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Abstract

Time- and angle-resolved photoemission measurements on two doped graphene sam-

ples displaying different doping levels reveal remarkable differences in the ultrafast dy-

namics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene,

we observe larger carrier multiplication factors (> 3) and a significantly faster phonon-

mediated cooling of the carriers back to equilibrium compared to in the less (p-)doped

graphene. These results suggest that a careful tuning of the doping level allows for an

effective manipulation of graphene’s dynamical response to a photoexcitation.
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A central question in the field of optoelectronics concerns identifying materials that can

convert light into electrical energy with high efficiency, and where an active control of the

underlying ultrafast charge carrier dynamics can be achieved. Graphene has emerged as a

promising candidate thanks to its unique electronic and optical properties encompassing a

very high room-temperature carrier mobility, a truly two-dimensional electronic structure

and a constant absorption in the energy range described by a Dirac cone.1–3 Recently, a new

intriguing effect was added to the list of attractive properties, namely the ability to generate

multiple hot carriers with an energy above the Fermi energy from a single absorbed photon

as a result of so-called impact excitation processes taking part in the energy relaxation of

the primary photoexcited carriers.4–9 This carrier multiplication (CM) is predicted to be

particularly effective in graphene by virtue of its linear band structure4,10 combined with

strong electron-electron (e-e) scattering11,12 and weak electron-phonon (e-ph) cooling,13,14

and represents a very interesting approach to convert light energy into electronic excitations

in an efficient manner. The number of generated hot carriers in the ultrafast cascade of

impact excitation processes has furthermore been predicted to be highly sensitive to the

doping level of the Dirac carriers, i.e. the location of the Fermi level (FL) relative to the

Dirac point (DP).5 Intriguingly, this suggests that this parameter can be used as a knob for

an active control of the CM, since the doping level can be easily tuned either electrostatically

by gate voltages1,15 or chemically by intercalating different elements into the interface in epi-

taxially grown graphene.16,17 The tunability of the ultrafast dynamics of the excited Dirac

carriers via the doping level also enables an effective manipulation of graphene’s photocon-

ductive properties as a consequence of different carrier scattering rates at different doping

levels.18,19 Moreover, it has been predicted that the cooling rate of the hot carriers back to

the equilibrium state displays a strong doping dependence.20

For realizing practical applications and to motivate further studies, it is of paramount

importance to obtain a more comprehensive view of the hot carrier dynamics in the Dirac

cone of graphene at different doping levels. Laser-based femtosecond (fs) time- and angle-
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resolved photoemission spectroscopy (TR-ARPES) is a particularly powerful tool in this

respect as it allows the direct observation of the photoexcited electrons’ evolution out of

thermodynamic equilibrium with energy and momentum resolution. This is a virtue that it

shares with no time-resolved optical technique. To date, however, only a few TR-ARPES

experiments have been performed on graphene,14,21–23 and none of these addresses the role of

doping on the dynamics of the photoexcited electron distribution. In this Letter, we present

results from TR-ARPES measurements of photoexcited electrons in graphene under two very

different doping conditions. Two epitaxial graphene samples were grown on semiconducting

SiC(0001) using two different well-documented synthesis procedures17,24 that provide high-

quality monolayer graphene displaying either n- or p-type doping. The doping mechanisms

are different as the interface layer decoupling the graphene samples from the SiC substrate

is different in the two samples;25 a carbon-rich layer for n-doped and a hydrogen layer for

p-doped graphene. In the n-doped graphene sample, the DP is 380 meV below the FL

corresponding to a carrier concentration of 1 ×1013 cm−2 whereas in the p-doped case a

carrier concentration of 4 ×1012 cm−2 places the DP 240 meV above the Fermi energy.

The n-doped sample is thus more doped than the p-doped sample. Our direct mapping

in momentum space of the transient occupation of the Dirac cone clearly shows that this

difference in doping level, renders the hot carrier dynamics in the two graphene samples

remarkably different to the extent that a substantial CM is possible in the more strongly

(n-)doped case.

Before proceeding, a note on terminology is appropriate. The electron-hole symmetry of

the low-energy electronic structure of graphene implies an equivalence in the dynamics of

electrons and holes. As we with TR-ARPES, however, only reliably can measure electrons, no

distinction, unless expressly stated, between carriers and electrons is made in this manuscript

and we use these terms interchangeably.

The TR-ARPES experiments were performed at the ARPES end-station at the Artemis

facility, Rutherford Appleton Laboratory.26 The high-energy, ultrafast pulses provided by
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Figure 1: Comparing the relaxation dynamics in n- and p-doped graphene samples: (a, b) Photoemission
intensity around the K̄-point (Γ̄− K̄ direction) in (a) the n- and (b) the p-doped graphene before the
arrival of the pump pulse. The dispersion obtained from a tight binding calculation has been added
as a guide to the eye (dashed line). (c,d,e) and (f,g,h) ARPES difference spectra for the n- and the
p-doped sample, respectively, obtained by subtracting the spectra in (a) and (b) from spectra acquired
at the indicated time delays. (i, j) Normalized spectral intensity binned in the three boxed regions in
(c) for (i) the n-doped and in (f) for (j) the p-doped graphene. The boxed regions are placed at the
same binding energies in the two cases. Schematics of the excitation with the applied pump energy of
1.6 eV are shown in the insets. Electrons and holes are depicted as red and blue spheres, respectively.
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high-harmonic generation in an argon gas enable acquisition of TR-ARPES data from the

high-momentum states at the K̄-point of the Brillouin zone of graphene (‖Γ̄K̄‖ = 1.7 Å).

After in-situ cleaning of the samples in ultrahigh vacuum by annealing to 600 K, TR-

ARPES data were acquired by the spatially overlapping pump (hνP =1.60 eV) and probe

(hνEUV = 21 eV) beams. The pump fluence was set to 1.4 mJ/cm2 focused to a 400 µm di-

ameter spot (full width at half maximum) on the sample, and both the probe and the pump

beam were polarized perpendicular to the scattering plane that was oriented along the Γ̄−K̄

direction. We note here that this experimental geometry implies that we are probing along a

maximum of the initially anisotropic photo-injected carrier distribution27 that re-distributes

itself into an isotopic distribution on the time scale of the carrier thermalization.6,27,28 The

sample temperature was fixed at 300 K, and the total time, energy and angular resolution

were better than 40 fs, 200 meV and 0.3◦, respectively.

Fig. 1(a) and (b) show ARPES data from the states in the Dirac cone of the n- and

the p-doped graphene sample, respectively, acquired before pump excitation, i.e. at negative

time delays. For the n-doped graphene, the DP is discernible via a decrease in photoemission

intensity. In the p-doped graphene, the DP is situated above the FL as indicated by the

dashed linear band that is the result of a fit of a tight-binding model to the data. The

effect of bringing the electronic system out of its thermodynamic equilibrium state can be

visualized by taking the difference between each ARPES spectrum acquired for positive time

delays and the equilibrium spectrum taken at a negative time delay. In Fig. 1(c)-(e) and

Fig. 1(f)-(h), we show the results of this subtraction for the n- and the p-doped graphene,

respectively, for three selected positive time delays (40 fs, 200 fs and 600 fs). In both the n-

and p-doped case, a strong increase (decrease) in spectral intensity is clearly visible at 40 fs

in the conduction (valence) band. This redistribution of spectral weight reflects the optical

excitation of the Dirac carriers, and it is noticeable that it is rather uniform along the band

and not centered around hνP/2 (800 meV) above the DP, i.e. at the binding energy of the

final states in the optically excited inter-band transition. This observation fits well with the

6



consensus in the literature that a significant part of the relaxation dynamics occurs already

during the action of the ultrashort pump pulse in the form of efficient e-e scattering events

filling the states between the thermal and the initial non-thermal carrier distribution.4–6,27

The excited carrier density is observed to be larger in the p-doped graphene than in the

n-doped graphene. This may appear puzzling because the optical transition takes place

between the same filled and empty states in both cases (see insets in Fig. 1(i) and Fig. 1(j))

and one should thus expect a similar density of excited carriers. Note, however, that the

possibility for an excitation as such is restricted by the presence of already excited electrons

in the final state, an effect also observed in degenerated differential transmission studies.29,30

This so-called Pauli blocking implies that light absorption is particularly efficient if the

excited state can already be emptied during the pump pulse.31 Given the short time scale

for Auger transitions, this is also possible, but it is much more effective for the p-doped

sample with more available phase space for the decay of the electrons below the final state

of the photoexcitation.

Following the subsequent temporal evolution of the excited carrier density at larger time

delays (Fig. 1(d)-(e) and Fig. 1(g)-(h)), it appears that the decay back to the equilibrium

state is significantly faster in the n-doped than in the p-doped sample. At 600 fs, the

spectrum from the n-doped sample in Fig. 1(e) already appears close to fully relaxed while

an excess population of carriers is still present about the DP in the p-doped sample, as seen

in Fig. 1(h). This is corroborated by tracking the intensity as a function of time delay in

three distinct boxes in the conduction band, as shown in Fig. 1(c) and (f). The intensities as

a function of time delay are shown in Fig. 1(i)-(j), and indicate that the relaxation dynamics

taking place after the pump excitation indeed is much faster in the n-doped than in the

p-doped sample.

Great care should be exercised when performing a comparison of the spectrally resolved

dynamics in this manner due to the non-linearity of the Fermi-Dirac (FD) distribution.32 A

conceptually more appealing approach would be to compare the evolution of the electronic
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Figure 2: Extracting the electronic temperature in the n- and p-doped graphene sample. (a,b) Left
panel: ARPES spectrum measured at 100 fs after optical excitation in (a) n- and (b) p-doped graphene.
Right panel: The same spectrum decomposed into momentum distribution curves (MDCs) for which
only a subset is shown. The results of the fits by Lorentzian line shapes to each individual MDC are
represented by the black solid lines. (c,d) Integral of fitted MDC peak intensities in (c) the n- and
(d) the p-doped graphene at selected time delays fitted by Fermi-Dirac distributions. (e) The fitted
electronic temperature (with error-bars added) for the n- (blue markers) and the p-doped graphene
(amber markers) as a function of time delay. Lines are the result of double exponential function fits to
the data. The obtained time constants are indicated.
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temperature characterizing the hot carrier population. This is possible provided that a

thermal FD distribution is established within the pump pulse duration. The experimental

access with energy and momentum resolution to the transient occupation of states provided

by our TR-ARPES data allows us to directly extract the time-dependent temperature of

the hot electrons in distinct states using a simple method described in details elsewhere.14,33

Briefly, we decompose the ARPES spectrum at all time delays into momentum distribution

curves (MDCs), each representing the photoemission intensity at a given binding energy as

a function of k‖. An example of such a decomposition is shown in Fig. 2(a) and (b) for

the n- and the p-doped graphene, respectively. All MDCs are then fitted to Lorentzian

functions and a polynomial background, and the intensity under the fitted line shape is

momentum-integrated and finally plotted against the binding energy. This gives access to

the photoemission intensity of the band independent of its dispersion as displayed in Fig. 2(c)

and (d). The data show that the thermalization of the electronic systems occurs on a few tens

of fs in both the n- and the p-doped case, although a small deviation from a FD distribution

is present in the former at a time delay of 40 fs, see Fig. 2(c). This is in agreement with our

previous study on p-doped graphene that also shows an ultrafast redistribution of carriers

towards a hot FD distribution.14

The maximum temperature reached after the thermalization (i.e for t > 40 fs) is signif-

icantly lower in the n-doped (2000 K) than in the p-doped graphene (3300 K), as seen in

Fig. 2(e). We note here that a laser pump fluence of 1.4 mJ/cm2 and an optical absorption

coefficient for graphene on SiC of 1.3 %34 give a nominal absorbed fluence of 18.2 µJ/cm2.

This amount of absorbed energy, however, would imply substantially higher temperatures

than observed for either samples due to the small electronic specific heat of graphene (see

the Supporting Information). A similar discrepancy between applied pump fluence and ac-

tual observed electronic temperature has been reported in a THz spectroscopy study on

graphite35 and is also observed in another recent TR-ARPES study.21 Several reasons can

be envisaged to account for the observed lower values. We believe that the most important
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effects are Pauli blocking during the pump excitation and a non-optimal geometric overlap

between the optical spots and the focus of the electron analyzer.29,30 A recent theoretical

study reports a saturation fluence due to Pauli blocking of 0.65 mJ/cm2 for pump pulses

with a duration of a few tens of femtoseconds.31 With a pump fluence of 1.4 mJ/cm2, we are

thus in the fluence regime where Pauli blocking is expected to be efficient. In fact, similar

dynamics and absolut values for the electronic temperature in both samples are observed

when we pump with higher fluences, as shown in the Supporting Information. Given that we

can directly extract the maximum temperature reached by the carriers from the TR-ARPES

data and know the electronic specific heat, we can estimate that the effective fluence in

the n- and p-doped graphene samples are 0.4 µJ/cm2 and 1.5 µJ/cm2, respectively (see the

Supporting Information for more details on this calculation).

For both the n- and the p-doped graphene, we observe a bi-exponential temperature

decay back to the equilibrium state. The first decay is governed by energy dissipation via

the emission of optical phonons. This cooling channel experiences a bottleneck when the hot

carriers’ energy drops well below the unusually large Debye energy (≈ 200 meV), at which

point the second decay sets in characterized by the emission of acoustic phonons assisted by

disorder-scattering (so-called supercollision processes).13,14,36,37 Both decay time constants

are substantially faster in the n-doped case, as indicated in Fig. 2(e). An explanation for

this difference in carrier cooling efficiency between the two samples is related to the fact that

the cooling dynamics should quantitatively scale with the available phase space for the hot

carriers to scatter into after their interaction with the phonon modes.38 The different doping

levels exhibited by the two samples render this phase space different in the two cases. In the

p-doped graphene, where the FL is 240 meV below the DP, the tail of the hot FD distribution

crosses the region about the DP where the density of states vanishes. As a result, all cooling

processes involving intra-band optical and, in particular, acoustic phonon scattering events

(including supercollisions) towards this region are significantly slowed down. A bottleneck

for the carrier cooling is thereby created in a similar manner as in a real semiconductor with
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a sizable band gap. This is not the case in the n-doped graphene as the doping level for

this sample is larger and, as a result, the hot holes and electrons do not cascade through

the DP in their relaxation process. Hence, the phase space for decay of the hot carriers

in the n-doped graphene is not constrained to the same extent as in the p-doped case,

and the probability for finding an unoccupied state at lower energy after having emitted a

phonon is significantly larger; in many ways reminiscent of the situation in a real metal.

It is important to reiterate that due to the electron-hole symmetry in the linear part of

the electronic structure of graphene, there exist no fundamental difference between n- and

p-doped graphene; the difference in the carrier cooling efficiency observed here is entirely

due to the different degree of doping or, equivalently, the density of carriers. This density

dependence of the cooling rates is in qualitative agreement with the theoretical study by R.

Bistritzer and A.H. MacDonald,20 but does not agree on a quantitative level, as the latter

study does not take supercollisions into account, resulting in cooling rates on the order of

nanoseconds.

The direct access to the absolute value and dynamics of the electronic temperature Te(t)

enables us to quantify the CM factor in the n- and the p-doped graphene. We note that

throughout this work the term CM is used for all inter - and intra-band scattering processes

that increase the number of hot electrons in the conduction band,6,8 despite the fact that

inter-band (intra-band) processes are dominant in p(n) doped graphene. We determine the

number of photoexcited carriers generated by the pump pulse n′p(n) as the ratio between the

total absorbed energy needed to heat the carriers from 300 K to their maximum temperature

and the pump photon energy. From Te(t), we calculate the time-dependent total density of

hot carriers promoted to states above the FL, nI(Te(t)). In this calculation, the temperature-

dependent position of the FL (chemical potential) is explicitly taken into account as explained

in more detail in the Supporting Information. The result of these calculations can be seen

in Fig. 3(a). We observe that the total hot carrier density above the FL nI(Te(t)) is almost

the same in the two samples for short time delays, despite the carrier density injected by the
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pulse n′p(n) being a factor of 3 less in the n-doped sample. This is a consequence of the larger

density of states around the FL in n-doped compared to the p-doped graphene, as shown in

the insets and discussed above. The CM factor is given by the following ratio:4

CM =
nI(Te(t))− nI(300K)

n′
(1)

where we have subtracted the thermal carrier background nI (300K) from the total carrier

density. The determined CM for the n- and the p-doped graphene is plotted in Fig. 3(b)

as a function of time delay. Intriguingly, the CM is more than a factor of 3 larger in the

n-doped case. The Dirac cone diagrams in the inset provide a simple explanation for this

result: in the n-doped graphene the photoexcited carriers can easily find scattering partners

in the Fermi sea to involve in impact excitation processes as both the number of nearby

thermal carriers and the scattering phase space is large. These processes are on the other

hand severely constrained in the p-doped graphene due to the vanishing density of states at

the DP. The lower electronic temperature in the n-doped graphene will also favor a higher

CM as the larger occupation gradient around the FL lowers the rate of the inverse Auger

recombination processes thereby creating an imbalance between impact excitation and Auger

recombination.39

The large value for the CM of ≈ 3.5 found at the end of the initial almost instantaneous

thermalization process is a very intriguing result indeed, as this indicates that the energy of

the photoexcited carriers is efficiently harvested during this process by the electronic system.

This result is consistent with the joint experiment-theory study by Plötzing et al.7 that

reports CM factors larger than two for our effective fluence range. Subsequently, phonon-

emitting recombination processes become the dominant relaxation channel for the additional

generated hot carriers that are shown to persist above the FL for approximately 170 fs. This

sets an upper limit for the time available to extract the carriers in an optoelectronic device

desiring to exploit CM. In the p-doped sample, the CM is shown to reach values above unity

12



6

4

2

0

 n-doped

3

2

1

0

40003000200010000

1010

n      = 6.2 10  cm.
12 -2

p

n      = 1.8 10  cm
12 -2

n

170 fs

time delay (fs)

C
M

n
  
(1

0
  
/c

m
  
)

2
1
2

I

(a)

(b)

 T  = 300 Ke

FE - E   (eV)

O
c
c
u

p
ie

d
 D

O
S

μp μ
n

 T  = 300 Ke

 T  = 3300 Ke  T  = 2000 Ke

 p-doped

.

 n-doped

 p-doped

n-dopedp-doped

Figure 3: Quantifying the carrier multiplication in the n- and the p-doped graphene. (a) Time-resolved
density of optically induced excited carriers nI calculated from the extracted electronic temperature. The
inset demonstrates how nI is found by integration (gray-shaded area under the curves) of the occupied
density of states (DOS), i.e. the DOS multiplied by the FD distribution, above the temperature- and
doping-dependent chemical potential µp(n). Note that in order to conserve overall charge neutrality, the
chemical potential is moving towards the Dirac point for higher temperatures in both n- and p-doped
graphene. The optically injected density of carriers n′p(n) for the p(n)-doped graphene is provided. (b)

Carrier multiplication (CM) from Eqn. 1 in the main text. The impact excitation processes leading to
CM are illustrated by arrows for the n- and the p-doped Dirac cones in the inset, where electrons are
depicted as red spheres and holes as blue spheres.

13



only for short time delays. This is apparently in contrast with our previous TR-ARPES

study of this effect on a p-doped graphene sample displaying the same level of doping,14

where a CM > 1 was not observed. We note, however, that a higher time resolution is

achieved in the present experiment. Moreover, the excitation energy of the pump pulse is

larger which is expected to increase the CM as long as the energy remains within the linear

regime of the band structure.39

With TR-ARPES, we can directly follow the ultrafast dynamics in the electronic band

structure of a material. In this work, we take advantage of this ability to show in a direct

manner that the dynamical response of the Dirac carriers in graphene to a photoexcitation

can be tuned by varying the doping level, i.e. the position of the FL relative to the DP. In

particular, a substantial CM reaching values larger than three can be achieved in n-doped

graphene doped to a level of 380 meV. This is significantly larger than the CM reachable in

p-doped graphene displaying a lower level of doping of 240 meV. The subsequent cooling of

the hot carriers via phonon-emitting processes is significantly more efficient in the n-doped

graphene compared to in the p-doped graphene as a consequence of the reduced phase-

space for decay imposed by the vanishing density of states at the DP. Taken together, these

results suggest that a careful tuning of the doping level in graphene in between the two

levels displayed by our samples allows for a significant generation of multiple hot carriers.

For photovoltaic applications, it is interesting to note that the solar radiation reaching the

Earth on a femtosecond time scale is orders of magnitude lower ( ∼ pJ/cm2) than in our

experiment, and thus in a low fluence regime, where CM is predicted to be even more efficient

as observed here. Finally, we note that the tunability of the carrier dynamics by doping and

fluence is also important for reaching efficient carrier heating regimes.40
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(39) Winzer, T.; Malić, E. Phys. Rev. B 2012, 85, 241404.

(40) Jensen, S. A.; Mics, Z.; Ivanov, I.; Varol, H. S.; Turchinovich, D.; Koppens, F. H. L.;

Bonn, M.; Tielrooij, K. J. Nano Letters 2014, 14, 5839–5845.

18


