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ABSTRACT

Context. Solar eruptions and high flare activity often accompany the rapid rotation of sunspots. The study of sunspot rotation and the
mechanisms driving this motion are therefore key to our understanding of how the solar atmosphere attains the conditions necessary
for large energy release.
Aims. We aim to demonstrate and investigate the rotation of sunspots in a 3D numerical experiment of the emergence of a magnetic
flux tube as it rises through the solar interior and emerges into the atmosphere. Furthermore, we seek to show that the sub-photospheric
twist stored in the interior is injected into the solar atmosphere by means of a definitive rotation of the sunspots.
Methods. A numerical experiment is performed to solve the 3D resistive magnetohydrodynamic (MHD) equations using a
Lagrangian-Remap code. We track the emergence of a toroidal flux tube as it rises through the solar interior and emerges into the
atmosphere investigating various quantities related to both the magnetic field and plasma.
Results. Through detailed analysis of the numerical experiment, we find clear evidence that the photospheric footprints or sunspots
of the flux tube undergo a rotation. Significant vertical vortical motions are found to develop within the two polarity sources after
the field emerges. These rotational motions are found to leave the interior portion of the field untwisted and twist up the atmospheric
portion of the field. This is shown by our analysis of the relative magnetic helicity as a significant portion of the interior helicity is
transported to the atmosphere. In addition, there is a substantial transport of magnetic energy to the atmosphere. Rotation angles are
also calculated by tracing selected fieldlines; the fieldlines threading through the sunspot are found to rotate through angles of up to
353◦ over the course of the experiment. We explain the rotation by an unbalanced torque produced by the magnetic tension force,
rather than an apparent effect.
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1. Introduction

Sunspot rotation has attracted the interest of many researchers
over the years from both an observational and modelling per-
spective. The wide scope in observations of sunspot rotation
merits a study of the mechanisms driving this motion. Coronal
mass ejections (CMEs) and solar flares are often related to the
rapid rotation of sunspots. Hence, the study of sunspot rotation
is crucial to our understanding of such explosive events on the
Sun as a possible mechanism for allowing the corona to achieve
the necessary conditions for high energy release.

Just over a century ago, whilst working at the Kodaikanal So-
lar Observatory, Evershed (1909) first discovered evidence of the
rotation of sunspots based on spectral observations. Since this
initial evidence, sunspot rotations have been analysed in numer-
ous observational studies. In recent years, detailed case studies
such as Yan & Qu (2007), Yan et al. (2009), and Min & Chae
(2009) and statistical analyses from Brown et al. (2003) and Yan
et al. (2008) have investigated this phenomena. These studies,
along with several others, have shown that sunspots can exhibit
significant rotation of the order of several hundreds of degrees
over a few days. Yan et al. (2008) conducted a statistical study of
rotating sunspots using TRACE (Transition Region And Coronal
Explorer), Hinode, and MDI (Michelson Doppler Imager) mag-
netograms from 1996 to 2007, in which they individually anal-
ysed 2959 active regions. They found 182 significantly rotating
sunspots within 153 active regions. This is equivalent to approx-
imately 5% of active regions harbouring rotating sunspots. On

the other hand, Brown et al. (2003) conducted a more detailed
study of seven sunspots using white light TRACE data to find
sunspot centres and track notable features over time to calculate
rotation rates. Rotation angles of between 40◦ and 200◦ were ob-
served over periods of three to five days, resulting in an average
rotation rate of a few degrees per hour. Six of these rotating spots
resulted in subsequent flaring activity and the energisation of the
corona.

Interestingly, measurements of sunspot rotation have given
variable results depending on the methodology employed. For
example, Min & Chae (2009) and Yan et al. (2009) analysed
the same active region, NOAA 10930, and found notably differ-
ent results. Min & Chae (2009) noted a counter-clockwise rota-
tion of 540 degrees over five days, whereas Yan et al. (2009)
focused on the X3.2 flare that followed the rapid rotation of
259 degrees over four days. Furthermore, although Brown et al.
(2003) and Yan & Qu (2007) both concluded that different parts
of sunspots often rotate at differing speeds, Brown et al. (2003)
noted that the highest rotation rate was found in the penumbra
while Yan & Qu (2007) concluded that the highest rotation rate
was found in the umbra. This suggests that sunspots do not nec-
essarily rotate as a rigid body. Yan & Qu (2007) concluded that
twist can be created by a variation in rotation rate with distance
from the centre of a sunspot. This twist can then be injected into
the corona kinking the magnetic loops and driving flare activity.

Eruptions and flares are, in fact, often correlated with ro-
tational motions of sunspots. Observations have shown direct
evidence of the energisation of the corona by these rotations.
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The initiation of CMEs by sunspot rotation was studied in detail
by Török et al. (2014) from both an observational and modelling
viewpoint. They found that the rotation of sunspots can signifi-
cantly weaken the magnetic tension of the overlying field in ac-
tive regions and can then trigger an eruption in this region. This
is an alternative explanation for eruptions caused by rotation of
sunspots to the common theory that eruptions are triggered by a
direct injection of twist (Yan & Qu 2007).

This paper aims to discuss and simulate a possible mech-
anism for the rotation of sunspots. Two mechanisms were dis-
cussed in Brown et al. (2003), namely, photospheric flows and
magnetic flux emergence. Photospheric flows are primarily due
to the large scale effect of differential rotation and localised mo-
tions resulting from magneto-convective dynamics. The effects
of differential rotation are kept to a minimum in Brown et al.
(2003) as the images were derotated prior to measuring the ve-
locities. The second mechanism discussed was the emergence
of magnetic flux. Brown et al. (2003) suggested that the pho-
tospheric footpoints of a flux tube are observed to rotate as the
tube emerges. This is the proposed mechanism for the rotation
of sunspots which we will investigate. This mechanism seems
the most appropriate according to the findings of Brown et al.
(2003) as well as a case study from Min & Chae (2009). The
latter study supports flux emergence as a viable mechanism as
they discovered that the rotation speed increases in close rela-
tion to the growth of the sunspot of interest, which we attribute
to the emergence of flux. The next logical question is, how can
flux emergence drive sunspot rotation? Two possible explana-
tions were suggested by Min & Chae (2009). They conjectured
that the rotation may be an apparent motion caused by a twisted
flux tube rising vertically and the fieldlines successively cross-
ing the photospheric boundary at different locations as a result of
the the twisted structure of the field. In this case there is no real
horizontal motion of the plasma; instead this rotation is a virtual
effect caused by continued displacement of the footpoints. Alter-
natively, Min & Chae (2009) proposed that the observed rotation
may represent the real horizontal motion of the plasma due to a
net torque originating in the interior driving the plasma to rotate
on the photospheric boundary. The torque will be examined later
in an effort to determine its origin.

The process of magnetic flux emergence has been consid-
ered numerically in various experiments in recent years (for in-
stance Fan (2001), Archontis et al. (2004), Hood et al. (2009)
amongst many others). The widely accepted picture of sunspot
formation is that an Ω-shaped flux tube rises from the base of the
convection zone until its apex intersects the photosphere to form
a pair of sunspots. If a magnetic flux tube is in pressure balance
and thermal equilibrium with its surroundings, the tube will be
less dense than its surroundings, and will therefore be buoyant.
This mechanism allows a flux tube to rise to the stably stratified
photosphere where it remains until the tube is able to enter the
atmosphere by initiation of a second instability, namely the mag-
netic buoyancy instability. A pair of concentrations of opposite
polarities, known as bipolar sunspots, mark the intersection of
the field at the surface. In these experiments, the computational
domain typically models a region from the top of the solar in-
terior to the lower corona. A magnetic flux tube is then placed
in the solar interior and is made buoyant by either introducing a
density deficit or imposing an initial upward velocity. A recent
review of simulations relating to this emergence process was un-
dertaken by Hood et al. (2012).

Investigations of magnetic flux emergence as a possible
mechanism for sunspot rotation have been conducted in the
past. Longcope & Welsch (2000) suggested that the rotation of

sunspots is a consequence of the transport of helicity from the
convection zone to the corona as a twisted flux tube emerges.
They also demonstrated that a torsional Alfvén wave will propa-
gate downwards at the instance of emergence due to a mismatch
in current between the highly twisted interior and stretched coro-
nal portion of the field. In addition, Gibson et al. (2004) ex-
plained the rotation as an observational consequence of the emer-
gence of a flux tube through the photosphere. An investigation
of the transport of magnetic energy and helicity in an emerg-
ing flux model was conducted by Magara & Longcope (2003).
They found that emergence generates horizontal flows as well
as vertical flows, both of which contribute to the injection of
energy and helicity to the atmosphere. The contributions by ver-
tical flows are dominant initially but horizontal flows are the pri-
mary source at a later stage. A more comprehensive study of
the horizontal flows at the photosphere during emergence was
later performed by Magara (2006) in which they found that ro-
tational flows formed in each of the polarity concentrations soon
after the intersecting flux tubes became vertical. Furthermore,
the rotational movement of sunspots in a 3D MHD simulation
has been examined by Fan (2009) where significant vortical mo-
tions developed as a torsional Alfvén wave propagated along
the tube. Fan (2009) noted that the rotation of the two polari-
ties twisted up the inner fieldlines of the emerged field, thereby
transporting twist from the interior portion of the flux tube to
the stretched coronal loop. In this simulation, a cylindrical flux
tube is inserted into the solar interior using the cylindrical model
developed by Fan (2001).

Hood et al. (2009) perform a complementary simulation to
that of Fan (2001), replacing the initial cylindrical flux tube with
a toroidal tube. A common shortcoming of the cylindrical model
in simulations without convective flows is that the axis of the
tube never fully emerges. Altering the geometry of the flux tube
to a curved shape allows for the axis of the tube to rise into the
corona. Current theories suggest that the Sun’s magnetic field
is created in the solar interior by dynamo action. Hence, a half-
torus shaped flux tube imitates a field anchored deeper within the
solar interior. The rotation of sunspots has not yet been investi-
gated using this toroidal model; this is what we aim to study.

In the present paper, we perform a resistive 3D MHD simu-
lation of a toroidal flux tube placed in the solar interior and track
its emergence through the photosphere and lower atmosphere.
We study the role of rotational flows at the photosphere while
also investigating the transport of magnetic helicity and energy.
In addition, we explicitly calculate the angles of rotation in our
experiment to directly compare with observations. Our main aim
is to demonstrate that the interior magnetic field is untwisting as
the tube emerges causing an injection of twist into the atmo-
sphere as well as a rotation of the sunspots. This will be accom-
plished by performing a detailed study investigating quantities
relating to both the magnetic field and plasma.

The remainder of the paper is structured as follows. In Sec-
tion 2, we describe the MHD equations used in our model as
well as outlining the numerical approach employed. We also de-
scribe the initial setup of our experiment, detailing both the ini-
tial atmosphere and the model of the sub-photospheric magnetic
field inserted in the solar interior. In Section 3, the simulation
results are presented, with emphasis on the rotational motions
that develop within the two polarities on the photospheric plane.
Our analysis also includes an investigation of the sunspot ro-
tation angle, the flow vorticity at the photosphere, the current,
relative magnetic helicity, magnetic energy and twist. Finally, in
Section 4 we summarise the conclusions and discuss the impli-
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cations of this simulation and future projects that stem from this
work.

2. Model setup

In this section, we outline the numerical setup of our experiment,
detailing the initial atmospheric and magnetic field configura-
tion.

2.1. Model equations and numerical approach

For the experiment performed in this paper, we numerically
solve the 3D time-dependent resistive MHD equations, as de-
scribed below in non-dimensionalised form:
Dρ
Dt

= −ρ∇ · v, (1)

Dv
Dt

=
1
ρ

(∇ × B) × B −
1
ρ
∇p − gẑ +

∇ · T
ρ

, (2)

DB
Dt

= (B · ∇)v − B(∇ · v) − ∇ × (η∇ × B), (3)

Dε
Dt

= −
p
ρ
∇ · v +

η

ρ
j2 +

Qvisc

ρ
, (4)

with specific energy density,

ε =
p

(γ − 1)ρ
, (5)

and the electric current density,

j = ∇ × B. (6)

The basic dimensionless quantities used in these equations are
the density ρ, time t, velocity v, magnetic field B, pressure p,
gravity g, electric field E, specific energy density ε, resistivity η
and temperature T . The ratio of specific heats, γ, is taken to be
5/3. The viscosity tensor is denoted by T and the contribution
of viscous heating to the energy equation is represented by Qvisc.
The difference between simulations with and without a small vis-
cosity are found to be negligible. The variables are made dimen-
sionless against photospheric values. These values are: pressure,
pph = 1.4 × 104 Pa; density, ρph = 3 × 10−4 kg m−3; temperature
Tph = 5.6×103 K; pressure scale height, Hph = 170 km; velocity,
vph = 6.8 km s−1; time, tph = 25 s and magnetic field, Bph = 1300
Gauss. The dimensionless resistivity η has been taken as uniform
set at a value of 0.005 in our experiment. All quantities from now
on will be dimensionless, unless units are provided. In order to
reach the true quantities with physical units, the dimensionless
quantities should be multiplied by their photospheric values as
given above.

The code used to simulate the emergence process is a 3D La-
grangian remap code, Lare3d (Arber et al. 2001). The code uses
a staggered grid and is second order accurate in both space and
time. The LARE code can be divided into two main steps; the
Lagrangian step and the remap step. In the Lagrangian step the
equations are solved in a frame that moves with the fluid. This
causes the grid to be distorted, so in order to put the variables
back on to the original (Eulerian) grid, a remap step is used.
The code accurately resolves shocks by using a combination of
artificial viscosity and Van Leer flux limiters. This code also in-
cludes a small shock viscosity to resolve shocks and the associ-
ated shock heating term in the energy equation.

The equations are solved on a uniform Cartesian grid (x, y,
z) comprised of 5123 grid points. The box spans from −50 to 50

in the x and y directions and from −25 to 75 in the z direction
in dimensionless units. This corresponds to a physical size of 17
Mm3. The boundary conditions are periodic on the side walls
of the computational domain and the top and bottom boundaries
are closed with v = 0. For all other variables we set the normal
derivatives to zero. As a consequence, the magnetic field is fixed
on the bottom boundary.

2.2. Initial atmosphere

The initial stratification of the atmosphere is the same as many
previous flux emergence studies, for example Hood et al. (2009).
The computational domain is split into four regions: the solar in-
terior (z < 0); the photosphere/chromosphere 0 ≤ z < 10; the
transition region 10 ≤ z < 20 and the lower corona z ≥ 20. The
solar surface is taken to be the plane at z = 0. The stratification is
uniform across the horizontal plane and varies only with height z.
The solar interior is taken to be marginally stable to convection
by assuming constant entropy in this region. This assumption
seems appropriate as the focus of this experiment is the evolution
of the magnetic field. The photosphere/chromosphere is taken as
an isothermal region with a dimensionless temperature of unity
by design. The temperature distribution in the transition region is
a power-law profile to model the steep temperature gradient ob-
served here. Lastly, the isothermal corona is set at a temperature
150 times that of the photosphere (Tcor = 150). To summarise,
the non-dimensionalised temperature profile is specified as

T (z) =


1 − (γ−1)

γ
z z < 0,

1 0 ≤ z < 10,
150( z−10

10 ) 10 ≤ z < 20,
150 z ≥ 20.

The pressure and density are then calculated by numerically
solving the dimensionless hydrostatic balance equation dp

dz =
−ρg and the dimensionless ideal gas law. The resulting loga-
rithms of the initial temperature, density and pressure of the
stratified background are shown in Figure 1.

Fig. 1: Initial stratification of model atmosphere. The initial pro-
files are plotted on a log scale against height where red denotes
the temperature distribution, black denotes the density and blue
represents the magnetic pressure in the solar interior and the gas
pressure throughout the domain.
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2.3. Initial magnetic field

We choose to leave the atmosphere unmagnetised by neglecting
an ambient field and concentrating on the sub-photospheric field.
We insert a magnetic flux tube into the hydrostatic solar interior.
As we want the setup to remain in equilibrium, and the tube to
be in force balance, we require

−∇p + j × B + ρg = 0.

Given that the background environment is in hydrostatic pressure
balance, this reduces to

∇pexc = j × B, (7)

where pexc is the pressure excess such that the gas pressure in the
tube, pt, is defined to be pb + pexc where pb is the background gas
pressure. Explicitly, we have split the gas pressure into a back-
ground pressure component that balances gravity and a second
component that balances the Lorentz force. The next obstacle is
to choose the form of magnetic field to prescribe in the solar inte-
rior. The interior magnetic field cannot be observed therefore we
choose simple models for the sub-photospheric field to initiate
emergence. We choose to place a toroidal flux tube with twisted
fieldlines in the solar interior. The toroidal model we utilise was
derived fully in Hood et al. (2009). Compared with the standard
choice of a cylindrical tube, this models the emergence of the top
part of an Ω-shaped loop that is rooted much deeper in the solar
interior. Here, we simply outline the main steps of the derivation.

First, we express our original cartesian coordinates (x, y, z)
in terms of cylindrical coordinates (R, φ, x), given that y is the
coordinate describing the direction of the axis of the tube, and z
denotes the height from the solar surface as previously. We note
that

R2 = y2 + (z − zbase)2, with y = R cos φ and z − zbase = R sin φ,

where zbase is the value of z at the base of the computational
domain. The magnetic field is then expressed, in terms of the
flux function A = A(R, x), as

B = ∇A × ∇φ + Bφeφ

= −
1
R
∂A
∂x

eR + Bφeφ +
1
R
∂A
∂R

ex,

where A is constant along magnetic fieldlines. In this derivation,
we assume that the magnetic field is rotationally invariant, i.e.
independent of φ. We note that this form of magnetic field auto-
matically satisfies the solenoidal constraint (∇ ·B = 0). Inserting
the magnetic field, B, in terms of the flux function, A, into equa-
tion (7), noting pexc = F(A(R, x)) and RBφ = G(A(R, x)) along
with some algebraic manipulation yields,

−
1
R

{
1
R
∂2A
∂x2 +

∂

∂R

(
1
R
∂A
∂R

)}
∇A −

1
R2 bφ

dbφ
dA
∇A =

dpexc

dA
∇A,

where bφ = RBφ. We note that all the terms are in the direction
of ∇A, therefore the Grad-Shafranov equation is of the form

R
∂

∂R

(
1
R
∂A
∂R

)
+
∂2A
∂x2 + bφ

dbφ
dA

+ R2 dpexc

dA
= 0. (8)

Following the strategy used by Hood et al. (2009), we now
convert our system to a local toroidal coordinate system (r, θ, φ),
such that

r2 = x2 + (R − R2
0), with R − R0 = r cos θ and x = −r sin θ,

where R0 is the major axis of the toroidal loop and a is the mi-
nor radius of the toroidal loop. Equation (8) can be re-written
in these local coordinates by assuming a << R0 and in turn
r << R0, i.e. assuming that the minor radius of the torus is much
smaller than the major radius. We can expand the solution in
powers of a/R0 such that to leading order, equation (8) becomes

Bθ
r

d
dr

(rBθ) +
1
2

d(R2B2
φ/R

2
0)

dr
+

dpexc

dr
= 0.

This has exactly the same form as the standard cylindrical equa-
tion found in Archontis et al. (2004). We can therefore choose
the solutions to be the same as the cylindrical flux tube. Specifi-
cally,

Bφ =
R0

R
B0e−r2/a2

and Bθ = αrBφ = α
R0

R
B0re−r2/a2

,

where B0 is the axial field strength and α is the twist. The local
toroidal field can also be approximated to O(a/R0). Again using
R = R0 + r cos θ ∼ R0 + O(a/R0) this approximates the local
toroidal field to

Bφ ∼ B0e−r2/a2
and Bθ ∼ αB0re−r2/a2

.

With these approximations to the local toroidal field, the pres-
sure can be calculated by exact comparison with the cylindrical
model,

pexc(r) =
B2

0

4
e−2r2/a2

(α2a2 − 2α2r2 − 2).

This balances equation (7) and forces the flux tube to sit in equi-
librium. However, to initiate the emergence we introduce a den-
sity deficit as given by

ρdef(r) =
B2

0

4T (z)
e−2r2/a2

(α2a2 − 2α2r2 − 2).

using the temperature profile specified in Section 2.2. This
makes the flux tube lighter than its surroundings and allows it
to begin rising.

Lastly, we need to re-express the magnetic field in terms of
cartesian coordinates as this is the form that we require for the
input of our MHD simulations. Before we can do this directly,
we must first express the field in cylindrical coordinates (R, φ, x)
as

BR = −Bθ(r) sin θ = Bθ(r)
x
r
,

Bx = −Bθ(r) cos θ = −Bθ(r)
R − R0

r
.

Similarly, this cylindrical field can then be converted into carte-
sian coordinates to set the magnetic field as

Bx = −Bθ(r)
R − R0

r
,

By = −Bφ(r)
z − zbase

R
+ Bθ(r)

x
r
y

R
,

Bz = Bφ(r)
y

R
+ Bθ(r)

x
r

z − zbase

R
,

where

Bφ = B0e−r2/a2
and Bθ = αrBφ = αB0re−r2/a2

.

We note that this corrects an error in Hood et al. (2009) where
the sign of BR and Bx were interchanged. Fortunately, this error
was not significant as it is equivalent to using an initial twist, α,
of the opposite sign.
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2.4. Parameter choice

Fig. 2: Summary of initial setup. The background density distri-
bution is shown on the right wall, the temperature distribution on
the back wall, a selection of fieldlines are shown in purple and
an isosurface of the magnetic field (|B| = 1) is overplotted.

In this experiment, we set the magnetic field strength at the
apex of the tube as B0 = 9 (11700 G) and the twist as α = 0.4
(right-hand twisted). This means that each fieldline undergoes
an angle of 0.4 rad per unit distance, and is equivalent to approx-
imately three full turns of twist in the initial sub-photospheric
field. The base of the computational domain is set at z = −25.
The major radius of the torus is R0 = 15 and the minor radius
is a = 2.5. The total flux threading a cross section of the tube
is 6.6 × 1019 Mx, typical of a small active region or a large
ephemeral region. The initial set-up of the experiment is sum-
marised in Figure 2.

3. Analysis

In order to examine and quantify the rotation of the sunspots in
our simulation, we undertake a detailed investigation of a num-
ber of quantities relating to both the plasma and magnetic field in
an attempt to demonstrate the untwisting of the interior field and
rotational flows at the photosphere. First of all, we briefly de-
scribe the overall evolution of the field detailing the main phases
of emergence.

3.1. Evolution of magnetic field

The flux tube begins to rise buoyantly to the photosphere due
to the initial density deficit introduced and continues to rise be-
cause of the decreasing temperature stratification in the interior.
However, at the photosphere, the plasma is stably stratified with
a constant temperature and the flux tube is no longer buoyant.
Therefore, the magnetic field finds another way to rise and ex-
pand into the corona, namely the magnetic buoyancy instability.

In order to initiate this instability, a criterion must be satisfied
as derived by Acheson (1979). Typically, the onset of this insta-
bility occurs when the plasma β drops to one. At this stage, the
magnetic pressure exceeds the gas pressure and the field expands
into the atmosphere. See Archontis et al. (2004) and Hood et al.
(2012) for a full description of this instability.

(a) t = 40

(b) t = 100

Fig. 3: Visualisation of the field in the interior at times t = 40 and
t = 100 respectively as traced from the lower negative footpoint
(left). A movie of this figure is included in the electronic version.

In Figure 3, we have included two figures illustrating the evo-
lution of the magnetic fieldlines as the flux tube emerges con-
centrating on the interior portion of the field. We have traced
three fieldlines from (0,−14,−25) (blue), (0,−15,−25) (black)
and (0,−16,−25) (red) respectively. Initially the flux tube has 3
full turns of twist in total. At t = 40, the flux tube reaches the
photosphere and the legs start to straighten. At this time, there is
an emerged section of flux tube with about half a turn of twist
that will subsequently expand into the corona. However, there is
still a considerable amount of twist submerged, approximately
a full twist in each leg. In the subsequent evolution there is a
definitive unwinding of the submerged twist leading to a final
state in which there is virtually no twist in the interior portion of
the tube as evidenced by the visualisation of the field at t = 100..
We suggest that this may be governed by torsional Alfvén waves.
The release of sub-photospheric twist as a mechanism for the
propagation of a torsional Alfvén wave is investigated later.
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3.2. Driver of rotational motion

Before we examine various quantities at the photosphere in an
effort to demonstrate the untwisting of the interior field, we
discuss the underlying reason for a rotational movement at the
photosphere when a twisted magnetic structure emerges. The
basic cause for this rotational motion is the behaviour of the
Lorentz force. Following the explanation given by Cheung &
Isobe (2014), we consider a circular closed curve lying on the
photospheric plane enclosing some point P denoting the loca-
tion of the maximum of Bz. We note that the torque is the ten-
dency of a force to rotate an object about an axis, and is given by
T = r × F where r is the displacement vector and F is the given
force. If we consider the torque due to the various forces acting
on the plasma and magnetic field through the surface confined by
this closed contour, we find that the magnetic tension is the only
force that provides a net torque. That is, the torque contributions
from the magnetic pressure and gas pressure forces through this
surface vanish and any non-zero torque is a result of the mag-
netic tension. Explicitly,

τp =

"
r × ∇(−pgas) · dS = 0,

τmp =

"
r × ∇

(
−

B2

2µ

)
· dS = 0,

τmt =

"
r ×

(
1
µ

(B · ∇)B
)
· dS,

where r is the displacement vector of a point on the curve from
P. This is in fact a general result that can be proved for any force
of the form F = ∇ f . To demonstrate this we have calculated the
torque due to the magnetic tension and magnetic pressure within
a circular contour of radius a (2.5) surrounding the location of
the maximum of Bz, as displayed in Figure 4. In this case, it
is clear that there is no contribution from the magnetic pressure
force. Hence, we speculate that the driving motion of the rotation
at the photosphere may be governed by the unbalanced torque
produced by the magnetic tension force. This is characteristic of
an Alfvén wave.

Fig. 4: Surface integral of torque due to the magnetic tension
force (red) and the magnetic pressure force (blue) within a cir-
cular contour of radius 2.5 around a point P corresponding to the
maximum of the vertical magnetic field.

3.3. Rotation angle

As our previous analyses suggest that the interior portion of
the flux tube is untwisting and significant rotational motions

develop within the sunspots, we have again traced three field-
lines from the base to the photosphere in an attempt to visu-
alise this motion and quantify the amount by which the fieldlines
have rotated. The axis of the flux tube has been traced from the
lower negative footpoint as well as two fieldlines either side of
the axis in the y−direction, i.e. we have traced fieldlines from
(0,−14.5,−25) (blue), (0,−15,−25) (black) and (0,−15.5,−25)
(red). A schematic of the traced fieldlines is shown in Figure 5a
and Figure 5b for times t = 40 and times t = 80 respectively.
These figures clearly demonstrate the rotation of the fieldlines

(a) t = 40 (b) t = 80

Fig. 5: Visualisation of the axis of the flux tube (black fieldline)
as well as two fieldlines (red and blue) spaced either side of the
axis for comparison at selected times. A movie of this figure is
included in the electronic version.

threading the sunspots in a visual manner. Examining Figure 5, it
appears that both the red and blue fieldlines have rotated through
an angle of at least π radians over 40 time steps.

In order to follow the fieldlines undergoing this rotation,
we have traced the x and y coordinates of the locations of the
red, black and blue fieldlines as they pass through the photo-
spheric plane. The trajectories of these fieldlines are shown in
Figure 6a. Initially, the three fieldlines drift outwards in a line
as the sunspots separate. Later, the motions slow down and ro-
tation develops. This is not particularly clear given the transla-
tional aspect of the motion as the sunspots separate. To remove
this feature of the motion, we have subtracted off the location
of the black axis from the position of the blue and red fieldlines
in Figure 6b. This gives us the relative position of the blue and
red fieldlines and indicates that the blue and red fieldlines rotate
clockwise around the black axis by an angle of almost 360◦.

(a) Fieldline trajectories.

(b) Relative fieldline trajectories
with black axis location sub-
tracted.

Fig. 6: The trajectories of the fieldlines as they pass through the
photospheric plane coloured with increasing intensity as time
progresses. The colour scale on the right shows the times dur-
ing the evolution.
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With the x and y coordinates of the intersections of selected
fieldlines through the photosphere, we can calculate the angle of
rotation using

tan φ =
y0 − yaxis

x0 − xaxis
, (9)

where xaxis and yaxis are the x and y coordinates of the axis of
the tube (black fieldline) and x0 and y0 are the coordinates of
the fieldline we are investigating, i.e. the red or blue fieldline.
In Figure 7 a schematic has been included to help us visualise
the meaning of the angle φ. Through the use of equation (9), the
angle φ has been calculated for both the red and blue fieldline as
displayed in Figure 8. As the two chosen fieldlines were initially

Fig. 7: Representation of angle φ.

equally spaced on either side of the axis, the rotation angles are π
out of phase at the beginning. Both fieldlines undergo a rotation
of between 7π/4 and 2π over 90 time steps. More precisely, the
red fieldline undergoes a rotation of 340◦ and the blue fieldline
undergoes a rotation of 353◦.

Fig. 8: Evolution of angle of rotation φ for both the red and blue
fieldlines as depicted in Figures 5a and 5b.

Next, we consider the temporal rate of change of the angle
of rotation, i.e. dφ/dt, as shown in Figure 9. This illustrates that
different regions of the sunspot are rotating at slightly different
rates. There is an initial peak in the size of the rotation rate of
both fieldlines of between −0.15 and −0.2. This peak in rotation
rate occurs at about t = 44 for the red fieldline and at about
t = 62 for the blue fieldline. The rate of rotation diminishes as
the experiment proceeds until it reaches zero indicating that the
fieldlines have essentially stopped rotating.

This rotation is investigated further by checking if the as-
sumption of solid body rotation is reasonable, i.e. that the ro-
tation angle does not depend on the radius of the fieldline. We
have concluded from above that different areas of the sunspot

Fig. 9: Evolution of rate of change of the angle of rotation φ for
both the red and blue fieldlines as shown in Figures 5a and 5b.

(a) Blue fieldline traced from
(0,−14.5,−25).

(b) Red fieldline traced from
(0,−15.5,−25).

Fig. 10: Comparison of terms
dφ
dt

(solid line) and
ωz

2
(dashed

line) for both the blue and red fieldlines respectively.

are rotating at slightly different rates. If we assume the rotation
is a solid body rotation then it follows that the velocity in the φ
direction, at radius R, is given by

vφ = R
dφ
dt
,

and the z−component of the vorticity is given by

ωz =
1
R
∂

∂R

(
Rvφ

)
= 2

dφ
dt
,

where we have assumed that φ does not depend on R. We can
therefore relate the vertical vorticity and the rate of change of
the angle φ by

dφ
dt

=
ωz

2
. (10)

To check if our assumption is valid, we can investigate equa-
tion (10) by plotting dφ/dt and ωz/2 for both the red and blue
fieldlines. In both panels of Figure 10, the two terms balance
each other well suggesting that equation (10) is valid and the ro-
tation angle may not have a large dependence on the radius from
the axis of the tube.

3.4. Vorticity

In another attempt to demonstrate the rotational movement at the
photosphere, we analyse the plasma motion on the photospheric
plane. Hence, the vorticity, calculated as the curl of the plasma
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velocity, is examined as this quantifies the rotation of the plasma.
As we are concerned with the rotation of sunspots, the vertical
component of the vorticity is the quantity of interest, as it mea-
sures the rotation in the x − y plane. This is expressed as,

ωz = (∇ × v)z =
∂vy

∂x
−
∂vx

∂y
.

A positive ωz refers to a counter-clockwise motion while a nega-
tiveωz refers to a clockwise motion. In our experiment, the initial
field is right-hand twisted; that is, if we were to create this field
from a straight field, both footpoints would have been rotated
in a clockwise motion. In other words, the fieldlines are wound
counter-clockwise in the positive Bz footpoint and clockwise in
the negative Bz footpoint.

In order to visualise the field, let us consider the schematic of
the fieldlines soon after the field has intersected the photosphere
as shown in Figure 3a. At this point, the legs of the tube have
started to straighten out and almost resemble a vertical cylindri-
cal tube originating at z = −25 and intersecting the photosphere
at z = 0. As the magnetic field is fixed at the base of the com-
putational domain, a clockwise rotation at the photosphere is re-
quired in order to unwind the interior portion of the field. The
atmospheric field, on the other hand, is twisted up by a clock-
wise rotational motion on the two footpoints at the photosphere.

(a) t = 40 (b) t = 80

Fig. 11: Coloured contours of ωz accompanied by line contours
of Bz at z = 0, the base of the photosphere, for the specified
times. A movie of this figure is included in the electronic version.

A series of coloured contour plots of the vertical vorticity are
displayed in Figure 11 at times t = 40 and t = 80. For visualisa-
tion purposes, line contours of Bz have been over-plotted to show
the location of the sunspots. At the centre of each of the polar-
ities, there is a concentration of negative ωz corresponding to a
clockwise rotation. This concentration of ωz appears when the
legs of the tube straighten and builds with time until it peaks at
about t = 50 before decaying as the simulation progresses. This
hints that there is some bulk rotation of the sunspots, similar to
the sunspot rotations observed by Brown et al. (2003) and Yan
et al. (2009). This result complements our previous investigation
of the rotation angle where we found fieldlines undergoing sig-
nificant rotations. Interestingly the same sign of vertical vorticity
is present in both concentrations of opposite polarity. As dis-
cussed earlier, this has important consequences for the evolution
of the field in both the atmosphere and interior. We suggest that
these sunspot rotations are due to the untwisting of the field in
the interior injecting twist into the atmosphere. Another interest-
ing feature of the contour plots is the red streak of negative vor-
ticity between the sunspots. Elongated streaks of vorticity most
likely correspond to shearing motions rather than rotation sug-
gesting that these are due to shear flows between the sunspots.
In addition, there are blue tails of positive vorticity located on

the inner side of each of the sunspots again indicative of shear-
ing motions.

Now that we have established a clear rotational velocity at
the photosphere, the evolution of the vertical vorticity at the pho-
tosphere is expressed in a more quantifiable manner. Following
the method used by Fan (2009), we achieve this by plotting the
time variation of the mean vertical vorticity, 〈ωz〉, averaged over
the area of the upper sunspot where Bz is greater than 3/4 of its
peak value in Figure 12. Explicitly,

〈ωz〉 =
1
N

 N∑
k=1

ωz(xk, yk, z = 0)

 , (11)

where xk and yk are the x and y coordinates of the region satis-
fying Bz >

3
4 max(Bz) and N is the number of points that satisfy

this criteria. This has been compared to the lower sunspot with
no notable difference in result.

Fig. 12: Evolution of the mean vertical vorticity 〈ωz〉 averaged
over the area of the upper polarity concentration where Bz is
above 75% of the max of Bz on z = 0 as described in equa-
tion (11).

Considering the average vertical vorticity at the photosphere
in Figure 12, the vorticity is consistently negative suggesting
that the dominant motion is a clockwise rotation. We find that a
clockwise vortical motion appears in each polarity source when
the field reaches the photosphere. The vortical motion quickly
rises to a peak at roughly t = 50 soon after the emerged field be-
comes vertical and the photospheric footprints have reached their
maximum separation. At this time rapid rotation commences.
The horizontal velocity at this time is approximately 0.5 in mag-
nitude which corresponds to a physical velocity of 3.4 km s−1.
Soon after, the vorticity steadily begins to decline. This signif-
icant clockwise rotation twists up the emerged fieldlines in the
atmosphere transporting twist from the tube’s interior portion to
its stretched coronal portion. As noted earlier, we speculate that
this transport of twist is due to some form of torsional Alfvén
wave.

As discussed earlier, Min & Chae (2009) conjectured that
the observed rotation of sunspots due to flux emergence may be
an apparent effect due to a twisted field rising and each fieldline
appearing in a different position at the photosphere. However, in
our experiment we have established a clear rotation in the plasma
velocity suggesting that this may not be the case. To estimate
the contribution to the rotation by apparent effects, we quantify
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the vertical advection of the flux tube by averaging the vertical
velocity in a similar fashion to the way in which we averaged the
vorticity. To achieve an upper bound for our estimate, we take the
vertical speed of the tube to be the maximum of 〈vz〉 and assume
that the vertical leg has a full turn of twist at t = 40 when the field
intersects. This is equivalent to the field being advected vertically
by 2.4 units by the end of the experiment, corresponding to a
34.6◦ apparent rotation. This is an over-estimate for the apparent
rotation angle as we have assumed the maximum velocity for all
time, and yet, this is still significantly smaller than the calculated
rotation angle. To conclude, this helps us disregard this theory
and explain the rotation solely by a dynamical consequence of
the emergence of flux.

Though the vorticity plots do give us a useful insight into the
rotational properties of the plasma at the photosphere, further
examination is necessary in order to quantify the untwisting of
the interior field, and the transport of twist into the atmosphere.

3.5. Current density

A useful quantity when estimating the twist of the magnetic field
is the current density, specifically the z-component, as denoted
by

jz =
1
µ

(
∂By
∂x
−
∂Bx

∂y

)
,

as this is related to how twisted the field is in the x − y plane.
We consider coloured contours of jz at a height half way down
the solar interior and at the base of the photosphere, as shown
in Figure 13. From the coloured contours of jz in Figure 13, it

(a) z = −12.5 and t = 40 (b) z = −12.5 and t = 80

(c) z = 0 and t = 40 (d) z = 0 and t = 80

Fig. 13: Coloured contours of jz at the plane in the middle of
the interior (z = −12.5) in the top panel and at the solar surface
(z = 0) in the bottom panel for the specified times, as well as line
contours of Bz for comparison of the size of sunspots.

is clear that although the majority of each sunspot is positive or
negative, the periphery of each sunspot is dominated by the op-
posite sign of jz. As we insist that our initial sub-photospheric
flux tube is isolated and therefore surrounded by unmagnetised
plasma, Faraday’s law demands that the flux tube must carry no

net current. As the flux tube carries current inside due to its twist,
a reverse current surrounds the sunspot to ensure a zero net cur-
rent in this region. Focussing on the top panel of Figure 13, there
is some evidence that the two concentrations of strong jz centred
on the sunspots are depleting with time. Similarly, considering
the bottom panel of Figure 13, the concentrations of jz at the
photosphere intensify when the field first emerges then diminish
as the experiment proceeds. As jz signifies the twist of the field
in the x − y direction and is related to the azimuthal magnetic
field, a decrease in jz could indicate a decline in the amount of
twist. The mechanism responsible for this decrease in jz requires
further investigation.

Fig. 14: Plot of the maximum value of jz against time for varying
heights depicted in the key.

The temporal variation of the maximum value of jz for spe-
cific heights below the photosphere is displayed in Figure 14.
There is an initial increase in the maximum of jz for all heights
due to the emergence of the field before a steady decline as the
experiment proceeds. There are two possible explanations for
this steady decrease in the vertical current. This could be caused
by the expansion and stretching of the field as a result of emer-
gence or by a decline in the amount of twist stored in the field.
The stretching of the field results in a decline in the gradients of
Bx and By and lowers jz. To evaluate the extent of the expansion
of the field, we estimate the diameter of a contour of Bz as shown
in Figure 15. This plot shows the maximum y-separation of the
contour of Bz = 1. Initially, the separation increases for heights
near the photosphere as the flux tube buoyantly rises and the legs
of the tube straighten. Later, there is very little change in the sep-
aration of the legs for heights deep in the solar interior. There is
however some expansion of the magnetic field for the photo-
spheric height z = 0 and 5 units below the boundary as expected
as the magnetic field expands into the low density atmosphere.
This helps us disregard this cause and explain the decrease in jz
in the solar interior solely by an untwisting of the field. Specif-
ically, a decrease in jz implies a decline in the azimuthal field
which corresponds to the interior portion of the field untwisting.
However, a decrease in jz at the photosphere may be explained
by the expansion of the field in this region.

Finally, to analyse the current further, an examination of
the total jz in each sunspot is necessary. As we noted from the
coloured contours, although the centre of each sunspot is dom-
inated by one sign of current, the outer boundary consists of
reverse current. Hence, we cannot estimate the current in each
sunspot by measuring the total positive or negative current. In-
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Fig. 15: Line plot of the diameter of the Bz = 1.0 contour as a
function of time for varying heights depicted in the key.

(a) z = −12.5

(b) z = 0

Fig. 16: Time evolution of the vertical current 〈 jz〉 averaged over
the area of the positive polarity flux source where Bz is greater
than 75% of its maximum.

stead, we estimate the current in the centre of the upper sunspot
by averaging the vertical current over the area where the vertical
magnetic field is greater than 3/4 of its maximum in a similar
fashion to our calculation of the average vorticity. The temporal
evolution of this quantity is depicted in Figure 16 for the interior
plane (z = −12.5) and the photospheric plane respectively.

At the photosphere, the mean vertical current increases as
the magnetic field emerges then steadily declines as the field ex-
pands into the atmosphere. Lower down in the solar interior,

the mean vertical current generally declines in a linear man-
ner. After an initial drop in 〈 jz〉, there is a small increase as the
field straightens out and the negative outer-boundary plays a less
dominant role. Overall, there is a general decrease in 〈 jz〉 sug-
gesting a drop in the twist stored in the interior portion of the
field as the field untwists.

3.6. Magnetic helicity

In order to quantify the transport of twist from the solar interior
to the solar atmosphere due to the emergence and untwisting of
the field in the interior, we have calculated the evolution of the
relative magnetic helicity both above and below the photosphere.
The magnetic helicity is a topological quantity describing how
much a magnetic structure is twisted, sheared or braided.

The relative magnetic helicity (to the reference field Bp) of
the field B in a given volume V is given by (Berger & Field
(1984), Finn & Antonsen (1985))

Hr =

∫
V

(A + Ap) · (B − Bp) dV , (12)

where A is the vector potential of B (B = ∇ × A), Bp is the
reference potential field with the same normal flux distribution
as B on all bounding surfaces and Ap is the vector potential of
Bp (Bp = ∇ × Ap). The relative magnetic helicity is favoured
over the magnetic helicity as it has been shown to be gauge-
independent with respect to the gauges for A and Ap. This is
a necessary condition for a physically meaningful definition of
helicity.

In order to calculate the relative magnetic helicity numeri-
cally, we have tested and compared two approaches; the calcu-
lation of A and Ap using DeVore’s method (DeVore 2000) and
the numerical procedure from Moraitis et al. (2014). As the re-
sults were comparatively similar, we will discuss the calculation
of the relative magnetic helicity from Moraitis et al. (2014).

In calculating the potential field within the volume V =
[x1, x2] × [y1, y2] × [z1, z2], the numerical procedure utilised
in Moraitis et al. (2014) takes into account all boundaries within
the finite volume. This is advantageous over DeVore’s method
which is only valid for a semi-infinite space above a lower
boundary. The potential field satisfies jp = ∇ × Bp = 0 within
V , thus implying Bp = −∇φ where φ is a scalar potential. The
solenoidal constraint ∇ · Bp = 0 then implies that the scalar po-
tential is a solution of Laplace’s equation ∇2φ = 0 in V . The con-
dition that B and Bp have the same normal components along the
boundaries of the volume translates to Neumann boundary con-
ditions for φ, i.e. ∂φ/∂n̂|∂V = − n̂ · B|∂V . The Laplace equation is
then solved numerically using a standard FORTRAN routine in-
cluded in the FISHPACK library (Swarztrauber & Sweet 1979).

The original and potential fields are now stored for the given
time step and desired volume. The next step is to calculate
the corresponding vector potentials given the method proposed
by Valori et al. (2012). As the relative magnetic helicity is gauge-
independent, we are free to choose the gauge A·ẑ = 0 throughout
V so that the x and y components of B = ∇ × A are integrated
over the interval (z1, z) to

A = A0 − ẑ ×
∫ z

z1

B(x, y, z′) dz′,

where A0 = A(x, y, z = z1) = (A0x, A0y, 0) is a solution to the
z-component of B = ∇ × A, i.e.

∂A0y

∂x
−
∂A0x

∂y
= Bz(x, y, z = z1).
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Following Valori’s method we choose the simplest solution to
the above equation, given by

A0x(x, y, z = z1) = −
1
2

∫ y

y1

Bz(x, y′, z = z1) dy′,

A0y(x, y, z = z1) =
1
2

∫ x

x1

Bz(x′, y, z = z1) dx′.

Similarly, the vector potential of the potential field is calculated
using

Ap = A0 − ẑ ×
∫ z

z1

Bp(x, y, z′) dz′,

where we have noted that Ap0 = A0 as B and Bp share the same
normal component on the boundary at z = z1.

An alternative solution for the vector potentials can be ob-
tained if we use the top boundary, i.e. integrating over the inter-
val (z, z2) as

A = Ã0 + ẑ ×
∫ z2

z
B(x, y, z′) dz′.

This has been checked for comparison and there is no notable
difference between the two solutions.

Fig. 17: Evolution of the relative helicity Hr when calculated
above z = 0 in the solar atmosphere.

With the corresponding potential and vector potentials for
the magnetic field, we can calculate the relative magnetic helic-
ity within different subvolumes of the total simulation domain.
First, we calculate the atmospheric magnetic helicity above the
photosphere, as shown in Figure 17. As expected, the atmo-
spheric helicity is zero until t = 20 when the magnetic field first
emerges. Subsequently, there is a linear increase in helicity as
twist is steadily injected into the atmosphere by the emergence
of flux and rotational motions at the photosphere. By the end
of the experiment, the magnetic helicity injected into the atmo-
sphere has reached 3.6× 1023 Wb2 (3.6× 1039 Mx2), typical of a
small event. This can be compared with observations where Min
& Chae (2009) quote a helicity transport of 4 × 1042 Mx2 when
considering a much larger active region. To investigate the nor-
malised magnetic helicity that is transported to the atmosphere,
we divide by Φ2

tube and find that the evolution follows the same
linear monotonic shape and reaches a value of 0.83 by t = 120
corresponding to almost one full twist of the flux in the original
tube.

To further investigate the magnetic helicity in the atmosphere
we have calculated the time derivative of the magnetic helic-
ity above the photosphere, both numerically using finite differ-
encing and analytically. This helps us to understand the main

Fig. 18: Evolution of the time derivative of the relative helicity
Hr when calculated above z = 0 in the solar atmosphere us-
ing equation (13). The total time derivative (black solid line) is
split into the dissipation term (purple solid line), the surface cor-
rection term (yellow solid line), the shear term (red solid line)
and emergence term (blue solid line). The dashed black line is
the derivative of the curve from Figure 17 calculated using finite
differencing.

sources contributing to the production and depletion of helicity.
Magnetic helicity is mainly contributed to by vertical flows that
advect twisted magnetic flux into the corona and by surface flows
that shear and twist magnetic fields (Berger & Field 1984). The
rate of change of relative magnetic helicity, Hr, can be evaluated
analytically by differentiating the expression in (12) (Berger &
Field 1984),

dHr

dt
= −2η

∫
j · B dV + 2η

∫
((Ap × j) · n dS

+ 2
∫ [

(Ap · v)(B · n) − ((Ap · B)(v · n)
]

dS . (13)

The first term on the right-hand side of equation (13) relates
to the depletion of helicity by internal dissipation (dissipation
term), the second corresponds to a surface correction to the re-
sistive dissipation (surface correction term) , the third relates to
the generation of helicity by horizontal motions of the boundary
(shear term) and the last corresponds to the injection of helicity
by direct emergence (emergence term). Let us consider the rate
of change of atmospheric helicity in Figure 18. From the point
the field emerges until t = 45, the helicity flux due to emergence
(blue solid line) dominates the change in helicity. Later, the hor-
izontal shearing and rotational motions at the photospheric foot-
points (red solid line) are the primary sources of helicity change,
in agreement with (Fan 2009). The change in helicity due to
internal helicity dissipation (purple) and the surface correction
term (yellow) are much less significant and do not contribute to
the overall change in helicity in the atmosphere. The derivative
of Hr from Figure 17 is over plotted for comparison. The two
approaches agree very well indicating that numerical effects are
kept to a minimum. Care must be taken when considering the
rate of change of helicity given in equation (13). See Pariat et al.
(2015) for the full derivative including additional terms. Clearly,
from Figure 13, the additional terms are not important in this par-
ticular case as the flux through the surfaces closely follows the
time derivative of the helicity. Pariat et al. (2015) also notes that
precaution must also be taken when dividing the helicity flux into
individual terms as although their sum is gauge-independent the
individual terms are not, hence, limiting their physical meaning.

Now that we have established a clear increase in the helicity
in the atmosphere, we analyse the helicity in the solar interior.
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As the toroidal flux tube has shown clear signs of untwisting,
we expect that the magnetic helicity in the interior will decrease
due to both the emergence of magnetic flux and the rotational
movements on the photospheric boundary. The calculation of
the relative magnetic helicity and the change in helicity below
the photosphere are shown in Figure 19. As expected, the inte-

(a) Hr

(b) dHr/dt

Fig. 19: Evolution of the relative helicity and rate of change of
helicity when calculated below z = 0 in the solar interior.

rior relative magnetic helicity decreases throughout the experi-
ment. Initially, the decrease in magnetic helicity is dominated by
internal helicity dissipation. Later, at t = 20, the field emerges
from the interior through to the atmosphere resulting in a sharper
decrease due to both the emergence of magnetic flux and the ro-
tational movements on the photosphere extracting helicity from
the interior as the flux tube untwists.

3.7. Magnetic energy

Now that we have demonstrated the transport of magnetic helic-
ity from the interior portion of the domain to the coronal portion,
we consider the magnetic energy and its distribution across the
domain. In order to understand the amount of magnetic energy
available for solar eruptive events, we consider the free magnetic
energy relative to the potential field. That is, we calculate the
excess magnetic energy after subtracting off the energy stored

in the potential field, i.e. Efree =

∫
B2/2 dV −

∫
B2

p/2 dV . The

evolution of the free magnetic energy above z = 0 is shown in
Figure 20a. The excess energy above z = 0 builds from the time
the field first emerges. To investigate the contributions to mag-
netic energy by flux through the photospheric boundary we con-

(a) Efree

(b) FP

Fig. 20: Evolution of (a) the free energy when calculated above
z = 0 and (b) the vertical Poynting flux through the surface z = 0.
The total Poynting flux is split into the emergence term (blue),
the shear term (red) and the resistive term (purple) as defined in
equation (14).

sider the Poynting flux through z = 0 as given by,

FP =

∫
z=0

B2vz dxdy−
∫

z=0
(v · B)Bz dxdy+η

∫
z=0

(j × B)k dxdy.

(14)

The first term contributing to the Poynting flux in equation (14)
corresponds to the contribution by vertical flows owing to emer-
gence, the second denotes the generation of magnetic energy by
shearing/rotational flows and the third term is a result of resistive
effects. The rate of increase of energy is largest during the initial
stages of emergence due primarily to the emergence term. How-
ever, later the shear term (attributed to by rotational motions) is
the main contributor to magnetic energy increase in the atmo-
sphere. This pattern corroborates the trend that appeared in the
helicity flux whereby vertical flows dominate the flux initially
and horizontal flows become important later. Keeping in mind
the precaution in Section 3.6 about the individual terms of he-
licity flux, the behaviour of the Poynting flux helps us to believe
that the helicity flux trend may have physical meaning. At the
end of the experiment, the free magnetic energy transported to
the atmosphere has reached 8.2 × 1022 J (8.2 × 1029 ergs).

3.8. Force-free parameter

Now that we have considered the behaviour of the plasma flows,
current and magnetic helicity and energy, a proxy for the local
twist is presented. Consider the quantity, α, normally referred
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(a) t = 40.

(b) t = 100.

(c) t = 100.

Fig. 21: Visualisation of magnetic fieldlines traced from both
footpoints coloured by the parameter α such that red represents
a strong twist (0.2 < α < 0.4) and blue denotes a weaker twist
(0 < α < 0.2).

to as the force-free parameter or sometimes the fieldline torsion
parameter,

α = (∇ × B) · B/B2.

In order to investigate this expression, we trace α along field-
lines as a tool to help us visualise the distribution of twist along
the field as shown in Figure 21. Initially the field is coloured red
to signify the field is highly twisted with a value of α greater than
0.2. Rapid emergence results in a coronal magnetic flux that is
initially quite untwisted (Longcope & Welsch 2000) as shown by
the low coronal α. A clear gradient in α develops along the field-
lines from a high magnitude α in the interior to a lower magni-
tude of α in the atmosphere as displayed in Figure 21. Fan (2009)
suggests that this gradient produces a torque that drives the ro-
tational motions observed. This result has been proven by Long-
cope & Klapper (1997) and it is suggested that this motion will
continue until the gradient in α is removed (Longcope & Welsch
2000). This agrees with our results.

Later, after the rotational motions have set in at the photo-
sphere, the interior field is left coloured blue with weak twist
(α < 0.2) and the atmospheric field is threaded with a mixture
of blue, red and white fieldlines. Thus, we can conclude that the
field in the legs of the tube undergo a definitive untwisting mo-
tion as the field is transformed from highly twisted to weakly
twisted by the end of the simulation. Although a large portion of
the atmospheric field is coloured blue due to the expansion and
stretching of the field, some fieldlines are coloured red indicating
that some highly twisted field has been transported into the at-
mosphere. This is demonstrated in Figure 21c where the twisted
structure of the atmospheric field is shown. As α ∼ 1/L, an in-
crease in the length scale results in a decrease in α. The length
scales in the corona are much larger so a decrease in α in the
atmosphere can be explained by the expansion and stretching of
magnetic fieldlines. The length scales in the interior, on the other
hand, are much smaller and so we explain a decrease in α by an
untwisting of the field.

3.9. Propagation of torsional Alfvén wave

As touched on earlier, our results indicate that the rotational mo-
tions we observe may be governed by some form of torsional
Alfvén wave propagating downwards as a consequence of the
transport of twist from the interior to the corona. The travel time
for an Alfvén wave to propagate from the photosphere to the base
of the domain is approximately 20 time steps. This suggests that
an Alfvén wave would take approximately 40 time steps to travel
down to the base, reflect and return to the photospheric plane.
We propose that this downward propagating Alfvén wave, first
proposed by Longcope & Welsch (2000), untwists the magnetic
field in the interior. The rotation will only slow down once the re-
flected wave has returned to the photosphere. This appears to be
in fairly good agreement with Figure 12 where the rapid rotation
and large |ωz| occurs from about t = 50 to t = 90.

4. Conclusions/Discussions

We have presented a 3D MHD numerical experiment of the
emergence of a toroidal flux tube from the solar interior through
the photosphere and into the solar corona. Based on our detailed
analysis, there is evidence that the interior magnetic field un-
twists and the photospheric footprints undergo a rotation. This
rotational motion acts to untwist the interior field fixed at the
base and injects twist into the emerged atmospheric portion. Our
analysis of the plasma vorticity at the photospheric plane re-
veals that significant vortical motions develop in the centre of
the sunspots. A definitive rotation of the sunspots is also demon-
strated by tracking the fieldlines and calculating the rotation rate
of the fieldlines threading the sunspot. Rotations of the order of
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one full rotation (360◦) are observed in our experiment. This is
similar in magnitude to the angles of rotation reported in studies
that concluded a direct relationship between swift sunspot ro-
tation and enhanced eruptive activity (Brown et al. (2003), Yan
& Qu (2007) and Yan et al. (2009) etc.). However, the sunspots
in our experiment rotate by one full rotation over the course of
about 40 minutes, whereas Brown et al. (2003) found sunspots to
rotate through angles of the order of 200◦ over a period of days.
The timescales in this experiment are clearly not in line with ob-
servations. However, this is related to the size of our emerging
active region (∼ 10Mm). If we scale up our experiment to a more
typical active region, we expect the timescales to be much larger
and in line with observations. This requires further investigation.

The direct emergence of flux paired with the continual rota-
tional motions at the photosphere transport magnetic energy and
helicity from the solar interior to the corona. The magnetic en-
ergy in the atmosphere reaches a value of 8.2×1022 J by the latter
stage of the experiment. The Poynting flux of energy is split into
contributions from horizontal shearing and vertical emergence
terms. The initial flux of energy across the photospheric bound-
ary is dominated by emergence but latterly the primary source is
the horizontal shear. The rate of change of relative magnetic he-
licity in the solar atmosphere also has two predominant sources;
namely helicity flux due to emergence and helicity flux by ro-
tational motions. In a similar trend to the energy, initially the
predominant source of helicity is the emergence of the magnetic
flux tube but later this is replaced by the flux of helicity due to ro-
tational motions at the photospheric level. The magnetic helicity
transported to the atmosphere reaches a value of 3.6 × 1019Mx2.
As well as the production of helicity in the atmosphere, we find
a clear decrease in the magnetic helicity in the interior, support-
ing our understanding that this portion of the field undergoes an
untwisting motion as also evidenced by a clear decrease in jz in
the interior.

The appearance of rotational motions centred on both
sunspots has been found before in other MHD simulations in-
cluding Magara (2006) and Fan (2009). Fan (2009) also ex-
plained these rotations as a consequence of torsional Alfvén
wave propagation and established an increase in helicity in the
atmosphere. Our work, however, explicitly discusses the effect
that this rotational motion has on the interior portion of the field
by establishing a depletion in the magnetic helicity stored in the
interior segment of the domain and a drop in the vertical cur-
rent in this region. We also show that the magnetic tension force
may govern this rotational motion as it appears to produce an
unbalanced torque that drives the rotation. Furthermore, we ex-
plicitly rule out that the rotation observed may be an apparent
effect, helping us to explain the rotation primarily as a dynam-
ical result of the emergence of magnetic flux. In addition, we
trace fieldlines from the base of the domain as they pass through
the photosphere and explicitly calculate their angles of rotation
which appear to be approximately in line with the angles cal-
culated in observations. By considering the trajectories of these
selected fieldlines, we find a remarkable visual representation of
two fieldlines rotating in a circular motion around the axis (the
centre of the sunspot), as shown in Figure 6b.

The simple hypothesis from Longcope & Welsch (2000) has
been confirmed in this 3D resistive MHD model, namely that
only a fraction of the current carried by a twisted flux tube
will pass into the corona and that the propagation of a torsional
Alfvén wave at the time of emergence will transport twist from
the highly twisted interior to the stretched coronal loops. The
rotational motions we observe are a manifestation of the propa-
gation of these waves.

In a future paper we plan to perform a parameter study where
we investigate the effects of the field strength B0 and twist α on
our analysis of the rotation of sunspots. This will allow us to de-
termine if there is a relationship between the strength or twist of
the sub-photospheric flux tube and the amount of vorticity in the
sunspots or the rate at which the sunspots rotate. Another possi-
ble avenue for future research is to add in an ambient magnetic
field to the coronal portion of the simulation domain. This would
add in a further realism and allow us to understand the effect of
an ambient field to the rate of rotation, as well as understanding
whether rotation can lead to an eruption in our experiments.

Furthermore, we would like to try and understand why the
rotation rate we calculate in our simulation is much larger than
those calculated in observations. There are many possibilities for
this discrepancy, including the size of active region which was
discussed earlier. In addition, varying the strength or twist of the
tube may change the time it takes for the flux tube to rise to the
photosphere and hence govern the rotation rate of the tube. The
model presented by Longcope & Welsch (2000) predicts that the
level of rotation will depend on the rapidity of flux emergence so
we plan to investigate how this affects the rotation. The length of
time for the rotation may also be related to the depth at which
the flux tube is anchored; this is another approach that requires
investigation.
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