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Abstract26

27

1. Acoustic monitoring can be an efficient, cheap, non-invasive28

alternative to physical trapping of individuals. Spatially expli-29

city capture-recapture (SECR) methods have been proposed to30

estimate calling animal abundance and density from data col-31

lected by a fixed array of microphones. However, these methods32

make some assumptions that are unlikely to hold in many situ-33

ations, and the consequences of violating these are yet to be34

investigated.35

2. We generalize existing acoustic SECR methodology, enabling36

these methods to be used in a much wider variety of situations.37

We incorporate time of arrival (TOA) data collected by the38

microphone array, increasing the precision of calling animal es-39

timates. We use our method to estimate calling male density40

of the Cape peninsula moss frog Arthroleptella lightfooti.41

3. Our method gives rise to an estimator of calling animal density42

that has negligible bias, and 95% confidence intervals with ap-43

propriate coverage. We show that using TOA information can44

substantially improve estimate precision.45

4. Our analysis of the A. lightfooti data provides the first statist-46

ically rigorous estimate of calling male density for an anuran47

population using a microphone array. This method fills a meth-48

odological gap in the monitoring of frog populations, and is49

applicable to acoustic monitoring of other species that call or50

vocalize.51

1



Key-words: Anura, Bootstrap, frog advertisement call, maximum52

likelihood, Pyxicephalidae, spatially explicit capture-recapture, time53

of arrival54

1 Introduction55

Population size is one of the most important variables in ecology and a crit-56

ical factor for conservation decision making. Distance sampling and capture-57

recapture are both well-established methods used for the estimation of animal58

abundance and density. Both approaches calculate estimates of detection prob-59

abilities, and these provide information about how many animals in the survey60

area were undetected. Estimates of abundance and density are then straightfor-61

ward to calculate. One particular point of difference is that distance sampling62

uses locations of detected individuals in space, while typically capture-recapture63

records the initial capture, and subsequent recaptures, of individuals at various64

points in time. The relatively recent introduction of spatially explicit capture-65

recapture (SECR) methods (Efford, 2004; Borchers & Efford, 2008; Royle &66

Young, 2008; Royle et al., 2013, see Borchers, 2012, for a non-technical over-67

view) has married the spatial component of distance sampling and the temporal68

nature of capture-recapture approaches. Indeed, Borchers et al. (in press) linked69

the two under a unifying model to show that they exist at opposite ends of a70

spectrum of methods, which vary with the amount of spatial information em-71

ployed.72

Data collected from SECR surveys are records (known as the capture histor-73

ies) of where and when each individual was detected. Detection may occur in74

a variety of ways, e.g., by physical capture, or from visual recognition of a par-75

ticular individual. SECR methods treat animal activity centres as unobserved76

latent variables, and the positions of detectors that did (and did not) detect a77
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particular individual are informative about its location; an individual’s activity78

centre is likely to be close to the detectors at which it was detected.79

Efford et al. (2009) first proposed the application of SECR methods to de-80

tection data collected without physically capturing the animals themselves, but81

from an acoustic survey using an array of microphones (see Section 9.4, Royle82

et al., 2013, for a summary of acoustic SECR methods). This is appealing83

when the species of interest is visually cryptic and difficult to trap physically,84

but is acoustically detectable. Moreover, it is less disruptive and invasive than85

physical capture. When individuals can be detected (virtually) simultaneously86

on multiple detectors (e.g., by virtue of the same call being recorded at mul-87

tiple microphones), then “recaptures” (or, more accurately, redetections) occur88

at different points in space rather than across time, thus removing the need89

for multiple survey occasions. This has the advantage of substantially reducing90

the cost of fieldwork. In this case, the capture histories simply indicate which91

microphones detected each call, and no longer have a temporal component. The92

latent locations are no longer considered activity centres, but simply the phys-93

ical location of the individual when the call was made. The use of SECR for94

these data is advantageous over competing approaches (e.g., distance sampling)95

as these often assume that the locations can be determined without error, and96

this does not hold in many cases.97

The method of Efford et al. (2009) used signal strengths (i.e., the loudness98

of a recieved call at a microphone) to improve estimates of indviduals’ locations:99

Microphones that received a stronger signal of a particular call are likely to be100

closer to the latent source locations than those that recevied a weaker signal.101

Such additional information is capable of improving the precision of parameter102

estimates (Borchers et al., in press).103

Naturally, acoustic detection methods are unable to estimate the density of104
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non-calling individuals. Any density estimates obtained from acoustic surveys105

therefore correspond to the density of calling individuals, or density of calls106

themselves (i.e., calls per unit area per unit time), rather than overall population107

density. If the proportion of individuals in the population that call is known108

(or can be estimated) then it is straightforward to convert estimated calling109

animal density to population density. Otherwise, the utility of measures related110

to abundance or density (e.g., relative abundance indices) has been shown for111

a variety of taxa, of which only subsets of the populations are acoustically112

detectable.113

For example, females do not call for almost all anuran species. It is therefore114

only possible to obtain an estimate of calling male density from an acoustic115

survey. Nevertheless, qualitative estimates of call density (i.e., density recorded116

on a categorical scale) for frog populations have been found to correlate well117

with capture-recapture estimates (Grafe & Meuche, 2005), and male chorus118

participation is the best known determinant of mating success in many frog119

species (Halliday & Tejedo, 1995). As a result, call density is often used as a120

proxy for frog density (e.g., Corn et al., 2000; Crouch & Paton, 2002; Pellet121

et al., 2007).122

Further examples of taxa for which measures related to abundance and dens-123

ity have been estimated using acoustic methods include birds (e.g., Buckland,124

2006; Celis-Murillo et al., 2009; Dawson & Efford, 2009), cetaceans (e.g., Harris125

et al., 2013; Martin et al., 2013), insects (e.g., Fischer et al., 1997), and primates126

(e.g., Phoonjampa et al., 2011). See Marques et al. (2013) for an overview on127

the use of passive acoustics for the estimation of population density.128

While the method of Efford et al. (2009) shows promise in estimating calling129

animal abundance and density using fixed arrays of acoustic detectors, a major130

practical issue was not addressed in this work: The method as described is only131
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appropriate if each individual makes exactly one call. The likelihood presented132

assumes independent detections between calls, thus independence between call133

locations. This is unlikely to hold when individuals emit more than a single call,134

as locations of calls made by the same individual are almost certainly related.135

This issue was not explicitly acknowledged, and as a result the subsequent ana-136

lyses presented by Marques et al. (2012), Martin et al. (2013), and Dawson &137

Efford (2009), which all apply the method of Efford et al. (2009), are problem-138

atic. We outline these studies below.139

Marques et al. (2012) and Martin et al. (2013) applied acoustic SECR meth-140

ods to data collected by underwater hyrdophones, which detected vocalizations141

from minke whales Balaenoptera acutorostrata Lacépède. As the location of a142

whale’s call is likely to be close to the location of its previous call, this analysis143

suffers the assumption violation mentioned above. The consequences of this144

violation are not clear.145

Furthermore, calls were treated as the unit of detection meaning that each146

call (rather than each individual) was given its own capture history. The res-147

ulting density estimate was therefore of call density rather than calling whale148

density. Distance sampling analyses have previously used independently es-149

timated call rates to convert from call density to calling animal density (e.g.,150

Buckland, 2006), and Efford et al. (2009) suggest using the same approach. The151

efficacy of this approach in an SECR setting is yet to be investigated, and a way152

of estimating variance of animal density estimates generated in this way has not153

yet been proposed.154

Dawson & Efford (2009) estimated density of singing ovenbirds Seiurus auro-155

capilla (Linnaeus) using small arrays of microphones. Only the first detection156

from each individual was retained for analysis. The authors claim that this157

allows for the direct estimation of calling animal density, as calling individuals158
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are now the unit of detection. There are two problems with this practice: First,159

it can only be carried out in situations where individuals are recognizable from160

their calls, and on many surveys this is not the case. Second, detection probabil-161

ities calculated using this method correspond to calls, but when calling animals162

are the unit of detection it is necessary to calculate the detection probabilities163

of individuals instead. The approach of Dawson & Efford (2009) ignores a tem-164

poral component of individual-level detection – the longer the survey, the more165

likely it is that at least one call from a particular individual will be detected.166

Individuals are detectable multiple times (i.e., every time they call) while calls167

are not, so call detection probabilities are necessarily smaller than individual168

detection probabilities. This results in the overestimation of the density of un-169

detected individuals, causing (potentially substantial) positive bias in calling170

animal density estimates.171

Putting the method of Efford et al. (2009) into practice is therefore problem-172

atic. It is necessary to investigate the consequences of violating assumptions of173

call location independence, and propose suitable estimators based on acoustic174

detection data from a microphone array. In this manuscript we present a general175

method that gives rise to estimators of calling animal density. We also develop176

methodology that can be used to estimate variance of the proposed estimators.177

We show by simulation that both perform well under reasonable assumptions.178

An additional improvement is possible, which we also incorporate into our179

estimator. While Efford et al. (2009) suggest the use of received signal strengths180

to further inform call locations (in addition to detection locations), Borchers181

et al. (in press) demonstrate the utility of time of arrival information in this182

regard. Multichannel arrays are capable of recording the precise times at which a183

signal is detected by each individual microphone, and subtle differences between184

these times are informative about the location of the sound source. For example,185
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a call’s source location is likely to be closest to the microphone with the earliest186

detection time. The use of such auxiliary data informative on call locations187

in acoustic SECR is further motivated by Fewster & Jupp (2013), who show188

that incorporating response data from additional sources leads to estimators189

that are asymptotically more efficient. Indeed, we show via simulation that our190

estimator has less bias and is more precise when it incorporates time of arrival191

data.192

We use our method to estimate calling male density of the Cape peninsula193

moss frog Arthroleptella lightfooti (Boulenger) from an acoustic survey. The194

genus Arthroleptella (moss frogs; family Pyxicephalidae) are tiny (adults are195

typically 7–8 mm total length), visually cryptic, and inhabit seepages on moun-196

tain tops in South Africa’s Western Cape Province (Channing, 2004). Due to197

the region’s topography, many species are severely range restricted, endemic to198

individual mountains, such that most of the genus are on the IUCN red list (1199

Critically Endangered, 1 Vulnerable, 3 Near Threatened, and 2 Least Concern;200

Measey, 2011).201

Individuals are extremely hard to find (approximately 3–4 person-hours per202

individual), and therefore prohibitively expensive to monitor via direct observa-203

tion. However, males can be heard calling throughout the austral winter from204

within montane seepages, making an acoustic survey ideal. Movement of in-205

dividuals is minimal over the course of such surveys; during physical searches206

frogs appear to call from the same precise locations (Measey, pers. obs.). Cur-207

rently, these populations are monitored with a subjective estimate of calling208

male abundance (Measey et al., 2011). Such subjective methods are typically209

employed in anuran monitoring methodologies (Dorcas et al., 2009). These es-210

timates have no corresponding measure of estimate uncertainty. Additionally,211

there is no formal way of accurately determining the survey area within which212
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individuals are detected, and so estimates of calling male density are not avail-213

able. Indeed, Dorcas et al. (2009) conclude that current auditory monitoring214

approaches to surveying anuran populations are restricted in their ability to215

estimate abundance or density. At present, no method exists that is capable of216

generating both point and interval estimates of either call or calling male dens-217

ity in a statistically rigorous manner. For the genus Arthroleptella (amongst218

others), this problem is further compounded by the lack of any method capable219

of identifying individuals from their calls, so it is not known how many differ-220

ent individuals have been detected. The method we present overcomes these221

problems.222

2 Materials and methods223

2.1 Overview224

Our method has three main components:225

1. An acoustic SECR survey from which call density is estimated (Section226

2.3).227

2. Estimation of the average call rate (Section 2.4), allowing for conversion228

of the call density estimate into a calling animal density estimate.229

3. A parametric bootstrap procedure (Section 2.5) for variance estimation.230

Once call density is estimated in Step 1, establishing an estimate for the mean231

call rate in Step 2 allows for the estimation of calling animal density. Measures232

of parameter uncertainty (such as standard errors and confidence intervals) are233

calculated using a parametric bootstrap approach. Parameter estimates from234

both Step 1 and Step 2 are required in order to carry out this procedure.235
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The SECR model we present for Step 1 assumes that individual calls are236

identifiable, i.e., it is known whether or not two detections at different micro-237

phones are of the same call. Some acoustic pre-processing is required in order238

to ascertain how many unique calls were detected across the array, and which239

of these were detected by each of the microphones. The details of this process240

will vary from study to study depending factors such as the acoustic properties241

of the focal species’ calls. We describe a simple method in Section 2.6 which is242

suitable for our survey of A. lightfooti.243

We do not assume that individuals are identifiable, i.e., our method does244

not require knowledge of whether or not two detected calls were made by the245

same animal. This is more difficult than identifying calls; there is less informa-246

tion available from which to determine individual identification, and one must247

contend with between-call variation in whatever acoustic properties of the calls248

are measured.249

2.2 Notation and terminology250

We consider a survey of duration T with k microphones placed at known loca-251

tions within the survey region A ⊂ R2. Vocalizations from members of the focal252

species are detected by these microphones, and measurements of the received253

signal strength and time of arrival are collected for each detection. A detection254

is defined to be a received acoustic signal of a call that has a strength above a255

particular threshold, c, so that is easily identifiable above any background noise.256

Detections with strengths below this threshold are discarded.257

The observed data comprises the number of unique calls detected, nc, cap-258

ture histories of the detected calls, Ω, recorded signal strengths, Y , and times259

of arrival measured from some reference point (typically the beginning of the260

survey), Z. These are defined as follows.261

Let ωij be 1 if call i ∈ {1, . . . , nc} was detected at microphone j ∈ {1, . . . , k},262
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and 0 otherwise. We denote ωi = (ωi1, . . . , ωik) as the capture history for the263

ith call on the k detectors, and Ω contains the capture histories for all nc calls.264

If the ith call was detected by the jth microphone then we also observe yij and265

zij , the measured signal strength and the recorded time of arrival from the start266

of the survey, respectively. The sets of all these observations are given by Y and267

Z, and yi and zi contain the signal strength and time of arrival information268

associated with the ith call.269

The detected calls have unobserved locationsX = (x1, . . . ,xnc
), where xi ∈270

A provides the Cartesian coordinates of the location at which the ith call was271

made. We also use x generically to denote a particular location within the survey272

region. Note that locations of calls emitted by the same individual cannot be273

considered independent. As it is not known which calls were made by the same274

individual, call locations in general are not independent.275

The parameter vector θ = (Dc,γ,φ) is estimated from the acoustic survey276

data. The scalar Dc is call density (calls per unit area per unit time), which is277

assumed to be constant across the survey area covered by the array (although see278

Section 4.5 for some discussion on modelling spatial variation in calling animal279

and call density), while the vectors γ and φ contain parameters associated with280

the signal strength and time of arrival processes respectively.281

The detection function and the effective sampling area (ESA) play import-282

ant roles in both SECR and distance sampling, and so they are worth briefly283

introducing here. The detection function g(d;γ) gives the probability that a call284

is detected by a microphone, given that their respective locations are separated285

by distance d. This is usually a monotonic decreasing function as calls further286

from a microphone are usually less detectable. Here we use the signal strength287

detection function (Efford et al., 2009, further detail provided in Section 2.3.1),288

and this depends on the signal strength parameters γ. Assuming independence289
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across microphones, the probability that a call made at x is detected at all290

is therefore p·(x;γ) = 1 −
∏k

j=1 1 − g(dj(x);γ), where dj(x) is the distance291

between the location x and the jth microphone. The ESA depends on the de-292

tection function, and is given by a(γ) =
∫
A
p·(x;γ)dx (Borchers & Efford, 2008;293

Borchers, 2012).294

The average call rate of calling members of the population at the time of295

the survey, µr, is estimated from a separate, independent sample of nr call296

rates, r = (r1, · · · , rnr
). If r is used to estimate a parametric distribution for297

population call rates, then the vector ψ holds the associated parameters. The298

final parameter of interest is calling animal density, Da.299

Throughout this manuscript we do not explicitly differentiate between a300

random variable and its observed value, instead this should be clear from its301

context. Likewise, we use the function f(·) to generically denote any probability302

density function (PDF) or probability mass function (PMF) without explicit303

differentiation. The random variable(s) that f(·) is associated with should be304

clear from its argument(s). From Equation (2) onwards we omit the indexing305

of parameters in PDFs and PMFs for clarity.306

2.3 Call density estimator307

The estimator we propose for θ is based on an SECR model, which we describe308

in this section.309

The full likelihood is the joint density of the data collected from the acoustic

survey, as a function of the model parameters:

L(θ) = f(nc,Ω,Y ,Z;θ)

= f(nc;Dc,γ) f(Ω,Y ,Z|nc;γ,φ). (1)

Note that Dc does not appear in the second term of Equation (1). This is310
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a consequence of assuming that call density is constant over the survey area311

(Borchers & Efford, 2008).312

SECR approaches often assume that the number of animals detected is a313

Poisson random variable, as animal locations are considered a realization of a314

Poisson point process. Because we do not know how many unique individuals315

have been detected, the distribution of the random variable nc is not known316

(indeed, it is certainly not a Poisson random variable if individuals call more317

than once, see Appendix C). This issue is linked to the dependence of within-318

animal call locations; independence in call locations implies that said locations319

are a realization of a Poisson point process, but any dependence violates this.320

We use the so-called conditional likelihood approach of Borchers & Efford321

(2008), which we extend here to include signal strength and time of arrival322

information. This allows for estimation of θ without any distributional assump-323

tion on nc, by conditioning on nc itself. Parameters γ and φ can be estimated324

directly using this likelihood, which is the second term in Equation (1):325

Ln(γ,φ) = f(Ω,Y ,Z|nc). (2)

Once the estimate γ̂ has been obtained, an estimate ofDc can then be calculated326

using a Horvitz-Thompson-like estimator. This is accomplished by dividing the327

number of detected calls by the estimated ESA and the survey length, i.e.,328

D̂c =
nc

a(γ̂)T
. (3)

Estimates for SECR model parameters that are obtained via maximization329

of the full likelihood are in fact equal to those obtained via maximization of the330

conditional likelihood and use of a Horvitz-Thomson-like estimator (Borchers &331

Efford, 2008), so there is no practical difference in the two approaches if we are332
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only interested in point estimates (though note that his only holds when density333

is assumed constant across the survey area). Indeed, specifying the distribution334

for the number of detections (here denoted as nc) only serves to allow calculation335

of estimate uncertainty; here D̂c depends on nc, and so uncertainty in D̂c is336

subject to the variance of nc.337

Let us now describe the conditional likelihood, Equation (2), in further de-

tail. The capture histories, Ω, received signal strengths, Y , and times of arrival,

Z, all depend on the call locations X: The closer a call is made to a micro-

phone, the higher the probability of detection, the louder expected received sig-

nal strength, and the earlier the expected measured time of arrival. We therefore

obtain the joint density of Ω, Y , and Z, conditional on nc, by marginalizing

over X:

Ln(γ,φ) =

∫
Anc

f(Ω,X,Y ,Z|nc) dX

=

∫
Anc

f(Ω,Y ,Z|X, nc) f(X|nc) dX

=

∫
Anc

f(Y ,Z|Ω,X, nc) f(Ω|X, nc) f(X|nc) dX.

By assuming independence between the detected calls’ recorded signal strengths

and times of arrival, conditional on X (i.e., the time of a call’s detection does

not depend on its strength) we obtain

Ln(γ,φ) =

∫
Anc

f(Y |Ω,X, nc) f(Z|Ω,X, nc) f(Ω|X, nc) f(X|nc) dX.

The conditional likelihood presented above is intractable for two reasons: i)338

In general, the joint density of the call locations, f(X|nc), is unknown due to the339

uncertain identification problem; we are unable to allocate calls to individuals340

(see Section 2.2), and ii) The integral is of dimension 2nc, usually rendering any341
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method of its approximation too computationally expensive to be feasible.342

Instead, we compute the simplified likelihood which overcomes these two343

problems by treating call locations as if they are independent. Justification344

for this is that treating non-independent data as if they are independent often345

has minimal effect on the bias of an estimator (though variance estimates may346

be affected substantially). This gives f(X|nc) =
∏nc

i=1 f(xi), and results in a347

separable integral, allowing for the evaluation of a product of nc 2-dimensional348

integrals instead of a single 2nc-dimensional integral:349

Ls(γ,φ) =

nc∏
i=1

∫
A

f(yi|ωi,xi) f(zi|ωi,xi) f(ωi|xi) f(xi) dxi. (4)

Estimates for γ and φ are found by maximising the log of the simplified350

likelihood function, i.e.,351

(γ̂, φ̂) = arg max
γ,φ

log (Ls(γ,φ)) , (5)

and our estimator for Dc remains as shown in Equation (3).352

In situations where call locations can be considered independent, the condi-353

tional and simplified likelihoods are equivalent. Otherwise, the simplified likeli-354

hood is not a true likelihood per se, and should not be treated as such. That is,355

any further likelihood-based inference (such as the calculation of standard errors356

based on the curvature of the log-likelihood surface at the maximum likelihood357

estimate, or likelihood-based information criteria) should not be directly used.358

The following sections focus on providing further details about each term359

that appears in the integrand of Equation (4).360
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2.3.1 Signal strength361

The use of signal strength to improve estimator precision in SECR models was362

first proposed by Efford et al. (2009).363

Assuming independence between received signal strengths (see Section 4.4364

for discussion on this point), the first component of the integrand in Equation365

(4) is366

f(yi|ωi,xi) =

k∏
j=1

f(yij |ωij ,xi).

The expected received signal strength of the ith call at the jth microphone367

can be any sensible monotonic decreasing function of dj(xi), the distance between368

the jth microphone and the location of the ith call. Here we simply use369

E(yij |xi) = h−1(β0s − β1sdj(xi)),

where h−1(·) is the inverse of a link function (typically chosen to be either the370

identity or log function). We account for Gaussian measurement error in the371

received signal strengths, i.e.,372

yij |xi ∼ N(E(yij |xi), σs).

The parameter vector γ therefore comprises β0s, β1s, and σs which have373

direct signal strength interpretations: β0s is the source signal strength of calls374

(on the link function’s scale), β1s is the loss of strength per metre travelled375

due to signal propagation (on the link function’s scale), and σs is the standard376

deviation of the normal distribution used to account for signal measurement377

error.378

However, recall that yij is only observed if the received signal strength ex-379

ceeds the microphone threshold of detection, i.e., if and only if yij > c (or,380
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equivalently, ωij = 1). Otherwise, yij is discarded and ωij is set to 0. There-381

fore, we set f(yij |ωij = 0,xi) to 1, and (yij |ωij = 1,xi) is a random variable382

from a truncated normal distribution, giving383

f(yij |ωij = 1,xi) =
1

σs
fn

(
yij − E(yij |xi)

σs

) (
1− Φ

(
c− E(yij |xi)

σs

))−1
,

(6)

where fn(·) and Φ(·) are the PDF and the cumulative density function of the384

standard normal distribution, respectively.385

2.3.2 Probability of detection386

Based on the previous section, Efford et al. (2009) proposed the signal strength387

detection function, to be used when signal strength information has been col-388

lected by the detectors during an SECR survey. This takes the form389

g(d;γ) = 1− Φ

(
c− h−1(β0s − β1sd)

σs

)
,

thus giving the probability of a call’s received signal strength exceeding c (and,390

therefore, the probability of detection).391

The ith capture history, ωi, is only observed if the ith call is detected, i.e.,392

if
∑k

j=1 ωij > 0. Thus, we observe ωi conditional on detection, and so f(ωi|xi)393

must incorporate the probability of detection in the denominator. Assuming394

independent detections of each call across all microphones, the third component395

of the integrand in Equation 4 is therefore396

f(ωi|xi) =

∏k
j=1 f(ωij |xi)

p·(xi;γ)
.

As ωij is 1 if the ith call is detected by the jth microphone, and 0 otherwise, we397
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have398

f(ωij |xi) =


g(dj(xi);γ) ωij = 1,

1− g(dj(xi);γ) ωij = 0.
(7)

2.3.3 Time of arrival399

A single detection time on its own is not informative on call location. It is400

only differences between precise arrival times that provide information about401

the relative position of a call in relation to the locations of the microphones402

at which it was detected. Time of arrival data are therefore only informative403

for calls detected at two or more microphones; the arrival times, zi, depend404

on ωi through mi, the number of microphones that detected the ith call, i.e.,405

mi =
∑k

j=1 ωij , mi ∈ {1, · · · , k}. Therefore f(zi|ωi,xi) ≡ f(zi|mi,xi), and we406

set f(zi|mi = 1,xi) to 1.407

Information about call locations improves the precision of parameter estim-408

ates, though here we do not assume that times of arrival allow perfect triangu-409

lation of call locations. Instead, we account for uncertainty in recorded times410

of arrival due to Gaussian measurement error, controlled by the parameter σt.411

For calls detected at two or more microphones, inference can be made by mar-412

ginalizing over the time the call was made, a latent variable, and this integral413

is available in closed form (see the online supplementary material of Borchers414

et al., in press),415

f(zi|mi > 1,xi) =
(2πσ2

t )(1−mi)/2

2T
√
mi

exp

 ∑
{j:ωij=1}

(δij(xi)− δ̄i)2

−2σ2
t

 . (8)

The term δij(xi) is the expected call production time, given call location xi, and416

the time of arrival collected by detector j, i.e., δij(xi) = zij − dj(xi)/v, where417

v is the speed of sound. The average across all detectors on which a detection418

was made is δ̄i.419
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2.3.4 Call locations420

We assume individuals’ locations are a realization of a homogeneous Poisson421

point process across the survey area, A. As the dependence between call loc-422

ations is not clear, it is not possible to specify their joint density, f(X), from423

data collected by the acoustic survey alone. Under the simplified likelihood424

(Equation (4)) this is now tractable: X itself is a realization of a filtered homo-425

geneous Poisson point process – the intensity of emitted calls is constant across426

the survey area, but the intensity of detected calls is highest closest to the micro-427

phones. The filtering is therefore through the detection probability surface (see428

Section 2.2). We now have f(X) =
∏nc

i=1 f(xi), and f(xi) is proportional to the429

intensity of the point process, i.e., f(xi) ∝ p·(xi;γ). As a(γ) =
∫
A
p·(x;γ)dx,430

the ESA is the normalizing constant, and we obtain431

f(xi) =
p·(xi;γ)

a(γ)
.

We have now provided details for all terms in the integrand of the simplified432

likelihood, Equation (4).433

2.4 Calling animal density estimator434

Although call density, Dc may be informative in situations where a species’ call435

rate is of primary interest, it is usually the density of calling individuals per436

unit area, Da that is required.437

First used in distance sampling by Hiby (1985), a common method used to438

obtain an estimate for calling animal density from call density involves dividing439

call density by the average call rate across the calling population, i.e., D̂a =440

D̂c/µ̂r (see Buckland et al., 2001, pp. 191–197). See Appendix B for justification441

for this estimator from its asymptotic properties.442

If µr is not known a priori then it must be estimated separately from call443
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rate data, r, collected independently of the acoustic survey. In the simplest444

case, the sample mean r̄ = n−1r

∑nr

i=1 ri is an estimator for µr. If the average445

call rate is known to vary (e.g., perhaps due to covariates such as rainfall,446

season, or temperature) then it is important to observe r at the same time as447

the acoustic survey. Alternatively, given call rate data collected across a range448

of such covariates, a model could be fitted to estimate the average call rate for449

specific conditions of a future survey, thereby reducing future field effort.450

In any case, for calculation of variance estimates (Section 2.5) one has to451

simulate call rate data from whatever model is used to estimate µr. In the case452

of taking a simple random sample of nr call rates, this can be done using the453

empirical distribution function (EDF). Otherwise, if a parametric model has454

been fitted to r (potentially using covariates, as described above), then such455

data can be generated from f(r; ψ̂).456

2.5 The bootstrap procedure457

We calculate estimate uncertainty (i.e., standard errors and confidence inter-458

vals for the model parameters) using a parametric bootstrap. By combining459

parameter estimates from Sections 2.3 and 2.4, we can simulate data in a way460

that mimics the real data generation process, including dependencies in call461

locations.462

Here we use the superscript ∗ to denote simulated data, or parameters es-463

timated from simulated data. We propose the following algorithm:464

1. Simulate animal locations as a realization of a homogeneous Poisson point465

process with intensity D̂a.466

2. Determine the number of calls made by each individual by simulating call467

rates from either the EDF of r or f(r; ψ̂).468
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3. GenerateX∗ by repeating each location from Step 1 the appropriate num-469

ber of times, given by Step 2.470

4. Obtain Ω∗ by simulating from f(ωij |x∗i ; γ̂) (Equation (7)). Omit all rows471

from Ω∗ and X∗ that are associated with undetected calls.472

5. Obtain Y ∗ by simulating from f(yij |ω∗ij = 1,x∗i ; γ̂) (Equation (6)), and473

Z∗ by simulating from f(zi|ω∗i ,x∗i ; φ̂) (Equation (8)) for all detections.474

6. Calculate θ̂∗ from Ω∗, Y ∗, and Z∗ using Equations (3) and (5).475

7. Obtain r∗ by simulating from either its EDF or f(r; ψ̂), calculate ψ̂∗ and476

therefore µ̂∗r .477

8. Calculate D̂∗a = D̂∗c/µ̂
∗
r .478

9. Repeat the above steps R times and save the parameter estimates from479

each iteration.480

Here we treat Da as the sole parameter of interest, but in practice the fol-481

lowing holds for any other estimated parameter. Let the saved density estim-482

ates from the simulated data be D̂∗a = (D̂∗a1, D̂
∗
a2, ..., D̂

∗
aR). Bias can be es-483

timated by subtracting the parameter estimate from the mean of the estimates484

from the bootstrap samples (Davison & Hinkley, 1997), i.e., D̄∗a − D̂a, where485

D̄∗a = R−1
∑R

i=1D
∗
i .486

Confidence intervals can be calculated using any suitable bootstrap confid-487

ence interval method, many of which are outlined by Davison & Hinkley (1997).488

The simplest approach is to calculate confidence intervals based on a normal489

approximation, using SD(D̂∗a) as the standard error. Note that the normal ap-490

proximation may be more suitable for a transformation of D̂a (e.g., log(D̂a)),491

and so a back-transformation of a confidence interval based on this transformed492

20



parameter may have better coverage properties. Other possible approaches in-493

clude the so-called basic and percentile methods, although note that the latter494

requires R to be larger in comparison to the normal approximation and basic495

methods.496

Note that Step 5 above makes the assumption that individuals do not move497

over the course of the survey. See Section 4.2 for some discussion on accounting498

for animal movement.499

2.6 Application to Arthroleptella lightfooti500

We use the method presented above to generate estimates of call and calling501

male density of A. lightfooti, and estimate associated variances.502

2.6.1 Equipment and survey design503

The data we use were generated from a 25 s subset of a recording carried out504

on 16 May, 2012.505

The recording was made using an array of six Audio-Technica AT8004 hand-506

held omni-directional dynamic microphones, connected to a DR-680 8-Track507

portable field audio recorder via Hosa Technology STX-350F Professional 1/4508

inch TRS male to XLR female cables. Each of the six microphones were placed509

in microphone holders which were fastened atop 1 m tall wooden dowels. The510

immediate vicinity was vacated during the recording. The configuration of our511

array is shown in Figure 1.512

2.6.2 Acoustic pre-processing513

The open-source software package PAMGUARD (Gillespie et al., 2009, see514

www.pamguard.org) was used in order to identify calls of A. lightfooti males,515

which have a signature frequency of 3.8 KHz. The first 600 s of the recording516

were ignored in case any disturbance to the frogs during set-up affected calling517
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behavior. Furthermore, a detection was only recorded if the strength of the518

received signal was above a threshold of 130 units. Along with signal strengths,519

precise times of signal arrival (accurate to 2.083 × 10−5 s) were also recorded520

for each detection.521

In order to construct the observed Ω, Y , and Z, it was necessary to determ-522

ine which detected sounds on different microphones were of the same call from523

the same frog. As individuals are not recognizable from their calls, this was524

done as follows: If two calls were detected within d/330 seconds of one another525

by two microphones that were d meters apart, then they are assumed to have526

the same source (using 330 ms−1 as the speed of sound in air).527

Note that this approach to call identification will never result in detections528

of the same call being attributed to different frogs, however there is potential for529

calls from different frogs to be falsely identified as the same individual. This is530

unlikely, however, as calls from males are temporally negatively correlated; they531

tend to call in turn in an attempt to increase their likelihood of being heard by532

a female (Altwegg & Measey, pers. obs.).533

2.6.3 Bootstrap details534

No individual call rate data were collected concurrently with the acoustic survey.535

Instead, we use call rate data collected at another time and location so that we536

are able to demonstrate the methods described in Sections 2.4 and 2.5. Call537

rate data were obtained by finding locations of 8 individual calling males and538

placing a microphone in close proximity; this ensured that all calls they emitted539

were detected, and were easily identifiable from calls of other males.540

We ran the bootstrap procedure (Section 2.5) for 10 000 iterations in order541

to reduce the relative Monte Carlo error associated with the standard error542

(calculated using Equation (9) in Koehler et al., 2009) to below 1%.543
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2.7 Simulation study544

We test our method using a simulation study. A total of 1 000 datasets were545

independently simulated using Steps 1–5 and Step 7 in Section 2.5. Values used546

for the simulation parameters were set at the corresponding estimates obtained547

from the real data analysis. For each simulated dataset, we use the method we548

outline above to obtain both point estimates and confidence intervals for Da and549

Dc. We used 500 bootstrap repetitions for each iteration in order to prevent550

the simulation from being prohibitively time-consuming. For comparison, we551

also calculate confidence intervals based on the approach of Efford et al. (2009),552

which ignores the dependence between call locations.553

We also conduct a simulation study to investigate the impact of using time554

of arrival information in addition to the signal strength data. A total of 10 000555

datasets were independently simulated, the same way as above, and two estim-556

ates of both Da and Dc were obtained from each: One from a model that used557

time of arrival information, and another from a model that did not.558

2.8 Software implementation559

Implementation (in Section 3, below) of the methods we present was accom-560

plished using the R package admbsecr (Stevenson & Borchers, 2014, see https://github.com/b-561

steve/admbsecr). This software can be used to obtain parameter estimates via562

numerical maximization of the log of the simplified likelihood. Optimization is563

carried out by a call to an executable generated by AD Model Builder (Fournier564

et al., 2012). Numerical integration is used to approximate marginalization over565

call locations.566

The code used to carry out analysis of the A. lightfooti data can be found567

in Appendix A.568
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3 Results569

3.1 Real data analysis570

A total of 225 unique calls were detected by the six microphones over the course571

of the 25 s survey.572

Density parameter estimates, their associated standard errors, and estimated573

biases (obtained from the bootstrap procedure of Section 2.5) are provided in574

Table 1. We use γ̂ to plot the detection function, shown in Figure 2. To illustrate575

the utility of the time of arrival information, we plot uncertainty surrounding576

the estimation of a location of one of the detected calls in Figure 1.577

Normal QQ plots for D̂∗a and D̂∗c both indicated approximate normality,578

and so confidence intervals based on a normal approximation using the standard579

errors shown in Table 1 were deemed to be appropriate. Setting the nominal580

coverage at 95%, this approach gave an interval of (239.42, 492.75) for Da and581

an interval of (65.06, 133.23) for Dc; Da is calling males per hectare and Dc is582

calls per hectare per second.583

3.2 Simulation study584

We show the performance of a number of confidence interval calculation meth-585

ods in Table 2. Coverage is only significantly different (at the 5% level) to the586

nominal 95% coverage rate for both intervals calculated using the basic boot-587

strap method, and for naïve confidence intervals that rely on call locations being588

independent (as per the method of Efford et al., 2009).589

Estimates of bias, variance, and mean square error of the estimators invest-590

igated in the second simulation study are shown in Table 3. The estimator that591

utilizes time of arrival data is more precise and less biased. Estimated sampling592

distributions of the estimates obtained both with and without the time of arrival593

information are shown in Figure 3.594
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4 Discussion595

4.1 Summary596

The method we have proposed to estimate calling animal density from a fixed597

microphone array relies on maximizing a simplified likelihood (Equation (4)).598

We then use a parametric bootstrap (Section 2.5) to account for dependence599

between call locations.600

In our simulation studies, parameter estimates were shown to have negli-601

gible bias (in all cases, bias was estimated at substantially less than 1% of the602

estimate sizes; see Tables 1 and 3). Note that this is despite the simplified like-603

lihood treating call locations as independent. Our findings suggest that density604

estimates obtained via acoustic SECR methods are robust to this violation. The605

bootstrap confidence interval methods generated intervals with coverage close606

to their nominal level (Table 2). Indeed, these easily outperformed the method607

that does not account for dependence among call locations in the construction608

of confidence intervals.609

Using time of arrival information led to decreased bias and substantially610

increased precision in density estimates (Figure 3, Table 3) in comparison to611

the approach of Efford et al. (2009). In applications like ours, time of arrival612

data is far more informative on animal location than trap location and signal613

strength information (Figure 1). With more information on where calls are614

located the detection function parameters can be estimated more precisely. In615

turn, this results in higher precision estimates of the ESA, call density, and616

calling animal density.617

4.2 Animal movement618

The approach we present here assumes that calls made by the same individual619

are associated with the same location, which is a reasonable assumption for620
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our case study of A. lightfooti. A natural extension is to account for animal621

movement. We outline two ways of doing this here.622

The first is to adjust our bootstrap method. This requires the fitting of a623

movement model (e.g., Jonsen et al., 2005; McClintock et al., 2012, see King,624

2014, for an overview) to independently collected data, explaining between-call625

animal movement patterns. Rather than the bootstrap procedure allocating626

all calls to the same location, movement can be introduced using parameter627

estimates from the movement model, resulting in appropriate variance estimates.628

However, we recognize that this may represent an infeasible amount of field effort629

in addition to the acoustic survey.630

If individuals can be identified from their calls, then the analysis of Ergon631

& Gardner (in press) suggests an alternative way forward. A new SECR ap-632

proach was used to analyze live-trapping data of field voles Microtus agrestis633

(Linnaeus), where individuals’ home range centres moved (due to a dispersion634

model) from one survey session to the next. Similar approaches could possibly635

be used to account for animal movement in acoustic SECR surveys. There are636

complications, however, associated with detections in continuous time rather637

than allowing movement across discrete sessions: One must integrate over all638

possible paths an individual could have taken between detection occasions, con-639

siderably increasing computational complexity.640

4.3 Inference via the conditional likelihood641

It would be beneficial to propose estimators based on the maximization of642

the conditional likelihood (Equation (2)) rather than the simplified likelihood643

(Equation (4)). Such an approach would deal directly with call location depend-644

ence, removing the need to collect data or make restrictive assumptions about645

call rates and animal movement. Under a classical framework, this would also646

result in maximization of a true likelihood, allowing for use of further likelihood-647
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based inference.648

It is not clear how this could be achieved when animal identification is649

not possible; a solution to this so-called unknown identification problem would650

present a significant breakthrough. One possible approach is to use a reversible651

jump Markov chain Monte Carlo procedure under a Bayesian framework. The652

number of unique detected individuals, as well as the allocations of calls to in-653

dividuals, would vary from iteration to iteration. Alternatively, inference could654

potentially be made using methods that deal with the estimation of parameters655

from intractable likelihoods (e.g., the synthetic likelihood approach of Wood,656

2010).657

Otherwise, if animal identities can be determined, possible methods of in-658

corporating animal movement and call rate into the conditional likelihood are659

a little clearer. The dependence between latent locations of calls from the same660

individual is obvious under the assumption of no animal movement, and poten-661

tially estimable via a movement model otherwise.662

Direct estimation of the average call rate, µr (and therefore calling animal663

density) is also likely to be possible from the acoustic survey. In order to obtain664

this, one must specify a distribution with mean µr for the number of calls made665

by individuals to account for the call production process. This is then filtered666

by the detection process, giving rise to the observed data and call identities.667

4.4 Further generalizations668

Our method is more general than that of Efford et al. (2009), as we do not rely669

on assumptions regarding independence of call locations for variance estimation.670

Further generalizations are possible, and we outline two of them here. First,671

our method assumes that individuals all emit calls with the same strength,672

β0s, which may not hold. Second, there is the issue of directional calling: The673

orientation of an individual may result in the loss of strength per metre, β1s, due674
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to signal propagation at a lower rate in some directions. Our method assumes675

signal propagation occurs uniformly across all directions.676

It is likely that further latent variables will be required to fit models ap-677

propriate for either case, i.e., latent call source strengths or latent individual678

orientations, respectively. With additional latent variables comes further com-679

putational complexity: Under a classical framework these must be integrated680

out of the likelihood. A Bayesian approach presents a viable alternative; latent681

variables can be sampled from rather than marginalized over, which is poten-682

tially simpler.683

4.5 Spatiotemporal changes in density684

In some situations it is not necessarily animal density that is of particular eco-685

logical interest, but rather temporal or spatial variation in density. Our method686

can be used to make inference in either case. Independent microphone arrays set687

out at various points in time and space will generate separate density estimates,688

from which temporal and spatial shifts of animal abundance can be determined.689

There is also potential for an alternative: In general, SECR methods are690

capable of directly estimating a density intensity surface, rather than a constant691

intensity over the survey area. We have skirted this issue for brevity; assuming692

a constant density is reasonable in many cases over small survey areas.693

4.6 Analysis of Arthroleptella lightfooti data694

Regarding the survey of A. lightfooti, our method obtained an estimate of 366.08695

calling males per hectare. Alternative methods used to monitor abundance of696

threatened species in the genus Arthroleptella make use of auditory estimates697

(Measey et al., 2011). Trained practitioners stand at a set locale and listen to698

an assemblage, placing call abundance into a category (Dorcas et al., 2009); the699

assemblage calling in this study was assessed using this method, falling into the700
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highest category, > 100 individuals. It is difficult to compare the two estimates701

as this abundance cannot be converted into a density.702

Our estimates of call density and calling male density are associated with703

coefficients of variation of approximately 17.5% from just 25 s worth of recording704

using only six microphones (Table 1). The relatively high precision of D̂a is in705

part due to the fact that variance in the recorded call rates, r, was very low706

as individual A. lightfooti call at very regular intervals. This allowed for a707

precise estimate of µr which was used in the calculation of D̂a. Uncertainties708

associated with our density estimators decrease as survey length and nr increase709

(see Appendix B, Figure 1).710

4.7 Concluding remarks711

Our method advances acoustic SECR methodology by improving estimator pre-712

cision via time of arrival information, and by proposing an unbiased estimator713

for calling animal density. Our confidence intervals account for dependence in714

call locations, which had previously been ignored. Our analysis here is the first715

to provide reliable point and interval estimates of both the call and calling male716

density of a frog species from an acoustic survey. This approach is general, and717

can be applied to estimate calling animal density for a wide variety of species.718
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Table 1 Parameter estimates, standard errors, and estimated biases from
analysis of the A. lightfooti data. Parameters above the horizontal line are
those that were estimated directly from the acoustic survey. Dc is in calls per
hectare per second, Da is in calling males per hectare, σt is in milliseconds, and
µr is in calls per individual per 25 s.

Parameter Estimate Standard error Bias (%)

Dc 99.15 17.39 0.59
β0s 156.57 1.81 -0.14
β1s 2.67 0.18 -0.22
σs 11.50 0.44 -0.07
σt 1.96 0.12 0.60

Da 366.08 64.63 0.62
µr 6.77 0.12 0.01

Table 2 Coverage of various confidence interval methods for the parameters
Da and Dc. Nominal coverage was set at 95%. The methods above the ho-
rizontal line are calculated from the bootstrap approach from Section 2.5; the
naïve method assumes independence between call locations.

CI method Da Dc

Basic 0.924 0.927
Normal 0.942 0.941
Percentile 0.942 0.946

Naive – 0.729
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Fig. 1 Estimated locations of a detected call from SECR models with various
levels of supplementary information. Crosses show the microphone locations,
while circled crosses indicate the microphones at which this particular call was
detected. Each contour shows the area within which the call was estimated to
have originated with a probability of 0.9. As more additional data is used, the
area inside the contour decreases, representing a more precise location estimate.
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Fig. 2 Estimated detection function, g(d; γ̂), from the A. lightfooti data.

Table 3 Performance of Da estimators with and without the use of time of
arrival data. Calculated bias is Ê(D̂a − Da) as a percentage of Da. CV gives
the coefficient of variation as a percentage. MSE gives the mean square error.
The simulated data were generated with Da set at 366.08.

Estimator Bias (%) CV (%) MSE

With TOA 0.62 17.65 4181.73
Without TOA 2.93 23.08 7256.95
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Fig. 3 Estimated sampling distributions of D̂a for models with and without
time of arrival information incorporated. The dotted vertical line shows the
value of Da used to generate the simulated data.
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