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Abstract  

Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of 

Gram-negative bacteria and plays a fundamental role in protecting the bacteria from 

harsh environments and toxic compounds.	
  The LPS transport system is responsible 

for transporting LPS from the periplasmic side of the inner membrane (IM) to the 

OM, in a process involving seven LptA-LptG proteins. The current model for 

lipopolysaccharide transport (Lpt) suggests that LPS is initially extracted by a four-

protein complex, LptBCFG, from the inner membrane to the periplasm, where LptA 

mediates further transport to the OM. Another two protein complex, LptD/E, 

catalyses the assembly of LPS at the OM cell surface. However, the details of this 

transport mechanism have remained unknown, mainly due to a lack of structural 

information.  

 

In chapter 1 and 2 of this thesis, I report materials and methods for all LptD/E, and 

Schmallenberg virus (SBV) nucleoprotein (NP) experiments and the theories and 

softwares that were used in determining structures of LptD/E, SBV NP and the SBV 

NP/RNA complex. 

 

In chapter 3 of this thesis, I report the first crystal structure of the outer membrane 

protein LptD/E complex. LptD forms a 26-strand β-barrel in a closed form and LptE 

is a roll-like structure located inside LptD to form “barrel and plug” architecture. 

Through structural analysis, function assay and molecular dynamics simulation, we 

proposed a mechanism in which the hydrophilic head of LPS molecule, including the 

oligosaccharide core and the O antigen, directly penetrates through the hydrophilic β-
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barrel whilst the hydrophobic lipid A tail is inserted into an intramembrane hole, with 

a lateral opening between strand β1 and β26 of the LptD. LptE may assist this 

process.  

 

	
  In chapter 4, I report the crystal structure of the SBV NP in two conformations: 

tetrameric when the protein was purified under native conditions, and trimeric when 

denatured and refolded during purification. The SBV NP has a novel fold and we 

have also identified that the N-terminal arm is crucial for RNA binding, and the N-

and the C-terminal arm is essential for RNA multimerisation with adjacent protomers 

and for viral RNA encapsidation.  

 

Chapter 5 describes the crystal structure of SBV NP in complex with a 42 nucleotide 

long RNA (polyU). This ribonucleoprotein (RNP) complex was crystallized as a ring-

like tetramer with each protomer bound to 11 ribonucleotides. Eight of these 

nucleotides are bound in a positively charged cleft between N- and C- terminal 

domains and three are bound in the N-terminal arm. I also compared the structure to 

that of other NPs from negative-sense RNA viruses, and found that SBV NP 

sequesters RNA using a different mechanism. Furthermore, the structure suggests that 

when RNA binds the protein, there are conformational changes in the RNA-binding 

cleft, and in the N- and C-terminal arms. Thus our results reveal a novel mechanism 

of RNA encapsidation by orthobunyaviruses NP. 
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Materials and methods for LptD/E, SBV NP and 

SBV NP/RNA complexes 
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1.1 Materials and methods for LptD/E 

1.1.1 Medium and buffers 

LB medium (Luria-Bertani) 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl. 

M9 medium (1000 ml) 

 

1 g NH4Cl, 3 g KH2PO4, 6 g Na2HPO4, 0.5 g NaCl 

20 g Glucose, 0.3 g MgSO4, 0.01 g Fe2(SO4)3 and 0.01 g 

Thiamine 

Cell lysis buffer 

 

20 mM Tris-HCl, pH 7.8, and 150 mM NaCl, supplemented 

with complete  protease inhibitor mixture tablet (Roche), 1 

µM DNAse (Sigma), 1 µM lysozyme (Fluka), 0.1 mM 

phenylmethylsulphonyl fluoride (PMSF, Sigma-Aldrich). 

IM Solubilization buffer  

 

The cell lysis buffer with 0.5% (w/v) N-lauroylsarcosine 

sodium salt (Sigma-Aldrich). 

OM Solubilization buffer                     

 

20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 10 mM imidazole，

5% (v/v) glycerol and 2 % (w/v) 3-(N,N-Dimethylmyristyl-

ammonio- propanesulfonate) (Sigma-Aldrich). 

Wash buffer  

 

20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 30 mM imidazole, 5 

% glycerol (v/v) and 1% (w/v) N-Octyl- β -D-glucopyranoside 

(β-OG; Anatrace). 

Elution buffer  20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 300 mM imidazole, 

5 % glycerol (v/v) and 1% (w/v) β-OG). 

Gel filtration buffer 

 

20 mM Tris-HCl, pH 7.8, 100 mM NaCl, 5 % glycerol (v/v) 

and 1% (w/v) β-OG). 
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1.1.2 Generation of the LptD/E constructs 

The genes lptD and lptE of Salmonella enterica typhimurium strain LT2 were 

amplified by PCR and inserted into pET28a (+) and pACYC-Duet-1 (Novagen), 

respectively. The hexahistidine tag was introduced into the C-terminus of LptE. 

1.1.3 LptD/E transformation 

Plasmids pET-28a-lptD and pACYC-Duet-1-lptE were co-transformed into an 

expression strain of E. coli subtype C43 (DE3) cells (Avidis).  100 ng of plasmids 

DNA was added to 50 µl of competent C43 (DE3) cells. The mixture was incubated 

on ice for 30 minutes, heat-shocked at 42°C in a water-bath for 90 seconds and then 

chilled on ice for 3 minutes. After that, the mixture was added 100 µl of Luria Broth 

(LB) and incubated at 37°C for 1 hour. Subsequently, the cell culture was plated onto 

a L-agar plate containing 30 µg ml-1 kanamycin and 34 µg ml-1 chloramphenicol and 

incubated at 37°C overnight. 

A single colony was picked and propagated in 10 ml LB medium (200 RPM, 37°C) 

containing the antibiotics kanamycin (30 µg ml-1) and chloramphenicol (34 µg ml-1). 

After 9 hours, a glycerol stock was prepared (15% glycerol), flash frozen in liquid 

nitrogen and stored at -80°C. 
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1.1.4 Protein expression of LptD/E 

500 ml LB medium was inoculated with the glycerol stock and supplemented with 

antibiotics kanamycin (30 µg ml-1) and chloramphenicol (34 µg ml-1). This culture 

was incubated overnight at 37 °C with shaking at 200 RPM. Each litre of LB medium 

(supplemented with antibiotics) was inoculated with 40 ml of the overnight culture. 

The cells were incubated at 200 RPM, 26 °C until the optical density (OD) at 600nm 

reached 0.8. Protein expression was induced by addition of isopropyl β-d-

thiogalactopyranoside (IPTG) to a final concentration of 0.1mM with shaking at 200 

RPM, for 24 hours at 26 °C. The cells were harvested by centrifugation at 6,000 × g 

for 15 minutes at 4 °C. 

(L)- selenomethionine labelled LptD/E was expressed in M9 medium. The next day, 

the cells were pelleted by centrifugation at 6,000 × g for 10 minutes (Beckman 

Coulter). The pellet was then washed with 500 ml of sterilised PBS and re-suspended 

in 200 ml of PBS. 20 ml of the suspension was used to inoculate 1 L of M9 medium 

with 50 ml of SeMet nutrient mix (Molecular Dimensions) according to the 

manufacturer’s instructions (5.1g SeMet was dissolved in 50 ml steriled water, and 

then filtered with 0.22 µm sterile filter). The cultures were incubated at 26°C, 200 

RPM until the optical density (OD) of the bacterial cell culture reached mid-log phase 

(OD600 = 0.6-0.7) at a wavelength of 600 nm. Then, 10 ml (100x) amino acids lysine, 

phenylanine, threonine, isoleucine, leucine and valine were added to the cell cultures 

to inhibit methionine biosynthesis. After 25 minutes, SeMet (Generon) was added to 

the culture at a final concentration of 100 µg ml-1. The cells were incubated at 200 

RPM and 26°C for a further 25 minutes. Protein overexpression was induced by 

adding isopropyl β-d-thiogalactopyranoside (IPTG) to a final concentration of 0.1 

mM. The cells were cultured at 26°C for 24 hours before they were harvested by 
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centrifugation.  

1.1.5 Purification of LptD/E 

Cell pellets were resuspended in 200 ml of lysis buffer (20 mM Tris-HCl, pH 7.8, and 

150 mM NaCl), supplemented with cOmplete protease inhibitor mixture tablets 

(Roche), 1 µM DNAse (Sigma), 1 µM Lysozyme (Fluka) and 0.1 mM 

phenylmethylsulphonyl fluoride (PMSF, Sigma-Aldrich). The cells were lysed by 

passing through a cell disruptor twice at 30,000 psi (Constant Systems Ltd). The cell 

debris was removed by centrifugation at 4000 × g for 25 minutes at 4°C. The cell 

membranes were pelleted by ultracentrifugation at 120,000 × g for 1 hour at 4°C. The 

inner membrane fraction was solubilized by suspending the pellet in the IM 

solubilization buffer containing 0.5% (w/v) N-lauroylsarcosine sodium salt (Sigma-

Aldrich) with rocking for 3 hours at room temperature. The outer membrane was 

pelleted by ultracentrifugation at 120,000 × g for 1 hour, and then solubilized in the 

OM solubilization buffer (20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 10 mM imidazole，

5% (v/v) glycerol and 2% (w/v) 3-(N,N-Dimethylmyristyl-ammonio- 

propanesulfonate) (Sigma-Aldrich) and incubated for 5 hours at 4°C.  

The suspension of solubilized outer membrane was then ultra-centrifuged at 100,000  

× g for 1 hour, and the supernatant was loaded onto a nickel-nitrilotriacetate affinity 

resin (Ni-NTA, Qiagen) column (5ml). The resin was washed with 10 column 

volumes (CV) of wash buffer (20 mM Tris-HCl, pH 7.8, 300 mM NaCl, 30 mM 

imidazole, 5 % glycerol (v/v) and 1% (w/v) N-Octyl- β -D-glucopyranoside (β-OG; 

Anatrace). The LptD/E complex was eluted with 2 CV elution buffer (20 mM Tris-

HCl, pH 7.8, 300 mM NaCl, 300 mM imidazole, 5 % glycerol (v/v) and 1% (w/v) β-

OG.  
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The protein was further purified using size exclusion chromatography using a HiLoad 

16/60 Superdex 200 prep grade column (GE Healthcare) with gel filtration buffer 

containing (20 mM Tris-HCl, pH 7.8, 100 mM NaCl, 5 % glycerol (v/v) and 1% (w/v) 

β-OG). Two peaks appeared. The detection of the LptD/E complex in fractions was 

carried out by SDS-polyacrylamide gel electrophoresis (NuPAGE 4-12% Bis-Tris) 

using Mark12 protein molecular marker (Invitrogen) with conditions: 1x MES 

running buffer at 200 V, 120 mA for 35 minutes. The gel was stained with Coomassie 

blue R250 (Coomassie brilliant blue R250, Methanol, Acetic acid). Gels bands 

corresponding to the LptD/E molecular weight were cut and identification was 

confirmed by mass spectroscopy (University of St Andrews). 

1.1.6 Crystallization and data collection of LptD/E 

1.1.6.1 Crystallization of LptD/E 

Crystallization trials were performed by CartesianTM Honeybee robot (Genomic 

solutions LTD). The protein was screened in 96-well sitting drop crystallization plates. 

Each crystallization drop was built up using 0.15 µl of protein and 0.15 µl of the 

crystallization solution, sitting in a reservoir containing 70 µl of crystallization 

solution. The crystallization screening kits attempted include PEG/ION (Hampton 

research), MemGold 1&2, MemSys & MemStart, MemPlus (Molecular Dimensions 

Ltd.) and crystallization kit for OM (Sigma). The crystallization plates were incubated 

at 4°C and 20°C separately. 

1.1.6.2 Crystallization failed 

After two weeks, the crystal trials were checked under microscope, but no crystals 

were formed. In order to obtain crystals, several detergents have been tried including 
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tetraethylene glycol monooctyl ether (C8E4), lauryldimethylamine-oxide (LDAO) 

and n-Dodecyl-β-D-Maltoside (DDM). The LptD/E protein complex was purified 

using the method described above and crystallization trials were set up with different 

detergents. However, these detergents did not help to form crystals. I then carried out 

limited proteolysis on the purified protein in an attempt to obtain crystals. 

1.1.6.3 Limited proteolysis 

It was desalted with gel filtration buffer using a desalting column Hi-PrepTM 26/10, 

(GE Healthcare). The protein was pooled and concentrated to approximately 5 mg ml-

1, using Vivaspin concentrators with 100-kDa molecular weight cut-off (MWCO). 

Firstly, small-scale experiments were performed using proteases α-chymotrypsin, 

trypsin, V8, papain or thermolysin (Sigma-Aldrich). They were individually added to 

purified LptD/E protein at 1:1000 and 1:100 (protease-to-protein molar ratios). These 

mixtures were incubated at room temperature for digestion at the time intervals of 30, 

60, 90, 120, 150, 180 minutes. The samples were subjected to SDS-PAGE and the 

result showed that only α-Chymotrypsin and trypsin can be used to obtain stable 

LptD/E complex. 

1.1.6.4 Crystallization of resulting LptD/E protein complex 

The α-Chymotrypsin resulting LptD/E complex was screened for crystallization using 

the crystallization robot Honeybee. The LptD/E crystals grew within 7 days in a 

condition of 0.15 M zinc acetate, 0.08 M sodium cacodylate pH 6.5 and 15% (w/v) 

PEG 8000. The crystals were optimized by varying pH 6.0-6.9 (sodium cacodylate) 

and the concentration of 10-19% (w/v) Polyethylene glycol (PEG) 8000 using 96 well 

Crystal clear sitting–drop plates by mixing 1 µl of protein and 1 µl of crystallization 

precipitant with 100 µl reservoirs solution. The optimised plates were incubated at 
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room temperature (20°C). 

1.1.6.5 Determination of the quality of LptD/E crystals 

After 21 days incubation, the crystals were screened using an in-house X-ray source 

Rigaku micromaxTM – 007HF with a Rigaku Saturn 944+ CCD detector. The crystals 

were protected by a cryoprotectant containing the crystallization solution with 20% 

glycerol. The crystals were damaged and diffracted poorly. I optimized the 

cryoprotectants and found that adding the cryoprotectant directly to the crystallization 

wells could protect the crystals.  

1.1.6.6 Data collection of SeMet labelled LptD/E crystals 

Multi-wavelength anomalous dispersion (MAD) data were collected at Diamond 

Light Source, UK at beam station I02, I03, I04 and I24. Before MAD data collection, 

fluorescence scanning was performed on the SeMet LptD/E crystals to determine the 

wavelengths to be used for MAD data collection at peak, inflection and remote. 

The best of four wavelengths for MAD datasets at peak, inflection, high remote and 

low remote were collected at I24 using a Pilatus3 6 M detector under 100K. The peak 

dataset was collected over 3600 images with an exposure of 0.02 second per image at 

a wavelength 0.9784 Å with oscillation 0.1 degree per image and 50% transmission. 

The inflection dataset was recorded at wavelength 0.9788 Å, while the high remote 

and the low remote datasets were collected at wavelength 0.9775 Å and 0.9818 Å, 

respectively, using the same strategy as the peak dataset collection. Chapter 2 mainly 

described that how structures have been solved. 
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1.2 Materials and methods for SBV NP 

1.2.1 Buffers 

Lysis buffer 

 

20 mM Na-phosphate, pH 7.2, and 0.5 M NaCl, 10% 

glycerol, 10 mM imidazole), supplemented with cOmplete 

protease inhibitor tablets (Roche), 1 µM DNAse (Sigma), 

1 µM Lysozyme (Fluka), and 0.1 mM 

phenylmethylsulphonyl fluoride (PMSF, Sigma-Aldrich) 

Binding buffer 20 mM Na-phosphate, pH 7.2, and 0.5 M NaCl, 10% 

glycerol, 10 mM imidazole 

Wash buffer 20 mM Na-phosphate, pH 7.2, and 0.5 M NaCl, 10% 

glycerol and 30 mM imidazole 

Elution buffer  20 mM Na-phosphate, pH 7.2, and 0.5 M NaCl, 10% 

glycerol and 500 mM imidazole  

Gel filtration buffer 20 mM Tris-HCl, pH 7.5, 300 mM NaCl and 10 % 

glycerol (v/v) 

Denaturation buffer (Line 

A) 

 

20 mM Na phosphate pH 7.2, 1 M NaCl 10% glycerol and 

8M urea 

Refolding buffer (Line B) 20 mM Na phosphate pH 7.2, 1 M NaCl and10% glycerol 
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1.2.2 Generation of SBV NP expression plasmid 

The gene encoding (Strain Na2) SBV NP was amplified and cloned into a modified 

pDEST14 vector (Invitrogen) with an N-terminal hexahistidine (6-His) tag and a 

tobacco etch virus (TEV) protease cleavage site (for removal of the 6-His tag) 

upstream of the NP gene. This plasmid p14TevSBV NP, was kindly provided by our 

collaborator Dr. Ping Li (University of Glasgow). 

1.2.3 Transformation   

The p14TevSBV NP plasmid was used to transform into expression strain of E. coli, 

specifically Rosetta cells (Novagen).  100 ng of plasmids DNA was added to 50 µl of 

competent Rosetta cells, which is a favoured expression strain for viral proteins as the 

cells contain a pRARE plasmid encoding several rare tRNAs. All transformation was 

as described in Chapter 1.3.1. 

1.2.4 SBV NP over-expression 

LB (500 ml) was inoculated with the glycerol stock of Rosetta cells harbouring the 

NP plasmid with antibiotics ampicillin (50 µg ml-1) and chloramphenicol (34 µg ml-1). 

The bacterial cultures were incubated at 37°C and 200 RPM until the optical density 

(OD) at 600nm reached mid-log phase (OD600 = 0.6-0.8). Protein expression was 

induced by addition of IPTG to a final concentration of 0.1 mM and shanking at 200 

RPM for 16 hours at 20°C. The cells were harvested by centrifugation at 6,500  × g 

for 15 minutes at 4°C. 

(L)- selenomethionine labelled SBV NP was expressed in M9 medium. All expression 

was the same as described in Chapter 1.1.4. 
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1.2.5 Protein purification  

Cell pellets were re-suspended in 150 ml of lysis buffer  (20mM Na-phosphate pH 

7.2, 0.5 M NaCl, 10% glycerol and 10 mM imidazole), supplemented with three 

EDTA-free protease inhibitor tablets (Roche), 1 µM DNAse (Sigma), 1 µM 

Lysozyme (Fluka) and 0.1 mM phenylmethylsulfonyl fluoride   (PMSF)(Sigma). The 

cells were lysed by passing the cell mixture through a cell disrupter at 30kpsi twice 

(Constant Systems Ltd). Cell debris was removed by centrifugation at 19,000 × g for 

40 minutes at 4°C (Sorvall F21S-8x50y rotor). 

The supernatant was decanted and loaded onto a pre-equilibrated (lysis buffer) 5 ml 

Ni-NTA agarose (Qiagen) column (EconoPac, Biorad). Once the supernatant was 

passed through the beads twice, the resin was washed with 12 column volume (CV) of 

wash buffer (20 mM Na-phosphate pH 7.2, 0.5 M NaCl, 10% glycerol and 30 mM 

imidazole) to remove non-specific proteins. The recombinant NP protein was eluted 

with 2 CV elution buffer (20 mM Na-phosphate pH 7.2, 0.5 M NaCl, 10% glycerol, 

and 500 mM imidazole). The eluted protein was immediately desalted with gel 

filtration buffer using a desalting column (Hi-PrepTM 26/10, GE Healthcare) and Äkta 

Express. The protein was pooled and the His-tag was removed by TEV protease 

cleavage at room temperature overnight (600 µl of 7 mg ml-1 TEV protease was 

added). 

TEV protease, uncleaved protein and contaminants were removed by applying the 

samples through a Ni-NTA column. Briefly, the Ni-NTA column was pre-equilibrated 

with 10 CV of elution buffer, followed by 5 CV of H2O and 5 CV of lysis buffer. The 

detagged NP flows through the column. Subsequently, the cleaved NP was monitored 

by SDS-polyacrylamide gel (NuPAGE 4-12% Bis-Tris) electrophoresis with a protein 
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molecular marker (Mark12, Invitrogen). The gel was stained with Coomassie blue 

R250. Gel bands corresponding to the NP molecular weight were cut and sent for 

identification using mass spectroscopy. 

1.2.5.1 Purification of RNase A treated SBV NP 

The RNase A treatment protein purification procedure was very similar to the method 

described above, except that the RNase A was added to the protein after TEV 

cleavage and the mixture was incubated for 3 hours at room temperature. 

Subsequently, the RNase A and other contaminating proteins were removed by size-

exclusion chromatography using an Äkta Xpress.  

1.2.5.2 Purification of SeMet labelled of RNase A treated SBV NP 

Selenomethionine (SeMet) labelled protein purification was performed following the 

same protocol as the native SBV NP described above, and the protein was treated 

with the RNAse A prior to the gel filtration. 

1.2.5.3 Purified SBV NP under denaturing and refolding conditions 

The SBV NP was expressed using the same protocol as the native protein (chapter 

1.2.4). The cells were suspended in cell lysis buffer and lysed by passing them 

through the cell disruptor twice. The cell debris was removed by centrifugation at 

20,000g for 25 min. The supernatant was loaded onto a pre-equilibrated (lysis buffer) 

5 ml HiTrap column (GE Healthcare). Then the column was washed with 6 CV wash 

buffer as described above. The SBV NP was denaturated on the HiTrap column by 

increasing the urea concentration from 0 to 8 M over a 10 CV gradient using the 

ÄKTA Xpress. Then, the SBV NP was refolded by decreasing the urea concentration 

from 8 to 0 M over a 10 CV gradient. This required two buffers containing 20 mM Na 
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phosphate pH 7.2, 1 M NaCl, 10% glycerol – one without urea (Line A) and one with 

8 M urea (Line B) on a Äkta Xpress purifier. 

To check whether RNA had been removed during denaturation, the 260/280 nm 

absorbance ratio of the flow-through was measured, which showed a high ratio of 

2.10, clearly suggesting that some E. coli RNA had been removed. The refolded SBV 

NP was eluted using 500 mM imidazole, before immediately changing the buffer to 

TEV cleavage buffer by a desalting column (Hi-PrepTM 26/10, GE Healthcare).  
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1.2.6 Crystallization and Data collection of SBV NP 

1.2.6.1 Crystallization of native SBV NP  

The crystallization conditions for the proteins from two peaks were screened 

separately using sitting drop in 96-well crystallization plates. Each crystallization 

drop was built up using 0.3 µl of protein and 0.3 µl of the crystallization solution with 

70 µl of crystallization solution in the reservoir. The 96 well crystallization-screening 

kits, Index I & II, PEG/ION, Crystal Screen Cryo (Hampton Research), Wizard I & II 

(Emerald biosystems), JCSG+ (Molecular Dimensions Ltd.), StoPegs 1, 2, 3, 4 and 

Stochastic kits 16, 17 and 21 (JHN Lab) were used. All crystallization plates were 

incubated at room temperature.  

1.2.6.2 Crystallization of RNase A treated SBV NP  

Only the purest fractions were collected and concentrated to 7 mg ml-1 (Peak 1) and 

12.2 mg ml-1 (Peak 2) respectively. The protein was flash frozen in liquid nitrogen and 

stored at -80°C. The crystallization trials were set using the Honeybee and used same 

crystallization screening as described above. 

SBV NP crystals were obtained in several conditions within four days from the 

protein from peak 2. In order to find high quality crystals, all of the crystals were 

harvested and screened using the in-house x-ray source.  

1.2.6.3 Crystallization of SeMet of RNase A treated SBV NP  

The size exclusion chromatography pattern of the SeMet labelled SBV NP behaved 

similarly as the native SBV NP treated with RNase A. Therefore, I harvested the 

second peak of the pure protein, which was concentrated to 12.6 mg ml-1. The 
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crystallization trials were setup using sitting-drop vapour diffusion, based on the 

original SBV NP crystallization. 

1.2.6.4 Crystallization of denatured and refolded SBV NP 

The two SBV NP samples pooled from different peaks were screened for 

crystallization conditions using Index I & II, PEG/ION and JCSG+ commercial 

screens. The Honeybee was used to setup 96 well plate sitting-drops, which were 

subsequently incubated at room temperature. Crystals were obtained after 7 days, the 

larger ones were flash frozen by supplementing the mother-liquor with 20% glycerol. 

The crystal diffractions were screened using in-house resource. 

1.2.6.5 Determination of the quality of SBV NP crystals  

To check whether the crystals were good enough for data collection, we decided to 

screen them using the in-house X-ray source. The protein crystals were mounted with 

litho-loops (Molecular Dimensions) before being flash frozen in liquid nitrogen using 

1.4 M Sodium/potassium phosphate pH5.6 and 20% glycerol as cryoprotectant. The 

crystals were screened using a Rigaku micromaxTM – 007HF with a Rigaku Saturn 

944+ CCD detector. However, all the crystals tested diffracted poorly.  

1.2.6.6 Data collection of RNase A treated SBV NP crystals 

Data was collected at beam station I24 of Diamond Light Source UK using a Pilatus3 

6 M detector under 100K. 1200 images were collected with an exposure time of 0.5 

second per image and oscillation angle of 0.15° per image, using a distance of crystal 

to detector of 498.3 mm and a wavelength of 0.9919 Å. 
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1.2.6.7 Data collection of  RNase A treated SeMet of labelled SBV NP 

crystals 

The crystals were cryoprotected by supplementing the crystallization solution with 

20% glycerol, before being flash frozen in liquid nitrogen. The multi-wavelength 

anomalous dispersion (MAD) data were collected at Diamond Light Source, UK 

using ADSC Q315r detector at beam station I04. Before MAD data collection, 

fluorescence scanning was performed on seMet crystals to select the wavelengths to 

be used for MAD data collection at peak, inflection and remote.  

All the three wavelengths datasets were collected from the same crystal at different 

positions. The Peak dataset was recorded over 1000 images with an exposure of 1 sec 

per image at the wavelength of 0.9797 Å. The oscillation angle was 1 degree per 

image and the crystal to detector distance was 421.7 mm. The inflection dataset was 

collected at the wavelength of 0.9799 Å with an oscillation angle of 1 degree per 

image, using 1 second exposures. A total of 360 images were recorded with a crystal 

to detector distance of 421.6 mm. The remote dataset was collected at the wavelength 

of 0.9218 Å with an oscillation angle of 1 degree per image and 1 second exposures. 

360 images were collected with a crystal to detector distance of 449.9 mm. 

1.2.6.8 Data collection of denatured and refolded SBV NP crystals 

Crystals from the second peak were diffracted to a higher resolution than those from 

the first peak. We therefore decided to optimise the crystallization conditions of the 

protein pooled from the second peak. The best crystals were obtained with 0.075 M 

tris pH 8.5, 1.5 M ammonium sulphate, 25% glycerol after 12 days. They were frozen 

and tested in-house before collecting an entire dataset at Diamond beamline I24. 360 
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images were collected with 1-second exposure, with an oscillation angle of 0.5 degree 

per image at a wavelength of 0.9919 Å. The crystal to detector distance was 498.33 

mm. 
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1.3 Materials and methods for SBV NP/RNA complex 

All buffers were the same as described in Chapter 1.2.1.  

1.3.1 SBV NP expression and purification 

All the protein expression and purification were followed above method (section 

1.2.4- 1.2.5) for the denatured and refolding SBV NP (section 1.2.5.3). 

Protein concentration was determined from the absorbance at 280 nm using a 

Nanodrop (Thermo Scientific). The protein was flash frozen in liquid nitrogen and 

stored at -80°C. 

1.3.2 SBV NP-RNA complex Crystallization and Data collection  

1.3.2.1 Crystallization of NP-RNA complex 

To reconstitute RNP, the RNA (poly U of 21-, 28-, 42- base-length; Eurogentec) was 

added into refolded SBV NP in a 1:1 molar ratio, and then the mixture was incubated 

on ice for 90 minutes. The protein-RNA complex was then screened for 

crystallization. All crystallization trails were same as described in Chapter 1.2.6.1. 

1.3.2.2 Determination of structure of protein complexed with 21-, 28-, 

42-nt RNA 

The crystals of SBV NP in complex with 21-, 28-, 42-nt RNA were screened using in-

house X-ray source, and these crystals were protected by supplementing 20% glycerol 

as a cyoprotectant before being flash frozen in liquid nitrogen. However, all crystals 

diffracted poorly, except the crystals of 42-nt RNA complex, which diffracted to high 
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resolution. Using in-house X-ray facility, 360 images were collected with an exposure 

time of 120 second per image, an oscillation angle of 0.5° per image and using a 

Rigaku micromaxTM – 007HF with a Rigaku Saturn 944+ CCD detector. 

1.3.2.3 Data collection of 42-nt RNA-protein complex   

Data was collected at beam station I24 of Diamond Light Source UK using a Pilatus3 

6 M detector under 100K. 1000 images were collected with an exposure time of 2.0 

second per image and oscillation angle of 0.5° per image, using a distance of crystal 

to detector of 498.3 mm and a wavelength of 0.9200 Å at 100 percent of transmission. 
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Chapter 2 

	
  

The steps towards structure by X-ray 

crystallography 
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This chapter is mainly to describe the theories and softwares used in determining 

structures of LptD/E, SBV-NP and NP/RNA complex in my thesis following the 

workflow for solving the structure by X-ray crystallography (Figure 2.1).  

 

 

 

Figure 2.1. The step towards of structure by X-ray crystallography. 

In brief, high quality of crystals are essential to determining the structure of a protein 

by X-ray crystallography, which measures the crystal diffraction directions and 

intensities by X-ray beams with 60 - 360 degree oscillations. Each diffraction image 

corresponds to crystal diffraction at a different oscillation angle. The diffraction data 

was indexed and integrated using iMosflim or HKL2000 or Xia2 or XDS. However, 

these data lacked the phase information, which can be obtained by molecular 

replacement or experiment phases (Battye et al. 2011; Kabsch 2010; Otwinowski et 

al. 1997; Kabsch 2010). 

After solving the phase problems, the electron density map of the protein is generated 

by programs RESOLVE, or SHELX E (Sheldrick 2010; Terwilliger 2003). The 

molecular model was built according to the electron density map automatically or 

manually (Figure 2.1). 

The strategy of collecting diffraction image is through oscillation of the crystal with a 

small angle by a starting position of rotation and recording all of reflections, then 

rotating crystal to a new starting point to re-record reflections. However, the new 

Crystal"

Diffrac+on.pa0ern. Electron.density.map. Structure.

X9rays. Phases. Fi=ng.
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oscillation range overlaps the previous one slightly, the reflections are recorded until 

all unique reflection has been collected (Battye et al. 2011). 

 

2.1 Data Indexing 

Each reflection is designated h, k, l to the position of an individual reflection in the 

reciprocal space of the diffraction pattern. The central reflection is used as the origin 

in reciprocal space and coordinates hkl = 000. Coordinates of other reflections are 

calculated from this origin and the indices h, k, l are integers. 

Data processing can be indexed the reflections of the position h, k, l and the intensity 

Ihkl of each reflection. This data is used to calculate the dimensions of the unit cell and 

to determine the symmetry of the crystal of its space group.  

 

2.1.1 iMosflm 

iMOSFLM is extensively used to process diffraction images from a wide range of 

detectors, and produces an MTZ file of reflection indices with data intensities and 

standard deviations (Battye et al. 2011). The MTZ file is able to pass onto other 

programs of CCP4 program suite (POINTLESS, SORTMTZ, AIMLESS, 

CTRUNCATE) for further data reduction (Battye et al. 2011). The softwares 

HKL2000, Xia2, XDS are also used to process data (Kabsch 2010; Otwinowski et al. 

1997; Kabsch 2010). Diffraction images are added to the iMosflm, the first image of 

sector is displayed as close as possible to a 90° rotation away in a new display 

window to show diffraction spots. The program is designed into a series of steps 

(Images, Indexing, Strategy, Cell refinement, Integration) and can be selected by 

clicking on the appropriate icons for data process. The spots finding parameter is set 
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by default to be between circles of radii between 5 and 95% of the radius of the 

inscribed circle centred on the direct beam position and the threshold value is default 

set to part of spot with 5 sigma above the background for a pixel and a various of 

rejection criteria is applied to distinguish the true Bragg spots in the diffraction image 

from noise. 

Once all the images are integrated using iMosflm, the program POINTLESS (Winn et 

al., 2011) can be used to determine the true Laue symmetry and to determine the 

space group. 

For example the pointless results the space group of P21 for SBV NP and the unit cell 

is defined by three lengths a = 76.21,b = 85.62, c = 77.03 Å and three angles  α =  γ= 

90 and β = 101.9°. The unit cell is the smallest unit that contains all of the structural 

and symmetry information and it can simply be stacked onto the next unit cell by 

simple translation to reconstitute the whole crystal. 

2.2 Run Scaling 

Scala merges multiple observations of reflection and produces a file, which contains 

averaged intensities for each reflection (Evans 2006). The Scala in CCP4 suite reads a 

sorted MTZ file of unmerged intensities, usually produce from iMosflm. The file also 

could be generated from other integration programs, such as Scalapack for XDS, and 

dtrek2scala for d*trek. 

Scala calculates amplitude |F| from intensity, uses Ctruncate to output Wilson plot, 

puts all datasets into the same file, and generates FreeR set. 

 

It is good to use R-merger during merging datasets from multiple reflection frames or 
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multiple crystals, which measure of same reflection with different measurement in 

being different frames of data among multiple measurements (Rhodes 2006). Rmerge 

is calculated as follows: 

Rmerge = 
!!" ||  !!!"  |  –  |  !!!"  (!)  ||  !

!!!

!!" |  !!!"  (!)  |!
!!!

                    

Where | Fhkl | is the final value of the structure factor amplitude, Σj is scattering factor 

of atom j, hkl is index of diffraction. 

 

The sum of diffraction reflects contributions of all atoms in the unit cell and all these 

individual atoms sum of the structure factor Fhkl. The structure factor sums  all the 

reflection hkl for individual atoms, which is a Fourier sum, and has been treated as a 

sphere of electron density, which contributes each element of electron density of a 

volume element at centre position (x, y, z) and the average values of ρ (x, y, z) at this 

region (Rhodes 2006). The structure factor describe as follows: 

Fhkl  = 𝜌  (𝑥,𝑦, 𝑧)!
! 𝑒!!!(!!!!"!!")𝑑𝑉! 

Where the integral is carry out over volume element dV, the unit cell for the integral 

over all volume of x, y, z.  Each volume element distribution to the structure factor 

Fhkl, with a phase determined by its position (x, y, z) with each volume element. 

The structure factor equation is the Fourier transform, and it is its inverse. The 

electron density ρ (x, y, z) is turned in structure factor with an inverse Fourier 

transform as follows:  

ρ (x, y, z) = 1/v ΣhΣkΣlFhkl𝑒!!!!  (!!!!"!!") 

Where V is the volume of the unit cell, ΣhΣkΣl the sum of diffraction with index 

diffraction (h, k, l), i, type of atom. The phase is unknown form the structure factor, 

and it is required to calculate the electron density.  
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2.3 Phase determination 

The structure factor possesses amplitude (F), frequency (h) and phase (α). The 

amplitude of Fhkl can be obtained by taking the square root of all measure reflection 

intensity Ihkl. Three frequencies (h, k, l) of three-dimension wave function produce the 

reflection that can be calculated, because the frequency of a structure factor is equal to 

1/dhkl that wavelength is the same as the space of planes producing the reflection. 

However, the phase of Fhkl is lost during data collection and is unable to detect from a 

single measurement of the reflection intensity(Rhodes 2006).  

2.3.1 Molecular Replacement  

Molecular replacement (MR) is a method of solving the phase problem (McCoy et al. 

2007). It requires a homologue protein structure with protein sequence identity above 

30%. The homology’s structure can be used to calculate the initial phase of structure 

factor to obtain an electron density map as follows: 

ρ (x, y, z) = 1/v ΣhΣkΣlFhkl𝑒(!!!   !!!!"!!"   !  !!  (!!")) 

Where α (hkl) is a phase with specific reflection (hkl) in the reciprocal space of the 

each diffraction pattern, which can obtain complete structure factor to real space 

electron density. 

A Patterson map is calculated (Fhkl) from all the measured reflection intensity. By 

comparing to a Patterson map using the homologue structure coordinates previously 

solved in different orientations, the high correlation coefficients is given high score 

for two structures in similar orientation (Rhodes, 2006; Rius, 2011). In Patterson map 

all phases are set to zero, and the electron map contains a peak corresponding to 

distance vectors between each atoms. By rotating and then translating the Patterson 
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map closely correlated to each other in the correct orientation and position within the 

asymmetry unit cell, and then the correct phases would were obtained. The programs 

called Molrep and Phase in CCP4 can be used for MR (McCoy et al. 2007; Vagin et 

al. 2010). 

Once obtained the phases with correctly orientation and translation, it is able to 

produce accurate electron density that can be used to build unknown protein structure 

with atom model. 

 

2.3.2 Phase obtaining from heavy atom 

For many proteins, there are no homologous structures available from protein data 

bank.  To determinate these protein crystal structures, the phases are obtained from 

heavy atom binding protein crystals. There are two ways to obtain heavy atom 

derived protein crystals. One way is to incorporate the heavy atom into the protein 

from heavy atom derived amino acids, and the most popular amino acid is 

selenomethioine. The other way is to soak the heavy atoms to native protein crystals 

with heavy ions or ionic complex of Hg, Samarium and Pt in crystallization solution 

(Taylor, 2003). One or more heavy atoms bind to protein for phase determination and 

the heavy atom must not change crystal packing or conformation of protein. 

A powerful method is the multi-wavelength anomalous diffraction (MAD) 

(Hendrickson et al. 1990). The multi-wavelength radiation dataset is collected using 

same crystal or different crystals that contain sufficient phasing information at 

different wavelengths (Normally, data was collected at peak, inflection, remote 

wavelengths) from heavy atom derivatives. The information can be used to accurately 

locate the positions of heavy atoms, and give the phases for the protein structure 

determination.   
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The Fourier sum called Patterson function P (u, v, w) is the most powerful tool in 

determining the heavy-atom coordinates, which is calculating electron density ρ (x, y, 

z) from structure factor (Rhodes, 2006; Rius, 2011). The P (u, v, w) coordinates sites 

in Patterson map are used same way as coordinates (x, y, z) in an electron density 

map. The Patterson function does not contain the phasing information and the 

amplitude of each term is the square of one structure factor as follows: 

P (u, v, w) = 1/v ΣhΣkΣl F2
hkl𝑒!!!!   !!!!"!!"  

Although the Patterson function is without phases, the Patterson map P (u, v, w) can 

be calculated from location of heavy atoms in the unit cell from high density (peaks). 

The phases obtained by calculating structure factor form inverted hand or original 

hand and incorrect hand will not provide an interpretable map. The program of 

SHELX C/D/E (Grüne 2012; Sheldrick 2007) can extract the phase information from 

MAD and SHELXC analysis of date set resolution and is also prepared three files for 

SHELXD, which determine the heavy atoms locations and find the correlation 

coefficient at the signed anomalous differences for wavelength with highest 

anomalous signal, if the correlation coefficient reaches 40-50%, it indicates a reliable 

solution for MAD, and around 30% may be correct for  single wavelength anomalous 

dispersion (SAD). The SHELXE is mainly for electron density modification. SAD is 

becoming a quick method to determine the protein structure, which is only required to 

collect data at peak wavelength.  
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2.4 Structure model building 

The Phase α (hkl) is obtained from heavy atoms and the electron density map is 

obtained from complete structure factor of amplitude. An atom model of the structure 

is built into the electron density map.  

The Buccaneer software is an automatic program for building atomic model from 

electron density map, even at low resolution around 3.5 angstrom, which connects the 

alpha-carbon positions using a density likelihood function and scores possible 

positions and orientation in the electron density map (Cowtan 2006). A list of amino 

acid oriented group is searched, which provide additional directional information to 

help the process of assembling the sequences into the protein subunit chains.  

Once the initial model is built, the model of protein is needed to tidy up with Coot 

(Emsley et al. 2004). It is a graphic program for model manually building by moving 

the atoms and fragment, changing amino acid residues and contains many tools for 

electron density fitting to improve the model depend on |Fo| – |Fc| and 2|Fo| – |Fc| 

maps. The |Fo| - |Fc| map always shows the atoms within negative contours for 

problem areas and point out to correct location for these atoms. The 2|Fo| – |Fc| map 

is the main map for atoms building within positive contours. After manual adjusts of 

the model, which may result in unrealistic bond length and angles, part of model can 

be regularized with automatic correction of bond lengths and angles with minimal 

movement of residues.  
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2.5 Structure refinement  

To improve the protein structure model and interpret the electron density map 

correctly, the iterative process of structure refinement is an important step for 

adjustment of atom coordinate to refine the model in good agreement with original 

diffraction data. After that the electron density map will be improved, which provides 

clearer and more detailed information to trace the continual density and side chains 

(Rhodes, 2006). 

The least squares is calculated from the structure refinement according to the current 

model |Fcal|, which can be calculated from the current model of the structure factor 

amplitudes and observed amplitudes |Fobs| that forms the original diffraction intensity 

(Rhodes, 2006). In the least squares, atom positions are selected in comparing 

minimize the squares difference between |Fcal| and |Fobs|. The difference between 

observed amplitudes |Fobs| and current model measured amplitudes |Fcal| for reflection 

hkl is (|Fobs| - |Fcal|)hkl , and  the minimize function Φ is as follows: 

Φ = Σhkl Whkl (|Fobs| - |Fcal|)2
hkl 

Where the function Φ is the sum of squares of differences between the observe 

amplitude and the calculated current model amplitude. The weighted Whkl is 

depended on the reliability of the measured intensity.  

During the manual or automatic refinement, the constraints and restraints are used, 

which help to build the current model in agreement with the original intensity. The 

temperature factor (B-factor) measures the atom oscillations around positions in the 

models. In initial refinement, all temperature factors are assigned a starting value, 

however, the overall values is not constrained.  
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The R-factor is a measure of the agreement within structure refinement by calculating 

that the current model structure factor |Fcal| and the observed structure factor 

amplitude |Fobs| from original diffraction intensity (Brünger et al. 1987). It is defined 

by the following: 

Rfactor = 𝚺  | 𝐅!"#   !   !"#$ |
!  |!"#$|

             

Where |Fobs| is structure factor and sum over all measured reflections and current 

model structure factor calculated |Fcal|. 

The R-free is used as an important quality control, which measures how well the 

current model quality from entire data set and improvement in refinement (Brünger 

1992). It is calculated with a randomly select 5- 10% data set, which is not used 

during refinement. The program of Refmac5 within CCp4 is used for refinement, 

which can perform rigid body, restrained and TLS refinement against data. Refmac5 

carried out different likelihood functions during structure refinement.. 

 

2.6 Structure validation   

Validation methods are used to check the protein structure’s quality, and can give the 

suggestions about what the problems the structure has.  

The peptide backbone conformational angles are Φ and Ψ. The Φ is the torsional 

angle alone the N - Ca bond by the atoms C – N – Ca – C and Ψ is the torsional angle 

alone the Ca – C bond by the atoms N – Ca – C – N (Rhodes, 2006).  

The final model shows each amino acid with the pair of angles Φ and Ψ being 

restricted by steric repulsion. The allowed pairs of values are described on a 

Ramachandran plot (Ho et al. 2005). The conformational angles Φ and Ψ on either 

side represents the alpha carbon of one residue on the point (Φ, Ψ) in the diagram and 
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pink polygons represents enclose backbone conformation angle no steric repulsion, 

while yellow polygons represent only modest repulsion. The letters of α and β on the 

location represents conformational angles of residues in the structure with α helix and 

β sheet (Lovell et al. 2003). Ramachandran plots are very helpful in spotting 

conformationally unrealistic regions of the structure and it will show slight 

differences in the shapes of allowed regions from different sources (Ho et al. 2005; 

Lovell et al. 2003).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Ramachandran plot of structure of the denatured and refolded SBV NP. The most of 

amino acids located in favourite area. 
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Molprobity is a structure-validation web server in checking model quality. It provides 

detailed by optimized hydrogen placement and all atom contact analysis of steric 

problem within the structure and also update dihedral angle diagnostics (Chen et al. 

2010; Davis et al. 2007). This program can rank the protein structure models against 

similar resolution models available in the protein data bank, which gives the ideas 

how much effort is required to obtain the final model. 
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Chapter 3 

Crystal structure of lipopolysaccharide 

transport membrane protein complex LptD/E 
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3.1 Introduction 

One hundred and twenty five years ago, Christian Gram developed a staining method, 

which could differentiate between two major classes of bacteria, the Gram negatives 

and Gram positives (Gram 1884). Microbiologists use this classification widely, 

which is based on the composition and structure of the cellular envelope of bacteria 

(Beveridge et al. 1983; Davies et al. 1983).  

During the 1940s-1970s, much progress was made in determining the composition, 

structure and function of the different types of the bacterial envelopes. Many 

scientists have focused on the glycolipid of the outer membrane (OM) of Gram-

negative bacteria since 1920s. The OM of Gram-negative bacteria is an asymmetric 

lipid bilayer in which the inner leaflet is composed of phospholipid and the outer 

leaflet is composed of the glycolipid, lipopolysaccharide (LPS) (Raetz et al. 2002; 

Ruiz et al. 2009; Nikaido 2003). 

3.1.1 Gram-negative and Gram-positive bacteria staining 

Gram-negative bacteria are referred to as Gram-negative because they do not retain 

the crystal violet stain, used in the Gram staining reaction, resulting in red or pink 

bacteria (Gram 1884). The Gram-negative bacteria have thin peptidoglycan layer of 

cell wall, which is sandwiched between an outer membrane and plasma membrane 

(Figure 3.1 A).  In Gram staining the outer lipid layer of Gram-negative bacteria is 

dissolved by ethanol, thus increasing the permeability of the cell wall, and the crystal 

violet is easily decolorized by ethanol (Gram-negative bacteria cell wall 

peptidoglycan content is much lower compared with its lipid content). Subsequently a 

counterstain with the dye safranin will turn Gram-negative bacteria red or pink 
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(Figure 3.1 B) (Gram 1884). This test provides a way to distinguish between two 

different bacterial cell wall structures. Due to Gram-positive bacteria having a thicker 

peptidoglycan layer in bacteria cell wall (Figure 3.1 C), the ethanol in the stain is 

unable to permeate through to decolorize the crystal violet dye. As a result the Gram-

positive bacteria retain the crystal violet stain. Although Gram-positive bacteria will 

also be counterstained, it will not be observed. (Figure 3.1 D) (Gram 1884). 

Both Gram-negative and Gram-positive bacteria possess a cell wall, which is 

composed of peptidoglycans, surrounds the plasma membrane and acts to protect the 

cell against increased water pressure. Peptidoglycan is a polymer composed of N-

acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) and short amino acid 

chains. Alternative NAG and NAM molecules form carbohydrate backbones that are 

cross-linked by polypeptides (Vollmer et al. 2008). Although the structure of 

polypeptides will vary in different polypeptide cross bridges, the tetrapeptide always 

composes four amino acids attached to NAMs (Figure 3.1 E). 
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Figure 3.1 Gram-negative and Gram-positive cell wall and staining. A. Gram-negative bacteria cell 

wall. B. Gram-negative bacteria that stained in pink colour. C. Gram-positive bacteria cell wall. D. 

Gram-positive bacteria that stained in darker violet colour. E. The structure of peptidoglycan in cell 

wall.  
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3.1.2 Structure of Gram-negative bacterial cell envelope 

Gram-negative bacteria, such as Pseudomonas and Escherichia coli, possess cell 

walls consisting of three layers, namely, the OM, the peptidoglycan, and the plasma 

membrane or IM (Figure 3.1 A). The peptidoglycan is much thinner than those in 

Gram-positive bacteria, but remains strong and elastic to protect the bacteria against 

extreme environmental conditions. Unlike the IM, the OM is an asymmetric lipid 

bilayer, which consists of phospholipid in the inner leaflet and the outer leaflet is 

composed of LPS (Raetz et al. 2002; Ruiz et al. 2009).  The space between the outer 

membrane and the inner membrane is termed periplasmic space. 

3.1.2.1 The outer membrane of Gram-negative bacteria 

The OM functions as a barrier protecting bacteria from antibiotics and prevents 

diffusion of small hydrophobic molecules into the bacterial cell (Nikaido 2003). Like 

other biological membranes, the OM also has a lipid bilayer structure, but not a 

phospholipid bilayer. The distinct feature of the OM in Gram-negative bacteria is that 

it possesses an asymmetry arrangement with a layer of glycolipid, primarily LPS, on 

the outer leaflet and phospholipids in inner leaflet (Raetz et al. 2002; Ruiz et al. 

2009). The protein embedded in the OM can be normally divided into two classes: 

lipoproteins and β-barrel proteins. Lipoproteins contain lipid moieties that are 

attached to amino terminal cysteine residues. These lipid moieties are thought to 

embed lipoproteins (rather than transmembrane) in the inner leaflet of OM (Sankaran 

et al. 1994). In contrast, nearly all OM transmembrane proteins are β-sheet proteins, 

whose conformations are wrapped into barrels (with a few exceptions, such as Wza, 

which uses helix domain to cross outer membrane) (Dong et al. 2006). Several outer 

membrane proteins (OMPs), such as the porins, OmpF and OmpC, function to allow 

the passive diffusion of small molecules across the OM (Silhavy et al. 2010). Crystal 
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structures show that porin proteins are transmembrane β barrel proteins and all of 

them exist as trimers (Cowan et al. 1992). For examples, LamB porins have 18 

transmembrane β strands (Schirmer et al. 1995) and PhoE has16 transmembrane β 

strands (Cowan et al. 1992). Both of these protein structures exist as trimers and are 

involved in the diffusion of specific small molecules (maltose or maltodextrins) and 

anions (phosphate) respectively, across the OM.  

3.1.2.2 The periplasm  

The cellular compartment between the OM and IM of Gram-negative bacteria is 

called the periplasm or periplasmic space. The periplasm contains many proteins that 

function in nutrient acquisition, which is responsible for the transport of nutrition 

materials into the cell (Silhavy et al. 2010). 

3.1.2.3 The inner membrane 

The IM is composed of a phospholipid bilayer. The main phospholipids are 

phosphatidylethanolamine, phosphatidyl glycerol and lesser amounts of cardiolipin in 

E. coli. The phospholipids are suggested to maintain the permeability barrier of 

membrane and serve as supporting matrix for membrane proteins (Silhavy et al. 2010). 

The IM cytoplasmic surface is the site of biosynthesis of all membrane lipids and 

proteins (Raetz et al. 1990). Most of the membrane proteins of the IM function in 

energy production, lipid biosynthesis and protein secretion (Silhavy et al. 2010). 

Inner membrane proteins (IMPs) are synthesized on ribosomes where the signal 

recognition particle (SRP) binds to newly synthesized peptide on the N-terminal 

signal sequence, which then delivers them to the Sec machinery. IMPs are directly 

inserted into the IM (Figure 1.2) (Von Heijne 1990; Hagan et al. 2011). Trigger factor 

(TF) is a ribosome-associate molecular chaperone in bacteria, which assists in newly 
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synthesized protein folding and prevents premature protein secretion through the SRP 

pathway (Hoffmann et al. 2010).  

OMPs are also ribosome-synthesized in the cytoplasm but these bind to the 

cytoplasmic chaperone (SecB) before being transferred to the Sec machinery (Figure 

1.2). After they pass through the Sec channel, their signal sequences are removed by 

the signal peptidase (Hagan et al. 2011). OMPs in unfolded form are thought to be 

protected by periplasmic chaperones, primarily SurA, and then transported and 

inserted into the OM by the β-barrel assembly machinery Bam ABCDE (Figure 3.2 

B). Periplasmic chaperones, SurA, Skp and DegP are involved in protection and 

transport of the unfolded OMPs (Kim et al. 2007; Vertommen et al. 2009; Hagan et 

al. 2011) .  

Lipoproteins with N-terminal signal sequence are also synthesized on ribosomes and 

transported by Sec machinery. However, the signal sequence is cleaved by signal 

peptidase II at the periplasmic face of the IM (Hagan et al. 2011) and lipid motifs are 

added (Figure 3.2 A). Lipoproteins interact with ABC transporter Lol CDE 

(localization of lipoprotein) at the outer leaflet of the IM and are then delivered them 

to the periplasmic chaperon LolA. LolA transports them to lipoprotein LolB on the 

OM for assembly (Okuda et al. 2011; Tokuda 2009; Hagan et al. 2011) (Figure 3.2 

A).  
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Figure 3.2 Cell envelope proteins synthesize pathway. All proteins (OM, Periplasm, IM) are 

synthesized on ribosomes in the cytoplasm and delivered to the Sec machinery. IMPs are co-translated 

with SRP and are inserted into the IM. Periplasm proteins (soluble) pass the Sec channel and are folded 

in periplasm compartment. A, Lipoproteins are delivered by Lol machines from the IM to the OM. B, 

The OM β-barrel proteins are inserted to the OM from periplasm by BamABCDE machinery (Figure 

adapted from Hagan et al. 2011) .  
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3.1.3 Structure of LPS and function 

LPS typically consists of three domains: lipid A, core oligosaccharide and O-antigen 

(Figure 3.3). The core oligosaccharide is covalently linked to lipid A, and is divided 

into two parts, inner core and outer core. The inner core is composed of heptose and 

KDO (3-deoxy-D-manno-oct-2-ulosonic acid) and the outer core consists of a 

complex polymer of oligosaccharide which determines the specificity of the LPS. 

KDO is connected to lipid A without any additional saccharides called as Re-LPS, 

while LPS containing the lipid A and core oligosaccharide without O-antigen 

oligosaccharide that is called as Ra-LPS (Raetz et al. 2002). LPS plays an essential 

role in protecting the bacteria from harsh environments and toxic compounds 

including detergent and antibiotics and in limiting entry of hydrophobic molecules. It 

is a major endotoxin of Gram negative bacteria which elicits immune responses via 

toll-like receptor 4 in the host (Ruiz et al. 2009; Bos et al. 2004). LPS’s cell surface 

localization and physicochemical properties make it an important OM barrier and it is 

difficult to develop antibiotics against these organisms because of the presence of 

LPS (Delcour 2009).  
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Figure 3.3 Schematic structure of LPS of salmonella enterica typhimurium LT2 . LPS molecules 

consist of three domains: the core, O-antigen and lipid A. KDO, 3-deoxy-D-manno-oct-2-ulosonic 

acid; Hep, Heptose; Glc, D-glucose; Gal, D-galactose; GlcNac, N-acetylglucosamine. The lipid A 

diameter of high is about 14 Å, long 25 Å and width 5 Å. The O-antigen diameter of linear polymer is 

around 13 Å. 

 

3.1.4 LPS synthesis and assembly pathway 

The lipid A-core segment of LPS is synthesized at the cytoplasmic side of IM and 

then is flipped over the IM by the ATP-binding cassette (ABC) transporter, MsbA 

(Raetz et al. 2002). The O-antigen units are independently synthesized at an alternate 

site in the cytoplasm and then translocated across the IM by the Wzx flippase to the 

periplasm. The O-antigen is polymerized by Wzy with Wzz mediating the 

lengthening of O-antigen. The O-antigen unit and lipid A-core are then ligated by 

WaaL ligase at the periplasmic face of the IM to form mature LPS (Raetz et al. 2002; 

Ruiz et al. 2009; Whitfield, 2010).  
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There are 16 predicted ORFs within the gene cluster (Figure 1.4 A), and all these 

genes in the same transcriptional direction form galf to hisI gene (Shao et al. 2003). It 

has been well established that a hexose-1-phosphate is transferred from nucleotide 

diphospho-linked sugar (typically NDP-glycoses) to an undecaprenol diphosphate 

(Und-PP) acceptor to form an Und-PP linked tetrasaccharide repeat unit. This step is 

initiated by a polyisoprenyl-phosphate hexose-1-phosphate transferase (PHPT) or 

polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferase (PNPT) and 

completed by glycosyltransferase (Whitfield, 2010). The lipid-linked repeat unit is 

then exported across the cytoplasmic membrane through a process involving flippase, 

Wzx flippase to the periplasm. A polymerization reaction is catalyzed by polymerase 

Wzy (blue) which involves in putting the O-antigen units together to form the 

polymers. Finally, a polysaccharide copolymerase protein Wzz (purple) enhances the 

processivity of the polymerization reaction, ensuring that the majority of the glycan 

products fall within a relatively narrow size range or modal chain-length (Figure 3.4 

B) (Raetz et al. 2002; Ruiz et al. 2009; Whitfield, 2010).  
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Figure 3.4 The O-antigen gene cluster of E. coli O128 and assembly in Wzx (RfbX), Wzy (Rfc) 

and Wzz (Rol, Cld) process. A. The O-antigen gene cluster of E. coli O128 biosynthesis. B. (1), A 

hexose-1-phosphate is transferred from nucleotide diphospho-linked sugar (typically NDP-glycoses) to 

an undecaprenol diphosphate (Und-PP) acceptor to form an Und-PP linked tetrasaccharide repeat unit. 

This step is started from a polyisoprenyl-phosphate hexose-1-phosphate transferase (PHPT) or 

polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferase (PNPT) (yellow) and finished 

by glycosyltransferase (red). (2), The lipid-linked repeat unit is then exported across the cytoplasmic 

membrane through flippase, Wzx (green). (3), A polymerization reaction is catalyzed by polymerase 

Wzy (blue) which involves the transfer of growing polymer from its Und-PP carrier to the incoming 

Und-PP-repeat unit. Finally, a polysaccharide copolymerase protein Wzz (purple) controls the length of 

the O-antigen (Figure adapted from Whitfield, 2010).  

Seven proteins (LptA-G) are required for LPS transport from the IM to the OM of the 

cell surface. LptB, LptC, LptF and LptG form an ABC transporter, and these proteins 

are essential for LPS transport (Villa et al. 2013; Sperandeo et al. 2008; Freinkman et 

al. 2012). LptA is a periplasmic protein that mediates LPS transport across the 

periplasm to its final destination, the OM (Sperandeo et al. 2011). LPS is delivered to 

the OM from the IM through a bridge formed by LptC, LptA and the N-terminal 

domain of LptD. The OM proteins LptD and LptE form a stable complex (Freinkman 

Sugar&biosynthesis& Glycosyltransferase& O5an6gen&process&
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et al. 2011; Wu et al. 2006; Chimalakonda et al. 2011; Malojčić et al. 2014), which is 

responsible for LPS assembly at the cell surface (Figure 3.4). Disulphide bonds are 

formed between the N and C-terminal domain of LptD, which have been shown to be 

critical for LPS assembly (Ruiz et al. 2010). 

 

Figure 3.5 LPS assembly pathway. LPS structure shown on the left hand side. Once a mature LPS is 

synthesized, it is extracted from the IM by LptBFGC, and passed to periplasmic chaperone LptA. LPS 

is delivered to the LptD/E complex, which inserts LPS into the outer membrane (Figure adapted from 

Malojčić et al. 2014).  

 

3.1.5 Lipid A and the oligosaccharide core of LPS are flipped across 

the IM  

Lipid A and the oligosaccharide core of LPS are synthesized in the cytoplasm, and are 

transported across the IM by membrane protein MsbA. MsbA gene was first 

identified in 1993 (Karow et al. 1993) and codes a 64-kDa membrane protein. MsbA 

is an essential ATP-binding cassette (ABC) transporter which transfers a variety of 

substrates such as ions, lipids, peptides, metabolites across the cell membrane and 
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also plays a role in multidrug resistance in bacteria (Ward et al. 2007).  

3.1.6 Structure and function of LPS transport proteins 

Lipopolysaccharide transport proteins (LptA –LptG) are involved in transport of LPS 

from the IM to the final destination OM of the cell surface (Figure 1.4). The structures 

of LptA and LptC have been determined, which help us to understand the two 

proteins’ functions in LPS transport (Suits et al. 2008; Tran et al. 2010).  

3.1.6.1 LptA 

LptA is a perisplasmic protein. In E. coli K-12, the precursor protein has 185 residues 

with a molecular weight of 18.6 kDa. LptA protein is processed after the 23 amino 

acid signal peptide. LptA is proposed to act as a periplasmic chaperone for LPS 

translocation across the periplasm (Sperandeo et al. 2007). It has been reported that 

LptA interacts with the IM protein LptC and the N-terminal domain of the OM 

protein LptD to form a continuous bridge between the IM and the OM (Freinkman et 

al. 2012).  

Recently, structures of LptA of E. coli have been determined (Suits et al. 2008). 

When the protein was crystallized without LPS, the LptA protomers are packed in a 

head to tail fashion with two LptA molecules in an asymmetric unit (Figure 3.5 A). 

When LPS or Ra-LPS was used in protein crystallization, four molecules of LptA are 

organized in head-to-tail fashion in a fiber like arrangement (Figure 3.5 B). It is 

unknown whether the structural conformation in the four-molecule-oligomer was 

induced by the interaction between LptA and LPS as no LPS molecule was observed 

in the structure. A possible explanation for this arrangement is that LptA is induced to 

change a conformation for lipid A binding. Although the crystal structure of LptA in 

complex with LPS has not been demonstrated, it is evident that LptA is essential in 
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participating in protein-protein interacts with LptC and LptD and in LPS cellular 

translocation (Suits et al. 2008). 

The LptA has a roll-like structure, composed of 16 antiparallel β-strands with a novel 

fold. The 16 β-strands form two β-sheets, where hydrophobic residues are located in 

the core of the LptA structure.  Using crosslinking experiments, the LptA head to tail 

interaction arrangement has been validated (Okuda et al. 2012). The interaction 

between C-terminal residues of LptC and the N-terminal residues of LptA as well as 

C-terminal residues of LptA interact with the N-terminal domain of LptD form a 

bridge cross the periplasm to transport the LPS from the inner membrane to the outer 

membrane (Figure 3.4). To understand how LptA transports LPS, Okuda performed 

an UV light mediated crosslinking experiment (Okuda et al. 2012). In this experiment 

LptA was mutated by substituting with unnatural amino acid p-benzoylphenylalanine 

which contains photo-cross-linker. Cross-links between LptA and LPS were detected 

upon UV radiation at T32, I36, F95, Y114 and L116.  All these hydrophobic residues 

locate at the inner core of LptA involve in LPS transportation. On the other hand no 

cross-links were detected at the residues that are at outer side of the core. This 

suggests that the LPS is transported along the hydrophobic core of LptA (Okuda et al. 

2012). 
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Figure 3.6 Crystal structure of LptA without LPS (A) and in presence of LPS or Ra-LPS (B) 

during crystallazation. A, Two LptA protomers (cyan, green) in an asymmetric unit, and the 

monomers are packed in head to tail fashion to form a dimer. N for N-terminus and C for C-terminus 

(PDB: 2R19). B, Four LptA protomers in an asymmetric unit. The crystals were obtained in presence 

of LPS or Ra-LPS. The N-terminal residues of LptA interact with adjacent C-terminal residues of β –

strand of LptA to form tetramers (PDB: 2R1A) coloured in red, light pink, yellow, purple, respectively. 

	
  

3.1.6.2 LptF and LptG 

LptF and LptG are inner membrane proteins and each of them has been predicted to 

contain six transmembrane domains in the C-terminus. These proteins are essential to 

the OM biogenesis of Gram-negative bacteria. Deletion of LptF or LptG in bacteria 
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causes cell death (Ruiz et al. 2008).  

3.1.6.3 LptB 

LptB has 241 residues with a molecular weight of 26.7 kDa, which contains an ATP-

binding cassette (ABC), and is believed to power the extraction of LPS from the IM 

to the OM (Okuda et al. 2012). Three of the Lpt proteins form an ABC transporter. 

Membrane proteins LptFG consist of transmembrane domains (TMD), while LptB 

possesses nucleotide binding domain (NBD). Together, they form the LptBFG 

transporter. Interestingly, this transporter does not transport substrate across the inner 

membrane. Instead, the transporter extracts LPS from the periplasmic side of the inner 

membrane, and passes it to another membrane protein LptC (Okuda et al. 2012; 

Narita et al. 2009).  

LptB forms a dimer in solution. The protomeric structure is conserved amongst other 

nucleotide-binding proteins, which consists of ten α-helices and ten β-strands (Figure 

3.6). The structure can be divided into two domains, the RecA-like domain and α-

helical domain with the conserved motifs, Walker A, Walker B, H-loop, Q-loop, D-

loop and Signature motifs (Wang et al., 2014). Energy is required for LPS transport 

from the LptC to LptA. Deletion of LptB results in impaired LPS transport to the OM 

and killing of the bacteria (Sperandeo et al. 2007). Mutations of the ATP binding 

residues and catalytic residues result in the cell death of E. coli. 
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Figure 3.7 Protomer structure of LptB with ATP binding. LptB consists of ten α-helices and ten β-

strands with typical ATP binding motifs, Walker A, Walker B, H-loop, D-loop, Q-loop and signature 

motifs (PDB: 4QC2). N for N-terminus and C for C-terminus, ATP in yellow white. 

	
  
	
  

3.1.6.4 LptC 

LptC is an essential inner membrane protein, which plays a role in exportation of LPS 

from the IM to the OM. LptC interacts with LptBFG to form a complex (Villa et al. 

2013; Freinkman et al. 2012), but does not affect the ATPase activity of the 

transporter in vitro (Narita et al. 2009). The LptC gene encodes a membrane protein 

of 191 amino acids and a molecular weight of 21.7 kDa. LptC consists of two β-

sheets of seven and eight antiparallel β-strands respectively in opposition to each 
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other (Figure 3.7). The crystal structure of LptC is similar to LptA, although the two 

proteins have low similarity in amino acid sequence. LptC, like LptA, can bind LPS 

in vitro (Tran et al. 2010), and LPS is transported only from LptC to LptA.  

 

 

 

Figure 3.8 Crystal structure of LptC. The structure shows a β-jellyroll fold and consists of 15 

antiparallel β-strands arranged two β-sheets in an opposite direction (PDB: 3MY2). 

 

3.1.7 LptD/E form a complex for LPS insertion 

Outer membrane protein LptD and lipoprotein LptE are responsible for LPS insertion. 

LptD/E can form a stable two-protein complex in vitro (Chimalakonda et al. 2011; 

Freinkman et al. 2011; Wu et al. 2006; Chng et al. 2010).  

LptD has a molecular weight of 87-kDa. It is an essential β-barrel outer membrane 
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protein (OMP), whose function is to assemble LPS into the OM of the cell surface. 

LptD possesses a large periplasmic N-terminal domain (amino acids 25 to 202) and a 

C-terminal transmembrane β-barrel domain (amino acids 203 to 784) (Chng et al. 

2010). There are four cysteine (Cys) residues in LptD, two (Cys31, Cys173) in the N-

terminal domain and two (Cys726, Cys727) in the C-terminal domain. These cysteine 

residues form two non-consecutive disulphide bonds, Cys31 and Cys726 form the 

first disulphide bond, while Cys173 and Cys727 form the second disulphide bond, 

and both of them are connected from the N-terminal residues to the C-terminal 

residues (Figure 3.25). Disulphide bond formation in LptD is essential in transport of 

LPS to the OM; LptD is completely oxidised in vivo (Chng et al. 2012; Ruiz et al. 

2010). LptD is synthesized on ribosomes in the cytoplasm with an N-terminal signal 

peptide, which allows the protein to pass to the Sec machinery (Figure 3.2 B). After 

passing through the Sec channel across the IM, its signal peptides are removed by 

signal peptidase (Hagan et al. 2011). LptD is thought to be protected by periplasmic 

chaperones (primarily SurA) in an unfolded form in periplasm, and is then finally 

transported into the OM by outer membrane protein assembly machinery 

BamABCDE (Figure 3.2 B). Periplasmic chaperones SurA, Skp and DegP are 

involved in transport and folding of outer membrane β-barrel proteins (Vertommen et 

al. 2009; Kim et al. 2007; Silhavy et al. 2010). 

LptD is unable to fold properly without the interaction with the lipoprotein LptE. The 

C-terminal domain of LptD interacts tightly with LptE, and the two proteins form a 

stable 1:1 complex in vitro. LptD can protect LptE from proteolytic digestion in vivo 

(Wu et al. 2006; Chimalakonda et al. 2011; Chng et al. 2010). LptD/E complex forms 

a unique ‘barrel and plug’ architecture for LPS transport and insertion (Freinkman et 

al. 2011; Grabowicz et al. 2013). Deletion of LptD/E resulted in defect of the OM 
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biogenesis and caused the cell death of E. coli (Wu et al. 2006).  

Although LPS biosynthetic pathway is well understood, how LPS transports from the 

IM to the OM and assembly at the cell surface still remains unknown. Lpt proteins are 

essential for OM biogenesis in most pathogenic Gram-negative bacteria, including 

Salmonellae and Pseudomonades. LptD in pseudomonades has been reported to be an 

ideal target for the development of novel peptidomimetic antibiotics against multi-

drug resistant bacteria (Srinivas et al. 2010). Multi-drug resistant Gram-negative 

bacteria, such as E. coli, pose a global health threat. This limits the effectiveness of 

existing antibiotics in controlling infections. The World Health Organization (WHO) 

recently warned that antibiotic-resistance in bacteria becomes a global health problem 

(World Health Organization 2014). 

The unique characteristic of Gram-negative bacteria carrying a LPS outer membrane 

endows these bacteria with antibiotic resistant properties. The fact that LptD and LptE 

are essential mediators for the biogenesis of this LPS outer membrane in most 

pathogenic Gram-negative bacteria and that they are highly conserved across species 

(Figure 3.8, 3.9) made us particularly interested in these two proteins. 
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Figure 3.9 Amino acid sequence alignment of LptD. The C-terminal domain of LptD forms a 26-

stranded β barrel which is highly conserved in Salmxx0, Salmonella Typhimurium, accession 

GI25008880; Ecolxx1, E. coli, accession GI 2507089; Vibcxx3, Vibrio cholera, accession 

GI67477419; Pseaxx4, Pseudomonas aeruginosa, accession GI25008883; Neimxx2: Neisseria 

meningitides, accession GI134034978. The dot lines represents theses LptD amino acid sequences lack 

the residues, The N-terminal of LptD from the Pseudomonas strain is much longer than other species. 
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Figure 3.10 Amino acid sequence alignment of LptE.  The C-terminal residues of LptE from 

different bacteria are highly variable. Although the sequence identity of LptE is low, secondary and 

tertiary structure is conserved. Salmxx0, Salmonella Typhimurium, accession GI81523600; Ecolix1, E. 

coli, accession GI259491800; Vibrcx3, Vibrio cholera, accession GI469684423; Neismx2, Neisseria 

bacilliformis, accession GI389606221; Pseudae, Pseudomonas aeruginosa, GI15599183. The dot lines 

represents these amino acid are absent in these proteins . 
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3.2 Aims 

The LptD/E complex represents a particularly attractive drug target, because drug 

candidates would not need to penetrate the bacterial cell wall. The development of 

such new antibiotics has been hampered by not having a detailed model of the LptD/E 

complex. This study aims to determine the crystal structure of the LptD/E through 

combined approaches including cloning, protein expression, purification, 

crystallization the LptD/E complex, and using X-ray diffraction.  
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3.3 Results 

3.3.1 Crystallization of LptD/E 

The LptD/E protein complex was successfully co-expressed in E. coli subtype C43 

(DE3) cells (Avidis) and was purified with nickel-nitrilotriacetate affinity resin (Ni-

NTA, Qiagen) (Figure 3. 10 B). The protein was further purified using size exclusion 

chromatography (GE Healthcare) (Figure 3.10 A). The crystal trails were set up with 

different detergents and no crystals were obtained.  

3.3.1.1 Limited proteolysis of LptD/E 

In general, an average of only 30% of purified protein can form crystals and amongst 

which only 15% form high quality crystals that can be used for crystal structure 

determination (A. Dong et al. 2007; Wernimont et al. 2009). Low crystallization 

efficiency is the bottleneck in the field of protein crystallographic study. Dong et al. 

reported that adding small amounts of protease to crystallization trials to remove 

disordered regions of protein could increase chances of forming good quality crystals 

for diffraction (A. Dong et al. 2007).  

In Wernimont and Edwards’ study, 270 purified proteins failed to produce crystals or 

high quality crystals for structural determination. After proteolysis, 34 produced 

sufficient quality crystals with an average 1.8 angstrom diffraction resolution 

(Wernimont et al. 2009). Proteinases chymotrypsin and trypsin are the most 

successful proteinases used for crystallization. Among the 34 crystal structures, 12 

structures were determined by using trypsin protease, 14 structures were solved by 

using chymotrypsin and 5 structures were solved by using V8 protease (Wernimont et 

al. 2009). Proteolysis has been proven to be a successful method to obtain crystal 

structures.  Therefore, I decided to use proteases to treat the purified LptD/E protein 
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in an attempt to obtain LptD/E complex crystals. 

The most stable LptD/E fragment was obtained by using α-Chymotrypsin (Sigma-

Aldrich) at ratio 1:100 for 180 minutes. Subsequently a large scale of LptD/E protein 

preparation was mixed with α-Chymotrypsin at ratio 1:100 for 180 minutes. After 

limited proteolysis, the protein was further purified using size exclusion 

chromatography (Figure 3. 10 B). The main peak is the LptD/E complex. The 

corresponding fractions were pooled and concentrated to 8 mg ml-1 for crystallization. 

Protein concentration was determined by measuring the absorbance at 280 nm using a 

Nanodrop (Thermo Scientific).  

The resulting LptD/E proteins were confirmed by SDS-PAGE and mass spectrometry 

(University of St Andrews), which revealed that the N-terminal domain residues 25–

211 of LptD (Figure 3. 10 C) and the C-terminal residues 170–194 of LptE were 

removed by α-chymotrypsin. 
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Figure 3.11 LptD/E proteolysis, purification and mass spectrometry. A, Gel-filtration of LptD/E. 

The main peak represents the stable LptD/E complex after proteolysis. B, Limited protease digestion of 

the LptD/E complex was carried out for 180 minutes at room temperature using a-chymotrypsin. The 

N-terminal domain residues 25–211 of LptD and C-terminal residues 170–194 of LptE were removed 

by this protease. Band 1, the oxidized LptD (130 kDa). Band 2, reduced and un-cleaved LptD (87 

kDa). Band 3, cleaved LptD (62 kDa). Band 4, un-cleaved LptE (21.5 kDa). Band 5, cleaved LptE 

(18.7 kDa). This result is according to that of the LptD/E complex of E. coli by trypsin digestion (Chng 

et al. 2010). The crystal was washed in crystallization buffer three times to avoid protein 

contamination.. +, indicates that protein incubated with a-chymotrypsin. -, as control . C, Mass 

spectrometry analysis confirmed that the N-terminal residues 25-211 of LptD was removed. 
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The α-Chymotrypsin resulting LptD/E crystals were obtained and optimized by 

varying the precipitant and then frozen in liquid nitrogen and diffracted to 3.9-

angstrom resolution. The best crystals were obtained in 0.15 M zinc acetate, 0.08 M 

sodium cacodylate pH 6.5 and 16% (w/v) PEG 8000 (Figure 3.11) 

	
  
 

 

 

 

 

 

 

 

 

Figure 3.12 Crystal of LptD/E and X-ray diffraction pattern.  The left image is protein crystal of 

LptD/E mounted with 0.2 µm litho-loops (Molecular Dimensions), and the right image is the crystal 

diffracted to 3.9 angstrom resolution using in-house x-ray source. 
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3.3.2 Crystallization of selenomethionine labeled LptD/E 

As there is no LptD structure available, LptD/E complex structure could not be 

determined by molecular replacement. Heavy atom soaking experiments were 

attempted but they destroyed the crystals. I then decided to make selenomethionine 

(SeMet) labeled LptD/E protein. SeMet-labeled protein can be expressed by 

substituting methionine with selenomethionine (Bakke et al. 2010; Boles et al. 1991). 

The SeMet labelled crystals can be used to determine the protein structure using 

single or multi wavelength anomalous dispersion (MAD) (Hendrickson, Horton, and 

LeMaster 1990; Hendrickson 1991).  

The purified SeMet labeled LptD/E fractions were collected, and concentrated to 7 

mg ml-1. The crystallization trials were set up using both sitting-drop and hanging 

drop vapour diffusion, based on the native crystallization conditions as mentioned 

above. The SeMet-LptD/E complex crystals were produced, which showed better 

quality than its native crystals. Crystals were further optimized to attain higher 

resolution. The best crystallization condition is 0.15 M zinc acetate, 0.08 M sodium 

cacodylate pH 6.2 and 14% (w/v) PEG 8000 (Sigma-Aldrich). All the crystals were 

harvested after 16 days and cryoprotected by supplementing the crystallization 

solution with 20% glycerol in the crystal well before being flash frozen in liquid 

nitrogen. The SeMet LptD/E complex crystals were screened in house and were 

diffracted to 3.2-3.6 Angstrom (Figure 3.12). 
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Figure 3.13 Crystal of SeMet labelled LptD/E and X-ray diffraction pattern in house.  The left 

image is protein crystal of SeMet labeled LptD/E. The crystal is thick and shines which was mounted 

with 0.3 µm litho-loops (Molecular Dimensions). The right image is the crystal diffracted to 3.2 

angstrom resolution in house. 
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3.3.2.1 Data collection of selenomethionine labeled LptD/E 

The MAD datasets were collected at Diamond Light Source, UK with a 2.86-

angstrom resolution (Figure 3. 13).  

 

 

 

 

 

 

Figure 3.14 X-ray diffraction pattern. The data were collected at Diamond Light Source, UK and the 

diffractions were isotropic. A, Image was collected at 0 degrees to 2.8 Å. B, Diffraction image 

collected at 90 degrees to 3.2 Å. 

 

The MAD collection strategies were described as in Chapter 1.1.5.6. The crystals 

belong to space group I2 with unit-cell dimensions: a = 173.430 Å, b = 76.082 Å, c = 

213.596 Å, α = γ = 90° and β = 111.519°. The data collection statistics are listed 

below in table 1.1. 
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Table 1.1 SeMet of LptD/E data collection statistics. Values in parentheses are represents for the 

highest-resolution shell. RMSD, root mean square deviation. Rfactor= Σ || Fobs| - | Fcal||/ Σ |Fobs|, where 

Fobs and Fcal are observed all reflection measured and calculated currently model as structure factors, 

respectively. Rfree is calculated using 5% of total reflections, which is randomly selected not used in 

refinement. 

Data collection Peak Low 

remote 

High 

remote 

Inflection 
Wavelength (Å) 0.9784 0.9818 0.9775 0.9788 
Resolution (Å) 43.92-3.00 43.90-3.00 43.94-3.00 43.95-3.00 

 

Space group I2 I2 I2 I2 
Cell dimensions            
(Å/) 

a =173.430       
b= 76.1          
c= 213.6         

α = γ = 90°     
β=111.519° 

a = 173.430    
b = 76.0        
c= 213.7       

α= γ = 90°     
β=111.519° 

a = 173.430    
b = 76.3          
c = 213.6 

α = γ = 90°     
β = 111.6° 

a = 173.430    
b= 76.082        
c = 213.596  

α = γ = 90°      
β = 111.519° 

Unique 

reflections 

52322 (4472) 52295 

(4473) 

52427 

4474) 

52430 

(4476) 
I/σ (I) 15.4 (1.8) 14.7 (1.9)  15.6 (2.0)  17.7 (2.5) 
Anomalous 
completeness (%) 

99.9 (100) 100 (100) 100 (100)  100 (100) 

Anomalous 
redundancy 

15.9 (16.3) 16.1 (16.3) 16.0 (16.3) 16.0 (16.3) 

Refinement   
Resolution  43.92-2.86 

(2.96-2.86) 

 

 

  

() 

Rfactor / Rfree  0.27/0.31 
Ligand atoms  12 
Solvent atoms  10 
R.M.S.D. 

deviations 

  
Bond (Å) / Angle 

(°) 

 0.009/1.36 
B-factors (Å2)   
Protein 

 

 110.5 
Ligand  100.0 
Solvent  102.1 
PDB code   4N4R 
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3.3.3 Structure determination of LptD/E 

All data were processed using XDS (Kabsch 2010). Unmerged data were used to 

determine the phases problem using SHELX suite (Sheldrick 2007). The anomalous 

signal was calculated using SHELXC, and four wavelength of data resolution were 

also displayed (Figure 1.13 A). The best correlation coefficient was 33.6 using 

SHELXD, indicating that initial phases were an unreliable solution for the structure. 

Based on the SHELXD manual, the best correlation coefficient should be over 40% 

for a reliable solution (Figure 1.13 B). The figure of the occupancy of 44 Se sites did 

not show a clear solution (Figure 1.13 C) as well. The separation of the contrast and 

connectivity of the maps from the SHELXE is small between the original and the 

inverted hands, suggesting that phases were not determined (Figure 1.13 D).  
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Figure 3.15 The first trial of determination of LptD/E structure using SHELX. A, Analysis of the 

data set using SHELXC, <d"/sig> is means of anomalous signal for peak wavelength as a function of 

resolution. B, The correlation coefficient (CC_ all, CC_ weak) was about 33.6% by SHELXD.  C, The 

heavy atoms of Se were detected using SHELXD. D, Electron density maps were modified by 

SHELXE. 

 

Despite that no solution was obtained, we tried to build the model automatically using 

the program Buccaneer (Cowtan 2006) with the phases obtained from the SHELX. As 

expected, after 100 building cycles, the initial model was not successfully built with 

an Rfree of 0.5017 and overall figure of merit of 0.7439. The structure built by 

Buccaneer was checked using Rasmol (Goodsell 2005), which did not show a 

predominantly secondary structure (Figure 3.15 A).	
   

 

 

Figure 3.16 The initial model of LptD/E. A, The lptD/E model was built by 100 cycles of Buccaneer. 

Rasmol was used to check the structure. B, The LptD/E complex structure was built using Buccaneer 

for 5 cycles. 
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In order to enhance the anomalous signal, we combined the MAD datasets from 4 

different crystals using the Aimless program from CCP4 (Winn et al. 2011). The 

combined peak, inflection, high remote and low remote data were used for the 

structural determination.  

The model was built in 5 cycles using Buccaneer. The structure was checked using 

Rasmol (Goodsell 2005) (Figure 3.15 B). The	
   LptD/E	
   complex	
   was	
   built	
   using	
  

Buccaneer	
   for	
  100	
  cycles.	
  Although	
   the	
   structure	
  was	
  not	
   completely	
  built,	
   the	
  

model	
   of	
   second	
   structure	
   was	
   observed	
   using	
   program	
   PyMOL	
   (Figure	
   3.16)	
  

(DeLano	
  2002). 

 

 

 

 

 

 

 

Figure 3.17 Crystal structure of LptD/E. The LptD/E structure was built automatically using 

Buccaneer for 100 cycles. 

The structure was determined by AutoSharp (Vonrhein et al. 2007). The model was 

partially built by Buccaneer (Cowtan 2006) and finished using manual model building 

in Coot (Emsley and Cowtan 2004). The structure was refined with REFMAC5 

(Murshudov et al. 2011). 
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3.3.4 The crystal structure of LptD/E complex 

The crystal structure of LptD contains the residues from 226 to 786, which included 

26 anti-parallel β-barrel strands, and 13 extracellular loops (Lp1 to Lp13). LptE 

consist of residues 19 to 169, which formed 2 alpha and 4 parallel β-strands  (Figure 

3.18, 3.19). LptD forms β-barrel with dimensions approximately 70 Å in length, 50 Å 

in width and 50 Å in height (Figure 3.18), while LptE forms a roll like structure with 

three quarters of it inserted into LptD and the remaining quarter extended into the 

periplasm (Figure 3.19 C, D). The LptD barrel is enclosed by strands β1 and β26. The 

N terminal domain is located in the periplasm (Chng et al. 2010), while the C-

terminal residues are covered inside the LptD barrel on the periplasmic. The lipid 

modified N-terminus of LptE is located in a perfect positi on for insertion into the OM 

(Figure 3.18). 

 

 

 

 

 

 

 

 

Figure 3.18 Crystal structure of LptD/E complex. The LptD barrel containing 26 anti-parallel 

strands and 13 extracellular loops, shown in rainbow colour, Lp4 and Lp8 are coloured in dark. The N 

terminus in blue, the C terminus in red, and LptE in purple. Disordered parts are represented as dashed 
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lines. 

 

Figure 3.19 Top and bottom view of the LptD/E complex structure. The left image is top view of 

the structure. Extracellular loops Lp4 and Lp8 are located in the interior of the barrel, while other loops 

are at the surface of the barrel pore. The right image is bottom view the structure of LptD/E complex. 

 

 

N"terminus++

Lp4+
Lp8+

α1+

α2+

N"terminus+

N"terminus++

C"terminus++

N"terminus++

C"terminus++

α1+

Lp4+

α2+

50+Å++

70+Å++

A"

B"



	
   88	
  

There are aromatic residues located on the outer sidewall of the LptD barrel, which 

play a role in helping the barrel to insert into the outer membrane (Figure 3.19 A, B). 

The previously reported largest single outer membrane usher protein barrels, PapC 

and FimD (Remaut et al. 2008; Phan et al. 2011), are responsible for translocation of 

P pilus and type 1 pili subunits respectively. They comprise 24 anti-parallel β-strands 

and the barrels are completely blocked by a plug formed through the middle domain 

of PapC or FimD (Remaut et al. 2008; Phan et al. 2011). In contrast, LptD forms a 26-

stranded β barrel and the “plug” is from another protein LptE. To our knowledge, 

LptD is the largest single bacterial outer membrane β-barrel protein reported to date, 

and also the only barrel structure that uses another protein as a “plug” (Chng et al. 

2010; Grabowicz et al. 2013; Fairman et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 From side view structure of the LptD barrel and LptD/E complex. A, B, Figure A 

rotates 180° along the y axis to Figure B, the aromatic residues located in the barrel outer wall are 

shown as sticks. C, D, Figure C rotates 180° along the y axis to Figure D. The LptD/E complex in the 

outer membrane. E, OM and P represent extracellular space, the outer membrane and periplasm, 

respectively (Figure adapted from H. Dong et al. 2014). 
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To determine whether S. typhimurium LptE had undergone any changes in its 

structural conformational in its structure upon LptD/E complex formation, the LptE 

structure of S. typhimurium was superimposed and compared with four available LptE 

structures (X-ray crystal and NMR) in protein data bank (PDB). It is remarkable that 

the LptE was strikingly superimposable with the available structures (2R76, 3BF2, 

4KWY and 2JXP), even though the sequence identities are as low as 13%. The 

obvious structural differences between LptE S. typhimurium and other LptEs were 

observed in the loops (Figure 1.22). The structure of LptE located inside LptD 

indicated that it play an essential role in LptD’s folding and assembly. We predict that 

most of the LptD/E complexes of Gram-negative bacteria possess a similar structure 

to that of the S. typhimurium protein. Therefore, the structure of the S. typhimurium 

LptD/E translocon may provide a common model for studying LPS translocation for 

most Gram-negative bacteria.        
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Figure 3.21	
   Crystal structure of LptE from S. typhimurium (purple) superimposed with other 

homologues. The S. typhimurium LptE structure from the LptD/E complex is very similar to other 

structures of LptE. A, the cartoon representation of the LptE structure superimpose with the LptE from 

Shewanella oneidensis (rmsd of 1.68 over 131 Cα). LptE of S. oneidensis (2R76) is shown in cyan. B, 

LptE superimposition with LptE of C. crescentus CB15 (4KWY) coloured in blue with r.m.s.d. of 

3.046 over 115 Cα. C, LptE superimposition with LptE of N. europaea (2JXP), coloured in yellow with 

r.m.s.d. of 2.3177 over 128 Cα. D, LptE superimposition with LptE of N. meningitidis (3BF2) coloured 

in orange with root-mean-square deviation (RMSD) of 1.6533 over 115 Cα (Figure adapted from H. 

Dong et al. 2014). 
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3.3.5 Extensive interaction between LptD and LptE 

The β-strands in LptD are linked by 13 extracellular loops (Lp1 to Lp13) and most of 

the loops are located at the surface of the structure and these loops on the extracellular 

side are longer than the loops on the periplasmic face (Figure 3.17). It is noteworthy 

that Lp4 forms helix α1 and Lp8 forms helix α2 located in the interior of the barrel. 

The Lp4 located between strands β7 and β8, and another is Lp8 located between 

strands β15 and β16 (Figure 3.17- 3.18). The two loops are made from residues V334-

Y354 and V519-S556 respectively (Figure 3.18). The LptD/E complex structure 

indicates that Lp4 and Lp8 play an important role in LptD and LptE interaction.  

The structure is consistent with a previous report that LptD/E from E. coli formed a 

very stable 1:1 complex (Wu et al. 2006; Chimalakonda et al. 2011; Chng et al. 2010), 

even under SDS-PAGE conditions. LptE is essential for the overexpression of LptD 

and LptD can protect LptE from proteolytic digestion in vivo (Chimalakonda et al. 

2011; Chng et al. 2010; Freinkman et al. 2010). LptE is mainly located inside the 

barrel LptD and interacts extensively. The surface area of monomeric of LptE is 

9860.8 Å2, but the interface of LptD/E complex is 3195.4 Å2, suggesting that almost 

one-third of the LptE is involved in interacting with LptD to stabilize the β-barrel. 

 It is worth noting that a large part of the A87-T95 region of LptE interacts with 

residues T351 andD352 on Lp4 and Y680 of LptD. The loop residues A87-T95 of 

LptE stabilize the LptD barrel by interaction with C-terminal residues T771-M786 of 

LptD (Figure 3.21 A). Furthermore, the LptD/E interactions were enhanced by 

hydrophobic interaction between residues W21-L23 of LptE with the outer surface of 

the LptD barrel. The side chain R497 of LptD interacted with residue W21, while 

residues L23 and side chains of F495 and W444 of LptD form sandwiches 
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respectively (Figure 3.21 B). LptE was anchored to LptD by a zinc-binding site, 

which consists of two LptE residues, H22 and S25 and two LptD residues, E496 and 

D498. The zinc ion was confirmed through crystal fluorescence scanning during data 

collection at Diamond Light Source, UK. The extensive interaction between LptD and 

LptE, especially the two interior loops Lp4 and Lp8, and the C-terminal residues of 

LptD, indicate that LptE plays an essential role in stabilizing and assembling the 

largest β-barrel of LptD reported to date (H. Dong et al. 2014). 

 

 

Figure 3.22 LptE interaction with LptD to stabilize the β-barrel. LptE in purple and LptD in 

rainbow according to the structure of LptD/E described above. A, LptE interacts with Y680, and 

residues on the Lp4, and C-terminal residues T771-M786 of LptD. B, LptE residues W21-L23 interact 

with hydrophobic residues at the outer surface of LptD barrel, and zinc ion co-ordinates LptD and LptE 

interaction (Figure adapted from H. Dong et al. 2014). 
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3.3.6 Mutagenesis of LptE 

In order to investigate further the role of LptE in LptD/E complex formation, single 

alanine or glycine amino acid substitution and deletion mutations of lptE were 

generated. Depletion of lptE in chromosome causes death of E. coli cells. Introduction 

of pBAD plasmid containing LptE with the addition of L-arabinose as a inducer has 

shown to rescue the lptE form depleted E. coli cells (AM689) (Sperandeo et al. 2008). 

Similarly introducing plasmid containing lptD into the depleted E. coli ltpD cells 

(AM661) also prevented cell death (Sperandeo et al. 2008).  

To confirm whether lptE and lptD from salmonella Typhimurium can replace the 

function of E. coli lptE and lptD in the depleted strains, we transformed individual 

plasmid containing the salmonella Typhimurium lptE or lptD gene into the E. coli 

lptE depleted strain AM689 or lptD depleted strain AM661 respectively. The 

transformed strain exhibited similar growth to the wild type E. coli cells (data not 

shown), suggesting that lptE and lptD from salmonella Typhimurium can replace the 

function of E. coli proteins.  

The mutants with deletions LptE (ΔW21-L23) and LptE (ΔA87-T95) in the LptE 

depleted strain AM689 and LptD (ΔT771-M786) in the LptD depleted strain AM661 

demonstrated greatly impaired cell growth of E. coli in LB medium supplemented 

with 0.5 % SDS and 1mM EDTA (Figure 3.22 A), suggesting that the residues W21-

L23 and A87-T95 of LptE and residues T771-M786 of LptD play an important role 

for LptD/E interactions.  In contrast, LptE (ΔT170-N196) does not slow the cell 

growth (Figure 3.22 A), suggesting that LptE residues T170-N196 is not involved in 

the interaction with LptD. LPS is constantly transported to the outer membrane to 

protect the bacterial cell membrane integrity from being compromised. SDS was used 
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as a detergent in the functional assay, which could potentially break lipid membrane 

to enter the bacterial cell. EDTA was used to decrease divalent cations in the OM, 

which is able to help SDS to enter into the bacteria. These results suggest the mutants 

may cause poor plugging of LptE into the LptD barrel or poor LptD assembly, which 

result in increasing the outer membrane permeability to SDS.  

We also tested the expression level of the proteins (both wild-type and mutants) in E. 

coli lptD or lptE depleted cells (AM689 and AM661) by western blots. The results 

showed that the protein expression levels of the mutants were at similar levels to the 

wild-type proteins (Figure 3.22 B, C). These results are consistent with that 

previously reported (Chimalakonda et al. 2011; Freinkman, Chng, and Kahne 2011; 

Grabowicz et al. 2013; Ruiz et al. 2005). 

 

 

   

 

Figure 3.23 Deletion mutation of lptE and lptD in depleted strain AM689 and AM661 respectively. 

A, Functional assay on the these mutations greatly impair cell growth in LB medium supplemented 

with 0.5% SDS and 1mM EDTA, with the exception of LptE(ΔT170-N196) which was not involved in 

interaction with LptD. Segments 1-5 are AM689 cell with wild-type (WT) LptE, the empty plasmid 

pACYCDuet-1 as control, LptE (ΔW21-L23), LptE (ΔA87-T95) and LptE (ΔT170-N196) respectively, 

while segments 6-8 are AM661 cell with wild-type lptD, the empty plasmid pACYCDuet-1 and LptD 

(ΔT771-M786). B, Wild-type and differnet mutants were expressed in E. coli lptD or lptE depleted 

cells and detected by anti-His-tag antibody. The western blots results showed that the protein 

expression levels of wild-type LptE and the mutants are comparable on the cell membrane except the 

LptE (ΔT170-N196). Unidentified protein 55 KDa was used in the experiment as a loading control 

(Ruiz et al. 2010), 2- is empty plasmid pACYCDuet-1 as a control.  C, The deletion mutation LptD 

(ΔT771-M786) protein expression level are the same as the wild-type LptD, 7- is empty plasmid 

pACYCDuet-1 as a control.  
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3.3.7 Structure of LptD indicates that lateral opening is required for 

LPS insertion 

LptD forms a 26-stranded β-barrel with a kidney shape. It has a pore with dimensions 

of 70 Å by 50 Å (out side) and 50 Å by 30 Å (inner side) at its widest point (Figure 

3.23 A, B). However, most of the pore of LptD was sealed by the extracellular loops, 

just leaving a hole at one side of approximately 15 Å by 10 Å in diameter. The hole is 

occluded by LptE to close the channel completely (Figure 3.23 A, B).  

The lumen of the LptD barrel is very hydrophilic as are those of Wza and AlgE 

proteins, which transport polysaccharide to the OM (Dong et al. 2006; Whitney et al. 

2011). It is therefore a challenge for LptD/E complex to transport the hydrophobic 

lipid A of the LPS molecule across the hydrophilic lumen in the barrel.  

LptE specifically binds LPS and help with its delivery across the LptD barrel (Chng et 

al. 2010). The highly hydrophobic structure of LptA and LptC were reported to bind 

lipid A of LPS (Suits et al. 2008; Tran et al. 2010; Okuda et al. 2012) and LPS is 

transported along the hydrophobic cores. The N-terminal domain of LptD is predicted 

to have similar structures to that of LptA and LptC. Therefore, the LptC, LptA and the 

N-terminal domain of LptD form a bridge to transport LPS. The N-terminal domain 

transport LPS along the hydrophobic core to the outer membrane. When observed 

from the extracellular face, the β-barrel is twisted in an anticlockwise fashion way to 

the periplasmic side (Figure 3.18). In the structure of LptD, the β1- β4 strands tilt at 

an angle of around 30° to the plane of the membrane, while the angle of tilt of strand 

β20- β26 is about 67° showing that β1 and β26 are separated at the periplasmic side 

(Figure 3.23 C, E). This phenomenon is the similar to OM barrel proteins FadL, 
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OmpW, OprG and PagP (van den Berg et al. 2004; Hong et al. 2006; Touw et al. 

2010; Cuesta-Seijo et al. 2010).  

This feature laterally opens the barrel wall for hydrophobic substrate diffusion. It is 

worth noting that five hydrogen bonds are located on the strands between β1 and β26 

of LptD (Figure 3.23 D), suggesting lateral opening of the barrel between the two 

strands is possible. The recently reported the structure of BamA is composed of 16 β-

stranded barrel and the BamA can undergo lateral opening between strands β1 and 

β16 for insertion of OM protein into the OM (Noinaj et al. 2013). There are eight 

hydrogen bonds located on the two strands β1 and β16 of BamA.  

Functional LptD is in the oxidised form and disulphide bond formation is required to 

transport and insert LPS into the OM (Ruiz et al. 2010). LptD is oxidised in vivo and 

has at least one correct disulphide bond formed, which helps LPS transport in correct 

pathway (Ruiz et al. 2010; Chng et al. 2012). There are four cysteine (Cys) residues in 

the Salmonella typhimurium LptD, which is similar to LptD from E. coli, with two 

(Cys31, Cys173) in the N-terminal domain and two (Cys726, Cys727) in the C-

terminal domain (Figure 3.25). These cysteine residues form two non-consecutive 

disulphide bonds.  
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Residues Cys173 and Cys727 are conserved in Gram-negative bacteria (Narita and 

Tokuda 2009), suggesting that the second disulphide is essential. It is notable that 

Cys726 and Cys727 are individually located in the very flexible loop between β-

strands β24 and β25 at the periplasmic side (Figure 3.23 C). Residues Cys31 and 

Cys173 located in the N-terminal domain are connected to strand β1 of LptD (not 

shown in the solved structure due to cleaved by α-chymotrypsin), which are at perfect 

positions for disulphide formations.  

The LptD/E complex exists in two conformations, the oxidized and reduced form. 

The oxidized form migrates to a molecular weight of around 130 kDa, and the 

reduced form migrates to molecular weight of 100 kDa on SDS-PAGE. The protein 

conformation was significantly changed from reduced form to the oxidised form, 

which is evident from the protein migration in SDS-PAGE (Ruiz et al. 2010; Chng et 

al. 2012). The structural conformational changes of LptD may relate to the LPS 

transport.   

 

     

 

 



	
   98	
  

Figure 3.24 The largest barrel and pore of the LptD/E complex. The colour of the cartoon 

representation is according to the structure of LptD/E described above, where LptD is in rainbow and 

LptE is in purple. Electrostatic surface potential map of LptD/E, negatively charged residues are shown 

in red and positively charged residues in blue. A, Top view of the electrostatic surface potential map of 

the LptD barrel. The pore was shown by yellow dotted line, which is covered by extracellular loops. 

LptE mainly blocked the pore at one side. B, Bottom view of electrostatic surface potential map of the 

barrel. A free cavity of LptD is shown in yellow box with a diameter of 25 Å by 15 Å.  C, In the 

structure of LptD, the β1- β4 tilt angle is around 30° to the plane of the membrane, and the tilt angle of 

strand β20- β26 is about 67°. Strands β1 and β26 are separated at the periplasmic side, which is shown 
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by a yellow dotted circle. The N232C located in β1 and N757C located in β26 strand may form a 

disulphide bond in the oxidized environment and lock strands β1 and β26, which are shown  in the 

yellow dotted circle. The residues C726 and C727 are shown in a blue dotted circle. E, P and OM 

indicate extracellular side, periplasmic side and outer membrane, respectively. D, Five hydrogen bonds 

are located on the strands between β1 and β26 of LptD. E, Side view of the LptD barrel, which shown 

the hydrophobic belt of the barrel exterior. The yellow dotted circle shows the separation between 

strands β1 and β26. F, Function assay analysis showed that strain AM661 shown that two-cysteine 

mutation N232C/N757C, which potentially locks β1 and β26, resulted the death, indicating that the 

double mutant N232C/N757C may form a disulphide bond and prevent the lateral opening. Deletion 

LptD (ΔQ722-A729) is lethal of E. coli cell. Segment 1-8 represent AM661 cells with the wild-type 

lptD, the empty pACYCDuet-1, lptD double mutation N232C/N757C, N232C, N757C, deletion Q722–

A729, N232D/N757R and N232Y/N757H, respectively. G, LptD and its mutant were expressed in the 

E. coli lptD deletion strain were analyzed by western blot using anti-His-tag antibody. The protein 

expression of N232C/N757C is similar to that of LptD mutants N757C and N232Y/N757H on the cell 

membrane. Both single mutations LptD N232C and N757C can grow as efficiently as the wild-type. 

The unidentified 55-kDa-membrane protein was used in the experiment as loading control 2, Negative 

control (pACYCDuet-1 plasmid without the lptD gene) (Figure adapted from H. Dong et al. 2014).  
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3.3.8 Mutagenesis of LptD 

To examine whether the lateral opening of LptD is required for LPS transportation, 

single and double amino acid substitutions and deletions mutants of LptD were 

generated, then functional assay was carried for these mutations by a colleague Dr. 

Yinghong Gu (University of East Anglia). The deletion mutation LptD (ΔQ722-

A729) removed Cys726 and Cys727, resulting in the death of E. coli cells, suggesting 

that disulphide bond formation (C31-C726, and C173-C727) is important for LPS 

translocation. The result is in accordance with previously reported (Ruiz et al. 2010; 

Chng et al. 2012).  

The residues N232 and N757 of LptD are located in the strand β1 and β26 separately 

(Figure 3.23 C, D). The structure suggests two residues may form a disulphide bond 

in the oxidized condition. The double N232C/N757C mutant is able to form the 

disulphide bond, locking the two strands β1 and β26 of LptD to prevent any lateral 

opening. The double mutation N232C/N757C was lethal.  In contrast, the single 

mutation N232C, N757C, and double mutations N232D/N757R and N232Y/N757H 

of LptD retained the same viability as the wild type (Figure 3.23 F). The protein 

expression level of the double mutation N232C/N757C is similar to mutations N757C 

and N232Y/N757H in the membrane, strongly indicating that LPS translocation is 

required for the lateral opening between strands β1 and β 26 of LptD (Figure 3.23 G). 
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3.3.9 Molecular dynamic simulations in LptD/E  

Molecular dynamics (MD) simulations were performed by our collaborator Dr. Phill 

Stansfeld (University of Oxford) to further study the stability of the LptD/E complex 

and LPS translocation paths. MD simulations revealed that the β-barrel of LptD/E 

may undergo a lateral opening between the strands β1 and β26. Opening of LptD 

channel was observed when pressures was below the -65 bars (Figure 3.24 A-C). In 

particular, the molecular dynamics simulations showed that the channel opening and 

lateral opening occur simultaneously for LPS translocation through the LptD/E 

machinery.  

 

 
 

Figure 3.25 Molecular dynamics simulations reveal that a lateral opening in LptD/E. A, Structure 

of LptD/E complex, the coloured blue represents stability of the LptD/E, and the coloured red 

represents mobility of domain. B, The LptD barrel is in closed form. The simulations would perform 

by applying a negative constant pressure to the membrane plane. C, Simulations of LptD/E to 

translocate LPS. Lateral opening between strands β1 and β26 and the pore opening have been revealed 

for LPS translocation and insertion (Figure adapted from H. Dong et al. 2014). 
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3.4 Discussion and conclusion  

The lumen of the LptD barrel is very hydrophilic, which is similar to translocases 

involved in hydrophilic polymer translocation. Wza and AlgE are responsible for 

translocation of polysaccharides across the outer membrane. Although their structures 

are different, both of them have hydrophilic lumens for the polysaccharide 

translocation (Dong et al. 2006; Whitney et al. 2011). The O-antigen of LPS from 

Salmonella typhimurium LT2 is composed of trisaccharide repeat units with short 

branches of single sugars, and its diameter of the linear polymer is about 13 Å (Figure 

3.3). It is worth noting that although LptE occupies part of the LptD barrel, there is 

free cavity inside LptD with diameter of 25 Å by 15 Å, which is easy to accommodate 

the O-antigen. The O-antigen is composed of hundreds of saccharide units, and has to 

pass-through the LptD barrel first, which may use a similar mechanism to AlgE 

(Whitney et al. 2011). The hydrophilic O-antigen and core oligosaccharide pass-

through the inside of the barrel of LptD. How does LptD/E transport the hydrophobic 

Lipid A of LPS and insert it into the outer leaflet of OM? It is a great challenge to 

transport the large hydrophobic substrates across the water-filled barrel LptD 

spanning the OM. 

Several other OM proteins use a lateral opening mechanism to transfer hydrophobic 

molecules through OM (van den Berg et al. 2004; Hong et al. 2006; Van Den Berg 

2010; Khan et al. 2009). More recently, the outer membrane protein assembly protein 

BamA was reported to use the lateral opening between strands β1 and β16 to insert 

OM proteins into the OM (Noinaj et al. 2013). The structure of LptD/E shows that 

strands β1 and β26 were separated at the periplasmic side, and between the two 

strands only five hydrogen bonds exist, which provide strong structural evidence that 



	
   103	
  

the lateral opening is possible. Mutagenesis and function assay revealed that the 

lateral opening between strands β1 and β26 of LptD is required for the LPS 

translocation and insertion (Figure 3.23 G). The MD simulations reveal that channel 

opening and the lateral opening occur simultaneously for LPS translocation and 

insertion. LPS normally consists of six fatty acyl chains, which are 25 Å in length and 

5 Å in width (Figure 3.3). Therefore, there is enough space for the 5-Å sides Lipid A 

of LPS to pass through an open gate around 7-9 Å between strands β1 and β26. The 

diameter of the free cavity in LptD is 25 Å by 15 Å (Figure 3.23 B), which may also 

be involved in the transfer of Lipid A to the gate between the strands β1 and β26. Our 

new studies have revealed that the LptD/E protein complex forms an intramembrane 

hole, where lipid A is inserted into the OM (Gu et al. 2015). 

Once the non-consecutive disulphide bonds are formed, the LptD N-terminal domain 

links to LptA and LptC to form a bridge from the IM to the OM in a head to tail 

fashion (Figure 3.25).  The structures of LptC, LptA, and the N-terminal of LptD 

share a jelly-roll structure (Ruiz et al. 2010). The LptC, LptA and the N-terminal 

domain of LptD mediate the transport of LPS across the periplasm from the IM to the 

OM through binding of LPS to the hydrophobic residues inside of the β-jellyroll 

structures (Suits et al. 2008; Tran et al. 2010). We proposed that the LPS is extracted 

by LptBFG complex in the IM, whereby LptB provides the energy (Okuda et al. 

2012). LPS was then transfered to LptC, LptA, and finally to the N-terminal domain 

of LptD/E (Sperandeo et al. 2011). The width of E. coli periplasm is about 220 ± 20 

angstroms, indicating that one LptC, four LptAs and one N-terminal domain of LptD 

form a rotational slice to transport LPS from the inner membrane to the OM. Our 

recent studies showed that LptD forms the intramembrane hole for LPS insertion into 

the OM, while the hydrophilic O-antigen and core oligosaccharide of LPS pass easily 
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through the barrel of LptD, which trigger the lateral opening between strands β1 and 

β26, and finally promote the lateral insertion of LPS into the OM (Figure 3.25). As 

LPS is highly negative charged, it uses divalent cations to form bridges with 

neighboring LPS molecules. These bridges form part of the OM permeability barrier. 

We speculate that once the LPS reached the positively charge cation-rich outer leaflet 

of the OM, the divalent cations mediate electrostatic interaction between LPS core 

oligosaccharide, which draws LPS to be inserted into the outer leaflet of the OM. 

However, the mechanism of LptD/E lateral translocation of the LPS is different from 

that of other lateral transport barrels (van den Berg et al. 2004; Hong et al. 2006; Van 

Den Berg 2010; Khan and Bishop 2009; Noinaj et al. 2013). 
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Figure 3.26 The proposed mechanism of LptD/E transport of LPS. 1, The newly synthesis LptD 

has a closed gate between strands β1 and β26 and in the reduced form, the N-terminal domain (NTD) 

of LptD is flexible. 2, LptD forms the disulphide bonds (red lines), resulting in N-terminal domain of 

LptD conformational change. 3, The N-terminal domain of LptD interacts with LptA to form seven 

protein trans-envelope complex for LPS transport. The LPS molecules are extracted from the inner 

membrane by LptBCFG and passed to LptC, LptA and the LptD/E complex, while triggering the 

lateral opening of the LptD for LPS insertion.	
  

 

 

LPS is a substantial polymer, which requires two proteins, the LptD/E complex, to 

transport and insert into the outer leaflet of the OM (Wu et al. 2006; Chimalakonda et 

al. 2011; Chng et al. 2010; Ruiz et al. 2008). The disulphide bond is required for the 

function of LptD. It is notable that Cys726 and Cys727 are located in the very flexible 

loop between strands β24 and β25 at the periplasmic side (Figure 3.23 C), and are at 

the perfect position to form non-consecutive disulphide bonds (C31-C726, C173-
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C727). The lateral opening between the strands β1 and β26 and the non-consecutive 

disulphide bonds is required to help LPS enter the barrel and insert correctly into the 

outer leaflet of the OM, rather than the inner leaflet of the OM.  

In summary, the crystal structure of the LptD/E translocon described here has 

numerous unique features. It is the largest known β-barrel with 26-strandeds β-barrel, 

and has a unique two-protein “barrel and plug” architecture. The structure reveals that 

LptD and LptE have extensive interactions. The structure, function assay and MD 

simulations suggest that the LptD β-barrel is responsible for the O-antigen’s 

translocation using the large hydrophilic molecule translocation mechanism, while 

lipid A is inserted into the outer leaflet of the outer membrane through a lateral 

opening between the strands β1 and β26 of LptD. This opening is possibly induced by 

conformational changes in the N-terminal domain and non-consecutive disulphide 

bond formation within LptD. LPS enters the barrel and inserts correctly into the outer 

leaflet of the OM, rather than the inner leaflet of the OM. The findings provide a new 

platform for the study of outer membrane biogenesis and the development of the 

novel drugs to combat multi-drug resistant Gram-negative bacteria.  

The future direction of the research will be the investigation of how the LptBCFG 

complex extracts LPS from the inner membrane, and whether the LPS insertion into 

the OM requires energy and development of the novel compounds based on the 

LptD/E structure.            
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Crystal structure of Schmallenberg virus 
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4.1 Introduction  

Bunyaviridae is a large family of enveloped, single-stranded negative-sense RNA 

viruses, with more than 350 members across five genera: Orthobunyavirus, 

Hantavirus, Nairovirus, Phlebovirus and Tospovirus (Elliott et al. 2013). Several of 

these viruses are highly pathogenic bunyavirus family members such as Rift Valley 

fever phlebovirus (RVFV), Sin Nombre Hantavirus, La Crosse, Crimean-Congo 

hemorrhagic fever viruses (CCHFV) and reassortant Garissa (Elliott 1990; Soldan et 

al. 2005). Orthobunyaviruses cause lethal hemorrhagic fever in humans or animals 

(Blitvich et al. 2012; B. Hoffmann et al. 2012), while new bunyaviruses cause severe 

fever with thrombocytopenia syndrome virus in China (Yu et al. 2011) and 

Schmallenberg virus (SBV) in Europe (Bernd Hoffmann 2012; Beer et al. 2013). 

Some of the above mentioned viruses have been categorized by the Centre for Disease 

Control and Prevention as high priority, category A pathogens due to their ability to 

cause lethal hemorrhagic fever (Barr et al. 2004). 

Of these five genera, the Orthobunyavirus genus is the largest, currently comprising 

about 170 membranes. SBV is a negative-sense single-stranded RNA virus. 

Phylogenetic analyses suggest that SBV belongs to the species Sathuperi virus 

(Garigliany et al. 2012; Goller et al. 2012), which is an Orthobunyavirus of the Simbu 

serotype. SBV is a newly emerging virus, which infects cattle, sheep and goats in 

farms of Germany, and was first identified in November 2011. Since then the SBV 

have widely spread across Europe and more than 5000 farms have reported severe 

symptoms in newly born sheep, goats and cows. This suggested that the virus can 

pass from an infected mother during pregnancy and affect her offspring and cause 



	
   109	
  

malformations in the new born baby (Beer et al. 2013; Tarlinton et al. 2012; Bernd 

Hoffmann 2012).  

SBV virus is a newly emerging Orthobunyavirus, which was initially found in 

Germany in November 2011. Since then, it has spread across Europe and caused 

severe disease in cattle, sheep and goats. Currently, there are no vaccines or effective 

therapies to combat this viral infection (Bernd Hoffmann 2012). The clinical signs of 

infected cattle and sheep include fever, reduced milk production, and diarrhoea. SBV 

can cause stillbirth, as well as birth defects, resulting in considerable economic losses 

(Garigliany et al. 2012; Tarlinton et al. 2012). There is strong evidence to suggest that 

they use intermediate midge or mosquito hosts to mediate its transmission (De Regge 

et al. 2012; Rasmussen et al. 2012). Genetic analysis showed that SBV has gene 

sequences that are similar to other three Simbu serogroup viruses: Shamonda, 

Akabane and Aino, which have been isolated from cattle in Japan (Bernd Hoffmann 

2012; Goller et al. 2012).   

4.1.1 Bunyavirus genome organization 

The Bunyamwera virus (BUNV) is the prototypic member of both the 

Orthobunyavirus genus and the family Bunyaviridea. The Bunyaviruses are spherical, 

and the genome comprises three segments of negative sense RNA, the large segment 

(L), the medium segment (M) and the small segment (S) (Figure 4.1) (Elliott et al. 

2013; Walter et al. 2011; Soldan et al. 2005). The S RNA segment encodes 

nucleoprotein (NP) and a non-structural protein (NSs) from alternative open reading 

frames (ORFS). The NP is the most abundant protein in the virus and infected cell 

and encapsulates viral genomic and antigenomic RNA to form ribonucleoprotein 

complexes (RNPs), which act as templates for genomic RNA replication and 
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transcription (Elliott et al. 2013; Walter et al. 2011). The NSs protein acts as an 

interferon (IFN) antagonist (Bridgen et al. 2001). The M RNA segment encodes a 

polyprotein that is cleaved to generate two glycoproteins Gn and Gc and a non-

structural protein (NSm). Finally, the L RNA segment encodes RNA-dependent RNA 

polymerase or L protein, which is responsible for all viral RNA and mRNA synthesis. 

Each genomic segment is complexed within ribonucleocapsid. The three 

ribonucleocapsids are further enclosed by an envelope composed of a lipid bilayer 

and are anchored by two glycoprotein (Gn and Gc) (Walter et al. 2011; Elliott et al, 

2013; Shi et al. 2010) (Figure 4.1).  

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.1 Schematic representation of the Bunyavirus virion. The three-genome segments of 

negative sense RNA (S, M, L) are encapsidated by the nucleoprotein with viral genomic and antiviral 

genomic RNAs to form ribonucleoprotein complexes.  
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4.1.2 Crystal structures of RVFV NP 

Among buyaviruses, the structure of NP from RVFV has been reported (Raymond et 

al. 2010; Ferron et al. 2011). RVFV is a prototypic member of the phlebovirus genera 

infects both livestock and humans and is a causal agent of Rift Valley fever (Pepin et 

al. 2010). The structure of RVFV NP purified under denaturation and refolding 

condition was monomeric (Figure 4.2 A) (Raymond et al. 2010). The monomeric 

RVFV NP is a novel compact all-helical folded structure, and the structure lacks a 

positively charged crevice for RNA binding and has no protruding terminal domain or 

loops for NP oligomer or RNP formation. Another group, Ferron et al. purified the 

RVFV NP under non-denaturation conditions and its crystal structure was solved as a 

hexamer with a highly positively charged region in the inner part of the ring for the 

RNA accommodation (Figure 4.2 B) (Ferron et al. 2011).  

Although both of them are RVFV NP structures, the conformations are significantly 

different with regard to the position of the N-terminal arm. In the monomeric 

structure of RVFV NP, the N-terminal arm packs closely against the core domain 

(Figure 4.2 A) (Raymond et al. 2010), while the N-terminal arm extends away and 

interacts with adjacent subunit in the hexamer (Figure 4.2 B), suggesting that the N-

terminal arm is essential for the oligomerization of NP (Ferron et al. 2011). 
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Figure 4.2 Structures of RVFV NP. A, Crystal structure of monomeric RNFV NP. In the monomeric 

structure, the N-terminal arm packs closely against the core domain. The NTA and CTA represent N-

terminal arm and C-terminal arm, respectively (PDB code: 3LYF). B, Structure of the RVFV NP as a 

hexameric ring-shape structure. The N-terminal arm is essential for the oligomerization of the NP and 

extends out to interact with the adjacent subunit in the crystallographic hexamer. Hexameric subunits 

are coloured in red, green, blue, orange, cyan and purple, respectively (PDB code: 3OV9). 
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4.1.3 Crystal structure of CCHFV NP 

Following crystal structure studies on the RVFV NP within phlebovirus, the structure 

of CCHFV NP from stains YL04057 was determined (Guo et al. 2012). CCHFV NP 

belongs to the Nairovirus genera within the Bunyaviridea family and is the causative 

agent of severe hemorrhagic fever with high mortality in humans (Vorou et al. 2007). 

The monomeric structure of CCHFV NP possesses a racket-shape with two parts: a 

“head” domain and “stalk” domain. The structure has unexpected endonuclease 

activity and the positive charge residues in the “head” and “stalk” were suggested to 

be responsible for RNA binding (Guo et al. 2012) (Figure 4.3).   

Subsequently, Carter et al. reported the structure of CCHFV NP from strain Baghdad-

12. This structure was superimposed on that of CCHFV NP from strain YL04057, and 

showed that “head” domain is very similar, but there were differences in the 

transposition of the “stalk” domain through a rotation of 180 degrees and a translation 

of 40 Å, suggesting the structural flexibility of switching between alternative NP 

conformations during RNA binding and oligomerization (Carter et al. 2012).  

Furthermore, Wang et al. solved the structure of the CCHFV NP form strain IbAr 

10200. The structure was shown to have two conformations. When incubated with 

single stranded RNAs, the structure conformation is monomeric and is identical to the 

CCHFV NP from strain YL04057. In contrast, when the protein was purified under 

native condition (that using second peak devoid of nucleic acids), the structural 

conformation was oligomeric and comprised double antiparallel superhelices (Y. 

Wang et al. 2012).  
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Figure 4.3 Crystal structure of CCHFV NP. The NP from strain YL04057 in cartoon representation. 

Head and stalk domain are colored in cyan and light blue, respectively (PDB code: 3U3I). 

4.1.4 Newly emerging bunyavirus 

Although the structure of NP (RVFV, CCHFV) from Phlebovirus and Nairovirus 

genera within Bunyaviridae family were reported by different research groups 

independently, the mechanism by which they bind genomic RNAs are significantly 

different (Raymond et al. 2010; Ferron et al. 2011; Guo et al. 2012; Carter et al. 2012; 

Y. Wang et al. 2012). SBV is a newly emerging bunyavirus, which has spread rapidly 

across European, causing congenital abnormalities in the offspring of cattles, sheeps 

and goats. SBV belongs to Simbu serogroup of Orthobunyavirus genera within 

Bunyaviridea family. The SBV NP may have a novel fold and a unique mechanism 

for RNA recognition and encapsidation, and therefore we decided to determine the 

nucleoprotein structure (Bernd Hoffmann 2012; Beer et al. 2013).  
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Figure 4.4 Amino acid seqence aligment of orthobunyavirus NPs. The amino acid sequence of NPs 

from selected orthobunyaviruses genus share high level of amino acid similarity. The SBV, SHAV, 

AKBV, OROV, LACV and BUNV represent Schmallenberg virus (sequence access number 

CCF55031), Shamonda virus (YP_006590077), Akabane virus (YP_001497161), Oropouche virus 

(NP_982305), La Crosse virus L78 (Q8JPR0) and Bunyamwera virus (NP_047213), respectively. The 

predicted secondary structures above the sequencs were based on the SBV N structure. Conserved 

residues are colored in red. 
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4.2 Aims 

The SBV NP shares a high level of amino acid identity with other Orthobunyavirus 

NP (Figure 4.4), representing a novel model for a subfamily of the diverse 

bunyaviruses and can serve as a model for all members of the Orthobunyavirus genus. 

In order to study of the function and mechanism of SBV NP, the crystal structure was 

sought. The protein will purify under native condition, as well as denaturation and 

refolding condition to remove the host RNAs from the SBV NP. 
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4.3 Results	
  	
  

4.3.1 Crystallization of native SBV NP 

The protein was successfully expressed in Rosetta cells. We can routinely obtain 12 

mg of protein from 10 litre cell cultures, which is sufficient for crystallization and 

optimisation.  

The native SBV NP was further purified using size exclusion chromatography with an 

Äkta Xpress and shows that N protein in oligomeric state in solution (Figure 4.5 A). 

Two peaks appeared and the NP purity was checked using SDS-PAGE. Only the 

purest fractions were pooled and concentrated to 10.4 mg ml-1 (Peak 1) and 12.6 mg 

ml-1 (Peak 2) (Figure 4.5 B)  (Vivaspin 20, cut off 30,000 kDa MWCO, Sartorius 

stedim biotech), which were measured by a Nanodrop. The protein oligomers were 

further examined by cross-linking under reduced (Figure 4.5 C) and non-reducing 

conditions (Figure 4.5 D), which indicated that protein exists as a tetramer. This 

cross-linking experiments were performed by Dr Ping Li (University of Glasgow). 

The crystallization trails were described as in Chapter 1.2.6.1. The protein was flash 

frozen in liquid nitrogen and stored at -80°C.  

After one week, protein crystals grew from the peak 2, but not from the Peak 1, due to 

the Peak 1 presents as an oligomerises in gel filtration. The crystals were obtained in 

different crystallizations conditions, with the best crystals growing from 1.4 M 

Sodium/Potassium phosphate pH 5.6 (Figure 4.6 A). 
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Figure 4.5 Native SBV NP purification. A, Gel-filtration of SBV NP. B, The first peak contains 

similar amounts of 6His-tag intact (upper band) and cleaved SBV NP (lower band). The second peak 

contains mostly 6His-tag cleaved SBV NP. The upper bands are oligomeric state of the SBV NP. The 

band of SBV NP near the 97 kDa molecular weight marker represents the tetrameric form, which has 

been verified by cross-linked (D) and mass spectrometry (University of St Andrews). The third peak 

contains small amounts of 6His-tag intact and cleaved SBV NP. C, D, The protein was cross-linked, 

under reducing (C) and non-reducing (D) conditions and NP shows by arrows. E, Native SBV NP was 

complex with bacteria RNA, 36nt RNAs was used as control, indicates protein bound RNA, about 30-

40 nucleotides (nt) in length. 
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Crystal optimisation proceeded by varying the pH from 5.2 to 6.2 and the 

sodium/potassium concentration from 1.0 to 2.0 M. The crystal optimisation was 

performed using 96 well crystal clear sitting–drop plates by mixing 2 µl of protein 

and 2 µl of crystallization precipitant with 100 µl reservoirs solution (Figure 2.5 B). 

The optimised crystallization plates were incubated at room temperature (20°C). 

 

 

 

 

 

 

 

Figure 4.6 Photographs of nucleoprotein crystals of SBV. A, The original crystal from screening. B, 

The crystal from optimisation. The crystals grew in 1.4 M Sodium/potassium phosphate pH 5.8 at 20°C 

after 7 days. 

 

 

 

 

 

 

 
 

Figure 4.7 The native SBV NP crystal diffraction pattern. The image on the left shows the spots to 

be very weak with 5.7-Å resolution from our in-house X-ray source.  
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The crystals were large and fragile, but the resulting diffraction was poor. We 

assumed that the cryoprotectant (containing 20% glycerol) might damage the crystals. 

Therefore, we tried to change crystallization conditions by introducing (2 - 26%) 

ethylene glycol and also varying pH (5.2 - 6.2). Ethylene glycol is an odourless and 

colourless liquid and is commonly referred to as an antifreeze. The crystals grew well 

with up to 20% ethylene glycol in the crystallization solution, but no crystals were 

obtained with more than 20% ethylene glycol. Crystals grown in more than 10% 

ethylene glycol do not need additional cryoprotectant. Unfortunately, crystal 

diffraction quality did not improve (Figure 4.8), even using the Diamond Synchrotron 

Light source.  

 

 

 

 

 

 

 

 

 

 

Figure 4.8 The crystal diffraction image was collected using I02 beamline at Diamond Light 

Source, UK. There was no significant improvement in the diffraction using 2-20% ethylene glycol, 

rather than 20% glycerol as cryopretectant. This indicates that ethylene glycol did not help in 

improving the crystal X-ray diffraction. 
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As the nucleoprotein’s function is to form a ribonucleoprotein complex and because 

many purified viral nucleoproteins have been shown to contain RNAs from 

expression hosts (Raymond et al. 2010; Ferron et al. 2011; Guo et al. 2012; Carter et 

al. 2012; Wang et al. 2012), pertinent questions one must ask are: ‘Does purified SBV 

nucleoprotein contain E. coli RNAs?’ and ‘Are the SBV nucleoprotein crystals 

complexed with RNA?’ These are serious questions, which are well worth 

considering.  

To test this, we first examined the absorbance at A260/280 nm and derived an 

absorbance of 1.41 using a Nanodrop (Thermo Scientific), thus indicating that the 

protein is complexed with E. coli RNAs.  

Then we performed electrophoresis of the crystals using a 1% agarose gel. To prevent 

RNA contamination from the crystallization drop, crystals were picked up before 

being washed four times using the crystallization solution. The running buffer was 1X 

TAE and the electrophoresis was carried out at 100 V for 30 mins. The gel was 

stained with 0.01% ethidium bromide and the RNAs were visualised using a UV 

transilluminator. Indeed, both purified SBV protein and crystals contained RNA 

(Figure 4.9). RNAs transcribed from the E. coli genome are essentially random, 

varying in sequence and length. Therefore, this may explain why crystal diffraction 

quality was consistently not good enough for data collection because the oligomer 

contained E. coli RNA in their heterogeneous nature. 
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Figure 4.9 Both purified SBV protein and crystals are complexed with 

RNAs. The agarose gel shows that the RNA from crystal is much stronger 

than that from protein. The crystal was washed in 1.4 M Sodium/potassium 

phosphate crystallization solution four times to avoid contamination of 

protein from the crystallization drop, before the crystal was dissolved in 

water.  

 

 

Although the native SBV NP crystals were large from second peak, the crystal 

diffraction was poor. The reason of the poor crystals is that the SBV NP bound 

heterogonous RNA from the E. coli (Figure 4.9), and further experiments have 

identified that native SBV NP can bind about 30-40 nucleotides in length (Figure 4,5 

E).  

In order to remove host RNAs from the purified SBV protein, RNase A was added to 

the protein purification process. We hoped that the RNase could degrade host RNAs 

from the NP and improve the crystal diffraction quality to allow us to collect high-

resolution data for structural determination. 
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4.3.2 Crystallization of RNase A treated native SBV NP 

The protein purification was described in section 1.2.5.1, and the RNAse A and 

contaminating proteins were removed by further purification with the gel-filtration 

column (Figure 4.10 A), showed two peaks.  The NP purity was checked using SDS-

PAGE (Figure 4.10 B). Only the purest fractions were collected and concentrated to 7 

mg ml-1 (Peak1) and 12.2 mg ml-1 (Peak2) respectively. The crystallization trails were 

described as in Chapter 1.2.6.2. 

  

 
 

 

Figure 4.10 Purification of SBV NP treated with RNase A. A, Gel-filtration of SBV NP treated with 

RNase A. B, SDS-PAGE analysis of the protein purity, the first peak contains similar amounts of 6His-

tag intact (upper band) and cleaved SBV NP (lower band). The second main peak contains mostly 

6His-tag cleaved SBV NP.  
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Crystals from peak2 were obtained from 0.2 M sodium formate and 20% PEG 3350. 

The crystals were optimized by varying precipitant: (0.05- 0.4 M) sodium formate, 

and (16- 24 %) PEG 3350. Optimisation was carried out by building crystallization 

drop of 1 µl protein and 1 µl crystallization solution using the sitting- drop vapour 

diffusion method (Figure 4.11). The crystals were harvested after 10 days, and 

protected in a cryoprotectant containing 20% glycerol in liquid nitrogen for data 

collection. 

 

4.3.2.1 Data collection of RNase A treated SBV NP crystals 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 X-ray diffraction of SBV NP crystal using beamline I24 of Diamond Light Source, 

UK. The left image is a diffraction pattern, the right upper image is of the crystal used for data 

collection and the right bottom table summarises the data collection statistics. 

 

 



	
   125	
  

Data collection was described as in chapter 1.2.6.6. The data were indexed and 

integrated using iMosflm (Battye et al. 2011). Pointless (Winn et al. 2011) suggested 

the space group is P21. The data was scaled with Scala (CCP4 suite) (Evans 2006; 

Winn 2003). A summary of the data collection statistics is listed below, in table 4.1. 

 

Resolution (Å) 75.09 - 2.95 (3.05 - 2.95) 

Wavelength (Å) 0.9919 

Completeness (%) 98.00 (98.62) 

I/σ 16.16 (2.56) 

Multiplicity 3.2 (1.7) 

Unit Cell (Å)                              a = 76.2, b = 86.2, c = 76.4 

 

α = γ = 90°, β = 100.57° 

Unique reflections 20602 (2069) 

Rmerge (%) 4 (57.9) 

  

Space Group P21 

 
Table 4.1 Native SBV NP data collection statistics 
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4.3.2.2 Molecular replacement failed  

We tried to determine the SBV NP structure of the above dataset using molecular 

replacement using Phaser in CCP4 (McCoy et al. 2007) with Rift Valley Fever virus 

NP (PDB code 3OV9) as a search model. However, we could not solve the structure 

with molecular replacement using either Phaser or Molrep in CCP4 or Phenix (Zwart 

et al. 2008). This is because of only 12% sequence identity between the SBV NP and 

the model (Figure 4.12). 

 

	
  
Figure 4.12 Protein sequence alignment of RVFV and SBV NP. The NP conserved amino acids 

from RNFV and SBV are shown with asterisks (*). 

 

As we could not determine the SBV NP structure by molecular replacement, we 

decided to make Selenomethionine (SeMet) labelled protein (Bakke et al. 2010; Boles 

et al. 1991) and determine the structure by single-wavelength anomalous dispersion 

(SAD) and multi-wavelength anomalous dispersion (MAD) (Hendrickson, Horton, 

and LeMaster 1990; Hendrickson 1991).  
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4.3.3 Crystallization of RNase A treated SeMet SBV NP 

The size exclusion chromatography pattern of the SeMet labelled SBV NP behaved 

similarly as the native SBV NP treated with RNase A. Therefore, I harvested the 

second peak of the pure protein, which was concentrated to 12.6 mg ml-1. The 

crystallization trials were setup using sitting-drop vapour diffusion, based on the 

original SBV NP crystallization condition: 0.2 M sodium formate, 20% PEG3350. To 

obtain larger crystals, extensive optimisations were carried out.  

4.3.3.1 Data collection of RNase A treated SeMet labelled SBV NP 

crystals and structure determination 

Data collection was described as in chapter 1.2.6.7. The data were indexed and 

integrated using iMosflm (Battye et al. 2011) and scaled using Scala (Evans 2006). 

The crystal belongs to the space group of P21. The data collection statistics are listed 

below in Table 4.2. 
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Table 4.2 SBV NP MAD data collection statistics. Values in parentheses are represents for the 

highest-resolution shell.  Rfactor= Σ || Fobs| - | Fcal||/ Σ |Fobs|, where Fobs and Fcal are observed all 

reflection measured and calculated currently model as structure factors, respectively. Rfree is calculated 

using 5% of total reflections, which is randomly selected not used in refinement. 

Data collection       Peak    Inflection      Remote 

Wavelength (Å) 0.9797 0.9799 0.9218 

Resolution (Å) 29.82-3.1 
(3.19-3.11) 

29.61-3.22 
(3.30-3.22) 

29.71-3.08 
(3.16-3.08) 

Space group - - P21 

Completeness (%) 98.4 (80.3) 99.1 (89.7) 99.4 (93.8) 

Anomalous 
completeness (%) 

97.30 (67.80) 98.70 (84.40) 99.00 (89.00) 

I/ σ  24.0 (2.7) 17.0 (2.9) 18.6 (2.6) 

Unit cell a (Å) 76.5 76.2 76.3 

Unit cell b (Å) 86.7 86.4 86.4 

Unit cell c (Å) 77.7 77.5 77.4 

Unit cell α (°) 90 90 90 

Unit cell β (°) 101.27 101.22 101.26 

Unit cell γ (°) 90 90 90 

Unique reflection 17,901 (1070) 16,103 (1067) 18,405 (1260) 

Anomalous 
completeness 

97.30 (67.8) 98.7 (84.4) 99.0 (89.0) 

Rmerge (%) 11.20 (86.20) 8.80 (65.20) 9.30 (77.30) 

Average redundancy 20.50 (13.10) 7.50 (6.60) 7.50 (6.90) 

Refinement    

Rfactor - - 0.32 

Rfree - - 0.36 

RMSD bonds (Å)/ 
angles  (°) 

- - 0.007/1.257 

PDB code  - - 4IDU 
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Unmerged data from SCALA was used to solve the phase problem using the SHELX 

suite (Sheldrick 2007; Sheldrick 2010).  The best correlation coefficient was 58.87 

using SHELXD (Schneider and Sheldrick 2002), indicating that an initial set of 

phases for the structure had been found (Figure 4.13 A). The positions of 29 Se sites 

were determined using SHELXD (Figure 4.13 B), and the contrast and connectivity 

suggested that the inverted, rather than the original, provided the correct phases using 

SHELXE (Figure 4.14). The connection contrast of the inverted and original line was 

separated very well, suggesting that the crystal structure of SBV NP was determined 

 

 

Figure 4.13 Analysis of the heavy atom substructure of SBV NP using SHELX. A, The SBV NP 

SeMet correlation-coefficient (CC) values at 58.87 from SHELXD, showing phase of correct solution. 

B, The heavy atom of SeMet labeled sites in SBV NP were determined using SHELXD. 
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Figure 4.14 SHELXE suggested the phases to be inverted hand. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 An initial model of the SBV NP. The initial model was built by 100 cycles of  Buccaneer, 

and structure is shown in Rasmol. 
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The initial model of the SBV NP was built automatically using the program 

Buccaneer (Cowtan 2006) with the phases obtained from the SHELX. After 100 

cycles of building, the initial model was obtained with an Rfree of 0.4007 and overall 

figure of merit of 0.7558. The structure built by Buccaneer was checked using Rasmol 

(Goodsell 2005), which showed a predominantly alpha-helical structure (Figure 4.15). 

 

The rest of the SBV NP structure was built using sequential rounds of manual model 

building in COOT (Emsley et al. 2004) followed by structure refinement with 

REFMAC5 (Murshudov et al. 2011). 
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4.3.4 The SBV nucleoprotein structure 

Once the SBV NP structure finished building, the structure was compared to other 

protein structures published in the protein data bank (PDB) using Dali server (Holm et 

al. 2010). No similar structures were found, suggesting that the SBV NP had a novel 

fold. SBV NP protomer contains an N-terminal and C-terminal domains in addition to 

flexible N-terminal and C-terminal arms (Figure 4.16). Residues 1 to 19 form the N-

terminal arm, whilst residues 214 to 230 form the C-terminal arm. The N-terminal 

domain spans residues 20 to 127 and is formed by five α helices (α 1- 5) and two anti-

parallel β sheets (β 1- 2), whilst the C-terminal domain spans residues 128 to 213 and 

forms six α helices (α 6 -11). There are highly positively charged residues K48, K51, 

H77, R95, R184, R182, K178, K179, and R166 between these domains, which could 

potentially be the RNA binding cleft (Figure 4.17).  

 

 

 

 

 

 

 

 

Figure 4.16 Cartoon representation of the monomeric SBV NP structure. The C-terminal arm 

(CTA) is shown as a red sphere and the N-terminal arm (NTA) is shown as a blue sphere.  
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Figure 4.17 Electrostatic potential map of monomeric SBV NP. Positively charged residues are 

shown in blue and negatively charged residues in red. The cleft that is highly positively charged and is 

the potential RNA binding site. The NP composes of a C-terminal arm (CTA) and a C-terminal domain 

(CTD), an N-terminal arm (NTA) and an N-terminal domain (NTD). 

 

4.3.5 The tetrameric structure 

The SBV NP oligomerises in solution, predominantly as tetramers, formed by two 

dimers at a twofold rotation axis. The N-terminal arm is in contact with an adjacent 

protomer in the C-terminal edge of RNA binding cleft within tetramer, whereas the C-

terminal arm is in contact with an adjacent protomer in hydrophobic pocket. Both the 

C-terminal and N-terminal arms play a role in oligomerisation (Figure 4.18 A, B). It is 

worth noting that one protomer has a free C-terminal are, which extends out in the 

dimer. The RNA-binding cleft of the promoter without a free C-terminal arm is 

exposed to the outside, but the RNA binding cleft of the promoter with a free C-

terminal arm is largely covered at the interface (Figure 4.18 B). 
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Figure 4.18 Tetrameric SBV NP structure. A, SBV NP tetramer representation as a cartoon. The C-

terminal arm is in contact with an adjacent protomer in hydrophobic pocket (left dimer), whereas the 

N-terminal arm is in contact with an adjacent protomer in the C-terminal edge of RNA binding cleft 

within tetramer (right dimer). B, Surface representation of the tetrameric structure. The four different 

subunits are coloured in yellow, green, cyan and orange, respectively. The N-terminal arm (NTA) is in 

blue and the C-terminal arm (CTA) is in red. 

 

The hydrophobic residues F5, I6 and F7 of N-terminal arm are located near a 

neighboring subunits hydrophobic binding site, composed of residues M124, L126, 

V129, F44 and L45 of the adjacent protomer (Figure 4.19 A). The side chain of K48 

forms a hydrogen bond with side chain of S3, which may be involved in anchoring 

the N-terminal arm. Also the two dimers interact with each other to form a tetramer, 

whereby one dimer containing helix α5 interacts with helix α1 and α4 from the other 

dimer. The side chains of E117 and Q121 on helix α5 form hydrogen bonds with the 

side chain of Y24 on helix α1, while L113 on helix α5 located in hydrophobic pocket 

interact with W103, F27, I28 and the side chain of residue R102 on helix α1 and α4 

(Figure 4.19 B). The tetrameric structure is stabilised by hydrophobic residues and 

pockets. 
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Figure 4.19 Tetrameric structure of interactions. A, The N-terminal (colored in cyan) arm interacts 

with a hydrophobic region of neighboring subunit (colored in green). The color according to SBV NP 

tetramer represented as a cartoon (Figure 4.18). B, Two dimers interact within tetramer. The side 

chains L113 located into a hydrophic pocket on the adjacent dimer. The dotted lines is indicate 

hydrogen bonds (Figure adapted from H. Dong et al. 2013). 

 

4.3.6 Crystallization of SBV NP purified under denaturing and 

refolding conditions 

To better understand the RNA-free SBV NP structure, we decided to purify the 

protein under denaturing and refolding condition using 8 M urea. As the native crystal 

diffracted poorly in-house (Figure 4.7), we measured the proteins 260/280 nm UV 

absorbance ratio and found it was 1.41. This indicated that it contained E. coli RNAs 

(Figure 4.9). As these RNAs are heterogeneous this could explain somewhat why the 

crystals only diffracted to low resolution.  
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The purification was described as in chapter 1.2.5.3.  TEV protease was added to the 

purified SBV NP to remove the N-terminal 6His-tag. The protein was further purified 

by a second round of affinity chromatography, followed by gel filtration. This showed 

two peaks (Figure 4.20 A), and protein purity was checked using SDS-PAGE (Figure 

4.20 B), which were similar to those from the native SBV NP. This is different from 

the RVFV-NP, which became monomeric after refolding (Raymond et al. 2010). The 

two peaks were pooled and concentrated to 9 mg ml-1 (Peak 1) and 8 mg ml-1 (Peak 

2), respectively. The crystallization trails were described as in Chapter 1.2.6.4. 

 

 

 

 

Figure 4.20 Purification of SBV NP denaturation and refolding. A, Gel-filtration of SBV NP 

denaturation and refolding. B, SDS-PAGE analysis of the protein’s purity, the first peak contains 

similar amounts of 6His-tag intact (upper band) and cleaved SBV NP (lower band). The second main 

peak contains mostly 6His-tag cleaved SBV NP.  
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4.3.6.1 Data collection and structure determination of denatured and 

refolded SBV NP 

Data collection was described as in chapter 1.2.6.8. The data were processed and 

scaled by HKL2000, and the cubic crystals were found to belong to space group I422 

with cell dimensions a = b = 159.2 Å, c = 157.8 Å, and α = γ = β = 90° (Figure 4.21). 

The data collection statistics are listed below in Table 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Diffraction pattern of the denatured and refolded SBV NP. The diffraction extend to 

3.2 Å. 
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Table 4.3 Denatured and refolded SBV NP data collection statistics. Values in parentheses are 

represents for the highest-resolution shell. RMSD, root mean square deviation.                              

Rfactor= Σ || Fobs| - | Fcal||/ Σ |Fobs|, where Fobs and Fcal are observed all reflection measured and 

calculated currently model as structure factors, respectively. Rfree is calculated using 5% of total 

reflections, which is randomly selected not used in refinement. 

 

Resolution (Å) 49.94 – 3.21 (3.28 – 3.21) 

Wavelength (Å) 0.9919 

Space Group I422 

Completeness (%) 99.7 (99.9) 

I/σ 16.4 (2.2) 

Average redundancy 5.6 (5.5) 

Unit Cell (Å)                              a  =b = 159.2, c = 157.8 

 

α = γ = β= 90° 

Unique reflections 16505 (1080) 

Wilson B-factor 94.77 

Rmerge (%) 7.3 (68.30) 

Ramachandran favoured (%) 81 

Protein residues 640 

Water 18 

Refiment  

Rfactor 0.30 

Rfree 0.37 

R.M.S. deviation  

Bonds (Å)                              0.006 

Angles (°) 1.162 

PDB code 4IDX 
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4.3.6.2 Cell content calculation 

The unit cell content was estimated using the Matthews co-efficient to contain three 

copies of SBV NP within the unit cell within CCP4 suite (Winn et al. 2011). The 

structure of the denatured and refolded SBV NP was determined by molecular 

replacement using Phaser within CCP4 (McCoy et al. 2007) using structure of native 

SBV NP’s monomeric form as a search model.  The model was built in COOT 

(Emsley et al. 2004) and structure refinement was carried out using REFMAC5 

(Murshudov et al. 2011), in an iterative process. 

4.3.7 The structure of denatured and refolded SBV NP 

The protomer structure of the refolded SBV NP is very similar to the native SBV NP. 

The most notable change is that the N-terminal arm has becomes disordered, while 

the C-terminal arm becomes ordered (Figure 4.22).   

 

 

 

 

 

 

 

 

 

Figure 4.22 The protomer SBV NP structure from denatured and refolded protein. The N-

terminal arm (blue) is disordered. The C-terminal arm colored red. 
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There are three SBV NP subunits within the asymmetric unit, which do not form a 

circular structure (Figure 4.23 A). Instead, their potential RNA binding clefts are 

exposed and accessible to solvent. (Figure 4.23 B). Unlike monomeric RVFV-NP, 

oligomerisation occurs within the denatured and refolded SBV NP crystal structure.  

 

Figure 4.23 Trimeric SBV NP denatured and refolded structure. A, The refolded SBV NP 

structure shows in trimer, and the three subunits are coloured in cyan, purple and orange respectively. 

NTA and CTA represent N-terminal arm and C-terminal arm, respectively. B, Electrostatic surface 

potential map of trimeric SBV NP. The arrows point to the exposed RNA binding clefts within each 

subunit. The positive charges are in blue and negative charges are in red.  

 

4.3.8 Mutagenesis and mutant protein purification 

The N-terminal arm is in contact with an adjacent protomer in the C-terminal edge of 

the RNA binding cleft within the tetramer. The N-terminal arm is also very flexible, 

suggesting that it may play a role in protecting and binding RNA. To test this 

hypothesis, we generated N-terminal (Δ1-19) and C-terminal (Δ217-233) arm 

truncates, along with single (K48A, R41A, K51Q), double (R41G/K51Q) and triple 

(R41G/K51Q/W95Q) SBV NP mutants. These truncated and mutants were 

overexpressed and purified as the native SBV NP (Chapter 1.2).  
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4.3.9 Mutation in proteins impaired RNA Binding activity 

Equal amounts of purified native and mutant proteins were loaded onto a 2% agarose 

gel and ran at 100 V for 30 min. The gel was stained with GelRed. SBV NP with 

truncated N-terminal arm and the R41G/K51Q/W95Q triple mutant completely lost 

their RNA binding ability suggesting that these residues located in potential RNA 

binding cleft and are essential for RNA binding. However, the single and double 

mutants partially lost their RNA binding activity (Figure 2.24). It is worth nothing 

that single mutant K48E, and double mutant R41G/K51Q were less bound with RNA 

than SBV NP native which served as a control. The experiment data was provided by 

Dr. Ping Li  (University of Glasgow).  

 

 

 

 

 

 

 

 

 

Figure 4.24 The RNA binding activities of native SBV NP and single, double and triple SBV NP 

mutants. The SBV NP native protein contained host RNA as a wild type (WT) control, the N-terminal 

arm deletion (Del 1-19) and triple mutant (R41G/K51Q/W95Q) completely lost their RNA binding 

ability, while the single (K48E, R41G, K51Q) and double (R41G/K51Q) mutants partially lost their 

RNA binding activity. 
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4.4 Discussion and conclusion 
 
The first Orthobunyavirus nucleoprotein structure of SBV NP was determined, which 

has a novel fold. A few viral nucleoprotein structures (RVFV, CCHFV) of negative 

single stranded RNA virus has been solved (Raymond et al. 2010; Ferron et al. 2011; 

Guo et al. 2012; Carter et al. 2012; Wang et al. 2012), and they share the feature of 

having a highly positive charge cleft for binding genomic RNA. The SBV NP also has 

a putative RNA binding cleft between the N-terminal and C-terminal domains, and 

the N-terminal arm is crucial for RNA binding which according to our mutagenesis 

studies involved several positively charged residues. These are likely to play an 

important role in genomic replication. The tetrameric oligomerisation states, which 

are formed from dimers and are mediated by N and C-terminal arms interactions, 

indicate that the N and C-terminal arms play an essential role in oligomerization. 

With RVFV, the protein purified from denaturation and refolding is monomeric 

(Raymond et al. 2010). In contrast, the SBV NP from denaturation and refolding is 

trimeric and the N-terminal arm becomes disordered, while C-terminal arm becomes 

ordered. The purified denatured and refolded SBV NP should provide us with a great 

opportunity to obtain a complex with a synthetic RNA. The SBV NP/RNA complex 

will provide valuable information on how the SBV NP recognized and encapsidates 

the genomic viral RNA. This would reveal, in exquisite molecular detail, how the 

RNA binding residues interact the RNA, which will provide a model for 

understanding the mechanisms of RNA encapsulation, replication and transcription of 

the largest Orthobunyavirus family. This might provide an opportunity for novel 

vaccine and therapy development to control infections caused not only by SBV, but 

other pathogenic human and animal Orthobunyviruses. 
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Chapter 5 

Crystal structure of Schmallenberg virus 

nucleoprotein in complex with RNA 
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5.1 Introduction  

Bunyaviridae is a large family of enveloped, single-stranded negative-sense RNA 

viruses, with more than 350 members across five genera: Orthobunyavirus, 

Hantavirus, Nairovirus, Phlebovirus and Tospovirus (Elliott et al. 2013; Walter et al. 

2011). Of these five genera, the Orthobunyavirus genus is the largest, currently 

comprising about 170 members.  

All Orthobunyaviruses contain three genome segments of single-strand negative- 

sense RNA, which are encapsidated within the virus encoded nucleocapsid protein to 

form a ribonucleoprotein (RNP) complex. The RNP facilitates virus replication, 

transcription and assembly. SBV is a negative-sense single-stranded RNA virus and 

phylogenetic analyses suggest that SBV belongs to the species Sathuperi virus 

(Garigliany et al. 2012; Goller et al. 2012), which is an Orthobunyavirus of the Simbu 

serotype.  

 We have recently solved the crystal structure of SBV NP in tetrameric and trimeric 

forms, with the purified protein under native condition and under denaturation and 

refolding condition respectively, and revealed a novel fold (H. Dong et al. 2013a). 

Although a potential RNA-binding cleft has been identified, details of the mechanism 

how SBV NP recognizes and encapsidates RNAs to form an RNP complex is 

unknown. Here, I report the crystal structure of SBV NP in complex with 42 

nucleotide (nt) long RNA, which will help us to understand viral RNA encapsidation, 

replication and transcription, and this could be an important target for developing 

vaccines and drugs. 
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5.2 Aims	
  

In Chapter 4, the SBV NP was purified under both native and denature and refold 

conditions, and the structures were determined. However, how the SBV NP 

recognizes and encapsidates RNAs to form an RNP complex is unknown. In this 

chapter, I will purify the protein using same method that protein without RNA (E. 

coli), then I will crystallize protein in complex with different lengths of synthesized 

RNAs to obtain crystals. The SBV NP/RNA complex will provides valuable 

information on how the SBV NP recognized and encapsidates the genomic viral 

RNA.  
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5.3 Results 

5.3.1 Crystallization of SBV NP/ RNA complexes  

The purification of SBV NP was described as in chapter 1.3. The purification in low 

salt concentrations (300-0 mM) during gel-filtration was attempted, in order to obtain 

SBV NP and nucleic acid complex. The protein was concentrated, incubated on ice 

with different length RNAs, 21-, 28-, 42-nt RNAs individually for 90 minutes. The 

crystallization trials were set up and screened (chapter 1.3.2). The crystals of SBV NP 

protein in complex with 21 nt and 28 nt RNA were obtained, but the crystals were 

diffracted poorly. I then increased the salt concentration to 300 mM in the final gel-

filtration step. After one week, protein-RNA complex crystals were obtained with 

protein associated with 21-, 28-, 42-nt RNA complex 

5.3.1.1 Crystallization of complex SBV NP with 21-nt RNA  

The crystallization trails were described as in Chapter 1.3.2. Protein-21-nt RNA 

complex crystals were formed in varying crystallizations conditions with the best 

crystals growing from 0.1 M Bis-Tris pH5.5, 0.2 M Ammonium acetate, 25% PEG 

3350. Crystal optimisation was carried out by varying the 0.1M Bis-Tris pH from 5.1 

to 6.0 and the PEG 3350 concentration from 21 to 29%.  The crystal optimisation was 

performed using 96 well crystal clear sitting–drop plates by mixing 0.5 µl of protein 

and 0.5 µl of crystallization precipitant with 100 µl reservoirs solution (Figure 3.1). 

The crystals were sensitive when the drop size was increased to 1 µl of protein and 1 

µl of crystallization precipitant. The optimised plates were incubated at room 

temperature (20°C). 
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Figure 5.1 Crystal of SBV NP in complex with 21-nt of RNA complex crystals. A, The initial 

crystals from screening. B, The crystals from optimization; the crystal grew in 0.1 M Bis-Tris pH 5.7, 

0.2 M ammonium acetate, 23% PEG 3350. 

5.3.1.2 Crystallization of complex SBV NP with 28-nt RNA  

The best crystals of the protein SBV NP complexed with 28-nt RNA grew in 

crystallization conditions of 0.1 M Bis-Tris pH 5.5, 0.2 M lithium sulphate and 25% 

PEG 3350. Crystal optimisation was carried out by varying the 0.1M Bis-Tris pH 

from 5.1 to 6.0 and the PEG 3350 concentration from 21 to 29%. 

 

 

 

 

 

Figure 5.2 Crystals of the NP in complex with 28-nt of RNA complex. A, Crystals from original 

screening condition. B, The crystals from optimizations; the crystals grew in 0.1 M Bis-Tris pH 5.7, 0.2 

M lithium sulphate and 25% PEG 3350. 
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5.3.1.3 Crystallization of complex SBV NP with 42-nt RNA  

The protein complexed with 42-nt RNA crystals were grew in crystallization 

condition of 0.1 M Bis-Tris pH 5.7, 0.2 M sodium chloride and 25% PEG 3350. 

Crystallization optimisation was carried out by varying the 0.1M Bis-Tris pH from 

5.1 to 6.0 and the PEG 3350 concentration from 21 to 29%. 

 

 

 

 

 

 

 

 

 

Figure 5.3 Crystals of SBV NP complexed with 42-nt RNA. A, Crystals from original screening 

condition. B, The crystals from optimizations. The crystals grew in 0.1 M Bis-Tris pH 6.0, 0.25- 0.3 M 

lithium sulphate and 25% PEG 3350. 
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5.3.2 Determination of structure of protein complexed with 21-, 28-, 

42-nt RNA 

The crystals of SBV NP in complex with 21-, 28-, 42-nt RNA were screened using in-

house X-ray source. All crystals were diffracted poorly, except the crystals of 42-nt 

RNA complex, and data set was collected using in-house X-ray facility (Figure 5.4). 

Data collection was described as in chapter 1.3.2.2.  

The data was indexed and integrated using iMosflm (Battye et al. 2011), and the 

CCP4 program Pointless (Winn et al. 2011) suggested the space group is P21. The 

data was scaled using Scala (Evans 2006). A summary of the data collection statistics 

is listed below in table 3.1. 

The structure of the SBV NP-42-nt RNA complex was solved by Molecular 

replacement with Phase (McCoy et al. 2007) using the native SBV NP’s chain B of 

PDB (4IDU) as a search model (H. Dong et al. 2013a) and a single solution was 

found with Z-score of 21.6. The unit cell content was estimated using the Matthews 

co-efficient, which suggested four copies of SBV NP per unit cell using CCP4 suite 

(Winn et al. 2011). The model was built in COOT (Emsley et al. 2004) and structure 

refinement was carried out using REFMAC5 (Murshudov et al. 2011).  

Four monomers were identified in the structure, and RNA density was observed at the 

positively charged cleft (Figure 5.4 C). Due to a low resolution of 2.7 angstroms, the 

RNA density was not very good. Therefore it was important to collect a higher 

resolution dataset at Diamond, and therefore the structure was not further built and 

refined (Table 5.1). 
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Table 5.1 SBV NP-42-nt RNA complex data collection statistics. Values in parentheses are 

represents for the highest-resolution shell. Rfactor= Σ || Fobs| - | Fcal||/ Σ |Fobs|, where Fobs and Fcal are 

observed all reflection measured and calculated currently model as structure factors, respectively. Rfree 

is calculated using 5% of total reflections, which is randomly selected not used in refinement. 

	
  
	
  
	
  

Resolution (Å) 85.62 – 2.77 (2.86 – 2.77) 

Wavelength (Å) 1.54178 

Completeness (%) 98.71 (86.72) 

I/σ 14.23 (3.37) 

Multiplicity 3.0 (2.8) 

Unit Cell (Å)                              a = 76.33, b = 85.68, c = 77.48 

 

α = γ = 90°, β = 101.34° 

Unique reflections 24441 (2135) 

Rmerge (%) 13.2 (57.4) 

Space Group P21 

Wilson B-factor 50.74 

Refinement   

Rfactor 0.37 

Rfree 0.42 

Number of atoms 6692 

Protein residues 844 

RMS (bonds) 0.01 

RMS (angle) 1.57 

Ramachandran favoured (%) 69 



	
   151	
  

	
  

 

Figure 5. 4 Data collection of SBV NP in complex with 42-nt RNA in-house. A, Crystal mounted in 

0.2 µm litho-loops (Molecular Dimensions). B, The crystal diffraction pattern to 3.0-Å resolution from 

in-house X-ray source. C, RNA density maps coloured green, which close to residue V82 was shown 

as sticks and the 2Fo-Fc map contoured at 1.0 sigma. 
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5.3.3 Data collection of 42-nt RNA-protein complex   

The dataset was collected at Diamond beamline I24 (Figure 5.5). The data was 

indexed and integrated using iMosflm (Battye et al. 2011), and the CCP4 program 

Pointless (Winn et al. 2011) suggested the space group is P21. The data was scaled 

with Scala (Evans 2006). A summary of the data collection statistics is listed below in 

table 5.2. 

 

 

 

 

 

 

 

 

Figure 5.5 Data collection of SBV NP in complex with 42-nt RNA. The crystal dataset was collected 

to 2.16 Å at Diamond beamline I24 in UK. 
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Resolution (Å) 37.82 – 2.12 (2.23 – 2.16) 

Wavelength (Å) 0.92 

Completeness 95.9% (89.5%) 

I/σ 11.8 (2.6) 

Unit Cell (Å)  a = 76.50, b = 86.05, c = 77.46 

 

α = γ = 90°, β = 101.98° 

Unique reflections 54303 (7984) 

Average redundancy 4.1 (4.3) 

Rmerge (%) 61 (57.2) 

Wilson B-factor 33.14 

Space Group P21 

Refiment - 

Number of atoms - 

Protein 7026 

RNA 840 

Solvent 152 

Mean B-factor (Å2) - 

Protein 45 

RNA 48 

Solvent 52 

R.M.S. derivation  - 

Bonds (Å) 0.01 

Angles (°) 1.50 

R-free 

R-work 

0.2766 

0.2594 

PDB code 4JNG 

 

Table 5.2 SBV NP-42-nt RNA complex data collection statistics. Values in parentheses are 

represents for the highest-resolution shell. Rfactor= Σ || Fobs| - | Fcal||/ Σ |Fobs|, where Fobs and Fcal are 

observed all reflection measured and calculated currently model as structure factors, respectively. Rfree 

is calculated using 5% of total reflections, which is randomly selected not used in refinement. 
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5.3.4 SBV NP complexed with 42-nt RNA forms tetramer 

The oligomeric NP with the 42-nt RNA was confirmed by chemical cross-linking 

analysis (Figure 5.6), which indicated that this complex exists as a tetramer (lane 3). 

This is similar to protein purified under native condition containing E coli RNA (lane 

1). The denatured and refolded protein (RNA-free) exists in trimer on SDS-gel (lane 

2). Crosslinking data was provided by Dr Ping Li	
  (University of Glasgow). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Chemical cross-linking shows that SBV NP in complex with 42 nt RNA form tetramer 

in solution. SDS-PAGE under non-reducing conditions. Lane 1, protein purified under natively 

condition contained host RNA; Lane 2, protein  purified under denaturation and refolded RNA-free; 

Lane 3, refolded protein incubated with 42-nt RNA complex. Molecular weight size markers are shown 

on the left. 
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5.3.5 Crystal structure of tetrameric SBV NP-42-nt RNA complex  

Crystal structure of SBV NP in complex with 42-nt RNA was determined using 

molecular replacement to 2.16 Å resolution by Phaser. The structure formed a 

tetrameric ring structure (Figure 5.7 A, B), where C-terminal arm of each protomer 

interacted with adjacent C-terminal domain in hydrophobic region of the protein 

(Figure 5.7 C). This result is consistent with that in Chapter 2. The structure suggested 

that the C- terminal arm plays an important role to mediate oligomerization. It is 

worth nothing that the N-terminal arms of three protomers were interacted with each 

adjacent protomer to further stabilized the tetrameric structure. The N-terminal arm of 

fourth protomer was disordered (Figure 5.7 D). The RNA strand was located inside 

the tetramer ring bound to the RNA-binding site of each protomer (Figure 5.7 A, B).	
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Figure 5.7 Crystal Structure of the SBV NP in complex with 42-nt RNA. A, The tetrameric ring of 

the SBV NP-RNA complex in cartoon representation bound to RNA. RNA is represented as orange 

stick inside the tetrameric ring. Four protomers are shown in blue, green, yellow and cyan respectively. 

The black dotted line shows the gap in the RNA. B, From A to B is the 180 ° rotation of complex along 

the y-axis.  C, Electrostatic surface of the tetrameric structure. The C-terminal arms are depicted by red 

narrows, and in contact with protomers of adjacent C-terminal domains in the hydrophobic region. D, 

From A to B is rotation about along y-axis at 180 °. The N-terminal arms are depicted by blue narrows 

with N-terminal arms bound to RNAs and interacting with neighboring protomers. An N-terminal arm 

of the protomer shown as yellow cartoon is disordered, and labeled by a red star. 
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5.3.6 SBV NP binds to RNA mainly at the positively charged groove  

The 42-nt RNA electron density is clearly observed along the inner edge of tetramer 

ring-structure (Figure 5.8 A). This is consistent with previously suggestion that a 

positively charged cleft is necessary for potential RNA-binding in the cleft between 

the N- and C- domains of SBV NP (H. Dong et al. 2013a). In the tetramer-RNA 

complex structure, it clearly shows that each protomer binds 11 nucleotides, of which 

8 RNA bases (U1- U8) bind at the positively charged cleft, and 3 RNA bases (U9-

U11) bind at the N-terminal arm. The residues K48, K51, H77, R95, R184, R182, 

K178, K179, and R166 interact with RNA and play an essential role in binding the 

RNA (Figure 5.8 B- D). Single mutations on residues K48 and K51 impaired RNA- 

binding activity as described in section chapter 2.4.7.1 previously.  Two of the 

hydrophobic residues, F18 and F176 affect the orientation of the RNA bases to an “S” 

shape for the RNA chain in the cleft (Fig. 5.8 B). Nucleotides U1, U2 and U3 face the 

protein inwardly, and interact with residues K48, K51, L126, R166 and F176 (Fig. 5.8 

B-D), while nucleotides U4, U5, U6 and U7 were exposed to the solvent, stacked 

together at the outer surface of the protein, and were in direct contact with positive 

charged residues R95, K178, K179, and R182. The nucleotide U8 was buried deeply 

within the cleft, and was sandwiched by residues N19 and R184 (Fig. 5.8 B- D).        
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Figure 5.8 Orthobunyavirus SBV NP interactions with RNA. A, Electron density map (Fo-Fc) of 

42-nt RNA (polyU) was contoured at 3 σ. The RNA density is blue, and RNA is shows as orange stick. 

The black dotted line shows the gap in the RNA. B, Electrostatic potential surface shows a protomer 

bound to 11-nt RNA of which 8-nt RNA bound in the positive charged cleft and 3-nt RNA bound in 

the N- terminal arm. C, SBV NP interacts with RNA at positive charged cleft, and RNA form “s” shape 

architecture. D, Schematic diagram shows that protein residues interact with RNA. Nucleotides 

oriented to the top faced the protein in the RNA-binding cleft, and nucleotides oriented to the bottom 

were   exposed to the solvent. The dotted dark line shows residues interacting with RNA. E, Interaction 

between the N-terminal arm and the RNA. Nucleotides (U9-U11) interact with residues of main chain, 

which is located in the N-terminal arm. F, The N-terminal arm is in contact with adjacent protomer in 

the hydrophobic site. The residues F7 and F66 form π–π interaction. The N-terminal arm is colored 

cyan and the hydrophobic site of the adjacent protomer is blue (Figure adapted from H. Dong et al. 

2013). 
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5.3.7 The N-terminal arm binds RNA 

To examine the interaction between the N-terminal arm and RNA, 3 nucleotides (U9- 

U11) are found to bind at N-terminal arm and interact with neighboring protomers 

(Figure 5.7 D and 5.8 B- E). The residues Q12, A15, A16 on the N-terminal am 

interacted with bases U9, U10, U11 to exposed RNA to solvent. The result is 

consistent with that section 4.3.7, whereby the protein structure of SBV NP purified 

under denaturation and refolding showed that the N-terminal arms were disordered 

(Figure 4.22). In chapter 4.3.9 it was described that deletion of the N-terminal arm (1-

19) resulted in completely loss of RNA-binding ability. The N-terminal arm of each 

protomer with adjacent protomer to form π–π interactions in the hydrophobic site 

consisting of residures V42, F66, L64, V62, V53. In particular the N-terminal residue 

F7 on a protomer interact with residues F66 on adjacent protomer (Figure 5.8 F). 

The structure of the SBV NP-RNA complex showed that each SBV NP protomer 

binds to 11 nucleotides. Therefore, the tetramer is able to bind 44-nt RNA. Since the 

protein (RNA-free) was incubated with a 42-base-length RNA for the crystallization, 

this resulted in a 2 nucleotides gap in the RNA between two adjacent protomers 

within the tetrameric ring structure (Figure 5.7 A, B). The electron density map 

indicates clearly the RNA density and the gap (Figure 5.8 A). 
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5.3.8 Oligomerization of SBV NP using electron microscopy 

In order to examine the oligomeric states of SBV NP in solution, the purified native 

protein (Containing E. coli RNA) and the protein (RNA-free) in complex with 42-nt 

RNA were examined by electron microscopy (EM). The EM studies indicated that the 

natively purified protein and the refolded protein in complex with 42-nt RNA were 

mainly observed as tetramers, and minor amounts of oligomerization states as trimers 

or pentamers (Figure 5.9 A, C). While the oligomerization states of denatured and 

refolded protein were heterogeneous and irregular, the predominant oligomeric states 

were trimeric that were observed (Figure 5.9 B). The EM projection maps match 

greatly with the crystal structures, and the maps were selected class averages to show 

in overlays of crystal structure (5.9 D).   

The result is consistent with that of section 5.3.4, chemical cross-linking analysis of 

SBV NP revealed oligomeric species in solution (Figure 5.6). The EM analysis of 

SBV NP oligomerization states in solution was largely in agreement with chemical 

cross-linking and crystal structures. Our collaborator Dr. Bettina Böttcher (University 

of Edinburgh) provided the EM data. 
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Figure 5.9 EM of negatively strained SBV NP. A, Micrograph of native purified protein, class 

averages (row 1- 8) and eigen-images (row 9). Most of the class averages observed as tetramer, and 

there are minor other oligomeric states as trimer (row 8, column 3) or pentamer (row 8, column 6). B, 

Class averages of refolded protein. The class averages show heterogeneous particle, and the 

predominant oligemeric state as trimer (row 1, column 3; row 2, column 8; row 3, column 6; row 7, 

column 1) and some tetramers were also observed (row 1, column 4; row 6, column 3). C, Micrograph 

refold protein in complex with 42-nt RNA. The class averages mainly show tetramers. D, Selected 

class averages (left) and class average EM projection map match well with crystal structure overlaid 

(right). The native SBV NP (top), refolded SBV NP (middle), and refold SBV NP in complex with 42-

nt RNA (bottom) respectively (Figure adapted from H. Dong et al. 2013). 
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5.3.9 Refolded SBV NP undergoes conformational changes upon 

RNA binding 

After SBV NP was purified under denaturation and refolding condition, the protein 

was in trimeric form and SBV NP requires conformational change for RNA binding. 

The EM analysis of the refolded SBV NP showed that the refolded protein in solution 

is heterogeneous with trimer as the predominant species (Figure 5.9 B). The refolded 

protein’s crystal structure also shows as trimer, and the structure is deposited in PDB 

(code: 4IDX). In this structure all the positively charged residues in the RNA-binding 

cleft were exposed to the solution and that is ready accessible to RNA in solution 

(Figure 5.10 A). When refolded protein was incubated with 42-nt RNA, the refolded 

protein was converted from trimer to tetramer and most of the positively charged 

residues in the RNA-binding cleft were orientated inwardly, facing ring within 

tetramer instead of being exposed to solvent on the outside. Although the overall 

structures of refolded SBV NP and SBV NP in complex with RNA are similar with 

root mean square deviation (RMSD) of 1.05 over 201 residues (Cα backbones) 

(Figure 5.10 B). It is noteworthy that three of the N-terminal arms were disordered in 

the trimeric structure and three of N-terminal arms were ordered in the tetramer ring 

with RNA complex structure (Figure 5.7 D). Furthermore, the side chains of residues 

L45, R41, K48, K51, H77, V82, F18, N19, P20, R182, R184, K178, K179, F176, and 

R166 facilitate significantly conformational changes for binding the RNA (Figure 

5.10 C).  
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Figure 5.10 Refolded protein undergoes conformational changes upon RNA binding. A, 

Electrostatic surface potential map of trimetric SBV NP refolded. The arrows point to the exposed 

RNA binding clefts within each subunit. The positive charge is in blue and negative charge is in red.  

B, Overall conformational changes between the protomer of refolded SBV NP (yellow) and refolded 

SBV NP in complex (cyan) with RNA (orange). C, The residues located on RNA-binding cleft undergo 

conformational changes for RNA binding. The residues shown on yellow before RNA binding and 

after RNA binding show in cyan (Figure adapted from H. Dong et al. 2013). 
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5.4 Discussion and conclusion  

The genomic RNA of negative- stranded viruses is encapsidated by nucleoprotein to 

form a ribonucleoprotein complex, which act as templates for genomic RNA 

replication and transcription (Elliott et al. 2013). 

In chapter 4, a putative RNA-binding cleft was identified between the N-terminal and 

C-terminal domains. The N-terminal arm is crucial for RNA binding, which is 

confirmed by our mutagenesis and RNA binding studies. In this chapter, we have 

extended this work to report the crystal structure of the SBV NP in complex with 42-

nt RNA to high resolution, which for the first time provide the new insights into 

details of interactions within the nucleoprotein and RNA complex of Orthobunyavirus 

of the Bunyaviridae family. 

Only two nucleoprotein structures from the entire bunyavirus family have been 

reported to date, one nucleoprotein is from RVFV (Raymond et al. 2010; Ferron et al. 

2011), and the other is nucleoprotein of CCHFV (Guo et al. 2012; Carter et al. 2012; 

Wang et al. 2012). Molecular details of how nucleoproteins encapsidate their cognate 

RNA genomes are best understood for RVFV.  

RVFV is a prototypic membrane of the phlebovirus genera within Bunyaviridae 

family (Pepin et al. 2010). The crystal structure has been solved for both monomer 

(Raymond et al. 2010) (Figure 4.2 A) and hexamer forms (Ferron et al. 2011) (Figure 

4.2 B). More recently, the crystal structure of RVFV-NP in complex with different 

lengths of single-stranded RNA or DNA revealed tetrameric, pentameric, hexameric 

forms of the protein structure (Raymond et al. 2012). These structures showed that 

linkage between adjacent subunits is mediated by highly flexible α-helical N-terminal 
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arm (Figure 5.11 A- C). Each protomer binds 7 nucleotides of which 4 nucleotides are 

sequestered in the hydrophobic binding slot, while 3 additional nucleotides bind 

between adjacent subunits. In the crystal structures, the flexible α-helical N-terminal 

arm allows formation of RVFV NP tetramers, pentamers and hexamers (Figure 5.11 

A- C). These oligomers were also observed by EM analysis of the protein in solution 

(Figure 5.11 D) (Raymond et al. 2012). 

 

Figure 5.11 Structure of RVFV NP in complex with RNA. A, Hexameric-ring of structure in 

complex with 35-nt RNA (N6-RNA35) (orange stick inside the hexameric ring) in cartoon 

representation. The RNA were sequestered in the hydrophobic binding slot, and between adjacent 

subunits. The α-helical N-terminal arm in contact with adjacent subunit on the outside of the 

N"terminal+arm+
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multimers. Six subunits colored blue, yellow, green, red, magenta, cyan respectively. B, Pentameric 

ring of RVFV-NP in complex with 35-nt RNA (N5-RNA35). Five protomers are shown in blue, yellow, 

green, red and cyan respectively. C, The tetrameric ring of structure in complex with 28-nt RNA (N4-

RNA28). Four protomers are shown in blue, green, red, cyan respectively. D, EM class averages of N6-

RNA35 (top), N5-RNA35  (middle), and N4-RNA28 (bottom) respectively. EM analysis shows the protein 

in complexes with RNAs exists in hexamer, pentamer, or tetramer in solution, which are consistent 

with crystal structures. The flexibility of the α-helical N-terminal arm allows the NP to form different 

oligomeric forms. (Figure D adapted from Raymond et al. 2012). 

 

In contrast, CCHFV NP belongs to the Nairovirus genera within the Bunyaviridea 

family ( Elliott and Schmaljohn 2013). The crystal structures of CCHFV NP has been 

reported (Figure 4.3) (Guo et al. 2012; Carter et al. 2012; Wang et al. 2012) and 

revealed a double superhelix with “head-to-tail” interaction, which suggests a 

positively charged RNA binding crevice on the outside of the double helix (Wang et 

al. 2012). However, the CCHFV NP structures were not structurally homologous with 

RVFV-NP, and the mechanism of nairovirus RNP assembly is still unknown.   

In this study, the crystal structure of SBV NP in complex with 42-nt RNA was 

elucidated. SBV is an important representative of Orthobunyavirus genus (Lambert 

and Lanciotti 2008). Although RVFV and SBV are classified in different genera 

within the Bunyaviridea family, the two nucleoproteins RVFV (245 amino acids) and 

SBV (233 amino acids) have similarly size, the N-terminal arm of the nucleoprotein 

of RVFV is involved in interaction with adjacent protomers during oligomerization 

(Ferron et al. 2011; Raymond et al. 2012). In contrast, when SBV NP was complexed 

with single strand RNA (21, 28, 42 base in length), only protein in complex with 42-

nt RNA diffracted to high resolution. This is because protein in complex with RNA 

(21, 28-nt) is heterogenous in nature, which limits diffraction quality. Similarly, poor 

diffraction was attained from large and fragile crystal of SBV NP co-purified with (E. 
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coli) RNA under native conditions. The structure of SBV NP was tetrameric and 

trimeric (Dong et al. 2013a), and revealed that the N and C-terminal arms were 

essential for multimerisation and the N-terminal arm was crucial for RNA binding. 

The crystal structure of the SBV NP-42-nt RNA complex is also significantly 

different form RVFV-NP-RNA complex. In SBV NP-42-nt RNA complex, each 

protomer can bind 11 nucleotides of which 8 nucleotides are located in the positively 

charged RNA-binding cleft. Bases U1, U2, U3, and U8 are located to facing inward to 

protein and bases U4- U7 were exposed to solvent. The remaining 3 nucleotides are 

bound to the N- terminal arms (Figure 5.8 D). Both the N- and C- terminal arms of 

SBV NP are highly flexible and necessary to orient the protein-RNA complex in a 

tetrameric ring structure by interacting with different adjacent protomers. When the 

crystal structure of denatured and refolded (RNA free) SBV NP was compared to the 

structure of the SBV NP-RNA complex, there were conformational changes within 

the positively charged RNA-binding cleft and also the N-terminal arm, which became 

ordered in protein-RNA complex structure. 

In summary, the structure of SBV NP in complex with 42-nt RNA was determined to 

2.16 Å where the RNA was wrapped in an RNA-binding cleft that suggests a new 

RNA sequestration mechanism in orthobunyavirus RNP formation. This data will 

provide a good foundation for understanding the mechanism of RNA encapsulation, 

replication and transcription of the largest Orthobunyavirus family, and this might 

provide an opportunity in the development of novel vaccine against diseases caused 

not only by SBV, but other pathogenic human and animal Orthobunyviruses. 
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