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Abstract 

Integrated quantum photonics is a promising approach for future practical and large-scale quantum information 

processing technologies, with the prospect of on-chip generation, manipulation and measurement of complex 

quantum states of light. The gallium arsenide (GaAs) material system is a promising technology platform, and has 

already successfully demonstrated key components including waveguide integrated single-photon sources and 

integrated single-photon detectors. However, quantum circuits capable of manipulating quantum states of light have 

so far not been investigated in this material system. Here, we report GaAs photonic circuits for the manipulation of 

single-photon and two-photon states. Two-photon quantum interference with a visibility of 94.9±1.3 % was 

observed in GaAs directional couplers. Classical and quantum interference fringes with visibilities of 98.6±1.3 % 

and 84.4±1.5 % respectively were demonstrated in Mach-Zehnder interferometers exploiting the electro-optic 

Pockels effect. This work paves the way for a fully integrated quantum technology platform based on the GaAs 

material system.      

Keywords: quantum optics, integrated quantum photonics, quantum interference, entanglement, GaAs waveguide, 

Pockels effect 

1. Introduction  

Quantum information science exploits fundamental quantum mechanical properties — superposition and 

entanglement — with the goal of dramatically enhancing communication security, computational efficiency and 

measurement precision [1–4]. Photons have been widely considered as an excellent physical implementation of 

quantum information and communication technologies due to their low decoherence, fast transmission and ease of 

manipulation [2, 5]. Bulk optical elements including single-photon sources, single-photon detectors and linear 

optical circuits have been successfully utilised to experimentally demonstrate quantum communication protocols, 

quantum metrology and small-scale quantum computation [6–9]. However, this bulk optics approach has severe 

limitations in terms of circuit stability, complexity and scalability.  

The emergence of integrated quantum photonics (IQP) is revolutionising the field of photonic quantum technologies 

[10]. Utilizing well-developed integration technologies of classical photonics, IQP can shrink quantum experiments 

from a room-sized optical table onto a coin-sized semiconductor chip, and therefore greatly reduce the footprint of 

quantum devices and increase the complexity of quantum circuits [5, 10–24]. IQP inherently offers near-perfect 

mode overlap at an integrated beamsplitter for high-fidelity quantum interference [11, 15] and sub-wavelength 

stability of optical path lengths for high-visibility classical interference [13,14], which are both essential to photonic 

quantum information processing. Recently, two-photon quantum interference with a visibility of >99 %, controlled-
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NOT quantum gate with a fidelity of 96 %, and manipulations of entanglement have been demonstrated in the 

integrated photonic circuits, based on various platforms such as silica-on-silicon [11–15], laser direct writing silica 

[17–19], lithium niobate [20–22] and silicon-on-insulator [23, 24], etc. Moreover, IQP would enable on-chip 

generation, manipulation and detection of quantum states of photons, ultimately required by practical and scalable 

quantum information processing technologies. Recently, progress also has been made towards integrated single-

photon sources and waveguide single-photon detectors. Periodically poled lithium niobate (PPLN) waveguides and 

silicon wire waveguides are examples of integrated waveguide sources for the generation of photon pairs via 

spontaneous parametric down conversion (SPDC) and spontaneous four-wave mixing (SFWM) respectively 

[25, 26]. High-efficiency waveguides superconducting nanowire single-photon detectors (SNSPD) also have been 

successfully demonstrated in gallium arsenide (GaAs) waveguides and silicon wire waveguides [27, 28].   

Here, we report a low-loss GaAs/Al0.3Ga0.7As ridge waveguide platform for the manipulation of quantum states of 

light. GaAs is one of the most mature semiconductor materials widely used in classical integrated photonics. GaAs 

devices have been used for 100 GHz low-power modulation of optical signals [29] based on the strong electro-

optical Pockels effect (driven by the large χ
2 

nonlinear coefficient of the GaAs material) whose refractive index is 

linearly proportional to the applied electric field [30], and could provide a route to fast control and manipulation of 

photons for applications in quantum communication and quantum computation. Moreover, efficient on-chip single-

photon sources have been developed based on semiconductor quantum dot embedded in the GaAs photonic crystal 

waveguides/cavities [31–37]. Spontaneous pair generation techniques have also been investigated using Bragg-

reflection waveguides on GaAs platform to achieve the required phase-matching condition for spontaneous 

parametric down conversion [38–41]. GaAs waveguide integrated superconducting detectors have been 

demonstrated with efficiencies of 20 % and short dead time of few ns [27], and photon number resolving capabilities 

[42]. Recently, photoluminescence from quantum dots has been coupled into the GaAs ridge waveguides 

and detected using the waveguide SNSPDs [43]. However, to-date no operations of photon’s quantum states have 

been reported in the GaAs waveguide photonic circuits. Based on our GaAs waveguide platform, we demonstrate 

the ability to control and manipulate two-photon quantum states, demonstrating two-photon quantum interference in 

directional couplers and utilising Mach-Zehnder interferometers (MZIs) controlled electro-optically using the 

Pockels effect to realise quantum interference fringes. This work demonstrates important functionalities required for 

a GaAs integrated quantum technology platform, and presents essential quantum components for controlling 

quantum states, opening the way to the monolithic integration of quantum dot/SPDC single-photon sources, 

quantum photonic circuits and waveguide SNSPDs on a single GaAs wafer.   

2. GaAs waveguides and experimental setup 

Fig.1 (a) shows the cross section of a GaAs/Al0.3Ga0.7As ridge waveguide with a GaAs core and Al0.3Ga0.7As 

bottom/top claddings. The refractive indices of the GaAs core and Al0.3Ga0.7As claddings are 3.431 and 3.282 

respectively, at the wavelength of 1550 nm. In order to meet the single-mode condition, the GaAs layer is etched 

down by 1.5 µm, forming the ridge waveguide with a width of 3.5 µm and a height of 3.9 µm. Fig.1 (a) also shows 

the simulated field distribution of the transverse electric (TE) fundamental mode using a finite difference mode 

(FDM) solver. Optical intensity distribution within the fabricated GaAs waveguide has been captured using an 

infrared CCD camera (Fig.1 (b)), which shows the single mode distribution.  

The Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As layers which form the vertical waveguiding structure were alternately grown on 

top of a (100) GaAs wafer using molecular beam epitaxy. Note that a 100 nm-thin GaAs cap was also grown upon 

the top cladding to protect the Al0.3Ga0.7As layer against oxidation, and the GaAs substrate under the bottom 

cladding was doped to reduce the contact resistance. The waveguide circuits were defined by photolithography, 

using a 50 nm nickel film hard mask and lift-off process. The GaAs layer was inductively coupled plasma (ICP) 

etched, and the remaining nickel was removed before the chip was planarized by refilling the etched area with lift-

off resist. A 200 nm gold film was sputtered after a second photolithography step, and gold contacts were patterned 



on top of MZI’s arms by the lift-off process. Finally, the chip was cleaved for optical fiber coupling and mounted 

onto a chip holder for electrical connection. Fig.1 (c) shows the Scanning Electron Microscopy (SEM) images of the 

GaAs waveguides. Directional couplers and MZIs were both fabricated in this waveguide platform. The measured 

nominal propagation loss and coupling loss (between waveguides and lensed-fibers with a 2.5±0.5 µm spot-

diameter) using the Fabry-Perot method [44] was 1.6 dB/cm and 1.5 dB/facet respectively. 

 

Fig.1. (a) Cross section of the GaAs/Al0.3Ga0.7As ridge waveguide and its simulated field distribution of the TE 

fundamental mode at 1550 nm wavelength, (b) measured intensity distribution of the TE fundamental mode at 

1550 nm wavelength and (c) Scanning Electron Microscopy (SEM) images of the GaAs/Al0.3Ga0.7As waveguide.  

Photon pairs at 1550 nm wavelength were generated via type-II SPDC in a periodically poled potassium titanyl 

phosphate (PPKTP) nonlinear crystal, pumped with a 50 mW continuous-wave laser at 775 nm wavelength (Fig.2). 

Dichroic mirrors and a long-pass filter were used to separate the bright pump light from the photon pairs. Photon 

pairs with orthogonal polarization were separated by a polarization beamsplitter (PBS) and collected into two 

polarization-maintaining fibers (PMFs). Photons with horizontal polarization (corresponding to the TE mode of the 

waveguides) were coupled to the GaAs devices via two lensed single-mode fibers (lensed-SMFs), where the 

polarization orientation was corrected using two fiber polarization controllers for injection into the test devices. 

After the chip, photons were collected by two lensed-SMFs and detected using two single-photon detectors. 

Coincidences were recorded using a Picoharp 300 Time Interval Analyser (TIA). We used two different types of 

1550 nm single-photon detectors: 1) two fiber-coupled superconducting single-photon detectors mounted in a closed 

cycle refrigerator with 1 % and 4 % efficiencies and ~1k Hz dark counts [45], used for the quantum interference 

experiment in the GaAs directional couplers; 2) two InGaAs/InP Avalanche photodiodes (APDs) from ID 

Quantique, one working in the free-running mode with a 10 % efficiency and ~10k Hz dark counts and the other 

being triggered with a 20 % efficiency and negligible ~20 Hz dark counts, used for the investigation of single-

photon superposition state and two-photon entanglement state in the GaAs MZIs. A rate of 2×10
6 
Hz photon pairs 

from the SPDC source was observed and was used in the following experiments.  

 

Fig.2. Experimental setup: photon pairs were generated via type-II SPDC in a PPKTP crystal. Photons were 

collected into two PMFs and coupled to the GaAs chip through two lensed-SMFs, and subsequently routed to two 

single-photon detectors via another two lensed-SMFs after the chip. Before the chip, a time delay between the two 

photons was precisely controlled using a mechanical variable delay. A voltage generator was used for electro-

optically controlling the relative phase and amplitude of the on-chip photon states.  



3. Quantum interference 

Quantum information encoded on a photon can be realised using any of the different degrees of freedom of a 

photon, such as path, time, polarization and orbital angular momentum [2, 5 and 46]. In path encoding, the qubit is 

represented using the dual-rail encoding, where a photon in one of the two paths would be defined as |10 and a 

photon in the other path would be defined as |01. A single-qubit can therefore be represented as a superposition of 

these two states:  

|Ψ = α|10 + β|01                                                                             (1) 

where the photon is simultaneously present at |10 and |01 paths with respective probabilities of detection being |α|
2
 

and |β|
2
. The directional coupler (see Fig.3 (a)) is a typical form of integrated beamsplitter and performs a unitary 

operation of the single-qubit state [10]. Starting with an initial state of |10 for instance, directional coupler rotates it 

into a superposition state of √1 − ε|10 + i√ε|01 , where ε is the reflectivity or coupling ratio of the coupler (see 

details in Appendix A). When the coupling ratio ε is equal to 0.5, the directional coupler performs a Hadamard-like 

operation and produces the state (|10 + i|01)/√2. More interestingly, unique quantum interference occurs when two 

indistinguishable photons meet at a coupler with an ε of 0.5 [47]. According to the interpretation of quantum 

mechanics, when two processes are indistinguishable, the probability of an event is equal to the complex square of 

their added probability amplitudes. Due to the π/2 phase shift for any photon reflected from a beamsplitter, the 

probabilities of both photons being reflected or both transmitted cancel out; and therefore two photons injected on a 

coupler bunch together and produce a maximally path-entangled state as:  

(|20 + |02)i/√2                                                                             (2) 

When two optical waveguides are placed closely together, light will couple back-and-forth between them via the 

evanescent field [48]. The coupling ratio ε of the directional coupler depends on its coupling length and coupling 

strength. We designed and fabricated GaAs directional couplers with different coupling lengths and gaps for a 

control of the coupling ratio ε (Fig.3 (a)). A directional coupler with near 0.5 coupling ratio was obtained when the 

gap was 2.5 µm and the coupling length was around 140 µm (Fig.3 (b)). The total length of the device was about 

7 mm including four S-bends with a radius of 10 mm and the input /output waveguides (of separation 250 µm). Two 

input/output access-waveguides were distanced by 250 µm to allow access of the lensed-fibers for input/output 

coupling. At the 1550 nm wavelength, the fiber-to-fiber loss of the chip was measured to be ~9 dB, with the internal 

devices losses (including the propagation loss and bends loss) estimated to be ~3 dB. To characterise the device in 

the quantum regime, photon pairs from the SPDC source were launched to the GaAs directional coupler. A variable 

time delay between the two injected photons was precisely controlled using a mechanical variable delay with a step 

of 20 µm. After the chip, coincidences detection events were measured using two superconducting detectors and a 

TIA. Fig.3 (c) shows the Hong-Ou-Mandel (HOM) dip [47] with a visibility ((NMax-NMin)/NMax) of 94.9±1.3 %, after 

a subtraction of accidental coincidences. At the centre of HOM-dip, quantum interference results in the two photons 

coherently bunched together (as formula (2)), and therefore minimal coincidences are recorded there. Observation of 

the high-visibility HOM-dip experimentally confirms two-photon quantum interference within the GaAs directional 

coupler. The triangular shape of the HOM-dip arises from the Fourier transform of the SPDC phase-matching sinc
2
 

spectrum [49], which is narrower than the bandwidth of filters used in the SPDC source here. A triangular fit is used 

for estimating the visibility and shape of the HOM-dip. The shoulder-to-shoulder width of the HOM-dip is 440 µm, 

indicating that the coherence time of each photon is 0.73 ps and coherent length in the waveguides is 64.1 µm.  



 

Fig.3. (a) Schematic diagram of the GaAs directional couplers. (b) Measured coupling ratio of the GaAs directional 

couplers with different gaps as the coupling length increases. Solid lines are fits and points are measured data. (c) 

Two-photon quantum interference in the GaAs directional coupler with near 0.5 coupling ratio, showing high 

visibility of 94.9±1.3 %. Solid line is an inverse triangular fit for an estimation of the visibility and shape of the 

HOM-dip. Coincidences were measured using two superconducting detectors with 1 % and 4 % efficiencies and 

~1k Hz dark counts. Accidental coincidences are subtracted and error bars arise from Poissonian statistics.   

Furthermore, we measured the indistinguishability of photon pairs directly from the SPDC source using a fiber 

beamsplitter (ε = 0.5) connected with PMFs, resulting in maximum visibility of the HOM-dip of 98.7±0.6 %. 

Compared with the visibility for the GaAs coupler, a 3.8 % degradation of the visibility was observed and attributed 

to the strong Fresnel reflections at the waveguide facets due to the large refractive index difference. Since the 

coherence length of each photon is much shorter than the distance between the facets, we can ignore the Fabry-Perot 

self-interference of photons and only consider their back-and-forth reflections between waveguide facets. At each 

facet between GaAs waveguides and air, photons have an R probability of being reflected and a T probability of 

being transmitting. R and T are respectively calculated to be 30 % and 70 % using the Fresnel equations ((nGaAs-

nair)/(nGaAs+nair))
 2

, where nGaAs and nair are refractive indices of GaAs and air. Firstly, consider the condition where 

the two photons undergo quantum interference and bunch at the output ports (i.e. centre of the HOM-dip). Due to 

the reflections at the output facets photon A transmits with the T probability and photon B is reflected back with the 

R probability. Photon B can be reflected again at the input facets and leave out from another output port of the 

coupler with a phase-dependent probability. That is, round-trip reflections result in extra coincidences between 

photon A and photon B (see Appendix. B), even in the case of perfect quantum interference. Note that time window 

for coincidences measurement was >5 ns which was much longer than the first-order round-trip time delay of about 

80 ps. Then, at the shoulder position of the HOM-dip corresponding to the distinguishable photons pairs input, we 

can use the same model to estimate the coincidences. Considering the loss within the chip, theoretical degradation of 

the visibility is estimated to be in the range of 0~4.4 %, which depends on the phase difference between two input 

access-waveguides before the coupler. The experimental 3.8 % degradation of visibility is within this theoretical 

range and actually smaller than the worst degradation owning to a non-zero phase difference. The problem of 

reflection on facets could be resolved by applying anti-reflection coating on the waveguide facets. In future, for 

GaAs quantum circuits monolithically integrated with on-chip single-photon sources and detectors, reduction of the 

visibility due to the facet reflection could be ignored.    



4. Manipulation of quantum states 

Arbitrary unitary operations of quantum states, including preparation, manipulation and measurement of quantum 

states, are required to implement quantum communication and universal quantum computing. Generally, an arbitrary 

unitary operator on single-qubit can be decomposed of a set of rotations as Uarb = exp(iασz/2)exp(iβσy/2)exp(iγσz/2), 

which physically behaves as one Mach-Zehnder interferometer (MZI) and two additional phase shifters [1]. MZI 

consisting of two beamsplitters and phase shifters is capable of controlling the relative phase and amplitude of the 

superposition state and entanglement state. When the single-photon state |10 is launched into the MZI, the state is 

transforms to:   

[(1− 2ε)cos(θ/2)+ isin(θ/2)] |10 + i2√ε(1−  ε)cos(θ/2) |01                                        (3) 

where θ is the relative phase between two arms and ε is the coupling ratio of two directional couplers. An MZI with 

additional phase shifters enables arbitrary operations of the single-qubit states and therefore functionalizes as the 

building-block for an experimental realization of arbitrary unitary N×N operators [50] and also for the large-scale 

quantum information processors [13].  

We fabricated GaAs MZIs with two electro-optical phase shifters which enable an independent control of the phases 

of two arms (Fig.4 (a)). When an electric field E is applied along the (100) direction (vertically), the refractive index 

of the TE mode linearly responds to the electric field as Δn = n
3

GaAs r14E/2, where r14~1.4×10
-12 

m/V is the electro-

optical coefficient of the GaAs material [51]. The length of the phase shifters was 1.0 cm and voltage required to 

induce a π phase shift (Vπ) was measured to be 13 V. The two couplers within the MZI were designed identically 

with a gap of 3.0 μm and a coupling length of 255 μm. The total length of the MZI chip was about 1.7 cm (Fig.4 (b)) 

and fiber-to-fiber loss of the chip was measured to be ~10.3 dB. Classical characterisation of the device was 

performed using coherent bright-light from a tunable laser diode, and also single-photons from the SPDC source 

were individually routed to the MZI devices for a characterization of classical interference. Two power-meters and 

two APDs were respectively used to detect the bright-light intensities and single-photon counts at two output ports 

of the MZI. By linearly scanning the applied voltages on two arms, we observed the classical interference fringes for 

both bright-light and single-photons which exhibited the same periodicity. Fig.4 (c) shows the normalized classical 

interference fringes as a function of relative phase shift for the coherent bright-light input. One can see that the 

classical interference fringes for two outputs are unbalanced and have different maximum visibilities of 98.6±1.3 % 

and 79.9±4.9 %. The unbalance of the interference fringes arises from the non-0.5 coupling ratios of two directional 

couplers. The coupling ratio of individual coupler was measured to be approximately 0.3 (Fig.3 (b)). According to 

the formula (3), single-photon counts or bright-light intensities from two outputs respectively vary as sin
2
(θ/2)+ 

cos
2
(θ/2)(1−2ε) and 4ε(1− ε)cos

2
(θ/2), and we plot the corresponding theoretical fringes when the ε is chosen to be 

0.3 (solid lines in Fig.4 (c)). Theoretical fringes are consistent with the experimental interference fringes. It is 

anticipated that MZI consisting couplers with near 0.5 coupling ratios would offer sinusoidal outputs as sin
2
(θ/2) and 

cos
2
(θ/2) and therefore result in well-balanced and higher-visibility classical interference fringes. Note that we 

actually had MZIs with ε close to 0.5; however, they unfortunately suffered high loss which made it unfeasible to 

characterise these devices in the two-photon quantum interference experiments. Then we used the MZI with ε~0.3 

for the investigation of quantum interference within these devices.  

Generally, when two indistinguishable photons are separately launched into two input ports of the MZI, quantum 

interference at the first coupler with an arbitrary coupling ratio creates the two-photon state:  

√2ε(1− ε) i(|20+|02) + (1− 2ε) |11                                                             (4) 

(For details see Appendix. A). Note that when ε is equals to 0.5 the two photons are maximally path-entangled, as in 

formula (2). The phase shifters within the MZI then perform a z-axis rotation on the state, and the second coupler 

acts to further transform the state to:  



√2ε(1− ε)[− εe-i2θ+(1 − 2ε)e-iθ+1− ε]i |20 +√2ε(1− ε)[(1− ε) e-i2θ+(1− 2ε)e-iθ − ε]i |02  

  +[− 2ε(1− ε)e
-i2θ

+(1− 2ε)
2
e-iθ − 2ε(1− ε)] |11                                              (5)  

To characterise the performance of the device in the two-photon quantum regime, we routed photons pairs from the 

SPDC source to the MZI and recorded coincidences (corresponding to the |11 term in the formula (5)) using two 

APDs and the TIA. The time delay between the two photons was carefully controlled to make them arrive at the 

MZI simultaneously and therefore guarantee the time-indistinguishability. Compared with the classical interference 

fringes above, two-photon quantum interference fringe with a double frequency was observed and shown in Fig. 

4(d), indicating a manipulation of the two-photon entanglement state. The maximum visibility is measured to be 

84.4±1.5 %, which is greater than the requirement of beating the standard quantum limit [52]. The visibility of 

quantum interference fringe is non-uniform owing to the unbalance of the directional couplers [53]. The coexistence 

of the e-iθ and e-i2θ terms in the formula (5) leads to the non-uniformity of the interference fringe when ε is away 0.5. 

The solid line in Fig.4 (d) is the theoretical two-photon interference fringe when the ε is chosen as 0.3. The shape 

and periodicity between the theoretical fringe and experimental result agree well, whereas deviation at the bottom 

likely arises from the polarization distinguishability induced in SMFs before the chip. Additionally, two photons 

may a carry small transverse magnetic (TM) component, which does not response to the applied electric field, and 

behave as the coincidences background independent of the phase shift. If a coupling ratio of 0.5 is used, the 

formula (5) can be simply reduced to sin(θ)(|20 − |02)/√2 + cos(θ) |11 , resulting in pure double-frequency 

quantum interference fringe [13,14]. Through further device optimisation, controlling coupling ratios and 

polarization of photons, quantum interference with uniform distribution and higher visibility would be achievable.  

 

Fig.4. (a) schematic diagram of the GaAs Mach-Zehnder interferometer (MZI) with two directional couplers and 

two electro-optical phase shifters. (b) Optical microscopy image of the fabricated GaAs MZIs. (c) Classical 

interference fringes. Normalized intensities of two outputs are plotted as a function of relative phase shift for the 

coherent bright-light input (the same periodicity as single-photons input). (d) Quantum interference fringe showing a 

manipulation of the two-photon state. Coincidences are plotted as a function of relative phase shift for the 

indistinguishable photons pair input. Solid lines in (c) and (d) are theoretical fringes when the ε of two couplers is 

0.30. Coincidences were measured using two APDs, one free-running with a 10 % efficiency and ~10k Hz dark 

counts and the other being triggered with a 20 % efficiency and ~20 Hz dark counts. Accidental coincidences are 

subtracted and error bars arise from Poissonian statistics.  



5. Conclusion 

To summarize, we have developed a GaAs ridge waveguide technology platform for integrated quantum photonic 

circuits. Directional couplers and MZIs were fabricated and their suitability for quantum interference experiments 

assessed. We demonstrated two-photon quantum interference with a high visibility using the directional couplers 

and implemented the manipulation of two-photon state using MZIs. This study demonstrates the feasibility of 

quantum waveguide circuits in GaAs, opening the way to a fully integrated quantum technology platform where 

single photon sources, detectors and waveguide circuits could be combined in a single GaAs chip.  This approach is 

promising for a large-scale and practical integrated platform for on-chip quantum information processing.  
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Appendix. A 

Unitary operator of the directional coupler with an arbitrary coupling ratio or reflectivity ε is shown as:  

     [
√1− ε i√ε

i√ε √1− ε
]                                                                        A. (1) 

We use the quantum mechanical representation to describe the unitary transformations applied by the directional 

coupler and Mach-Zehnder interferometer (MZI) as following. âi  and âi
+ are the annihilation and creation operators, 

respectively, and i is the port number in Fig. A.1.  

When one-photon state  |10= â
1 

+
|00 is launched into the directional coupler, the state is rotated as: 

 |10
𝐷𝐶
→ (√1− ε  â3 

+
+i√ε â4 

+
) |00 = √1− ε |10+i√ε |01                                      A. (2)                                        

When one-photon state  |10= â
1 

+
|00 is launched into the MZI, the state is rotated as: 

|10
𝐷𝐶1
→  (√1− ε  â3 

+
+i√ε â4 

+
) |00  

Phase shifter
→        (√1− ε  â3 

+
+e-iθi√ε â4 

+
) |00      

DC2
→  [√1− ε (√1− ε â

5

+
+i√ε â6 

+
)+e-iθi√ε (i√ε â

5

+
+√1− ε â6 

+
] |00 

= [(1 − 2ε)cos(θ/2) + isin(θ/2)] |10 + i2√ε(1−  ε)cos(θ/2) |01                                 A. (3)     

When two-photon state |11= â
1 

+
 â2

+
 |00 is launched into the directional coupler, the state is rotated as: 

|11
𝐷𝐶
→ (√1− ε  â3 

+
+i√ε â4 

+
)  (i√ε â

3

+
+√1 − ε â4 

+
) |00  = [i√ε(1 − ε) (â3

+
â3

+ + â4
+
â4

+) + (1 − 2ε)â3
+
â4

+] |00  

=√2ε(1− ε) i(|20+|02) + (1− 2ε) |11                                                  A. (4) 

When two-photon state |11= â
1 

+
 â2

+
 |00 is launched into the MZI, the state is rotated as: 

 |11
𝐷𝐶1
→  [i√ε(1 − ε) (â3

+
â3

+ + â4
+
â4

+) + (1 − 2ε)â3
+
â4

+] |00  

Phase shifter
→       [i√ε(1 − ε) (â3

+
â3

+ + e-i2θâ4
+
â4

+) + (1 − 2ε)e-iθâ3
+
â4

+] |00  

DC2

→  i√2ε(1− ε)[− εe-i2θ+(1− 2ε)e-iθ+1 − ε] |20 +i√2ε(1 − ε)[(1− ε) e-i2θ+(1− 2ε)e-iθ − ε] |02  

+[− 2ε(1− ε)e
-i2θ

+(1− 2ε)
2
e-iθ − 2ε(1− ε)] |11                                            A. (5)    

 

Fig. A.1. Schematic diagrams of the (a) directional coupler and (b) Mach-Zehnder interferometer.       

 



                                                                                                                                                                                

Appendix. B 

Coherence length of each photon is much shorter than the chip length and therefore we could ignore the Fabry-Perot 

self-interference and only consider the forth-and-back reflections for photons. At each waveguide facet, photons 

have a R probability of being reflected and a T probability of transmitting. R and T are estimated using the Fresnel 

equation.  

Fig.B.1. (a) shows the forth-and-back reflection at the tip position of the HOM-dip, where two photons should be 

coherently bunched in the idea case. For example, photon A (red) and photon B (blue) have a 50% probability of 

being bunched at the port 3. Due to the facet reflection, photon A have the T probability of transmitting and photon B 

has the R probability of being reflected. Then photon B is reflected again at the input facets, and consequently there 

is a chance that photon B will leave out from the port 4 of the coupler and coincide with photon A. Note that photon 

B passes the directional coupler (ε=0.5) twice and a “MZI”-like interference will occur. Any variation of waveguides 

width/length and angled-cleave of the input access-waveguides will induce phase difference Δφ between two input 

waveguides before the coupler. Therefore, the probability of extra coincidences depends on the phase difference Δφ. 

When only considering the first-order round-trip of reflections, coincidences at the dip position will be: 

 NR
2
T

4
ηc

4
η

4 
cos

2
(Δφ/2) ηd1ηd2                                                          B. (1) 

where N is the rate of photon pairs of the SPDC source, and ηc is the coupling loss and and η is the loss within the 

chip (including the propagation loss and bending loss), and ηd1and ηd2 are efficiencies of two detectors.  

Similarly, we can analysis the shoulder of the HOM-dip, where two distinguishable photons are injected and four 

different processes occur: both reflected, both transmitted, and one reflected and one transmitted. Fig.B.1. (b) and 

(c) show the zero-order and first-order round-trips when photon A and B are initially antibunched. Coincidences at 

the shoulder position of the HOM-dip will be:  

N [T
4
ηc

4
η

2
/2 + sin

2
(Δφ/2) R

2
T

4
ηc

4
η

4
/2 + cos

2
(Δφ/2)R

2
T

4
ηc

4
η

4
/2] ηd1ηd2                      B. (2) 

According to the formulas B. (1) and (2), the theoretical visibility is estimated to be in the range of 95.6%~100%, 

corresponding to a degradation of the visibility in the range of 0~4.4%, which depends on the phase difference Δφ 

between two input access-waveguides before the coupler. The worst degradation of the visibility is 4.4 % when the 

Δφ is chosen to be zero.   

 

Fig. B.1. Illustration of round-trip reflections of photons in the directional coupler (ε=0.5). 


