
Mussa et al. J Cheminform  (2015) 7:58 
DOI 10.1186/s13321-015-0105-3

COMMENTARY

A note on utilising binary features 
as ligand descriptors
Hamse Y. Mussa1,2*, John B. O. Mitchell2 and Robert C. Glen1

Abstract 

It is common in cheminformatics to represent the properties of a ligand as a string of 1’s and 0’s, with the intention of 
elucidating, inter alia, the relationship between the chemical structure of a ligand and its bioactivity. In this commen-
tary we note that, where relevant but non-redundant features are binary, they inevitably lead to a classifier capable 
of capturing only a linear relationship between structural features and activity. If, instead, we were to use relevant 
but non-redundant real-valued features, the resulting predictive model would be capable of describing a non-linear 
structure-activity relationship. Hence, we suggest that real-valued features, where available, are to be preferred in this 
scenario.
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Background
One of the major goals of cheminformatics is to predict 
the relationship between a ligand’s chemical structure 
and its bioactivity [1]. If this relationship is captured 
correctly, then (among other goals) designing the right 
drug for each disease would become an easier task 
[1, 2]. Unfortunately, the structure-activity relation-
ship can often be intricate and arcane, and in particular 
non-linear.

To devise an adequate model describing this relation-
ship, the cheminformaticist typically follows a standard 
approach; starting with a large number of ligand attrib-
utes or features considered important for representing 
the underlying characteristics of the ligand, and relevant 
to its bioactivity. Then, through feature selection tech-
niques, one selects the ligand attributes deemed to have 
statistically minimum interdependence among them-
selves (given the ligand bioactivity), while also show-
ing strong association with the ligand bioactivity [3–5]. 
With this step, one strives for a set of relevant but non-
redundant ligand features [4, 5]: “relevant” in the sense 

that there is a strong association between the selected 
features and the bioactivity, and “non-redundant” in the 
sense that these features are conditionally independent 
given the bioactivity. (Irrelevant features are basically 
noise and relevant but redundant features are nuisance 
[6]; we are not concerned with these features here [6]).

Typically the ligand’s chemical structure is represented 
by an L-dimensional vector x = (x1, x2, ..., xL). The ele-
ments xl ideally contain appropriate information about 
the ligand’s features, relevant for predicting its bioactiv-
ity. This bioactivity against a particular target or protein 
may be represented either numerically or as a class label; 
such classes (or class labels) are denoted henceforth by k, 
where k = 1, 2, ..., K with K being the total number of 
classes of interest.

Identifying the relevant features x without errors is 
generally impossible. Usually both x and k are treated as 
random variables such that for a given x we have a dis-
tribution p(k|x)—the so-called class posterior probabil-
ity—on the different possible classes [1, 7]. In practice, 
p(k|x) that can assign a new ligand represented by x to 
the class minimising the probability of misclassifica-
tion is induced from given prototype samples (a training 
dataset) [8, 9].

In Bayesian probabilistic settings, it is usually com-
putationally easier to estimate p(k|x) in terms of class 
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probability (p(k)), evidence (p(x)) and class-conditional 
probability density function (p(x|k)):

In cheminformatics, the main task of estimating p(k|x) 
often reduces to inducing p(x|k) from the training 
dataset.

Commentary
It is common practice nowadays to assume that the L 
relevant chemical structure features of the ligand can be 
encoded as a binary “vector” of 1’s and 0’s denoting pres-
ence (1) and absence (0) of these features—i.e., xl ∈ {0, 1} 
[10]. In practice, state-of-the-art feature selection tech-
niques [3, 5] that are based on information theory are 
used to quantify the level of association between the fea-
tures and the bioactivity. These techniques are also capa-
ble of quantifying the class-conditional interdependency 
among the features. However, in the light of the insight-
ful work of Li on the peculiar but useful characteristics of 
the conditional dependence between two binary random 
variables [11], one might be able to go one step further; 
identify the L′ features in the L relevant features whose 
relationship with the bioactivity is statistically signifi-
cant, but whose class-conditional interdependency is 
statistically insignificant—i.e., retain features that are sta-
tistically non-redundant (and for that matter ignore or 
discard statistically redundant features).

In our probabilistic setting, L′ relevant descriptors 
x
′ = (x′1, x

′
2, ..., x

′
L) being non-redundant entails that 

p(x′|k) can be expressed as a product of L′ class-condi-
tional univariate probability density functions p(x′l |k) , 
i.e., p(x′|k) = �L′

l=1p(x
′
l |k). This means that p(k|x′) , 

which is what we are interested in estimating, can be 
given as

Since x′l ∈ {0, 1}, the univariate distributions p(x′l |k) 
are Bernoulli [8, 12, 13], i.e. p(x′l |k) = p(x′l = 1|k)x

′
l

[1− p(x′l = 1|k)](1−xl). In terms of these Bernoulli distri-
butions, Eq. 2 modifies to

which can be further rewritten in an equivalent but more 
convenient form (see Chapter 4 of ref [8]):

(1)p(k|x) = p(x|k)×
p(k)

p(x)
,

(2)p(k|x′) = �L′

l=1p(x
′
l |k)×

p(k)

p(x′)
,

(3)

p(k|x′) = �L′

l p(x
′
l = 1|k)x

′
l [1− p(x′l = 1|k)](1−xl)

×
p(k)

p(x′)

(4)gk(x
′) =

L′
∑

l

x′lckl + dk ,

where ckl = log
p(x′l |k)

1−p(x′l |k)
; dk =

∑L′

l=1 log (1− p(x′l |k))+

log
p(k)
p(x′). Clearly, the discriminant function gk(x′) is linear 

in x′  [8, 12, 13]—irrespective of the nature of the asso-
ciation between the chemical structure of the ligand and 
its bioactivity. This is the consequence of the ligand’s rel-
evant but non-redundant features being represented by a 
binary “vector”.

However, the situation can be different if non-redun-
dant real-valued features are utilised to represent the 
chemical structure of the ligand. In this scenario the 
L′ class-conditional univariate distributions p(x′l |k) are 
not necessarily Bernoulli. Here p(x′l |k) can be expressed 
in Hermite polynomial basis functions φn(x′l) in vari-
able x′l

where αk
nl are the appropriate coefficient values. Note 

that the k in αk
nl and φk

n is just an index (not a power). 
Inserting Eq. 5 into Eq. 2 and then taking the logarithm of 
the resultant equation yields the following discriminant 
function

where bk = log
p(k)
p(x′). Clearly hk(x′) is not necessarily lin-

ear in x′  even though the L′ features utilised are class-
conditionally independent [13]. Thus, for real-valued 
features, the resulting classifier is capable of representing 
a non-linear structure-activity relationship.

Conclusions
In this commentary it has been noted that, when ligand 
features are represented by a string of binary numbers, 
one must end up with a linear model for describing the 
dependency (if any) between the chemical structure of 
a ligand and its bioactivity of interest—albeit in a clas-
sification setting. Such a linear model may be severely 
biased and limited in its predictivity. It was also pointed 
out that, where relevant real-valued features are used, 
the resulting model can be unbiased as it can adequately 
capture both linear and non-linear structure-activity 
relationships.
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