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Previous research has shown that exposure to testicular hormones during the peri-pubertal period of life has
long-term, organizational effects on adult sexual behaviour and underlying neural mechanisms in laboratory
rodents. However, the organizational effects of peri-pubertal testicular hormones on other aspects of behaviour
and brain function are less well understood. Here, we investigated the effects of manipulating peri-pubertal
testicular hormone exposure on later behavioural responses to novel environments and on hormone receptors
in various brain regions that are involved in response to novelty. Male rodents generally spend less time in the
exposed areas of novel environments than females, and this sex difference emerges during the peri-pubertal
period. Male Lister-hooded rats (Rattus norvegicus) were castrated either before puberty or after puberty, then
tested in three novel environments (elevated plus-maze, light–dark box, open field) and in an object/social
novelty task in adulthood. Androgen receptor (AR), oestrogen receptor (ER1) and corticotropin-releasing factor
receptor (CRF-R2) mRNA expression were quantified in the hypothalamus, hippocampus and medial amygdala.
The results showed that pre-pubertally castrated males spent more time in the exposed areas of the elevated-
plus maze and light–dark box than post-pubertally castrated males, and also confirmed that peri-pubertal
hormone exposure influences later response to an opposite-sex conspecific. Hormone receptor gene expression
levels did not differ between pre-pubertally and post-pubertally castrated males in any of the brain regions
examined. This study therefore demonstrates that testicular hormone exposure during the peri-pubertal
period masculinizes later response to novel environments, although the neural mechanisms remain to be fully
elucidated.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Puberty is characterised by increased circulating levels of gonadal
hormones, such as testosterone and estradiol, and is accompanied by a
suite of physical and behavioural changes in both human beings and
non-human animals (Blakemore, 2008; Spear, 2000). The brain also
undergoes substantial reorganization during this period of life in a
range of species (Andersen, 2003; Brown and Spencer, 2013; Goddings
et al., 2014). Recent studies of laboratory rodents have shown that
gonadal hormones can direct brain development during the peri-
pubertal period by influencing neurodevelopmental processes, such as
cell proliferation and axon myelination, with long-term implications
for brain structure and function (e.g., Ahmed et al., 2008; De Lorme
et al., 2012a; Yates and Juraska, 2008). In addition, experimental studies
on rodents have shown that exposure to gonadal hormones during the
peri-pubertal period has long-term effects on behaviour; for example,
Neuroscience, University of St
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male hamsters that were castrated before puberty had lower sexual re-
sponsiveness to female conspecifics, and showed less aggression to
same-sex conspecifics, in adulthood than males that were castrated
after puberty (e.g., Schulz et al., 2004; Schulz and Sisk, 2006). Therefore,
the developing brain, and its behavioural outputs, can be described as
being sensitive to the long-term, ‘organizational’ effects of gonadal hor-
mones during the peri-pubertal period (Schulz et al., 2009; Sisk and
Zehr, 2005; Juraska et al., 2013).

While most of the recent studies on the organizational effects of
peri-pubertal hormone exposure have focused on sexual and social be-
haviour, early studies provided preliminary evidence that removal of
testicular hormones during the peri-pubertal period also leads to a
more female-typical response to novel environments in adulthood
(Brand and Slob, 1988; Primus and Kellogg, 1989, 1990; Swanson,
1966). Female rodents commonly ambulate more than males in novel,
‘open field’ environments (e.g., Slob et al., 1981; Hyde and Jerussi,
1983), and these early studies reported that adult male rats that had
been castrated before puberty ambulated more in open field environ-
ments, and exhibited more social interactions in novel environments,
than males castrated after puberty (Brand and Slob, 1988; Primus and
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Kellogg, 1989, 1990). In general, females exhibit higher locomotor
responses than males to a range of novel environments and spend
more time than males in the exposed areas of novel arenas such as ele-
vated plus-mazes and light–dark boxes (e.g., Johnston and File, 1991;
Ramos et al., 2002; reviewed by Joel and Yankelevitch-Yahav, 2014).
These behavioural sex differences in response to novel environments
emerge during the peri-pubertal period (e.g., Imhof et al., 1993; Lynn
and Brown, 2009, 2010) and have been shown to be sensitive to the
presence of testosterone during the first few days of postnatal life
(e.g., Lucion et al., 1996). However, whether peri-pubertal testosterone
exposure has organisational effects on response to novel environments
remainsunclear, as other studies have reported no effect of pre-pubertal
castration on later open field behaviour (e.g., Bengelloun et al., 1976;
Stewart and Cygan, 1980), and the effects of peri-pubertal gonadal hor-
mone exposure on adult behaviour in other novel environments have
not yet been investigated.

The aim of this study was to examine the organizational effects of
exposure to testicular hormones during the peri-pubertal period on
later response to novel environments in male rats using a number of
behavioural tasks that evoke sex differences in response, namely an
open field (OF) environment, an elevated plus-maze (EPM) and a
light–dark (LD) box (Joel and Yankelevitch-Yahav, 2014; Simpson and
Kelly, 2012). Male Lister-hooded rats that had been castrated either be-
fore or after puberty were tested on these behavioural tasks in adult-
hood. Males that had not been exposed to testosterone during the
peri-pubertal period (i.e., castrated before puberty) were predicted to
locomote more in the apparatus, and spend more time in the exposed
areas (centre of OF, open arms of EPM, light area of LD box), than
males that had experienced normal levels of circulating testosterone
during the peri-pubertal period (i.e., castrated after puberty). These pre-
dictions were based on the well-documented behavioural sex differ-
ences in these tasks and on previous research on the organizational
effects of testosterone during earlier stages of life, which has shown
that exposure to testosterone during the first few days of life masculin-
izes locomotor activity and time in exposed areas of novel environ-
ments in adulthood (e.g., Broida and Svare, 1984; Lucion et al., 1996;
Zuloaga et al., 2011). In addition, the effects of pre- and post-pubertal
castration on response to novel objects and opposite-sex partners
were examined, given that suppression of pubertal testosterone reduces
preference for novelty inmale ratswhen tested during theperi-pubertal
period (Cyrenne and Brown, 2011).

The long-term impacts of pre- and post-pubertal castration on brain
development were investigated by measuring steroid hormone recep-
tor levels in several brain regions that are known to be involved in
behavioural and neuroendocrine responses to novelty, specifically
the ventromedial hypothalamus, hippocampus and medial amygdala
(Kabbaj and Akil, 2001; Shin and Liberzon, 2010; Singewald, 2007).
Gonadal hormones can influence behaviour and brain development
via modulation of steroid hormone receptors levels (Juraska et al.,
2013), and recent studies have confirmed that testosterone exposure
during the peri-pubertal period can alter steroid receptor levels in
adulthood (e.g., Nuruddin et al., 2013; Purves-Tyson et al., 2012;
Romeo et al., 2000), potentially leading to life-long changes in steroid
hormone responsiveness. For example, androgen receptor levels in the
hypothalamus were found to be higher in adult male hamsters that
had been castrated before puberty than inmales that had been castrated
post-pubertally (Romeo et al., 2000). In adult rodents, sex differences in
both androgen and oestrogen receptor levels have been reported in the
hypothalamus, hippocampus and medial amgydala (Simerly et al.,
1990), and these brain regions undergo sex-specific differentiation
during peri-pubertal life (e.g., Ahmed et al., 2008; Koshibu et al.,
2004; Yildirim et al., 2008). Levels of oestrogen receptor (ER1),
as well as androgen receptor (AR), were evaluated, as conversion of
testosterone to oestrogen via aromatase during the pubertal period has
been suggested to impact upon later social interactions (Kellogg and
Lundin, 1999).
Gonadal hormones are known to interact extensively with the
hypothalamic–pituitary–adrenal (HPA) axis during early life and
adulthood (Handa and Weiser, 2014; Romeo, 2010), and recent
studies have shown that developmental changes in HPA axis reactiv-
ity are sensitive to the organizational effects of gonadal hormone
exposure during both the perinatal and peri-pubertal stages of life
(e.g., Evuarherhe et al., 2009; Goel and Bale, 2008). For example,
male rats that have been castrated after puberty exhibit testosterone-
induced suppression of corticosteroid secretion when undergoing
stress in adulthood, while pre-pubertally castrated males do not
exhibit testosterone-induced suppression of HPA axis activation
(Evuarherhe et al., 2009). Pubertal gonadal hormone exposure
could potentially impact upon later behavioural and physiological
responses to aversive environments and novel stimuli via modulation of
corticotropin-releasing factor, CRF2, receptors (Panagiotakopoulos
and Neigh, 2014), which are located in numerous areas of the
brain, including the hippocampus, amygdala and various regions of
the hypothalamus (Chalmers et al., 1995). CRF2 receptor density has
recently been shown to increase during puberty in the medial
amygdala of male, but not female, rats (Weathington and Cooke,
2012), and this sex difference could relate to circulating levels of
gonadal hormones. Therefore, the effects of pre- and post-pubertal
castration on mRNA expression of CRF-R2 were also examined in this
study.

In summary,male ratswere castrated either before puberty (postna-
tal day, pnd, 34/35) or after puberty (pnd 58/59) and were tested on
four behavioural tasks, namely an OF, EPM, LD box and object/social
novelty task, in adulthood (pnd101–110). A pilot studywas undertaken
to establish baselinemale responses to the LD box compared to females,
given that previous studies in our laboratory have already provided
baseline responses in the OF and EPM apparatus (Lynn and Brown,
2009, 2010). Expression of AR, ER1 and CRF-R2 mRNA was then
quantified in the hypothalamus, hippocampus (CA1) and medial
amygdala of pre- and post-pubertally castrated males, using quanti-
tative real-time PCR (qPCR).

Methods

Study 1: sex differences in behaviour in a light–dark box

Subjects and housing
The subjects were 12male and 12 female rats, bred in-house from

stock animals (purchased from Harlan, U.K.). Pups were weaned into
same-sex sibling groups on pnd 24, then housed as same-sex pairs
from pnd 26 onward in plastic and wire-mesh cages (52 cm ×
40 cm × 26 cm) with ad libitum access to soy-free pellets and water.
Housing rooms were maintained on a 12-hour light:dark cycle (lights
on 07:00) andwere controlled for temperature (20± 1 °C) and humid-
ity (55 ± 5%). All appropriate guidelines and regulations were adhered
to, as set out in the Principles of Laboratory Animal Care (NIH, Publica-
tion No. 85–23, revised 1985) and the UK Home Office Animals (Scien-
tific Procedures) Act 1986.

Behavioural testing and apparatus
All subjects were tested in a light–dark (LD) box on pnd 95 or 96,

with the two sexes counterbalanced across days. The LD apparatus
consisted of a rectangular arena constructed from transparent
perspex and separated into two sections using a grey perspex divider
with an aperture at floor level. The larger, ‘light’ section (70 cm ×
46 cm × 44 cm) was covered externally with thick white paper and
illuminated with white light from above, while the smaller, ‘dark’
section (48 cm × 46 cm × 44 cm) was covered externally with thick
black paper and enclosed with a lid. The apparatus was placed in a
testing room and surrounded by a black curtain, with a video camera
overhead. At the start of a testing session, a subject was transported
in an enclosed box to the testing room and placed into the dark
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section of the arena. Each test lasted 5 min, and the latency to first
emerge from the dark area, time spent in the light area and number of
transitions between the dark and light sections were recorded from
the live video footage. After the test, the subject was returned to
the home cage, and the apparatus was cleaned using 70% alcohol be-
fore the next test.

Study 2: pre-pubertal and post-pubertal castration

Subjects, housing and surgical procedure
The subjects were 20 male Lister hooded rats, bred in-house from

stock animals (purchased from Harlan, U.K.). Weaning schedules and
housing conditions were the same as described above, and all experi-
mental procedures were conducted under UK Home Office licences.
One group ofmales (N=10)was castrated prior to the onset of puberty
on pnd 33/34, and one groups of males (N = 10) was castrated after
puberty on pnd 58/59. Castrations were carried out under isoflurane
anaesthesia via a mid-line scrotal incision that was closed using metal
clips, and each subject was anesthetized for around 15–20 min in
total. Pain relief was provided pre-operatively (Carprofen) and during
recovery (Metacam); and the clips were removed from all subjects
three weeks later under light anaesthesia.

Weighing, behavioural testing and apparatus
All subjects were weighed weekly from pnd 21 to pnd 77.

Behavioural testing took place in the same testing room as described
for Study 1, with the apparatus surrounded by a black curtain and
monitored using a ceiling-mounted video camera. All behavioural
tests lasted 5 min, and the apparatus was cleaned with 70% alcohol
between tests. All subjects were tested in each apparatus at a specific
age startingwith the EPM, given that this task is particularly sensitive to
prior testing experience (e.g., Fernandes and File, 1996).

i) The elevated plus-maze (EPM) (pnd 101) was constructed from
grey-painted wood and consisted of four arms (51 cm × 11 cm),
arranged in a ‘plus’ shape and raised above the ground (56 cm)
on a metal base. Two of the arms had enclosing walls (40 cm
high; ‘closed arms’), and the other two arms had no walls
(‘open arms’), and the arms were connected by a square, central
area. The subjectwas placed into a closed arm at the beginning of
the test, and the time spent in the open arms, time spent in the
closed arms, number of open arm entries, number of closed arm
entries, total number of arm entries, and frequency of head-dipping
were recorded from the live video footage.

ii) The LD box (pnd 103) was described above, and the same behav-
ioural measures were recorded as in Study 1.

iii) The open field (OF) (pnd 108) consisted of an arena (122 cm ×
122 cm × 50 cm) constructed from grey-painted wooden walls
and a floor, with a marked-out central area (61 cm × 61 cm).
The subject was placed beside a wall at the beginning of the
test, and the total distance travelled, time in the central area, and
number of entries to the central area were calculated using
Ethovision (Noldus, The Netherlands) software.

iv) The object/social novelty (OSN) task (pnd 110)was conducted in a
perspex arena (118 cm × 46 cm× 44 cm) that contained two tall,
transparent perspex boxes (20 cm × 23 cm x 45 cm), located in
opposite corners of the arena. The arena was visually divided
into three areas (middle section: 22 cm × 46 cm × 44 cm; two
end sections: 48 cm× 46 cm× 44 cm) from above. A novel object
(one offive items thatwere approximately 10 cm tall andmade of
ceramic or plastic) was placed into one of the boxes, and an unfa-
miliar female conspecific was placed into the other box immedi-
ately prior to the test. The subject was placed into the central
area at the beginning of the test and the time spent investigating
the box containing the novel object/social partner (i.e., subject
makes physical contact with the box, with a bout ending
when the subject moves 3 cm away from the box) and time
spent in each of the three areaswas recorded from the recorded
video footage.
qPCR
All subjects were culled on pnd 137/138 via terminal anaesthesia,

and brainswere extracted immediately, maintained on dry ice until fro-
zen and stored at −80 °C. A metallic brain matrix was used to cut two
coronal 1 mm slices with razor blades in order to extract samples
using micro-dissection techniques from the ventromedial hypothala-
mus, CA1 area of the hippocampus and the medial amygdala (based
on Paxinos and Watson, 1998). For each region, 1 mm punches were
extracted from each hemisphere and combined, then immediately
stored at −80 °C. Total mRNA from the tissue was extracted using
Absolutely RNA Miniprep kits (Agilent Technologies, Santa Clara, CA,
USA) according to the manufacturer's instructions. The quantity and
integrity of RNA were assessed with an RNA 6000 Pico assay kit using
the Agilent 2100 bioanalyzer (Agilent Technologies) according to the
manufacturer's instructions. The mean RIN number for these samples
was 8.3 ± 0.6 (SD). First strand cDNA was synthesized using Affinity
Script Multiple Temperature cDNA Synthesis kits (Agilent Technolo-
gies) following the manufacturer instructions and diluted to obtain a
final concentration of 30 pg·μl-1.

The obtained cDNAwas used to perform qPCR for AR, ER1, CRF-R2
and the house-keeping gene, Cytochrome c1 (CYC1), for the three
selected brain regions using gene-specific primers. CYC1 was deter-
mined as the best candidate house-keeping gene (M = 1.175, all
other candidates M N 1.175) using a rat GeNorm kit (PrimerDesign,
Southampton, UK). Specific SYBR Green primers were designed (by
PrimerDesign) based on published rat nucleotide gene sequences —
AR sense primer: CGTCCTCACTGTCTCTGTATAAG, anti-sense primer:
GAGCGAGCGGAAAGTTGTAG (GenBank accession no. NM_012502);
ER1 sense primer: GCCCTCCCGCCTTCTACAG, anti-sense primer:
CATAGTCGTTACACACAGCACAGTA (GenBank accession no. NM_
012689); CRF-R2 sense primer: GAAACTCAGAGCCCAAGTACG, anti-
sense primer: CTTCCTCTTCTCCTTTCTCTTCTC (GenBank accession
no. NM_031019). All qPCR reactions were run in duplicate and were
performed in 20 μl reactions containing 10 μl of Precision FAST Mas-
ter Mix (Agilent technologies), 1 μl of specific SYBR Green primer
(PrimerDesign) at a working concentration of 300 nM, 4 μl of
RNAse/DNAase-free water and 5 μl of appropriate cDNA along with
no-template controls and blanks. Reactions were performed on a
Stratagene MX 3005P (Agilent Technologies) at 95 °C for 1 min, then
50 cycles of 95 °C for 5 s and 60 °C for 20 s. From standard curves
generated with known concentrations of cDNA, the amplification
efficiency (Eff = 10(−1/slope)−1) was determined to be 87% for AR,
100% for ER1, and 96% for CRF-R2. The Delta Ct method (ΔCt) was
used to quantify the expression of AR, ER1, and CRF-R2 relative to
CYC1: 2-(Ct Gene− Ct CYC1).
Statistical analyses

All analyses were conducted in SPSS (Version 22) and G*Power
(Version 3.1). After testing that the data fit the assumptions of para-
metric statistics, body weight data were analysed using a repeated-
measures ANOVA, followed by simple effects post-hoc tests, and
behavioural data were analysed using multivariate ANOVAs. The
qPCR data were analysed using repeated-measures ANOVAs with
the Greenhouse Geisser correction, as sphericity was violated,
followed by least significant difference post-hocs with a Bonferroni
correction for multiple comparisons. Effect sizes were calculated as
partial eta squared (ηp2) for main effects and interactions in ANOVAs,
or as Cohen's d for pair-wise comparisons. All data are presented as
means and SEMs.



Fig. 1. a) Time spent in the light section of LD box and b) latency to enter light section by
males (black bars) and females (stippled bars) (means and SEMs; ** = p b 0.01).

Fig. 2. a) Time spent on the open arms of the EPM (seconds), b) number of entries into the
open arms of the EPM (number of times/test), c) time spent in the light section of LD box
(seconds), and d) time spent investigating a chamber that contained a novel opposite-sex
social partner (seconds) by post-pubertally (grey bars) and pre-pubertally (white bars)
castrated males (means and SEMs; * = p b 0.05, ** = p b 0.01).
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Results

Study 1

Males spent less time in the light section of the LD box (F1,22=12.95,
p b 0.01,ηp2 = 0.37), and exhibited a longer mean latency to enter the
light section (F1,22 = 9.70, p b 0.01,ηp2 = 0.31), than females (Fig. 1).

Study 2

Body weight
There was a significant interaction between age and treatment

group on adult body weight (age: F8,144 = 2917.27, p b 0.01,ηp2 =
0.99; treatment group: F1,18=1.69, p=0.21,ηp2=0.09; age x treatment
group: F8,144= 3.46, p= 0.001,ηp2= 0.16). Post-hoc simple effects tests
revealed that pre-pubertally castrated males had a lower average body
weight than post-pubertally castrated males on pnd 56 only (p b 0.05,
d = 0.92).

EPM
Males that had been castrated before puberty spent more time on

the open arms of the EPM (F1,18 = 5.86, p = 0.03,ηp2 = 0.25; Fig. 2a),
and entered the open arms more frequently (F1,18 = 4.80, p =
0.04,ηp2 = 0.21; Fig. 2b), than males that had been castrated after
puberty. The frequency of head-dipping was also higher for males cas-
trated pre-pubertally (12.3± 0.7 number of times/test) thanmales cas-
trated post-pubertally (8.2 ± 0.9) (F1,18 = 12.85, p b 0.01,ηp2 = 0.42).
The two groups of males did not differ in time spent in the closed
arms (F1,18 = 3.15, p = 0.09,ηp2 = 0.15; post-pubertally castrated:
84.6 ± 9.6 s; pre-pubertally castrated: 65.0 ± 5.5 s), number of closed
arm entries (F1,18=0.48, p=0.50,ηp2=0.03; post-pubertally castrated:
7.4 ± 0.6 times per test; pre-pubertally castrated: 6.9 ± 0.4), or total
number of arm entries (F1,18 = 1.73, p = 0.20,ηp2 = 0.09; post-
pubertally castrated: 16.0 ± 0.70 times per test; pre-pubertally cas-
trated: 17.3 ± 0.70 times per test).

LD box
Males that had been castrated before puberty spentmore time in the

light area of the LDbox thanmales that had been castrated after puberty
(F1,18= 7.74, p=0.01,ηp2= 0.30; Fig. 2c), while the latency to enter the
light area did not differ significantly between treatment groups (F1,18 =
1.37, p = 0.26,ηp2 = 0.07; post-pubertally castrated: 70.8 ± 29.9 s; pre-
pubertally castrated: 33.4 ± 11.4 s).
OF
The total distance travelled in the OF did not differ significantly

between the treatment groups (F1,18 = 0.62, p = 0.44,ηp2 = 0.03;
post-pubertally castrated: 3.9 ± 0.2 m; pre-pubertally castrated:
3.7 ± 0.2 m), nor did time spent in the central area (F1,18 = 0.22, p =
0.64,ηp2 = 0.01; post-pubertally castrated: 20.7 ± 2.4 s; pre-pubertally
castrated: 25.6 ± 10.0 s) or latency to enter the central area (F1,18 =
0.98, p = 0.34,ηp2 = 0.05; post-pubertally castrated: 22.0 ± 4.8 s; pre-
pubertally castrated: 14.9 ± 5.4 s).
OSN task
Males that had been castrated before puberty spent less time inves-

tigating the chamber containing the female conspecific than males that
had been castrated after puberty (F1,18 = 9.77, p b 0.01,ηp2 = 0.35;
Fig. 2d). No significant difference was found between treatment group
for time spent investigating the novel object (F1,18 b 0.01, p =
0.98,ηp2 b 0.01; post-pubertally castrated: 29.1 ± 4.6 s; pre-pubertally
castrated: 29.3 ± 4.6 s). Neither time spent in the section of the arena
containing the social partner (F1,18 = 2.09, p = 0.17,ηp2 = 0.10; post-
pubertally castrated: 148.5 ± 8.0 s; pre-pubertally castrated: 127.9 ±
11.9 s), nor time spent in the section of the arena containing the novel
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object (F1,18 = 1.36, p = 0.26,ηp2 = 0.07; post-pubertally castrated:
95.2 ± 7.0 s; pre-pubertally castrated: 108.9 ± 9.5 s), differed between
treatment group.

qPCR
Although AR levels appeared to be higher in post-pubertally, than in

pre-pubertally, castrated males, AR levels did not differ significantly
between treatment groups (F1,18 = 1.77, p = 0.20,ηp2 = 0.09), and the
interaction between treatment group and brain area was also non-
significant (F1.4,26.0 = 0.13, p = 0.81,ηp2 = 0.01; Table 1). Similarly,
levels of ER1 and CRF-R2 did not differ between treatment groups
(ER1: F1,18 = 0.06, p = 0.80, ηp2 b 0.01; CRF-R2: F1,18 = 1.55, p = 0.23,
ηp2 = 0.08), and the interactions between treatment group and brain
area were also non-significant for these two receptors (ER1:
F1.4,24.3 = 1.81, p = 0.19, ηp2 = 0.09; CRF-R2: F1.2,21.0 = 0.03, p = 0.09,
ηp2 b 0.01). The main effect of brain area was non-significant for both
AR (F1.4,26.0 = 0.66, p = 0.48,ηp2 = 0.04) and ER1 (F1.4,24.3 = 1.44,
p = 0.25,ηp2 = 0.07). In constrast, differences in CRF-R2 levels between
brain areas were marginally significant (F1.2,21.0 = 3.99, p = 0.05, ηp2 =
0.18). While planned post-hoc comparisons showed that CRF-R2 levels
were higher in the ventromedial hypothalamus than in the hippocam-
pus (p = 0.04, d = 0.70), the difference was non-significant when a
Bonferroni correction was applied (p = 0.13, d = 0.70), and all other
pairwise comparisons were non-significant (ps N 0.05, ds ≤ 0.44)

Discussion

The main finding was that male rats that had been castrated before
puberty spent more time on the open arms of the EPM, and in the
light section of the LD box, than males that had been castrated after
puberty. A lack of exposure to testicular hormones during the peri-
pubertal period therefore led to more female-typical behavioural
responses to novel environments in adulthood, in terms of time spent
in the more aversive areas of these two environments. Previous studies
have consistently shown that female rodents spend more time on the
open arms of EPMs (e.g., Johnston and File, 1991; Lynn and Brown,
2009, 2010), and our pilot study confirmed that female rats spend
more time than males in the light area of the LD box, as previously
reported (e.g., Hughes et al., 2004). In contrast, themeasures of locomo-
tor activity (i.e., distance travelled inOF, number of closed armentries in
EPM) did not differ between the treatment groups, which suggests that
behavioural differences in response to the aversive areas cannot be
attributed solely to treatment effects on motor activity, supporting the
null results of previous studies (e.g., Bengelloun et al., 1976; Stewart
and Cygan, 1980). Males castrated after puberty spentmore time inves-
tigating an unfamiliar female than pre-pubertally castrated males, in
line with previous research showing that neural maturation during
the peri-pubertal period is required for males to exhibit adult sexual
responsiveness (e.g., Bell et al., 2013; Schulz et al., 2004). As hormone
receptor levels did not differ significantly between the treatment groups
in the brain regions examined, the neuroendocrinemechanisms under-
lying the long-term effects of pubertal testicular hormone exposure on
response to novel environments have yet to be fully elucidated.

Time spent in the exposed or brightly lit areas of novel environments
is considered to reflect an animal's underlying negative emotional state,
and animals that spend more time in the bright or exposed areas are
Table 1
Relative levels of AR, ER1 and CRF-R2 gene expression in the VMH, CA1 of the hippocampus, and
in post-hoc pair-wise comparison (compared to CA1).

AR ER1

VMH CA1 MA VMH

Post-pubertally castrated 0.42 (0.15) 0.37 (0.11) 0.36 (0.15) 0.05 (0.01
Pre-pubertally castrated 0.24 (0.07) 0.23 (0.09) 0.15 (0.06) 0.12 (0.07
All subjects combined 0.33 (0.08) 0.30 (0.07) 0.25 (0.08) 0.08 (0.04
commonly described as showing a lower anxiety-like response than
other subjects (e.g., Bourin et al., 2007; Walf and Frye, 2007), based on
the assumption that locomoting in exposed spaces increases the risk
of predation in the rodent's natural habitat (Nestler and Hyman,
2010). Therefore, removal of testicular hormones during the peri-
pubertal period appears to reduce the anxiety-like responses of males
in later life. Consistentwith these findings, peri-pubertal administration
of testosterone to intact male hamsters has been shown to reduce time
spent on the open armsof an EPM in adulthood (Morris et al., 2013). The
elevated levels of social interaction shown by pre-pubertally castrated
male rats when tested in a novel environment (Primus and Kellogg,
1989, 1990) could also potentially reflect a reduced anxiety-like
response to novel environments in these males, if social interactions
are more likely to occur when an animal is in a positive emotional
state. Removal of testicular hormones during the first few days of life
in rats has also been reported to increase time spent in the exposed
areas of novel environments when tested in adulthood (e.g., Lucion
et al., 1996; Zuloaga et al., 2011), while treatment of females with
testosterone during this period has the opposite behavioural effects
(Swanson, 1966). Thus, the organizational effects of testicular hormone
exposure during the peri-natal and peri-pubertal periods are similar
and are potentially mediated by testosterone following conversion to
oestrogen via aromatase (Kellogg and Lundin, 1999; Patisaul and
Bateman, 2008; Zuloaga et al., 2011).

However, whether the time spent in exposed or brightly lit areas of
novel environments should necessarily be interpreted as reflecting an
animal's anxious state can be questioned, as other factors, such asmoti-
vation to escape, can also impact upon behavioural responses (Johnston
and File, 1991). Female rodents, in addition to spendingmore time than
males in the aversive areas of novel environments, exhibit more robust
behavioural responses in conflict tasks, such as punished drinking and
acoustic startle response tests, and more defensive behaviour when
exposed to predator cues than males (Blanchard et al., 1991; Kokras
and Dalla, 2014), which suggests that male and female rodents differ
in coping strategies when exposed to stressors (e.g., Steenbergen
et al., 1990). Therefore, the organizational effects of testicular hormones
during the peri-pubertal period could alternatively be described as
impacting upon adult coping strategies, such that normal exposure of
males to testicular hormones results in novelty-induced behavioural
suppression in adulthood. Female rodents also commonly exhibit great-
er activation of the HPA axis than males when exposed to a stressor
(e.g., Handa et al., 1994; Seale et al., 2004), and removal of testicular
hormones during early neonatal or peri-pubertal periods enhances
HPA axis reactivity in male rats (e.g., Evuarherhe et al., 2009; Morales
et al., 2014; Zuloaga et al., 2011). Our results therefore provide evidence
that, in addition to suppressing later physiological stress responses,
exposure of males to testicular hormones during early sensitive periods
leads to reactive, rather than proactive, behavioural strategies in novel
environments.

Administration of testosterone to adult male rodents has been
shown to increase time spent in the aversive areas of novel environ-
ments (e.g., Bitran et al., 1993; Seale et al., 2004), while castration in
adulthood has the opposite effects (e.g., Frye and Seliga, 2001;
Khakpai, 2014; Seale et al., 2004). The activational effects of testoster-
one on the behavioural response to novel environments in adulthood
therefore appear to be opposite to the organizational effects during
MAof post-pubertally and pre-pubertally castratedmales (means and SEMs). *= p b 0.05

CRF-R2

CA1 MA VMH CA1 MA

) 0.03 (0.02) 0.10 (0.07) 0.16 (0.06) 0.06 (0.03) 0.10 (0.04)
) 0.01 (0.00) 0.29 (0.01) 0.11 (0.05) 0.02 (0.01) 0.04 (0.02)
) 0.02 (0.01) 0.07 (0.04) 0.13* (0.04) 0.04 (0.02) 0.07 (0.02)
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early life. The mechanisms responsible for these differential effects of
testosterone during early periods of life compared to adulthood are
not known (McHenry et al., 2014). While gonadal hormone exposure
can have long-term impacts on behaviour viamodulation of steroid hor-
mone receptors levels and via other neurodevelopmental processes
(Juraska et al., 2013), the current study did notfind any significant effect
of peri-pubertal hormone manipulation on AR, ER1 or CRF-R2 levels in
the hypothalamus, hippocampus or amygdala. These findings are con-
sistent with a previous study on hamsters that reported no differential
effect of pre-pubertal versus post-pubertal castration on AR and ER
immunoreactivity in the medial amygdala and ventromedial hypothal-
amus (Romeo et al., 2000). This previous study also reported that, when
treatedwith testosterone in adulthood, AR levelswere higher in theme-
dial preoptic nucleus of pre-pubertally castrated, than post-pubertally
castrated, males (Romeo et al., 2000), leaving open the possibility that
some changes in hormone receptor levels are only revealed following
administration of testosterone in later life.

In the current study, males that were castrated after puberty spent
more time investigating the box containing a novel female conspecific
than males that were castrated before puberty, suggesting that peri-
pubertal exposure to testosterone organizes the neural mechanisms
that underpin responses to visual, olfactory and auditory cues from
female conspecifics. This result is consistent with previous studies on
hamsters, which have reported that males castrated before puberty
exhibit deficits in sexual behaviour when treated with testosterone in
adulthood, in terms of low levels of mounts, intromissions and ejacula-
tions, compared to post-pubertally castrated males (e.g., Schulz et al.,
2004; Schulz and Sisk, 2006). Our results extend these previous studies
by revealing that the effects of pre-pubertal castration on response to
female partners were exhibited even in the absence of testosterone
administration in adulthood. Pre-pubertally castrated hamsters have
been shown to process vaginal chemosensory cues from females appro-
priately (De Lorme et al., 2012b), which suggests that low levels of sex-
ual activity in pre-pubertally castratedmales result from reduced sexual
motivation, rather than a reduced ability to process sexual cues. In sup-
port of this hypothesis, testosterone administration to pre-adolescent
male hamsters does not result in adult-like patterns of activation in
the mesocorticolimbic dopamine system (Bell et al., 2013), which sug-
gests that the rewarding properties of female sexual cues require neural
maturation during the pubertal period. The results of the current study
are consistent with the hypothesis that pre-pubertally castrated males
experience a reduced reward from interacting with females compared
to post-pubertally castrated males.

The two groups of subjects received the surgical procedure at differ-
ent ages, which could have potentially impacted upon behavioural
development independently from any organizational effects of testicu-
lar hormones. Exposure to general anaesthesia during early life has
been shown to induce neurotoxicity in rodents and primates (Sanders
et al., 2013), and the location or extent of neurotoxicity could poten-
tially vary according the age of the animal. However, in the current
study, exposure to isoflurane was relatively brief (15–20 min) com-
pared to studies that have reported a link between anaesthesia and
neurotoxicity (e.g., 6 h: Zhao et al., 2010), and a recent study showed
that exposure of pre-pubertal rats to isoflurane for a short period
(30 min) had no measurable effects on neuroapoptosis, dendritic
spine density or dendritic length in the prefrontal cortex (Briner et al.,
2010). While effects of anaesthesia on other brain areas cannot be ruled
out, the lack of any significant differences in hormone receptor levels be-
tween the groups suggests that broad-scale neurodevelopmental
trajectories were not altered in one group relative to the other, and
the higher levels of CRF-R2 in the ventromedial hypothalamus than in
the hippocampus are consistent with previous findings (Van Pett
et al., 2000). The experimental design was directly comparable to that
used in previous studies (e.g., De Lorme et al., 2012b; De Lorme and
Sisk, 2013; Schulz et al., 2004), and no effects of pre-pubertal sham cas-
trations on behaviour or brain function have yet been found (Morales
et al., 2014; Schulz et al., 2006). As the time period between surgery
and behavioural testing also differed between the groups, future studies
will be required to confirm that the behavioural effects are maintained
over time.

In summary, the results of this study are consistentwith the hypoth-
esis that the organizational effects of testicular hormone exposure
during the peri-pubertal period extend beyond sexual behaviour and
include response to novel environments. Exposure to testicular
hormones during the peri-pubertal and early neonatal periods of life
appear to induce a male-typical response to novel environments, in
terms of reduced time spent in exposed areas and dampened HPA axis
activity, which contrasts with the effects of testosterone on behavioural
and neuroendocrine response to novel environments in adulthood.
Future studies could potentially shed light on why early organizational
effects of testicular hormones differ from activational effects on these
types of behavioural tasks (McHenry et al., 2014). Gaining a greater
understanding of themechanisms involved in the organizational effects
of testicular hormone exposure on response to novel environments and
on functioning of the HPA axis will potentially have implications for
understanding sex differences in susceptibility to mood disorders in
human beings. Adolescence is a time of increased prevalence of these
disorders (McLean and Anderson, 2009), and circulating gonadal hor-
mones have been hypothesised to influence the likelihood of develop-
ing mood disorders during this key stage of life (Hyde et al., 2008;
Naninck et al., 2011). While ovarian hormones have received the most
research attention, testicular hormones potentially have long-termneu-
roprotective benefits for mood disorders (McHenry et al., 2014).
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