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Enzyme mechanism prediction: a 
template matching problem on InterPro 
signature subspaces
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Abstract 

Background: We recently reported that one may be able to predict with high accuracy the chemical mechanism of 
an enzyme by employing a simple pattern recognition approach: a k Nearest Neighbour rule with k = 1 (k1NN) and 
321 InterPro sequence signatures as enzyme features. The nearest-neighbour rule is known to be highly sensitive to 
errors in the training data, in particular when the available training dataset is small. This was the case in our previous 
study, in which our dataset comprised 248 enzymes annotated against 71 enzymatic mechanism labels from the 
MACiE database. In the current study, we have carefully re-analysed our dataset and prediction results to “explain” why 
a high variance k1NN rule exhibited such remarkable classification performance.

Results: We find that enzymes with different chemical mechanism labels in this dataset reside in barely overlapping 
subspaces in the feature space defined by the 321 features selected. These features contain the appropriate informa-
tion needed to accurately classify the enzymatic mechanisms, rendering our classification problem a basic look-up 
exercise. This observation dovetails with the low misclassification rate we reported.

Conclusion: Our results provide explanations for the “anomaly”—a basic nearest-neighbour algorithm exhibiting 
remarkable prediction performance for enzymatic mechanism despite the fact that the feature space was large and 
sparse. Our results also dovetail well with another finding we reported, namely that InterPro signatures are critical for 
accurate prediction of enzyme mechanism. We also suggest simple rules that might enable one to inductively predict 
whether a novel enzyme possesses any of our 71 predefined mechanisms.
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Findings
Identification of unknown protein functions is essential 
for understanding biological processes and beyond [1, 
2]. Enzymes are proteins whose function is to catalyse 
chemical reactions in a living cell. Ascertaining enzy-
matic mechanisms can have important applications for 
pharmaceutical and industrial processes in which cata-
lysts are involved [1]. For example, identifying the cata-
lytic mechanism(s) of an enzyme could lead to designing 
new biocatalysts that give significant cost savings over 

non-biological alternatives in sectors such as laundry, 
deodorants, foods and agriculture [1].

Unlike predicting enzymatic functions at the level of 
the chemical reaction performed [2–4], the problem of 
predicting by which molecular mechanism a particular 
enzyme operates has not been well researched [1]. Two of 
us, De Ferrari and Mitchell, have recently looked into this 
question. In that work, we utilised a pattern recognition 
approach to predict chemical mechanisms from enzyme 
sequences [1]—to the best of our knowledge, that study 
was the first attempt to predict enzymatic mechanism in 
this way.

One notable aspect of that work was the excel-
lent prediction success rate of over 96  % for 248 test 
enzymes—albeit in a leave-one-out setting—even 
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though the training dataset was small and the simple k 
Nearest Neighbour rule with k =  1 (k1NN) [5, 6] was 
the algorithm employed for pattern classification. The 
k1NN rule is well known to be highly sensitive to errors 
in the training set [7], in particular when the train-
ing dataset is small [7–9]. For example, the number of 
training examples required for a k1NN rule to achieve 
high classification or prediction accuracy grows expo-
nentially with the number of irrelevant features (noise) 
[7, 9].

In the light of the “anomaly” described above, we have 
re-analysed that mechanism dataset and our previous 
classification results—mainly to understand and explain, 
if possible, the high prediction success rate achieved.

In the following section, we briefly describe our previ-
ous work. The “Results” section presents our new find-
ings, and the final section gives our concluding remarks.

To our knowledge, our study was the first attempt at 
bulk prediction of enzymatic mechanism from protein 
sequence [1]. The predictive model was an empirical and 
observational model [10] based on the concept of pattern 
classification.

Formally, a pattern classification problem deals with 
the optimal assignment of an object to one of J prede-
fined classes, categories or labels, � =

{

ω1,ω2, . . . ,ωJ

}

, 
whereby it is assumed that the object is adequately char-
acterized by L features, xi with i = 1, 2, …, L. Typically, 
the object is represented by an L-dimensional vector x, 
whose elements (x1, x2  …, xi) are discriminatory features 
that ideally can identify the object with a low misclassifi-
cation error rate. In this regard, the classification task is 
equivalent to establishing a mapping

from the feature space χ into the class space Ω, such that 
x ∈ χ is assigned to its appropriate class label ωj ∈ � , 
where j = 1, 2, …,  J. Each point in the class space has a 
corresponding region(s) or subspace(s) in the feature 
space defined by the L features.

In our previous study, the feature xi denotes absence 
(0) or presence (1) of an InterPro signature for an enzyme 
sequence, i.e., xi = {0, 1}. In other words, χ was a binary 
feature space χ = {0, 1}L. The class space Ω comprised 
J discrete points each representing one of the enzyme 
mechanism labels ωj, extracted from Version 3.0 of the 
MACiE (Mechanism, Annotation and Classification in 
Enzymes) database [11–13].

The mapping algorithm was the simple k1NN classifier. 
This algorithm can be basically viewed as a dictionary 
search [14]. That is to say, all the data points allotted for 
training are stored in a memory (a dictionary in χ), and a 
test data point is classified to the class label or labels ωj of 
the closest point in the dictionary, i.e., in χ. The specific 

(1)f : χ → �

implementation used in our calculations was Mulan’s 
BRKNN algorithm [5, 15].

Generally speaking, the integration process carried 
out by InterPro’s curators removes many of the redun-
dant signature matches that might otherwise occur. This 
results in a relatively small number of InterPro signa-
tures being present for the typical sequence in this data-
set. Thus, the squared nearest neighbour distance often 
takes small integer values, and it is common to find plural 
nearest neighbours an equal distance away. In this case, 
the label (or label set) most common amongst the ring of 
nearest neighbours is assigned.

The mechanism dataset consists of 248 enzymes anno-
tated against 71 MACiE labels, where each enzyme is 
represented by 321 InterPro signatures—i.e., L and J are 
321 and 71, respectively. We employed a leave-one-out 
validation scheme: 247 of the enzymes whose mecha-
nisms were known were utilised as a “dictionary” and 
the mechanism(s) of the one remaining enzyme was 
predicted, this processes being repeated 248 times. The 
simple pattern recognition approach yielded an excel-
lent prediction success rate of over 96 % for the 248 test 
enzymes.

Methods
In the present work, we are not directly concerned with 
the question of defining enzyme mechanisms; instead, we 
just use the mechanism dataset. We focus on finding the 
reasons why the k1NN rule gave us such good classifica-
tion results for this small dataset, its size being limited by 
the considerable experimental effort required to charac-
terise enzyme mechanisms.

While directly visualising the 321 dimensional feature 
space χ = {0, 1}L=321 would be impossible, we were able 
to go through the dataset manually. The mechanism data-
set was represented by a 248-by-323 matrix whose rows 
were the 248 enzymes, and the first and last columns 
contained the enzyme names (the enzyme sequence’s 
UniProt accession number) and their associated mecha-
nism class labels, respectively. The remaining 321 col-
umns denoted the 321 InterPro signature features.

We systematically swapped the 321 columns containing 
the InterPro signature features while keeping the rows 
and the first and last columns of the matrix fixed.

Results
After a number of iterations, we ended up with a block 
diagonal version of the original data matrix, see Fig. 1. The 
figure, a heat map of the data matrix, seems to explain why 
k1NN yielded the excellent classification results [1]. In the 
figure, the abscissa denotes InterPro signatures, whereas 
the vertical axis represents the enzyme sequence’s Uni-
Prot accession number and the corresponding MACiE 
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enzymatic mechanism labels of the form M0123. The col-
our yellow signifies that feature xi (InterPro signature) is 
present for the enzyme, while the red colour indicates that 
feature xi is absent for the enzyme.

According to Fig.  1, the 321 InterPro signatures are 
highly discriminating features. Enzymes that possess 
the same enzymatic mechanism ωj reside in a subspace 
(region) in χ = {0, 1}L=321 which barely overlaps with 
neighbouring regions. The inset in Fig.  1 depicts the 
heatmap of the portion of the dataset that corresponds 
to the enzymes (and their InterPro signature features) 
that have MACiE enzymatic mechanism label M0218, i.e. 
ωj = M0218. Note that a subspace for a given mechanism 
can be a composite (union) of non-overlapping “sub-sub-
spaces”. The sharing of the M0218 label by two separate 
non-homologous sequences illustrates the presence of 
two distinct proteins, firstly pancreatic lipase and sec-
ondly colipase, in the reactive complex.

Out of our 71 regions, only the two regions represent-
ing enzymes with MACiE mechanisms ωj=30 = M0348 
and ωj=35 = M0269 completely overlap. The same four 
InterPro signature features represent the enzymes that 
show mechanisms M0348 and M0269, highlighted in red 
in Table 1.

We suggest that our block data-matrix could be 
employed as an enzymatic mechanism prediction tool—a 

Fig. 1 Heatmap of our data matrix. The horizontal axis denotes 
InterPro signatures, whereas the vertical axis represents the enzyme 
sequence’s UniProt accession number and the corresponding MACiE 
enzymatic mechanism labels of the form M0123. The yellow colour 
signifies that feature xi (InterPro signature) is present for the enzyme, 
while the red colour indicates that xi is absent for this enzyme. 
Enzymes that possess the same MACiE mechanism label reside in 
a subspace of the feature space χ, which barely overlaps with other 
subspaces associated with other mechanisms. The inset depicts the 
heatmap for the dataset matrix corresponding to the InterPro signa-
tures and names of enzymes with the MACiE enzymatic mechanism 
label M0218

Table 1 Enzymatic MACiE mechanism labels wj and  the 
number of  enzymes reported to  possess this mechanism 
wj

wj Number of enzymes

M0346 3

M0070 3

M0118 2

M0206 3

M0034 3

M0033 2

M0235 3

M0051 5

M0312 4

M0069 2

M0050 4

M0123 2

M0248 3

M0202 2

M0007 5

M0171 3

M0255 2

M0336 2

M0117 2

M0006 4

M0131 2

M0212 6

M0017 3

M0326 7

M0218 12

M0078 3

M0314 4

M0324 13

M0175 4

M0348 2

M0045 5

M0003 3

M0147 7

M0121 2

M0269 2

M0253 3

M0026 3

M0188 5

M0130 4

M0159 2

M0213 4

M0249 2

M0055 3

M0272 2

M0122 2

M0060 2

M0148 2

M0303 2
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template against which to match novel enzymes to ascer-
tain their potential enzymatic mechanisms in regard to 
the 71 mechanisms in the mechanism dataset.

In this work, our mechanism dataset was re-analysed 
to ascertain as to why a simple but high variance classifier 
yielded such excellent classification results.

We hope that we have provided a reasonable explana-
tion; the mechanism dataset matrix is block diagonal in 
the feature and class spaces. In other words, the features 
(almost) uniquely codify the chemical mechanism of a 
given enzyme.

Based on these observations, we have also made the 
suggestion that one might be able to utilise the dataset 
matrix as an enzymatic mechanism prediction tool.
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Table 1 continued

wj Number of enzymes

M0029 2

M0071 3

M0099 6

M0126 6

M0262 2

M0177 14

M0013 4

M0021 2

M0015 2

M0228 6

M0058 2

M0211 2

M0309 2

M0154 2

M0244 2

M0209 2

M0270 3

M0063 4

M0328 2

M0039 2

M0252 3

M0036 2

M0080 2
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