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Abstract

The multiscale complexity of cancer as a disease necessitates a corresponding multiscale modelling approach to
produce truly predictive mathematical models capable of improving existing treatment protocols. To capture
all the dynamics of solid tumour growth and its progression, mathematical modellers need to couple biological
processes occurring at various spatial and temporal scales (from genes to tissues). Because effectiveness of
cancer therapy is considerably affected by intracellular and extracellular heterogeneities as well as by the
dynamical changes in the tissue microenvironment, any model attempt to optimise existing protocols must
consider these factors ultimately leading to improved multimodal treatment regimes. By improving existing
and building new mathematical models of cancer, modellers can play important role in preventing the use
of potentially sub-optimal treatment combinations. In this paper, we analyse a multiscale computational
mathematical model for cancer growth and spread, incorporating the multiple effects of radiation therapy
and chemotherapy in the patient survival probability and implement the model using two different cell based
modelling techniques. We show that the insights provided by such multiscale modelling approaches can
ultimately help in designing optimal patient-specific multi-modality treatment protocols that may increase
patients quality of life.
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1. Introduction

Along with the rapid growth in acquisition of genetic, proteomic and other biochemical and bio-
logical data, there has been a parallel development from the theoretical side in terms of modelling.
In particular, Systems Biology has emerged as a field of research over the past decade applied to a
wide range of problems in the biomedical sciences. Systems Biology seeks to bring to bear a range of
inter-disciplinary skills and tools on complex biomedical problems. By adopting a holistic or integra-
tive approach (as opposed to the more traditional reductionist logic), systems biology aims to predict
emergent behaviour that will arise from complex biomedical systems i.e. behaviour that appears over
time due to the interactions between genes, proteins, cells and tissues across a range of spatial and
temporal scales. Given the complexity of most biomedical systems and their inherent nonlinearities,
it is not possible to make accurate predictions without adopting some kind of “systems approach”.
Indeed, in the last few years, systems biology itself has evolved and further developed seeking not just
to understand events at the separate biological scales in a qualitative manner, but also to develop
mathematical models which are truly multiscale, leading to the emergence of “quantitative systems
biology” or “quantitative integrative biology”. This novel systems approach is now being brought to
bear on cancer modelling and a related discipline of what may be termed Systems Oncology now exists
in its own right to develop predictive multiscale models of cancer growth and spread. In this paper
we present a brief summary of previous cancer modelling over the past 15-20 years and then focus
on two recent multiscale models of a solid tumour undergoing radio- and chemotherapy treatments.
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We show how simulation results can be used to optimize treatment regimes resulting in better clinical
outcomes for individual patients.

2. Mathematical Models in Systems Oncology

Decades of cancer modeling have produced established models representing all the key phases of
solid tumour growth i.e. avascular growth [1, 2], tumour-induced angiogenesis [3, 4], the immune
response to cancer [5, 6], invasion and metastasis [7, 8, 9, 10, 11] and vascular growth [12, 13].
New areas are also now being investigated concerning the spatio-temporal modelling of intracellular
pathways associated with cancer such as p53-Mdmd2 [14, 15]. A comprehensive overview of the field
may be found in the review article of Lowengrub et al. [16]. In the past few years especially, multiscale
models of solid tumour growth have been developed in order to account for the different spatial and
temporal scales (from genes to tissues) that occur not only in cancer but in all biological systems
[17, 18, 19, 20]. A review of recent models in this area may be found in the paper of Deisboeck et
al. [21]. There has also been a concerted effort to integrate mathematical models of cancer with real
data in an attempt to develop quantitative, predictive models of cancer progression [22, 23] and its
treatment using chemotherapy [24, 25, 26, 27, 28, 29, 30], radiotherapy [31, 32, 33].

Most of the recent multiscale models of cancer growth and treatment adopt some kind of individual-
based modelling approach where the individual cell is the initial focus of the model. Intracellular pro-
cesses may be incorporated through systems of ordinary differential equations modelling processes in
the cytoplasm and nucleus being associated with each individual cell. By simulating many interacting
cells, insight into emergent tissue level phenomena can be achieved. In the next section we briefly
review some of the cell-based modelling techniques currently being adopted before giving two specific
examples of multiscale models of a solid tumour undergoing radio- and chemotherapy treatments.

3. Cell-based Modelling Techniques

Cancer is a complex disease involving many interrelated processes that occur across a wide range of
spatial and temporal scales, from the intra- cellular level to the tissue level. Consequently, multiscale
models are needed to capture these coupled processes. In the past 5 years or so, researchers have
developed several mathematical and computational techniques that allow the study of how single-
cell-based behaviours and local cell-cell and cell-ECM interactions lead to emergent phenomena at
the tissue level. These methods “trade off” the level of detail per cell against the number of cells
per simulation. A key realisation that lies at the foundation of all these methods is that tissue
development, homeostasis or disease are all driven by a fairly limited set of cellular behaviours. By
growing, dividing, dying, adhering, secreting and absorbing chemicals or transducing signals and
interacting with extracellular matrix, cells give rise to a whole range of tissue-level phenomena from
healthy tissue development to cancer metastasis. Since cells live in a highly viscous environment all
cell-based modelling methods assume some kind of relation between force (F) and cell velocity (v).

The simplest technique to implement (but not always the simplest to analyse) is the cellular
automaton (CA) model which represent cells as single lattice points and encodes cellular behaviours
in terms of transition probabilities of cells moving from one lattice location to another. Although
defining rules and probabilities governing transitions in CA model is easy, linking these rules to forces
or other physically measurable cellular characteristics is quite challenging. However simplifying single
cell representations allows modellers to simulate large tissue fragments within reasonable computation
times [34, 35, 36]. Another related approach is based on lattice-gas cellular automaton approach [37].
Center Models (CM) [38, 39] relax the requirement of cells to be constrained to the grid points on a
fixed lattice by representing cells as interacting points in space. Inspired by molecular dynamics, CMs
solve force-velocity, F∼v, equations for each of the model cells. CMs force- or energy-based formalism
permits a much easier translation of measurable quantities into model parameters. Although CMs are
computationally more challenging than Cellular Automaton models they provide more biophysical
detail and also enable simulation up to the level of large tissue fragments. Sub-cellular Element
Models (SEM) appear to be a natural extension of CMs and they represent an individual cell as a
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collection of interacting points in space. To faithfully represent a single cell morphology and to keep
model cells unfragmented, SEM models apply “strong” interactions between points belonging to same
cell and somewhat weaker interactions to points that are members of different cells. This separation
of interaction strengths makes numerical integration of equations of motions more challenging [40]
as compared to the simpler Center Model implementation. Regardless of this, numerical treatment
of all center models (including SEM) is much simpler than molecular dynamics where one cannot
assume a F∼v relation. SEMs permit the detailed simulation of single cell morphology, shape changes,
etc. but as anticipated, the average size of the simulation in terms of number of cells is several
orders of magnitudes smaller than in the case of CA and CMs. The Cellular Potts Model (CPM)
(or Glazier-Graner-Hogeweg (GGH) model) [41] is a stochastic method that approximates complex
cell shapes as collections of pixels on a regular lattice and defines their behaviours and interactions
through the local minimization of effective energies depending on cell and pixel configurations. By
minimizing energy via the Modified Metropolis Algorithm, CPM recovers a linear relation between
force and a cells velocity and by using an energy-based formalism it allows the translation of lab-
measurable cellular characteristics into model parameters. The CPM embeds the F∼v relation into
a stochastic computational algorithm making it less explicit than in center models. Using a lattice
makes CPM simulations faster than corresponding SEM simulations but not as fast as CA or simple
center models. When details of single-cell representations are important, the Finite Element (FE)
technique and Immersed Boundary (IB) method [42] provide viable alternatives to earlier methods
but at much greater computation cost per cell. Ultimately, each simulation method should give the
same results for the same biologically-determined classes of objects, behaviours and interactions. Any
observed discrepancies between methods can used to veto and/or improve modelling methods.

In the remainder of this paper we focus on two recent multiscale models of a solid tumour under-
going radio- and chemotherapy treatments. We show how the computational simulation results can
be used to optimize treatment regimes resulting in better clinical outcomes for individual patients.

4. A Multiscale Mathematical Model of Multimodality Treatment

The growth and progression of a solid tumour mass depends critically on the responses of the
individual cells that constitute the entire tumour mass. The evolution of each individual cancer
cell and its decisions to grow, divide, remain inactive or die are usually influenced by cells spatial
location within the tumour and intracellular interactions (e.g. the intracellular cell-cycle). These
cellular responses are actively influenced by various extracellular signals from neighbouring cells as
well as its dynamically changing microenvironment. Here, we discuss a multiscale mathematical model
(and its two different mathematical implementations) for solid tumour progression incorporating such
intracellular, cellular and microenvironmental factors. This model can be used to study the effects of
cancer treatments and to optimize treatment regimes. The cell-cycle plays a critical role in most of
the complex cellular processes that are involved in cancer progression (proliferation, cell division and
DNA replication). Within a mammalian cell cel-cycle is controlled by a family of cyclin dependent
kinases (Cdk), whose activity is primarily dependent on association with a regulatory protein called
cyclin [43, 44]. Factors such as Cdk inhibitors can act as negative regulators of the cell-cycle and
tumour microenvironment [45]. In our cell-based model the growth and proliferation of each cancer
cell is determined by its own internal cell-cycle which we model using a set of ordinary differential
equations representing the chemical interactions involved in the cell-cycle - see Figure 1 and [36] for
details.

The cell-cycle dynamics are critically influenced by its external surrounding tumour microenviron-
ment and in particular, the availability of oxygen and nutrients for the rapidly increasing tumour cell
population [43]. Although, tumour cells can proliferate in the absence of oxygen (via glycolysis), the
availability of oxygen stimulates rapid proliferation and maintains the function of cell-cycle within
the cell. Experiments show that low supply of oxygen (hypoxia) upregulates some of the cell-cycle
inhibitory proteins such as p27 and p21 which could impair the cell-cycle, eventually taking the cell
either to a resting phase or inducing a cell-cycle arrest [46].

In our 2D model we assume that oxygen is supplied by randomly distributed blood vessels (red
cells in the concentration plot shown in Figure 1) [36] that are are perpendicular to the tissue cross
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section with no branching through the plane of interest. In a 3D domain, this can be replaced by
a network of vessels with vascular dynamics which are ignored for simplicity in this model. The
spatio-temporal evolution of the oxygen concentration (K(x, t)) is modelled using a reaction diffusion
equation as given in the Figure 1. Here, m(x) denotes the vessel cross section at position x (m(x) = 1
for the presence of blood vessel at position x, and zero otherwise) and r(x) describes rate of oxygen
supply [36]. This equation is solved using no-flux boundary conditions and an initial condition of
100 % oxygen distribution [47]. As the tumour cells grow, some them (within the tumour mass)
will be starved of oxygen and eventually become hypoxic. These hypoxic conditions further up-
regulate various proteins and intracellular pathways involved in intracellular growth and metastatic
cascade, and cell-cycle dynamics. These changes in the tumour microenvironment are mostly due to
the transcription of various physiologically important genes which are activated through the hypoxia
inducible transcription factor (HIF -1) pathway [46, 48, 49]. Usually, the tissue is considered hypoxic
if the average oxygen concentration falls below 10 mm Hg [48] and in our model, we assume that
HIF-1 α at position x, which is normally inactive, is activated if the oxygen concentration, K(x, t),
falls below 10%. To model hypoxia induced cell-cycle inhibitory effects we use an addition term in
equation governing Cyclin-CDK dynamics (Equation 1 of the cell-cycle dynamics in Figure 1).

4.1. Anticancer treatments

Chemotherapy and radiotherapy play important roles in the primary treatment of many cancers
and in improving the survival after surgery. Their effectiveness is affected by intra-tumoural hetero-
geneity and the changes in its surrounding microenvironment [50]. Consequently, consideration of
these dynamical changes could inform the design of optimal therapeutic protocols that improve the
therapeutic outcomes.Using our model, we analyse the effects of cell-cycle phase specific chemothera-
peutic drugs alone and in combination with radiation therapy in controlling the tumour progression.
Because cell-cycle stage-specific chemotherapy targets proteins (e.g.CDKs) that are over expressed
during various stages of cancer progression it can control cell growth. Moreover, an appropriate com-
bination of cell-cycle phase targeting drugs can address the occurrence of cell-cycle mediated drug
resistance due to the presence of functionally heterogenous cells [51]. We assume that the concen-
tration of chemotherapeutic drug (delivered through vascular cross sections and undergoing natural
decay/clearance) also follow a similar dynamics as that of oxygen distribution and is governed by a
similar reaction-diffusion equation as shown in Figure 1. The direct cellular effects after the radiation
therapy is modelled using a modified linear quadratic (LQ) model (Figure 1) by considering multiple
radiobiological effects due to the irradiation [52]. Previous experiments indicate that the relative radi-
ation sensitivity of a cancer cell depends on multiple factors, including its oxygenation status and its
cell-cycle phase [53, 54, 55]. While the cells are found to be more sensitive when in the S-G2-M phase
as compared with the G1 phase, their relative radiation sensitivity is minimal at low oxygen levels. We
model the effects of cell-cycle phase dependent radio-sensitivity stochastically using parameter γ that
varies from 0 to 1, depending on the cell-cycle phases and thus increasing or decreasing the survival
chances of an irradiated cell. The effect of changing tissue oxygen levels within the spatial domain
on the radiation sensitivity is included in the modified LQ model by using the oxygen modification
factor (OMF) [47] and is shown in Figure 1. This OMF introduces a higher probability of cell survival
in the absence of oxygen and increases the cell-kill if the cell is well oxygenated. Our models also
account for the chances of cellular repair after the radiation and the cell-cycle delay in repairing the
cellular damage as it might further affect the cellular redistribution and efficacy of additional doses
of multi-modality treatments.

4.2. Computational methods

To implement our model we used two different multiscale modelling techniques - Cellular Automa-
ton (CA) and Cellular Potts Model (CPM) [36, 52, 56]. The CA model was implemented using custom
C++/Matlab programs and the CPM-based model was implemented using CompuCell3D [57]. Both
implementations use three different components: (1) cancer cells whose spatio-temporal evolution is
controlled by internal cell-cycle dynamics; (2) the oxygen/chemotherapeutic drug diffusive fields; (3)
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cross-sections of blood vessels delivering oxygen and chemotherapeutic drugs - see Figure 2 for de-
tails.We simulated the CA model (corresponding to 2×2 mm2 of cancer tissue) on a 100×100 2D grid
with lattice spacing set to l = 20 µm thus allowing each lattice site to accommodate one cancer cell
(or remain empty). For a CPM-based simulation, we have used a 300×300 pixels 2D lattice. CPM [7]
represents each biological cell as spatially extended domains that is collection of lattice pixels having
the same index marker. In both model implementations, the simulation begins with a single tumour
cell whose proliferation is governed by the internal cell-cycle dynamics. The intracellular dynamics
are solved in CA model using Runga-Kutta method. For CPM-based simulation we use CompuCell3D
SBML Solver modules to solve ODEs [56]. The oxygen and drug dynamics are solved using a finite
difference methods. The cell-cycle phases of each cancer cell is determined using the concentration
levels of [CycB]. If [CycB] is greater than a specific threshold (we use 0.1) the cell is considered to be
in the S-G2-M phase (green cell) and if it is lower than this value, the cell is in the G1-phase. If the
cyclinB-cdk complex concentration [CycB] crosses this threshold from above, the cell undergoes cell
division and its mass [mass] or [volume] is halved. Further details of both the simulation approaches
that are used to study the multiscale mathematical model and the relevant parameter values can be
found in recent papers by Powathil et al. [36, 52, 56].

4.3. Computational Simulation Results

The main goals of cancer modelling is to develop simulations that can help designing new and
optimize existing treatment modes that improve clinical outcomes. Presented model developed by
Powathil et al. [36] allows to study the responses of individual cancer cells to the given doses of
cell-cycle phase specific chemotherapy, radiotherapy and their combinations.

Figure 3 shows the spatial evolution of the tumour cells, indicating their respective cell-cycle phase
and oxygenation status, simulated using CA (Figure 3.i) and CPM approach (Figure 3.ii). Although
each of these modelling approach is technically different, the results obtained from both multiscale
models are similar and comparable, showing the robustness of the multiscale mathematical modelling
approach. While it does not confirm the accuracy of the model itself it does provide an important
cross-validation case-study between different computational implementations of the same biological
model. It also increases our confidence that presented model can in fact suggest better treatment
regimes.

Cell-cycle phase-specific chemotherapeutic drugs used in treating various cancer malignancies in-
terfere with the rapidly proliferating mass of the cells by blocking their cell division cycle in respective
cell-cycle phases. Cell-cycle phase specific chemotherapeutic drugs can interact with the divisional
cycle in multiple ways - some target cells in S phase, interfering with its replication, resulting a cell-
death or cell-cycle arrest at divisional checkpoints while others damage the formation of the mitotic
spindle or prevent it from disassociating, targeting the cells in M phase. There are also drugs that
can block transition from one phase to another at several transitional checkpoints, preventing the cell
division. Although, the concept of phase-specificity is sometimes an over simplification as most of the
drugs affects more than one phases, in our model we consider the effects of two types of phase-specific
chemotherapeutic drugs that are either G1 specific or G2-S-M specific on a growing tumour.

We simulate two doses of either types of the drugs that delivered at a same rate at times 500 hours
and 550 hours. A representative figure, Figure 4 shows the spatio-temporal evolution of cancer cells
when the tumour mass is treated with two doses of G1 phase-specific drugs and G2 phase-specific
drugs. The plots in the Figure 4 show that a combination of G1 specific drug followed by another
G1 specific drug give better therapeutic outcome than two G2 drug combinations. This is due to
the presence of a higher fraction of proliferating cells in G1-phase at the time of the drug doses and
increased proliferation after the initial dose. Interestingly, these drug combinations need not always
give the best outcome, especially if there were a higher proportion of resting cells within a growing
tumour mass [36]. An earlier detailed analysis of the described multiscale mathematical model [36, 56]
indicated that in addition to the phase-specificity of the chemotherapeutic drug, their sequencing and
scheduling significantly affect the spatial distribution and effectiveness of the chemotherapy. Moreover,
the changes in the spatial distribution of tumour cell mass due to the cytotoxic cell-kill further affect
the surrounding microenvironment and intracellular cell-cycle dynamics and thus have impact on
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cytotoxic effects of subsequent doses of the chemotherapeutic drug. Hence, the knowledge of spatial
distribution of a growing tumour mass and the intra- and extra-cellular heterogeneities is needed to
achieve better cytotoxic effectiveness and the best possible treatment outcomes.

Similarly, radiosensitivity of an irradiated cells and its radiobiological responses are very much
affected by various intracellular and extracellular factors and in particular, cell-cycle dynamics and
availability of tissue oxygen [54]. In addition, the delivered radiation fractions further dynamically
change this radiosensitivity over time by redistributing the cancer cells within the cell-cycle, by in-
ducing repopulation of the tumour mass, by allowing reoxygenation of the tumour, and by activating
DNA repair mechanisms (5 R’s of radiation) [58, 54]. As the traditional linear quadratic model was
too simple to account for these multiple factors, we have introduced a cell-based modified LQ model
to study the cellular responses after the radiation [52]. We calculated the survival probability of each
irradiated cell based on this modified LQ model and used this model to to study various factors affect-
ing the radiation sensitivity such as hypoxia, intracellular repair mechanism and radiation fractions
[52].

The accuracy of the developed model is analysed by comparing the simulation results of the model
with the experimental results when the cells are irradiated with a radiation dose of 3 Gy [59, 52].
The results of the comparison are given in the Figure 5. Figure 5.i shows the experimental results
that give the percentage of cells in G1 and G2 phases with and without irradiation and Figure 5.ii
gives the corresponding simulation results. The experimental results show that the cells in the control
case are predominantly distributed in G1 phase than G2 phase. After irradiation, the majority of
the cells started to accumulate in G2 phase, about 12 h after irradiation and stayed in G2 phase
before going back to a G1 phase dominant cell distribution by 22 - 24 h after irradiation [59]. The
results obtained from the multiscale mathematical model are qualitatively in a good agreement with
these experimental findings and Figures 4 and 5 give good description how tumour morphology looks
like after single dose of radio- and/or chemo-therapy. By modelling subsequent doses of cytotoxic
factors we can analyze treatment process in more detail and use this knowledge as an initial guess in
optimizing treatment doses/scheduling. Moreover, the analysis of the radiobiological responses after
the irradiation further indicated that the radiation can induce full/partial cell-cycle synchronisation
during the therapeutic regime, showing its usefulness in studying and planning kinetic administration
of multi-modality treatment protocols.

5. Conclusions and Future Perspectives

Many recent multiscale models of cancer growth and treatment have adopted some kind of individual-
based modelling approach where interacting individual cells are the initial focus of the model. By
incorporating intracellular processes for each cell (through systems of ODEs) and then simulating
many interacting cells, insight into emergent tissue level phenomena can be achieved. In this paper
we have focussed on two recent multiscale models of a solid tumour undergoing radio- and chemother-
apy treatments. We demonstrated how the computational simulation results can be used to optimize
treatment regimes.

The insights provided by the multiscale models showed the importance of considering multiple
intracellular and extracellular factors that are critical in accessing cancer progression and treatment
response to devise an optimal multi-modality treatment regime. As these intracellular and extracellu-
lar processes occur at different spatial and temporal scales, development of multiscale mathematical
models and their implementation through multiscale computational techniques is the next step for-
ward in interdisciplinary systems medicine and systems oncology modelling. This reasoning applies
not only to models of the growth and progression of and cancer (angiogenesis, invasion, metasta-
sis), but also to the various treatment protocols currently in use (radiotherapy, chemotherapy and
combinations thereof).

Furthermore, when considering treatment regimes, in addition to the direct cytotoxic effect to
the growing tumour mass, the anticancer therapies induce indirect effects on surrounding tumour
cells, normal cells and its microenvironment that might further affect the cumulative effectives of the
multimodality treatments. For example, when the tumour cells are treated with radiation therapy,
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the surviving tumour cells and its surrounding normal cells are further affected by so called “radia-
tion induced bystander effects”. The term “radiation-induced bystander effect” is used to describe
radiation-induced biological changes that occur in cells that have not been directly irradiated [60]. In
the case of chemotherapy, the cytotoxic effectiveness is negatively affected by heterogeneities caused
by multiple mutated subpopulations with varying drug sensitivities and other intrinsic and acquired
multi drug resistance. In future modelling studies, we will incorporate these additional mechanisms
that indirectly affect the effectiveness of chemotherapy and radiation therapy.

The long-term goal of all such modelling is the development of quantitative, predictive models
based on clinical and experimental data which will no doubt have a positive impact on patients
suffering from diseases such as cancer through improved clinical treatment i.e. the development of
patient-specific treatment regimes informed and optimised by multiscale mathematical modelling.
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Figures
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Figure 1: Figure showing various processes involved in the simulation. Plot of the concentration profiles of the various
intracellular proteins and the cell-mass over a period of 200 hours for one automaton cell in the model. This is obtained
by solving the system of equations, Equations 1 to 6 with the relevant parameter values from Powathil et al. [36] and
the plot below shows a representative realisation of the spatial distribution of oxygen (K) or drugs (Ci), obtained by
solving the corresponding equations.
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Figure 2: Schematic diagram of the model showing the appropriate scales involved.
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Figure 3: Plots of the spatial distribution of the cells in different stages of the cell cycle. (i) Plots from hybrid multiscale
CA model and the colours represent various stages of cell-cycle, namely G1 (blue), S-G2-M (green), resting (magenta),
hypoxic cells in G1 (rose), hypoxic cells in S-G2-M (yellow) and hypoxic cells in resting (silver) at times 100, 300 and
600. (ii) Plots from hybrid cellular potts model (using Compucell3D) and the colour legend shows the types of the
tumour cells; 1- medium, 2- G2 phase, 3- G1 phase, 4- vessel cross sections, 5- hypoxic G2 phase, 6- hypoxic G1 phase
and 7- resting cells
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Figure 4: Plots showing the spatial evolution of tumour cells when cell-cycle phase specific chemotherapeutic drugs are
given. (i) G2 drug followed by G2 drug and (ii) G1 drug followed by G1 drug at times (a) 510 hr, (b) 550 hr, (c) 560
hr and (d) 750 hr. Adapted from Powathil et al.[56]
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Figure 5: Percentage of cells in G1 and G2 states with and without radiation (a) experimental results from [59]. Cells
were irradiated with 3 Gy and samples were taken after 3 h, 6 h, 9 h, 12 h, 16 h, 22 h, and 24 h for flow cytometry
analysis. The cell cycle distribution of irradiated cells was compared to unirradiated cells collected at the same time
points. The left peak in each case represents cells in G1 and the right peek represents cells in G2 phase. From Chaudhry
[59] (BioMed Central OpenAccess). and (b) simulation results (percentage of proliferating cells). The percentage of
proliferating cells in G1 and G2 phases when the cell is irradiated with dose=3 Gy at time=400, 403, 406, 409, 412, 416,
419, 422, 424, 430, 436, 442 and 448 h. The cell-cycle distribution of irradiated cells was compared to non-irradiated
cells collected at the same time points. The results show a qualitative agreement with the experimental results. Adapted
from [52].
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