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ABSTRACT

Context. In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is
achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing
magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.
Aims. In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous
investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this
Research Note to extend the previous work to relativistic particle energies.
Methods. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits
using the non-relativistic guiding centre equations for comparison.
Results. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear deviations are
seen for higher energies. In particular, the final particle energies obtained from the relativistic calculations are systematically lower
than the energies reached from the corresponding non-relativistic calculations, and the mirror points of the relativistic orbits are
systematically higher than for the corresponding non-relativistic orbits.
Conclusions. While the overall behaviour of particle orbits in CMTs does not differ qualitatively when using the relativistic guiding
centre equations, there are a few systematic quantitative differences between relativistic and non-relativistic particle dynamics.
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1. Introduction

Collapsing magnetic traps (CMTs) have been suggested as one
of the mechanisms that might contribute to particle energisation
in solar flares (e.g. Somov & Kosugi 1997). The basic idea be-
hind CMTs is that charged particles will be trapped on the mag-
netic field lines below the reconnection region of a flare. The
magnetic field will evolve into a state of lower energy, resulting
in (a) a shortening of the field line length and (b) an increase in
the overall field strength. Owing to the vast difference in length
and time scales between the particle motion and the magnetic
field evolution, the particle motion can be described with very
good accuracy by the guiding centre theory. The conservation
of a particle’s magnetic moment and the bounce invariant (e.g.
Grady et al. 2012) give rise to the possibility of increase in the
particle’s kinetic energy by betatron acceleration and by first-
order Fermi acceleration (e.g. Somov & Kosugi 1997; Bogachev
& Somov 2005). Several studies have focused on particle ener-
gisation and motion in CMT models with varying degrees of de-
tail and have treated different aspects of the physical processes
(e.g. Bogachev & Somov 2001, 2005, 2007, 2009; Kovalev &
Somov 2002; Somov & Bogachev 2003; Karlický & Kosugi
2004; Giuliani et al. 2005; Karlický & Bárta 2006; Grady &
Neukirch 2009; Minoshima et al. 2010, 2011; Grady et al. 2012;
Filatov et al. 2013; Eradat Oskoui et al. 2014).

In this Research Note we used the relativistic guiding cen-
tre equations (see e.g. Northrop 1963) to extend to the relativis-
tic regime the investigations of a specific analytic CMT model

carried out with the non-relativistic guiding centre equations by
Giuliani et al. (2005) and Grady et al. (2012). We compare par-
ticle motion and energisation in the relativistic case with the
non-relativistic case. In Sect. 2 we outline of the CMT model of
Giuliani et al. (2005) and introduce the relativistic guiding cen-
tre equations. In Sect. 3 we present the results obtained from the
relativistic particle orbit calculations by considering the effect
of different initial conditions. These relativistic results are com-
pared with results obtained from non-relativistic particle orbit
calculations, in particular those reported by Grady et al. (2012).
We present a summary of our results in Sect. 4.

2. Background

Giuliani et al. (2005) developed the basic theory for the con-
struction of kinematic CMT models, and for brevity we refer
the reader to their paper for a detailed discussion. We used the
same coordinate system as in Giuliani et al. (2005) and Grady
et al. (2012): the x and z coordinates run parallel to the solar
surface, and y represents the height above the solar surface. We
assumed that the z-components of the magnetic field and the ve-
locity field vanish. The magnetic field can then be described by a
time-dependent flux function A(x, y, t), with B(x, y, t) = ∇A× ez.

A CMT model is then defined by choosing a form for the
flux function A∞(x, y) for time t → ∞, and by specifying a
flow field u(x, y, t). Instead of defining the flow field directly,
it is given implicitly in the theory of Giuliani et al. (2005) by
choosing a time-dependent transformation between Lagrangian
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and Eulerian coordinates, which facilitates solving the kinematic
MHD equations.

We used the same magnetic field model and transformation
as Giuliani et al. (2005), Grady et al. (2012) and Eradat Oskoui
et al. (2014), that is,

A∞ = c1
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The parameter values are the same as in Giuliani et al. (2005),
Grady et al. (2012) and Eradat Oskoui et al. (2014), namely w =
0.5, d1 = d2 = 1.0, a = 0.4, b = 1.0, Lv = 1.0 and a1 = 0.9.
Here all length scale are normalised to L = 107 m. The meaning
of these parameters is explained in Giuliani et al. (2005).

Because of the large difference between the time and length
scales on which the electromagnetic fields of CMT model
change compared with typical Larmor frequencies and radii of
charged particle orbits, the guiding centre approximation can be
used to calculate particle orbits. We used the relativistic guiding
centre equations as given by Northrop (1963):
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Here, m, q, and c are the particle rest mass, particle charge, and
the speed of light, respectively, R denotes the guiding centre po-
sition, E and B the electric and magnetic fields at the guiding
centre position, Ṙ⊥ is the guiding centre velocity perpendicular
to the magnetic field direction, and v‖ is the guiding centre ve-
locity parallel to the magnetic field direction. b denotes the unit
vector along magnetic field lines, s is the coordinate (arc length)
along magnetic field lines, uE = E × b/B is the E × B drift
velocity, and μr = m(γv⊥)2/2B is the relativistic magnetic mo-
ment, with v⊥ the perpendicular particle velocity associated with
its gyration around the magnetic field lines.

In practice, the CMT model provides the expressions for the
electric and the magnetic field and their spatial and temporal
derivatives. The guiding centre Eqs. (4)–(6) are then used to
calculate the particle trajectories in the CMT model. Because
the electric field in our CMT model is derived from the ideal
Ohm’s law it only has a component perpendicular to the mag-
netic field, and E⊥ � cB because the flow velocities in the CMT
model are well below the speed of light. We do not state the
non-relativistic guiding centre equations here (see e.g. Northrop
1963; Giuliani et al. 2005; Grady et al. 2012), but they can in

principle be recovered from the relativistic Eqs. (4) and (5) let-
ting γ → 1 and (E⊥/cB)2 → 0 in expressions that contain this
term.

To discuss the energy gain experienced by particles in the
CMT we used the following expressions for the kinetic energy:
in the relativistic regime, the kinetic energy of the particle is
given by

Ek = mc2(γ − 1). (7)

The rest mass energy of electrons is mc2 ≈ 511 keV. We recall
that v⊥2 = 2μrB/(mγ2); therefore gyro-averaged Lorentz factor
can be expressed as

γ(t) =

√
1 + [2μrB(t)]/c2

1 − [v2‖ (t) + u2
E(t)]/c2

· (8)

The Lorentz factor changes in time because the electromagnetic
fields and v‖ are time dependent. As we describe below, the
Lorentz factor increases on average with time in a CMT.

For comparison, the non-relativistic kinetic energy EK is
given by

Ek =
mv‖2

2
+ μB +

muE
2

2
, (9)

where mv‖2/2 is the parallel energy of the particle, μB is the en-
ergy associated with the gyrational motion, and muE

2/2 is the
energy associated with the main perpendicular drift of the guid-
ing centre, which is usually very small compared to the other
terms (see e.g. Grady et al. 2012).

3. Particle trajectories and energy gain

We first investigated a typical particle orbit and the evolution of
its kinetic energy. We chose an orbit starting at the initial posi-
tion (x, y) = (0, 4.2), an initial pitch angle 160.4◦, and an initial
energy 5.5 keV. These initial condition were chosen because they
are very similar to one of the examples discussed in Grady et al.
(2012). We then compared this with an orbit with the same initial
position and pitch angle, but with an an already mildy relativistic
initial energy of 200 keV.

The results of the particle orbit calculations are shown in
Fig. 1. As previously discussed by, for example, Grady et al.
(2012) and Eradat Oskoui et al. (2014), the E × B-drift is by far
the dominant drift in this CMT model, and thus particles remain
on the same field line at all times. This explains the spatial over-
lap of the relativistic and non-relativistic trajectories. Note, how-
ever, that this does not necessarily imply that the non-relativistic
and relativistic trajectory are always at the same position at the
same time.

Panel (b) in Fig. 1 shows the time evolution of the ki-
netic energy. Obviously, both graphs start at 5.5 keV, but then
begin to move apart. The final shown energy of the non-
relativistic orbit is about 15.02 keV, whereas the final energy
for the relativistic case is about 14.61 keV, giving a difference of
about 0.41 keV or 2.7%. The particle velocity at the final time
shown is roughly 0.2c.

As is to be expected the relativistic kinetic energy curve lies
systematically below the non-relativistic kinetic energy curve.
Another way to express this fact would be to say that in the rela-
tivistic case it takes a longer time to reach the same energy than
in the non-relativistic case. In both cases, one can see the step-
like pattern in the energy curves, which is particularly prominent
in the initial phases. In the non-relativistic case, this pattern has
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Fig. 1. Particle orbits and energy evolution for test particle orbits starting at (x, y) = (0, 4.2). The turquoise curves represent the relativistic
calculations, the black curves represent the non-relativistic calculation. Panels a) and c) show the particle trajectories, panels b) and d) the energy
evolution for initial energies 5.5 keV (panels a) and b)) and 200 keV (panels c) and d)).

been associated with changes in the parallel energy due to the
curvature-related terms in the equation for the parallel velocity
(e.g. Giuliani et al. 2005; Grady et al. 2012). In the relativistic
case, it is difficult to split the kinetic energy into parallel and per-
pendicular components, but the process seems to operate in the
same way.

The case with a starting energy of 5.5 keV shows only very
weak relativistic effects. However, when the initial energy is
increased to the already mildly relativistic value of 200 keV,
the discrepancies between the relativistic calculation and the
non-relativistic calculation become much more pronounced. We
would like to emphasise that the non-relativistic calculation
was made only for comparison purposes. With an initial value
of γ = 1.39 giving v = 0.695c, it is clear that only a fully
relativistic particle orbit calculation can yield physically correct
results.

We show the results for this orbit in the lower two panels of
Fig. 1 (panels c and d). For this case, even changes in the particle
orbits are visible (Fig. 1c). The relativistic orbit has systemati-
cally higher mirror points than the non-relativistic orbit. We also
found this behaviour for other orbits and discuss the reasons for
this below.

Since the initial kinetic energy Einit is now already mildly
relativistic, a much larger difference between the energy graphs
can be seen in panel d of Fig. 1. At the final time of the
calculation, the kinetic energy in the non-relativistic case is
about 546 keV, whereas the kinetic energy of the relativistic case
it is about 339 keV. This is a discrepancy of about 207 keV or
roughly 38%. This is a significant difference in energy compared
with the case with Einit = 5.5 keV. The final Lorentz factor and
the particle velocity for the relativistic case are γ = 1.664
and v = 0.799c, which again corroborates the need for a
relativistic calculation.

From our case studies, we found two main differences
between the relativistic and non-relativistic orbit calculations.
Firstly, the final particle energy calculated using the relativis-
tic equations is always lower than the non-relativistic case. This
is easily explained because the Lorentz factor grows nonlin-
early when the particle velocity approaches c, which dimin-
ishes the energy gain in the relativistic regime. Secondly, we
found that the mirror points in the relativistic cases are system-
atically higher than the non-relativistic cases. At first sight, this
seems counterintuitive because the mirror term in Eq. (5) scales
with γ−1 and therefore one would expect mirror points to be
lower for higher values of γ. However, a careful investigation
of the terms in Eq. (5) reveals that the terms associated with
field line curvature also decrease with increasing γ. These terms
are responsible for increasing the parallel velocity component,
and if this process becomes less efficient with increasing γ, the
mirror points are expected to be higher in the CMT than for the
corresponding non-relativistic case.

Our previous findings were based on the single case stud-
ies presented above. However, we calculated particle orbits for a
whole range of initial conditions, similar to the non-relativistic
investigation by Grady et al. (2012). The conclusion from the
case studies are qualitatively similar, although there are of course
quantitative differences depending on initial conditions. A key
result found by Grady et al. (2012) was that the particle orbits
that gain the most energy during the collapse of the trap have
initial pitch angles close to 90◦ and remain trapped at the field
line apex (loop top). The particles with the highest energy gain
have initial positions in a weak magnetic field region in the mid-
dle of the trap. We found the same result when we used the same
set of initial conditions for the relativistic case. For comparison,
we show in Fig. 2 the positions of a number of particle orbits at
the final time of the calculation with the colour code indicating
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Fig. 2. Snapshot of the particle position at the final time of the calcula-
tion. The colour code indicates the kinetic energy at that time. Top: the
non-relativistic case; bottom: the relativistic case.

their kinetic energy at that time. The range of final energies in the
non-relativistic case is approximately 4.98–317 keV, whereas it
is 4.98–255 keV, in the relativistic case, consistent with our pre-
vious findings that lower energies are reached in the relativistic
case.

4. Summary and conclusions

In this Resarch Note we have extended previous investigations
of particle energisation in the CMT model of Giuliani et al.
(2005) to the relativistic regime, using the relativistic guiding
centre equations. Qualitatively, the particle orbits obtained using

the relativistic guiding centre equations are very similar to the
results obtained by Grady et al. (2012) with the non-relativistic
guiding centre equations, in particular regarding the trapping of
the particle orbits with the strongest increase in energy in the
centre of the CMT. We found two main differences between the
relativistic and non-relativistic results, in particular for larger
initial energies.

The final particle energy calculated using the relativistic ap-
proximation is always lower than in the non-relativistic case. In
general, the difference in final energy grows with increasing ini-
tial energy. This is due to the Lorentz factor, which reduces the
size of the terms in the equation of motion that contribute to
energy gain. It should be borne in mind, however, that the non-
relativistic equations cease to be accurate for higher energies and
were presented here only for comparison.

In the relativistic case the mirror points of the particle orbits
are located systematically higher than in the corresponding the
non-relativistic case. We explained this by investigating the size
of the terms that are related to curvature in the equation for the
parallel velocity, which decrease with increasing γ factor. This
seems to have a stronger effect on the mirror point location than
the change of the actual mirror term, which also decreases with
increasing γ factor.
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