the result follows. �
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Lemma 7.4. Let S ∼= Ln(pe),Un(pe) be simple, and assume that S 6∈
{L2(q) : q ∈ {4, 5, 7, 8, 9, 11, 27}} ∪ {L3(4)}. Then

kp(S) ≤ |S|p
2|OutS|

.

Proof. By [21, Lemma 1.4], kp(S) ≤ np(n) + 1, where p(n) is the partition
function of n. Since p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · ,
where the sum is over the pentagonal numbers less than n and the sign of
the kth term is (−1)b(k−1)/2c, we may bound np(n) + 1 ≤ n2n.

First suppose that n = 2, so that |S|p = q. Then without loss of generality
S ∼= L2(pe). Here kp(S) = 2 for p = 2, and 3 for p odd, whilst |OutS| is e
for p = 2 and 2e for p odd. Thus for p = 2 we must check that 2e ≥ 2 · 2e,
which holds for all e ≥ 4. For p odd we require pe ≥ 12e, which clearly holds
for all e when p ≥ 13. If p = 3 this yields e ≥ 4, and when 5 ≤ p ≤ 11 this
yields e ≥ 2.

Next suppose that n = 3, so that |S|p = q3. Suppose first that S ∼= L3(pe).
If q ≡ 1 mod 3 then kp(S) = 5 and |OutS| = 6e, so we require p3e ≥ 60e,
which holds for all such q > 4. If q ≡ 0, 2 mod 3 then kp(S) = 3 and
|OutS| = 2e, so we require p3e ≥ 12e, which holds for all q > 2 (but recall
that S 6∼= L3(2) ∼= L2(7)). Suppose next that S ∼= U3(pe). In this case, if
q ≡ 2 mod 3 then kp(S) = 5, whilst if q ≡ 0, 1 mod 3 then kp(S) = 3. Since
U3(2) is not simple, and |OutS| = (3, q + 1) · 2e, the result follows by a
similar calculation to that for L3(q).

We now consider the general case. We bound kp by np(n) + 1 ≤ n2n,
whilst the order of a Sylow p-subgroup of S is qn(n−1)/2 and

|OutS| ≤ 2(q − 1) logp q < q2.

If n2n ≥ qn2/2−n/2−2/2 then (n, q) ∈ {(4, 2), (4, 3), (5, 2)}. In fact k2(L4(2)) =
5 < 26/4, whilst k3(L4(3)) = 7 < 36/8 and k2(L5(2)) = 7 < 210/4, so the
result follows. �

Lemma 7.5. Let S be a simple symplectic or orthogonal group, of rank n
over Fpe. Then

kp(S) ≤ |S|p
2|OutS|

.

Proof. Here |S|p ≥ qn
2−n and |OutS| ≤ 2(q−1, 2)2 logp q, which is less than

q2 for all q. By [21, Lemmas 1.4 and 1.5] if S is symplectic then

kp(S) ≤ p(2n)2(2n)1/2 < 6n

(where p(n) is the partition function of n), whilst if S is orthogonal then

kp(S) ≤ 2(n, 2)p(2n+ 1)2(2n+1)1/2 < 6n.

If n = 2 then q > 2 and S is symplectic, so that |S|p = q4 and |OutS| =
2(q, 2) logp q, whilst kp(S) ≤ 7, so the result follows for all q.
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If n = 3 then kp(S) ≤ 60, 187 for S symplectic or orthogonal, respectively,
so the result is immediate for q ≥ 5, and for the remaining q we check that
in fact kp(S) ≤ 16.

If n = 4 then kp(S) ≤ 156 for S symplectic and 960 for S orthogonal,
so the result is immediate for q ≥ 7. For 2 ≤ q ≤ 5 we verify that in fact
kp(S) ≤ 81, which completes the proof.

If n ≥ 5 the result follows immediately from the 6n bounds, for all q. �

Lemma 7.6. Let S ∼= rXl(pe) be a simple group of exceptional type. Then

kp(S) ≤ |S|p
2|OutS|

.

Proof. We use the results cited in [21, Proof of Lemma 1.5] to bound kp(S)
for each family. Let q = pe.

If S ∼= F4(q),E6(q), 2E6(q),E7(q),E8(q), then |S|p ≥ q24 and |OutS| ≤
6 logp q < q3, whilst kp(S) ≤ 202 so the result is clear.

If S ∼= G2(q) then |S|p = q6 and |OutS| ≤ 2 logp q < q, whilst kp(S) ≤ 9.
If S ∼= 2B2(q) then |S|p = q2 and |OutS| = logp q, whilst kp(S) = 4, so
the result holds for all q > 2, however 2B2(2) is not simple. If S ∼= 2D4(q)
then |S|p = q12 and |OutS| = 3 logp q < q2, whilst kp(S) ≤ 8, so the result
is clear. If S ∼= 2G2(q) then q ≥ 27 with |S|p = q3 and |OutS| = logp q,
whilst kp(S) ≤ 10, so the result holds for all q. Finally, if S ∼= 2F4(q) then
|S|p = q12 and |OutS| = logp q, whilst kp(S) < 35. �
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Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy
(2) Colva M. Roney-Dougal, University of St Andrews, Mathematical Insti-
tute, St Andrews, Fife KY16 9SS, Scotland


