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Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated 

in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are 

incompletely characterized. Here we used quantitative mass spectrometry to obtain acetylation 

signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs 

increased acetylation of a small, specific subset of the acetylome, including sites on histones and 

other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that 

the effects of the pan-sirtuin inhibitor nicotinamide are primarily mediated by SIRT1 inhibition. 

Furthermore, we confirmed that the effects of tubacin and bufexamac on cytoplasmic proteins result 

from inhibition of HDAC6. Bufexamac also triggered an HDAC6-independent hypoxia-like response 

by stabilizing HIF1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory 

effects. Our results offer a systems view of KDACI specificities, providing a framework for studying 

function of acetylation and deacetylases. 
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Intro 

Lysine acetylation is a reversible posttranslational modification that is controlled by the opposing 

activities of lysine acetyltransferases and deacetylases. The human genome encodes 18 different 

lysine deactetylases (KDACs), which play  important regulatory roles in several biological processes, 

including gene transcription
1
, silencing

2
, cytoskeletal reorganization and cell migration

3
 and DNA 

damage repair
4
. Depending on their sequence homology with yeast deacetylases as well as their 

domain organization and subcellular localization, KDACs are classified into four different classes 

(Fig. 1a). The importance of KDACs in mammalian physiology is highlighted by essential roles of 

many deacetylases in embryonic viability or postnatal development in mouse models
5-7

.  

Dysregulation of acetylation has been implicated in various human diseases, and thus KDACs are 

attractive therapeutic targets
8,9

 for diseases such as viral infections
10

, inflammation
11

, 

neurodegenerative diseases
12

, metabolic disorders
13

, and cancer
9
. In the past decade, >400 clinical 

trials have been initiated with different KDACIs, leading to the approval of vorinostat 

(suberoylanilide hydroxamic acid, SAHA) and romidepsin (FK228) for the treatment of cutaneous T-

cell lymphoma
14

. The therapeutic potential of KDACIs has encouraged the development of KDACIs 

with selectivity for different deacetylases, and currently more than a dozen different inhibitors are 

being tested in clinical trials
14-17

. 

The specificities of KDACIs have been extensively determined at the level of the enzyme that they 

target, often using in-vitro deacetylation assays with recombinant deacetylases
18

 or chemical 

proteomics-based approaches
19,20

. However, these methods do not reveal KDACI specificity in cells 

at the level of individual acetylation sites, which is critical for understanding their distinct modes of 

action and to stimulate scientific investigation and elucidate new therapeutic opportunities. 

Here we applied quantitative mass spectrometry (MS) to evaluate the specificities of 19 structurally-

divergent KDACIs at the level of acetylation sites affected in human cells. We quantified acetylation 

at more than 8,000 sites in inhibitor-treated HeLa cells and used genetic KDAC knockout cells to 

confirm the predicted specificities of several prominent KDACIs.  

 

Results 

Strategy for KDACI-regulated acetylome analysis 
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We selected 19 KDACIs that are widely used as research tools or drugs, and cover the entire 

selectivity range for human deacetylases, albeit with varying specificity profiles, as determined in 

previous studies using in-vitro deacetylation assays
18-20

 (Fig. 1a). In addition, we included a highly 

selective KDAC1 and 2 inhibitor, JQ12, which is an emerging chemical tool for studying isoform-

selective inhibition of class I KDACs (Supplemental note 1 and Supplemental Fig. 1a-c). 

To evaluate the selectivity of KDACIs for acetylation sites in cells,  we used a stable isotope labeling 

by amino acids in cell culture (SILAC)-based quantitative mass spectrometry (MS) approach
21

. 

Human cervical cancer (HeLa) cells were metabolically labeled with different stable isotopic forms 

of lysine and arginine (Lys
0
 and Arg

0
, “light” SILAC; or Lys

8
 and Arg

10
, “heavy” SILAC). The 

“heavy” labeled cells were treated for 16 hours with the respective KDACIs, and their effects on 

acetylation levels were determined by comparison  with “light” labeled control cells that were mock-

treated with solvent (DMSO or H2O) (inhibitor concentrations are provided in Supplemental Table 

1). Acetylated peptides were enriched using anti-acetyllysine antibodies and analyzed by high 

resolution mass spectrometry
22

 (Fig. 1b).  

 

An overview of the KDACI acetylation screen 

For each of the KDACIs, site-specific acetylation changes were quantified in two independent 

biological replicates, which had an average Pearson correlation coefficient of 0.71 (Supplemental 

Fig. 2), supporting the overall quantitative reliability of the approach. Altogether, the dataset 

contains >8,100 quantified acetylation sites in HeLa cells (Supplemental Table 2), covering ~80 % of 

previous identified sites
23

 (Supplemental Fig. 3), which were localized to the indicated lysines with 

greater than 90 % confidence (average site localization probability of 0.99). A majority (~85 %) of 

the acetylation sites was quantified in more than one KDACI-treated sample, and nearly 60 % of the 

sites were quantified in response to five or more KDACIs (Supplemental Table 2). 

We quantified an average of >3,200 acetylation sites for each of the analyzed KDACIs (Fig. 1c), 

enabling us to assess in cells the inhibitory scope and acetylation pattern for each of the tested 

compounds. For further analyses, we set a threshold of a greater than two-fold increase or decrease in 

acetylation for regulated acetylation sites. Notably, most inhibitors increased acetylation of only a 

small fraction of the quantified sites (on average 6.2 %) above this threshold (Fig. 1c), demonstrating 

that a majority of KDACIs have a limited, though specific, inhibitory scope at the acetylation site 

level. The activity of KDACs diminishes protein acetylation levels; accordingly, for all investigated 
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5 

 

inhibitors except sirtinol, the fraction of upregulated acetylation sites in KDACI-treated cells was 

greater than the fraction of downregulated sites (Fig. 1c). 

 

Specificity of KDACIs for acetylation sites 

To understand the specificity patterns of KDACIs in cells, we used average linkage clustering to 

group KDACIs based on their effects on the hyperacetylation of sites in cells. Many of the classical 

histone deacetylase inhibitors, such as LBH589, PXD101, SAHA, TSA, grouped together, and this 

group was closely related to the group of KDACIs targeting class I deacetylases including apicidin, 

MS275, CI.994, MGCD0103, and valproic acid (VPA) (Fig. 2a). The acetylation specificity profiles 

of many of these inhibitors in cells (i.e., apicidin, MS275, CI.994, MGCD0103) are consistent with 

their described deacetylase inhibitory profiles in cell-free systems. However, the inhibitory profiles 

of several KDACIs, such as tenovin-6, sirtinol and nicotinomide (NAM), were distinct from each 

other and from the remaining KDACIs.  

We examined the subcellular distribution of proteins with KDACI-upregulated acetylation sites by 

association of acetylated proteins with the Gene Ontology (GO) terms “Nuclear”, “Cytoplasm”, and 

“Mitochondrial” (Fig. 2b). A majority of inhibitors caused increased acetylation of nuclear proteins 

and for eight of the inhibitors, more than 60 % of upregulated acetylation sites were present on 

nuclear proteins (compared to 30 % of all sites). Acetylation of N-terminal lysines in histones has 

numerous regulatory roles
24,25

. Several inhibitors of Class I and IIa KDACs showed similar 

regulatory profiles for histones and strongly increased acetylation of N-terminal lysines, whereas 

other KDACIs such as PCI34051, sirtinol and tenovin-6 did not cause extensive acetylation of the N-

terminal histone tails (Fig. 2c). A large number of acetylation sites was also quantified on the middle 

and C-terminal parts of histones; however, most of these sites were not similarly upregulated by the 

KDACIs, indicating that histone deacetylases function in a site-selective manner and differentially 

affect distinct sites on the same proteins. 

Tenovin-6, NAM, and tubacin were among the most promiscuous inhibitors, each increasing 

acetylation at more than ten percent of all quantified sites (Fig. 1c). However, the acetylation profiles 

of these inhibitors were relatively distant from each other, and from that of most other inhibitors 

(Fig. 2a). Many acetylation sites were commonly quantified in cells treated with broad-range 

inhibitors such as tenovin-6, NAM, PCI24781, and tubacin; however, few sites were commonly 

regulated by these inhibitors (Fig. 2d). Thus, each of these inhibitors affects a large, but distinct, 
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subset of acetylation sites. Among these four KDACIs, only tubacin and PCI24781-upregulated sites 

showed a substantial overlap, consistent with both compounds targeting HDAC6
26,27

.  

Based on the fraction of upregulated sites, the HDAC8-specific inhibitor PCI34051
28

 was the most 

selective KDAC inhibitor in our screen (Fig. 1c). We identified SMC3 acetylation as a key target of 

this inhibitor (Supplemental Table 2, Supplemental Fig. 4a, b). Acetylation of lysines K105/K106 of 

SMC3 is important for the establishment of chromosome cohesion
29-31

. These results confirm a 

recent study that identified HDAC8 as a SMC3 deacetylase
32

 and indicate that HDAC8, at least in 

cultured human cells, functions as a highly selective deacetylase targeting only a few proteins. 

Considering the broad effects of tubacin, bufexamac, tenovin-6, and NAM, and their distinct 

acetylation profiles, we decided to further analyze the mechanisms and properties of the acetylation 

sites and proteins that were affected by these inhibitors.  

NAM increases acetylation of nuclear sites 

Sirtuin deacetylases require the cofactor NAD
+
 for deacetylase activity and generate nicotinamide 

(NAM) from NAD
+
 during the deacetylation reaction. NAM, which noncompetitively inhibits 

sirtuins without affecting their binding of NAD
+33

, has been widely used as a pan-sirtuin inhibitor. In 

our dataset, NAM was among the inhibitors that affected the largest number of sites and increased 

acetylation more than two-fold at 12% of sites, and more than 1.5-fold at 20 % of sites (Fig. 1c), 

suggesting a broad substrate range for sirtuin deacetylases. NAM-sensitive acetylation sites were 

predominantly present on nuclear proteins that are involved in diverse biological processes in this 

compartment (Fig. 2b, 3a).  Acetylation of most mitochondrial proteins was not specifically 

increased even after long-term (72h) treatment with NAM (Supplemental Fig. 5a-c, Supplemental 

Table 3), despite sirtuins being the only known deacetylases in this organelle (Fig. 2b, Supplemental 

Table 4). These unexpected results were independently confirmed in human acute myelocytic 

leukemia cells (MV4-11) (Fig. 3b, Supplemental Table 5).  

Among the NAM-upregulated acetylation sites, many were present on known substrates of SIRT1 

such as p53, BAZ2a, NPM1, MOF, WRN, Ku70 and Ku80 (Supplemental Tables 4, 5). In addition, 

many proteins with NAM-upregulated acetylation sites were interconnected in functional networks, 

and were enriched in Gene Ontology (GO) terms such as transcription, splicing, and DNA damage 

(Supplemental Fig. 6a).  

In order to identify the cellular deacetylases that are targets of NAM, we compared NAM-regulated 

acetylation in mouse embryonic fibroblasts (MEFs) to acetylation changes caused by deletion of 
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Sirt1, Sirt2, or Sirt6 (Supplemental Fig. 6b-c, Supplemental Tables 6-9), which are known to 

deacetylate proteins in non-mitochondrial compartments. Similar to NAM treatment, and in 

agreement with a previous study
34

, acetylation was increased at several hundred sites in Sirt1
-/-

 cells 

(Supplemental Table 6). The SIRT1- and NAM-regulated acetylomes showed a strong correlation 

(R = 0.63) (Fig. 3c), and similar GO terms were enriched in the NAM- and SIRT1-regulated 

acetylomes (Fig. 3d), suggesting that SIRT1 is the major target of NAM in cells. This is also 

supported by a good correlation of NAM- and the SIRT1 inhibitor EX-527-regulated acetylomes 

(R = 0.68) (Supplemental Fig. 7, Supplemental Table 10).  In contrast, a smaller fraction of the 

acetylome changed in Sirt2
-/-

 and Sirt6
-/-

 cells compared to Sirt1
-/-

 cells, and these changes correlated 

weakly with NAM-induced changes (R = 0.1) (Supplemental Fig. 6d, 8). SIRT2-regulated 

acetylation also showed a modest correlation with the SIRT2 inhibitors sirtinol and AGK2 (R = 0.11 

for sirtinol vs Sirt2
-/-

; R = 0.35 for AGK2 vs Sirt2
-/-

) (Supplemental Fig. 8, Supplemental Tables 8, 

9), indicating that these inhibitors weakly inhibited SIRT2 in MEFs at the concentrations used in our 

study.  

 

Tenovin-6 increases mitochondrial acetylation 

We and others have previously identified a large number of acetylation sites on mitochondrial 

proteins in human cells
22,35,36

; however, no KDACI has been demonstrated to selectively increase 

acetylation of mitochondrial proteins. In our screen, we identified tenovin-6 as a specific regulator of 

mitochondrial acetylation (Fig. 2b and Supplemental Fig. 9a). In total, 405 acetylation sites showed 

elevated acetylation upon tenovin-6 treatment (Supplemental Table 2), and a large majority of these 

sites (more than 90 %) was present on proteins annotated as mitochondrial (Supplemental Fig. 9b); 

corresponding to more than 50 % of all identified mitochondrial acetylation sites in tenovin-6 treated 

cells. Several mitochondria-related Gene Ontology (GO) terms, such as ATP synthetase complex, 

mitochondrial matrix, and mitochondrial lumen, showed significant enrichment among proteins with 

tenovin-6-upregulated acetylation sites (Supplemental Fig. 9b). Also, enzymes that participate in 

metabolic pathways, such as the TCA cycle and fatty acid elongation, were significantly enriched 

within the group of differentially acetylated proteins (Supplemental Fig. 9c,d). These data 

demonstrate that tenovin-6, an anti-cancer compound, specifically increases acetylation of 

mitochondrial proteins.  

 

Tubacin and bufexamac inhibit HDAC6  
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Tubacin and bufexamac were among the few inhibitors that affected a broad substrate range with 

similar acetylation changes (Fig. 4a) and increased acetylation of the well-known HDAC6 substrate 

cortactin
37

 (Supplemental Tables 2, 11). Tubacin and bufexamac have been reported to be selective 

for HDAC6
19,27

, and the broad effects on the cellular acetylome we observed prompted us to 

investigate whether these changes are mediated via HDAC6 or through independent mechanisms. 

We found that deletion of Hdac6 also affected a large number of acetylation sites in MEF cells, and 

HDAC6-regulated acetylation changes correlated with those caused by tubacin and bufexamac 

treatment (R = 0.54 for bufexamac vs Hdac6
-/-

; R = 0.53 for Tubacin vs Hdac6
-/-

) (Fig. 4b, c; 

Supplemental Table 12). Furthermore, similar GO terms were enriched among proteins with 

increased acetylation in response to inhibitor treatment or deletion of Hdac6 (Fig. 4d). These data 

showed that a large fraction of bufexamac- and tubacin-regulated acetylation is likely to be caused 

by inhibition of their endogenous target deacetylase HDAC6. 

Bufexamac activates the HIF1- pathway 

Until recently, bufexamac was used as a non-steroidal anti-inflammatory drug (NSAID) for the 

treatment of inflammatory dermatoses, but due to growing evidence that it can provoke contact 

dermatitis, its clinical use was revoked in Europe in 2010
38

. The mechanisms by which bufexamac 

causes inflammation remain unknown.  

A majority of bufexamac-based ointments  thought to be anti-inflammatory contained very high 

concentrations of this compound (~5 %, corresponding to 224 mM), whereas it is known that 

bufexamab efficiently increases acetylation of the HDAC6 target tubulin at 10,000-fold lower 

concentrations (less than 10 M)
19

 (see also Fig. 5g). To understand the possible mechanistic basis of 

its pro-inflammatory effects, we analyzed changes in lysine acetylation and protein expression in 

HeLa cells treated with two different concentrations of bufexamac (50 µM [0.001 %] and 1 mM 

[0.022 %]) (Supplemental Fig. 10a). The high dose concentration used here is similar to the lowest 

doses of bufexamac that are sufficient to cause inflammatory reactions in patients
39

. High-dose 

bufexamac substantially increased abundance of an acetylated peptide from hypoxia-inducible factor 

1 alpha (HIF1- (Supplemental Fig. 10b, Supplemental Table 2). HIF1-α is a transcription factor 

that plays essential roles in the cellular responses to hypoxia, and acetylation can stabilize HIF1- 

protein by preventing its proteasomal degradation
40

. Indeed, HIF1- was strongly induced by 

bufexamac and the increase in HIF1-levels was comparable to commonly used hypoxia mimetics 

such as ciclopirox olamine (CPX) and deferoxamine (DFX) (Fig. 5a). In contrast to bufexamac, two 

other well-knows NSAIDs, aspirin and ibuprofen, failed to increase HIF1-protein levels indicating 
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that this effectis specific to bufexamac (Fig. 5b). HIF1-was rapidly stabilized (Fig. 5c), and 

accumulated in the nucleus of bufexamac treated cells (Fig. 5d).  

Bufexamac readily increased the transcriptional activity of HIF1-α in a luciferase reporter assay (Fig. 

5e), as well as increased the expression of its endogenous target gene vascular endothelial growth 

factor A (VegfA) (Fig. 5f). Furthermore, we analyzed changes in protein expression in bufexamac-

treated cells by quantifying over 5,800 proteins (Supplemental Table 13). Among 23 proteins that 

were reproducibly upregulated by high-dose bufexamac in all three experiments, over 70 % were 

previously known to be upregulated by hypoxia (Supplemental Fig. 10c, Supplemental Table 13). In 

contrast, none of those proteins were consistently upregulated in the low-dose bufexamac-treated 

cells. These results confirmed the induction of hypoxia-like responses in bufexamac-treated cells. 

Notably, stabilization of HIF1- occurred only at relatively high doses (>200 M) of bufexamac, 

whereas increased acetylation of tubulin was already detectable at substantially lower doses (>5 M) 

(Fig. 5g). These results suggested that bufexamac-induced hypoxia responses may occur 

independently of its KDAC inhibitory functions. Bufexamac is a hydroxamic acid compound, and 

many compounds of this class function as metal chelators. Because iron chelators are commonly 

used as hypoxia mimetics, we surmised that bufexamac may induce hypoxia-like responses by 

chelating cellular iron. Indeed, supplementation of iron during bufexamac treatment abolished 

bufexamac-induced HIF1- protein induction in a dose-dependent manner (Fig. 5h) as well as its 

transcriptional activity (Fig. 5i). Treatment of iron-dependent HL-60 (Human promyelocytic 

leukemia cells) cells with bufexamac caused cell death, and this effect was completely reversed by 

iron substitution (Supplemental Fig. 11). A direct interaction between bufexamac and iron was 

further shown by colorimetric iron chelation assay using UV/VIS spectroscopy (Supplemental Fig. 

12a, b). Taken together, these results show that at lower doses bufexamac specifically inhibits 

HDAC6, whereas at higher concentrations it also chelates cellular iron, thereby activating the HIF1-

 pathway by mimicking hypoxia (Supplemental Fig. 13). 

 

Discussion 

A large number of small molecule KDAC inhibitors has been identified that show distinct selectivity 

for different deacetylases
8,9,16

. In addition to their clinical use, KDACIs are commonly used in basic 

research to study function of acetylation and deacetylation. Specificity profiles generated in cell-free 

systems are frequently used as a reference for selecting appropriate KDACIs.  Knowing KDACIs 

Field Code Changed

Field Code Changed

Field Code Changed



10 

 

targets is important for interpreting the effects of inhibitors both in research and clinical settings. We 

provide a detailed comparison of KDACI specificities at the level of affected sites, shedding insights 

into their specificities for acetylation sites in cells (Supplemental Figure 14; Supplemental note 2). 

For several KDACIs, the number of acetylation sites affected is not proportional to the number of 

KDACs they were found to inhibit in cell-free assays, which is consistent with recent studies 

demonstrating  unexpected selectivities of KDACIs in-vitro
18,19

. Our results complement data from 

cell-free systems and emphasize the importance of evaluating KDACI effects at the acetylation site 

level to better understand and refine the specificities of KDACIs.  

Analysis of acetylation in several genetically defined cells showed that broad-range inhibitors NAM, 

tubacin and bufexamac increase acetylation through inhibition of SIRT1 and HDAC6. Most other 

inhibitors of Zn
2+

-dependent deacetylases targeted multiple deacetylases (Fig. 1a) and commonly 

inhibit class I deacetylases. HDACs 1-3 are essential for cell viability, so we could not confirm their 

acetylation targets in knockout cells. However, several data indicate that these KDACIs regulate 

acetylation by specifically inhibiting class I HDACs: (i) acetylation was regulated in a site-specific 

manner, (ii) KDACIs increased acetylation of nuclear proteins, where their target deacetylases are 

present, and (iii) they increased acetylation of sites present on the N-terminal tails of histones, many 

of which are known to be regulated by class I deacetylases. Contrary to their reported broad 

inhibitory effects on deacetylases in cell-free systems
18,41

, most of these KDACIs increased 

acetylation of small but specific, subsets of the acetylome. The scope of these inhibitors was more 

limited than tubacin and bufexamac which inhibit only HDAC6 (and perhaps HDAC10), indicating 

that at concentrations applied here these inhibitors more potently inhibit class I deacetylases, but less 

potently inhibit HDAC6. The acetylation signatures of sirtuin inhibitors tenovin-6, NAM and sirtinol 

are not fully consistent with their predicted inhibitory profiles, indicating that disparitites between 

cell-free and cell-based acetylation profiles are not uncommon.  

NAM and sirtinol were identified as inhibitors of yeast Sir2
33

, and are used as sirtuin class 

deacetylase inhibitors. In this study, NAM-upregulated 12 % of acetylation sites, whereas sirtinol 

affected less than 2 % of sites, indicating that the scope of these inhibitors is vastly different. In 

contrast to several canonical KDACIs that inhibit Zn
2+

-dependent deacetylases, NAM increased 

acetylation of many non-histone proteins in the nucleus without causing widespread increase in 

histone acetylation levels. However, NAM increased acetylation on several histone-modifying 

enzymes such as acetyltransferases and methyltransferases, and other chromatin-associated proteins. 

The low overlap (~10 %) between sites upregulated by NAM and all non-sirtuin targeting KDACIs 

suggests a minimal redundancy between sirtuins and Zn
2+

-dependent histone deacetylases. We found 
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that most of the NAM-induced acetylation changes were mediated through inhibition of SIRT1, 

highlighting the broad target range of SIRT1 and suggesting that the physiological effects of NAM 

may be primarily mediated by inhibiting SIRT1 function.  

Mitochondria exclusively contain NAD
+
-dependent deacetylases, and thus our results showing only a 

modest increase in mitochondrial acetylation by NAM are unexpected. The possible reasons for this 

remain unclear, but it could be that mitochondrial sirtuins are less sensitive to NAM, that NAM is 

excluded from mitochondria, or that NAM is rapidly metabolized to NAD
+
 by nicotinamide 

phosphoribosyltransferase (NAMPT)
42

. Metabolic conversion of NAM to NAD
+ 

may result in lower 

effective concentrations of NAM, and subsequent import of NAD
+
 into mitochondria may counteract 

its effect by activating sirtuins in this compartment. Tenovin-6 inhibits SIRT1 and SIRT2 in cell-free 

systems, whereas it weakly inhibits SIRT3
43

; however, in cells, it increased acetylation of 

mitochondrial proteins, which suggests that it may increase acetylation by a yet unknown 

mechanism. With the emerging role of mitochondrial acetylation in regulating diverse metabolic 

pathways
44,45

 and its relevance to the stress response
46,47

, the identification of tenovin-6 as a potent 

inducer of mitochondrial acetylation may further facilitate studying the functional relevance of 

acetylation in this context.  

Bufexamac has long been used as non-steroidal anti-inflammatory drug (NSAID) for the treatment of 

dermatoses. It was revoked in 2010 due to its adverse reactions that caused contact dermatitis
39

, but 

the mechanisms of bufexamac-mediated inflammation remained unknown. We showed that at higher 

concentrations (>200 M) it chelates cellular iron, potently stabilizes HIF1-, and induces 

downstream hypoxia-like responses (Supplemental Fig. 13). The concentrations of bufexamac 

present in most anti-inflammatory would be more than adequate to cause local hypoxia-like 

responses at the applied regions. Furthermore, the drug was applied at already inflamed regions, 

making it plausible that even much lower doses than that present in the prescribed ointments would 

have been sufficient to induce hypoxic responses. The connection between hypoxia and 

inflammation is well described
48

. Thus, our data provide new insights into the possible mechanistic 

basis of the bufexamac-inflammation paradox and illustrate the usefulness of unbiased proteomic 

analyses in discovering cellular mechanisms of drugs. 

Although the global acetylome analyses applied here provide a powerful approach for obtaining an 

unbiased (non-hypothesis driven) picture of cellular targets of KDACIs, caution should be taken in 

interpreting the biological functions of KDACI-regulated acetylation sites. First, while we have 

applied a 2-fold change as a cut-off to classify KDACI-regulated sites, it is possible that less robust 
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changes (i.e. 50 % increases in acetylation) could have important biological consequences. Second, 

in this work we compared changes in acetylation using a single inhibitor dose and time point, though 

it is plausible that the effects of KDACIs are dose- and time-dependent, and that by varying doses 

and treatment times one may identify additional substrates. Third, our analyses cannot distinguish 

between direct and indirect targets of deacetylases inhibited by KDACIs. Thus, for functional 

investigations of specific acetylation sites it is important to independently verify their regulation by 

KDACIs using varying doses and time points. Nevertheless, our results offer a snapshot of the 

KDACI substrate spectrum at the most commonly used doses, providing a road-map for further 

investigations. 

In summary, our results portray a global picture of acetylation sites regulated by KDACIs and their 

several downstream deacetylases, and provide a detailed comparative view of their regulatory 

scope.These results exemplify the usefulness of quantitative MS screens in revealing endogenous 

acetylation profiles for known KDACIs in cells and in identifying selective KDACIs for sites of 

interest. In addition to elucidating broad outlines of acetylation inhibition, we anticipate that this 

resource dataset will be useful in investigating the functional roles of deacetylases and their target 

sites, in understanding the molecular basis of drugs targeting deacetylases, in evaluating specificity 

of novel KDACIs, and in developing new therapies. 

 

Footnotes 

The supplementary information contains part of the data reported in this manuscript and a detailed 

description of all materials and methods used to obtain the data. 
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Online Methods 

Materials 

KDACIs were purchased either from Sigma-Aldrich, Selleckchem or Chemie-Tek. All other 

standard chemicals were obtained from Sigma-Aldrich and Merck KGaA. Cell culture media and 

reagents were from Invitrogen. SILAC amino acids were purchased from Cambridge Isotope 

Laboratories. Agarose-conjugated anti-acetyllysine antibodies were purchased from Immunechem 

Inc. (Catalog no.: ICP0388). Antibodies for immuno-blotting were purchased from Abcam (H3Ac-

K122, ab33309), Millipore (H4Ac-K16, 07-329), Cell Signalling (Ac-tubulin, 5335P; Ac-Lysine, 

9441; SIRT1, 2028; c-myc, 2276), Sigma Aldrich (vinculin, V9264; tubulin, T5326), Santa Cruz 

(SMC3, sc-376352; HDAC8, sc-374180), and Epitomics (HIF1-α, 2015-1). Anti-mHDAC6 antibody 

was generated by P. Matthias lab; purified recombinant protein antigen corresponding to the C-

terminal ZnF-domain of mHDAC6 was injected into rabbits (Pocono rabbit farm & laboratory; USA) 

and serum containing mHDAC6 antibody was used for further antibody purification. 

HDAC biochemical assay for JQ12 

JQ12 was tested against HDAC1-9 and the activity was determined with an optimized homogenous 

assay performed in a 384-well plate. Compound was incubated with HDAC enzyme for 3 h. 

Reactions were performed in assay buffer (50 mM HEPES, 100 mM KCl, 0.001% Tween-20, 0.05 % 

BSA and pH 7.4. Additional 200 μM TCEP was added for HDAC6) and followed by fluorogenic 

release of 7-amino-4-methylcoumarin from substrate upon deacetylase and trypsin enzymatic 

activity. Fluorescence measurements were obtained every five minutes using a multilabel plate 

reader and plate-stacker (Envision; Perkin-Elmer). Each plate was analyzed by plate repeat, and the 

first derivative within the linear range was imported into analytical software (Spotfire DecisionSite). 

Replicate experimental data from incubations with inhibitor were normalized to DMSO controls 

([DMSO] < 0.5 %). IC50 was determined by logistic regression with unconstrained maximum and 

minimum values (Supplemental Figures 1B and 1C). The recombinant, full-length HDAC protein 

(BPS Biosciences) was incubated with fluorophore conjugates substrate, MAZ1600 and MAZ1675 at 

Km = [substrate].  

Cell culture, SILAC labeling, preparation of cell lysates and protein digestion 

Double SILAC Experiments: 
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HeLa (ATCC: CCL-2) and MV4-11 (ATCC: CRL-9591) cells, were grown in DMEM and RPMI, 

respectively, supplemented with 10 % FBS, 2 mM L-glutamine, and 1 % penicillin/streptomycin. For 

SILAC labeling, cells were cultured in the appropriate medium containing either L-arginine and L-

lysine (light label) or L-arginine-
13

C6-
15

N4 and L-lysine-
13

C6-
15

N2 (heavy label). All cells were 

cultured at 37°C in a humidified incubator at 5 % CO2. At a confluency of ~90 %, heavy-labeled 

cells were treated for 16 h with the respective HDAC inhibitor (for concentrations used in this study, 

please refer to Supplemental Table 1), whereas light labeled cells were mock-treated with DMSO 

and H2O, respectively. Each experiment was performed at least in biological duplicates. Cells were 

washed twice with PBS and lysed in modified RIPA buffer (50 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1 mM EDTA, 1 % NP-40, and 0.1 % sodium deoxycholate, supplemented with complete 

protease inhibitor mix (Roche). Lysates were mixed with 1/10 volume of 5 M NaCl to release 

chromatin-bound proteins and incubated for 15 min on ice. Subsequently, lysates were homogenized 

by sonication (6 x 10 sec, 15 W), cleared by centrifugation (20.000 x g, 15 min, 4°C), and proteins 

were precipitated overnight at -20°C by the addition of 4 volumes of ice-cold acetone. Precipitates 

were redissolved in 8 M urea (6 M urea, 2 M thiourea) and protein concentration was determined by 

Quick-start Bradford assay (Bio-Rad). Corresponding SILAC labeled proteins (heavy and light 

labeled) were mixed in a 1:1 ratio, reduced with 1 mM DTT (45 min, RT), and alkylated by 5.5 mM 

chloracetamide (45 min, RT). Following, 20 mg proteins were digested by endoproteinase Lys-C 

(1:100 w/w; Wako) and, after 4-fold dilution with HEPES buffer (50 mM; pH 7.5), by modified 

sequencing grade trypsin (1:100 w/w; Sigma-Aldrich). Digestion was stopped by the addition of 

trifluoroacetic acid (TFA) to a final concentration of 1%.  

Triple SILAC Experiments: 

Mouse embryonic fibroblast (MEF) cells (wildtype (WT), Hdac6
-/- 50

, Sirt1
-/- 51

, Sirt2
-/- 52

, Sirt6
-/- 53

) 

were grown in DMEM as described above. For SILAC labeling, WT cells were cultured in DMEM 

containing either L-arginine and L-lysine (light label), or in medium supplemented with 

L-arginine-
13

C6 and L-lysine-
 2

H4 (medium label), whereas the corresponding knockout (KO) cells 

were heavy labeled using DMEM containing L-arginine-
 13

C6-
15

N4 and L-lysine-
 13

C6-
15

N2. At a 

confluency of ~90 %, medium-labeled WT cells were treated for 16 h with the respective HDACIs, 

whereas light labeled WT, and heavy labeled KO cells were mock-treated with DMSO and H2O, 

respectively. All experiments were performed in at least two biological replicates. Cells were 

harvested as described above, lysed, and proteins were mixed in a 1:1:1 ratio prior to reduction with 

DTT, alkylation with chloracetamide and trypsin digestion, as described above. 

Field Code Changed
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Purification of peptides and enrichment of acetylated peptides 

Digested protein samples were cleared for precipitates by centrifugation (2,500 x g, 5 min) and 

loaded onto reversed-phase C18 Sep-Pak columns (Waters), pre-equilibrated with 5 ml acetonitrile 

and 2 x 5 ml 0.1 % TFA. Peptides were washed with 0.1 % TFA and H2O, eluted with 50 % 

acetonitrile (ACN) and mixed with 100 µl 10x IAP buffer (500 mM MOPS; pH 7.2, 100 mM Na-

phosphate, 500 mM NaCl). Subsequently, ACN was removed and volume of samples was adjusted 

to 1 ml by H2O. For proteome analysis, small aliquots of total peptides were fractionated using 

micro-SCX columns in a stage-tip format
54

. Peptide fractions were purified and concentrated with 

reversed-phase StageTips as described
54

. For acetylation enrichment, modified peptides were 

immunoenriched using anti-acetyllysine antibodies (40 µl / IP) as described previously
22

. Enriched 

peptides were fractionated and purified as described for proteome samples. Peptides were eluted with 

40 µl of buffer B (60 % ACN, 0.1 % TFA) and organic solvent was removed in a SpeedVac 

concentrator. The final sample volume was adjusted to 7 µl with buffer A* (0.5 % acetic acid, 0.2 % 

TFA). 

Mass spectrometric analysis 

Peptide fractions were analyzed by online nanoflow LC-MS/MS with a Proxeon easy nLC system 

(Thermo) connected to a Q Exactive mass spectrometer (Thermo) as described previously
55

. Briefly, 

peptide samples were loaded onto C18 reversed-phase chromatography columns (length 15 cm, inner 

diameter 75 µm) and eluted with a linear gradient of 6-40 % ACN/H2O containing 0.5 % acetic acid. 

Eluted peptides were ionized by electrospray-ionization and measured in the mass spectrometer. 

Typical mass spectrometric conditions were: spray voltage: 2.0 kV, no sheath and auxiliary gas flow, 

heated capillary temperature: 275°C. The Q Exactive under Xcalibur 2.2 with LTQ Orbitrap Tune 

Plus Developers Kit version 2.6.0.1042 software was operated in data dependent mode to 

automatically switch between MS and MS2 acquisitions as described previously
56

.  

Peptide identification and quantification 

All MS data were analyzed with MaxQuant (development version 1.2.7.1)
57

. All SILAC pairs were 

quantified and MS/MS spectra were searched against the human Uniprot FASTA database (released 

in February 2012) to identify corresponding proteins. The false-discovery rate (FDR) was fixed to a 

threshold of 1 % FDR at peptide and protein level and all peptide identifications were filtered for 

length and mass error. FDR was estimated using a target-decoy database search approach
58

 . 
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Cysteine carbamidomethylation was searched as a fixed modification, whereas methionine oxidation, 

N-acetyl protein, and acetylation of lysine were chosen as variable modifications.  

Immunofluorescence microscopy 

HeLa cells were treated without or with bufexamac (50 and 250 µM) for 4 h at 37°C. Subsequently, 

cells were fixed by 2 % paraformaldehyde (PFA) in PBS and permeabilized with 0.2 % Triton-X in 

PBS. After blocking with 5 % bovine serum albumin (BSA) in PBS, cells were incubated with 

primary antibody (anti-acetyl-tubulin and anti-HIF1-α) and subsequently with anti-rabbit secondary 

antibody coupled to Alexa Fluor 488 and 568 (Molecular Probes). Cells were mounted by using 

DAPI containing Vectashield mounting medium (Vector labs). Confocal images were acquired on a 

LSM-780 (Carl Zeiss Microimaging Inc.) mounted on Zeiss-Axiovert 100M equipped with Plan-

Neofluar 40 x/1.3 oil immersion objective. 

Luciferase assays 

HeLa cells were transfected with hypoxia responsive element (HRE)-Luciferase plasmid (Addgene; 

plasmid No. 26731;
59

) and treated as indicated. Activation of hypoxia response elements was 

determined by measuring luciferase activity using the Dual-Glo Luciferase Kit (Promega) according 

to the manufacturer´s protocol.  

QPCR  

HeLa cells were pretreated without or with bufexamac (50 and 250 µM) and Desferoxamine 

mesylate (200 µM), and subsequently RNA was isolated using the Qiagen RNeasy kit (Qiagen) 

according to manufacturer´s protocol. The same procedure was used to obtain RNA from wt and KO 

MEF cells. Total RNA was quantified using a nano-drop spectrophotometer (Thermo) and 

complementary DNA (cDNA) was synthesized using the QuantiTect Rev. Transcription kit 

(Qiagen). Reverse transcription reactions were diluted 1:5 with H2O and stored at -20°C. 

Quantitative PCR was performed using a Stratagene Mx3005P instrument. Experimental data was 

analyzed with MxPro software. Sample setup and QPCR reactions were performed as described
60

. 

For  each QPCR reaction run a  glyceraldehyde-3- phosphate dehydrogenase (Gapdh) standard curve 

was prepared by 1,000-fold serial dilution (10x at each point) and the PCR efficiency was 

determined. The PCR efficiency was then used to calculate the abundance of cDNA for the target 

gene relative to Gapdh.  The following primers (Hs, Homo sapiens; Mm, Mus musculus) were used 

for QPCR: HsGapdh, forward: 5’-CAGCGACACCCACTCCTCCA-3’ and reverse: 5’-

GCTGGTGGTCCAGGGGTCTT-3’; HsVegfA, forward: 5’-CGAGACTCCGGCGGAAGCAT-3’ 
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and reverse: 5’-CGGCCGCGGTGTGTCTACAG-3’; MmGapdh, forward: 5’-

TCCATGACAACTTTGGCATTG-3’ and reverse: 5’-CAGTCTTCTGGGTGGCAGTGA-3’; 

MmSirt2, forward: 5’-CGAAGGAGTGACACGCTACATG-3’ and reverse: 5’-

GGTGGTACTTCTCCAGGTTTGC-3’; MmSirt6, forward: 5’-

CAGTACGTCAGAGACACGGTTG-3’ and reverse: 5’- GTCCAGAATGGTGTCTCTCAGC-3’.  

Immuno-blotting 

For immuno-blotting, protein lysates were prepared in modified RIPA buffer and protein amounts 

measured by Bradford assay. Equal amounts of proteins were precipitated by ice-cold acetone and 

precipated proteins were recovered by centrifugation (20.000 x g, 2 min, 4°C). Proteins were 

redissolved in 4x sample buffer containing 100 mM DTT, and separated on NuPAGE Novex 4-12 % 

Bis-Tris gels (Invitrogen) and visualized by immuno-staining with the indicated antibodies.  

Immuno-precipitation of SMC3 

HeLa cells were treated with different concentrations of PCI34501, washed with PBS, lysed with IP-

wash buffer (5 mM MgCl2, 1 mM CaCl2, 1 mM EDTA, 0.1 % Triton X-100 in PBS; pH 7.4, 

supplemented with complete protease inhibitor mix (Roche)) containing 1 % Triton X-100 and 

clearified by centrifugation (20.000 x g, 15min, 4°C)). For detection of HDAC8-inhibitor dependent 

acetylation of SMC3, protein G magnetic Dynabeads (Dynal) were pre-loaded with anti-SMC3 

antibody for 2 h at 4°C. Control IPs were performed using an antibody against c-Myc epitope tag. 

After coating, beads were washed three times with ice-cold IP-wash buffer. Subsequently, beads 

were incubated for 2 h at 4°C with cell lysates. After washing three times with IP-wash buffer and 

three times with cold PBS proteins were eluted with 50 µl SDS sample buffer for 10 min at 65°C. 

Eluates were analyzed by SDS-PAGE and subsequent immuno-blotting using a pan-anti-acetyllysine 

antibody.  

 

Determination of cell death 

Human promyelocytic leukemia (HL-60) cells (ATCC: CCL-240) were treated as indicated. 

Subsequently, cell viability was determined using propidium iodide (PI) staining solution (Cayman 

Chemical Company). Cells were stained according to the manufacturer´s protocol and PI 

fluorescence was measured in a plate reader.  

 

Iron binding assay 
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Bufexamac (5 mM in methanol) and desferoxamine mesylate (5 mM in methanol), were titrated in 2 

µl increments into 500 µl of a 100 µM methanolic FeCl3 solution and iron-complex formation was 

measured at a wavelength of 490 nm using a Varian Cary 50Bio UV-Vis Spectrophotometer. 

Absorption was plotted against chelator concentration and fitted to a Langmuir (1:1) isotherm 

[𝑦 = 𝑎 ∗
𝑥

𝐾𝐷+𝑥
] to derive the dissociation constant (KD). All binding assays were performed using 

methanol as solvent due to very low solubility of bufexamac in aqueous solutions, and thus, these KD 

values may differ from values in aqueous solutions. 

Data analysis 

Statistical analysis was performed using the R software environment (http:// http://www.r-

project.org/) and biochemical data was analyzed using Graphpad Prism (version 5). Gene ontology 

(GO) term enrichment was calculated using Fisher exact test. P-values were adjusted for multiple 

hypotheses testing using the false discovery rate (FDR)-method. Protein interaction network analysis 

was performed using interaction data from the STRING database (version 9)
61

. Only interactions 

with a STRING score above 0.7 are represented in the network, and visualized using Cytoscape
62

 

and ClueGO / GOlorize plug-ins
63,64

.  

Site-based clustering of inhibitors 

To define an acetylation site-based similarity of two inhibitors, we selected the sites that were 

identified for both KDACIs and showed increased acetylation (SILAC ratio >2) for at least one of 

the two inhibitors. We next log-transformed the ratios and defined the similarity as the Pearson 

correlation. We used this definition to calculate an all-against-all similarity matrix for the 19 

inhibitors. Based on this similarity matrix, we performed average linkage clustering using the using 

the OC software (http://www.compbio.dundee.ac.uk/downloads/oc/). Finally, we visualized the 

resulting cluster tree as an unrooted tree using iTOL (http://itol.embl.de/).  
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Figure Legends 

Figure 1 | Quantitative profiling of the KDACI regulated acetylome. a, An overview of the 19 

KDACIs used for cell-based acetylome analysis and their reported specificities for human 

deacetylases based on cell-free assays. KDACs shown in dark grey background have been shown to 

be expressed in HeLa cells
65

. b, Schematic representation of the experimental design. SILAC labeled 

HeLa cells were treated for 16 h with KDAC inhibitors or vehicle control. Subsequently, proteins 

were extracted and proteolysed using Lys-C and trypsin. Acetylated peptides were enriched with 

anti-acetyllysine antibodies and fractionated by strong-cation exchange (SCX) chromatography. 

Peptides were analyzed by mass spectrometry and data were used for downstream bioinformatic 

analyses. c, The figure shows the number of acetylation sites quantified and the fraction of 

acetylation sites regulated by individual KDACIs. The left part of the figure shows total number of 

quantified acetylation sites for each inhibitor. The bar chart shows the fraction of upregulated sites 

(>2-fold increase, shown in red), and the fraction of down-regulated sites (>2-fold decrease, shown 

in blue). The numbers next to the bars indicate percent of up-or down-regulated sites, and the number 

of up- or down-downregulated sites for each KDACI is indicated within parenthesizes.  

Figure 2 | Specificity of KDACIs and subcellular distribution of KDACI-upregulated 

acetylated proteins. a, Site-based specificity analysis of KDACIs in HeLa cells. SILAC ratios of 

KDACI upregulated sites were used to calculate pair-wise Pearson correlation coefficients for all 

KDACIs and the inhibitors were grouped based on their correlation values using average linkage 

clustering approach (see supplemental fig. 14 for pair-wise correlations). Node-size reflects number 

of upregulated sites, and line thickness corresponds to the degree of correlation. b, Subcellular 

distribution of proteins with KDACI-upregulated acetylation sites. The bar plot shows the fraction of 

KDACI-upregulated acetylated proteins annotated with the indicated Gene Ontology cellular 

compartment (GOCC) terms. As a reference, the first bar indicates subcellular distribution of all 

acetylation sites identified in this study. The dendrogram at the top of the plot shows similarity of 

KDACIs for upregulated subcellular acetylomes. Sirtinol, JQ12 and PCI34051 were excluded from 

this analysis due to insufficient number of upregulated sites. c, Profile of KDACI-regulated histone 

acetylation sites. The heatmap shows quantified histone acetylation sites and their regulation by 

KDACIs. The dendrogram illustrates similarity of KDACIs for histone acetylation sites. Black 

matrix areas show sites not identified for an individual inhibitor. d, Overlap of acetylation sites 

upregulated in cells treated with broad-range KDACIs NAM, tenovin-6, tubacin, and PCI24781. The 

diagram displays the number of upregulated sites in response to each KDACI, as well as the number 

of sites found in two, three or all four of these inhibitors.  

Field Code Changed
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Figure 3 | Nicotinamide increases acetylation of nuclear proteins. a, Functional annotation of 

proteins containing NAM-upregulated acetylation sites in HeLa cells. Significantly enriched GO 

biological process (GOBP) terms associated with nuclear processes are indicated. Grey bars: all sites 

identified; black bars: upregulated sites b, The scatter plot shows the correlation between NAM-

regulated acetylation in MV4-11 and HeLa cells. Correlation was determined with Pearson 

correlation coefficient. c, The scatter plots show the correlation between acetylation sites quantified 

in biological replicate experiments for NAM treated WT MEFs, Sirt1
-/-

 MEFs, as well as between 

these two conditions. Correlation was determined with Pearson correlation coefficient. d, Functional 

annotation of proteins with NAM- or SIRT1-upregulated acetylation sites in MEF cells. Significantly 

enriched GO terms are indicated. Heatmap represents p-values for each term in comparison to whole 

mouse proteome. The numbers within boxes indicate hyperacetylated proteins covering the percent 

of proteins associated with the indicated GO terms.  

Figure 4 | Tubacin and bufexamac-mediated increase in protein acetylation is likely mediated 

by HDAC6. a, The scatter plot shows the correlation between acetylation sites quantified in tubacin- 

and bufexamac-treated HeLa cells. Correlation was determined with Pearson correlation coefficient. 

b, Verification of Hdac6 deletion in knockout MEFs. Expression of HDAC6 and acetylation of 

tubulin was analyzed by immunoblotting. c, The scatter plots show the correlation between 

acetylation sites identified in biological replicate experiments of tubacin- or bufexamac-treated MEF 

cells and Hdac6
-/-

 cells, as well as between each condition. Correlation was determined by Pearson 

correlation coefficient. d, Functional annotation of proteins with upregulated acetylation sites in 

bufexamac-, tubacin treated MEFs, or in Hdac6
-/-

 EFs. Significantly enriched GO terms are 

indicated. Heatmap represents p-values for each GO term in comparison to whole mouse proteome. 

The numbers within boxes indicate percent of hyperacetylated proteins associated with the indicated 

GO terms. 

Figure 5 | Bufexamac inhibits KDACs at lower concentrations and causes hypoxia-like 

responses at higher concentrations. a, Treatment of HeLa cells with 1 mM bufexamac results in 

the induction of HIF1-α, as determined by immunoblotting. The known hypoxia mimetics CPX and 

DFX were used as positive controls; vinculin served as loading control. b, Verification of 

bufexamac-specific upregulation of HIF1-α. HIF1-α protein expression was analyzed 4h after 

treatment of cells with the indicated compounds. c, Time-course analysis of HIF1-α induction by 

bufexamac. The induction of HIF1-α protein was analyzed by immunoblotting. The graph shows 

rapid stabilization of HIF1-α upon bufexamac treatment with half maximal intensity I1/2 of about 75 

min. Error bars represent SD of three independent experiments. d, HIF1-α is only stabilized at higher 
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concentrations of bufexamac and accumulates in the nucleus. Induction of endogenous HIF1-α and 

its nuclear accumulation was analyzed using immunofluorescence microscopy; white bar: 10 µm. e, 

Bufexamac increases transcriptional activity of HIF1-α. Luciferase activity was measured in HeLa 

cells transfected with HRE-Luciferase reporter upon treatment with CPX, DFX or bufexamac. Error 

bars represent SD of three independent experiments. f, Bufexamac treatment increases expression of 

HIF1-α target vascular endothelial growth factor A. Vegfa mRNA levels were assessed by real-time 

PCR and the data were normalized to Gapdh. Error bars represent SD of two independent 

experiments. g, Dose-response curves of bufexamac treated cells and the corresponding immunoblots 

are shown (HIF-1α and acetyl-tubulin were visualized simultaneously by using a mixture of anti-

HIF-1α and K40-acetyl-tubulin antibodies). Error-bars represent SD from 3 independent 

experiments. Lower panel shows immunofluorescence images of HeLa cells treated with 50 µM and 

250 µM bufexamac and immunostained for tubulin acetylation. white bar: 10 µm. h, Dose-response 

plot showing HIF1-α protein levels and a representative corresponding immunoblot. Cells were 

treated with 250 µM bufexamac and with the indicated concentrations of FeCl3. Data were 

normalized to the maximal HIF1-α expression; error bars represent SD from three independent 

experiments. i, Iron supplementation dose-dependently inhibits bufexamac-induced HIF1-α 

transcriptional activity. Cells were transfected with a HRE-Luciferase reporter plasmid and luciferase 

activity was measured after treatment with 250 µM bufexamac and different concentrations of 

FeCl3as indicated. Error bars represent SD of three independent experiments. CPX, ciclopirox 

olamine; DFX, deferoxamine; HRE, hypoxia response element; Gapdh, glycerol aldehyde 3 

phosphate dehydrogenase 

 


