
Budget Constrained Execution of Multiple
Bag-of-Tasks Applications on the Cloud

Long Thai, Blesson Varghese and Adam Barker
School of Computer Science, University of St Andrews, Fife, UK

Email: {ltt2, varghese, adam.barker }@st-andrews.ac.uk

Abstract—Optimising the execution of Bag-of-Tasks (BoT)
applications on the cloud is a hard problem due to the trade-
offs between performance and monetary cost. The problem can
be further complicated when multiple BoT applications need
to be executed. In this paper, we propose and implement a
heuristic algorithm that schedules tasks of multiple applications
onto different cloud virtual machines in order to maximise
performance while satisfying a given budget constraint. Current
approaches are limited in task scheduling since they place a
limit on the number of cloud resources that can be employed
by the applications. However, in the proposed algorithm there
are no such limits, and in comparison with other approaches,
the algorithm on average achieves an improved performance of
10%. The experimental results also highlight that the algorithm
yields consistent performance even with low budget constraints
which cannot be achieved by competing approaches.

I. INTRODUCTION

Bag-of-Tasks (BoT) is defined as a collection of independent
and identical tasks, which can be executed by the same
application but in any order. It is possible to split a BoT
into sub-BoTs, each of which is assigned to one separate
machine for execution. As a result, BoT applications are
usually executed in a distributed environment, for instance,
they account for more than 75% of Grid computing workloads
[1].

With the advent of cloud computing [2] distributed com-
puting resources ranging from basic to compute optimised,
or memory optimised machines are available on a pay-as-
you pricing scheme. Cloud computing therefore offers a cost-
effective solution to execute BoT applications, in which a user
is free to choose the type and quantity of resources required
for her application.

A key challenge when executing BoT applications on the
cloud in order to achieve maximum performance is the trade-
off between decreasing the time it takes to execute individual
tasks and increasing the number of tasks executed at the same
time. Using high-performing (but expensive) machines can
reduce the time to execute an individual task. On the other
hand, a larger collection of cheaper machines will maximise
execution parallelism. An additional challenge is encountered
when a user needs to execute multiple BoT applications at
the same time, as each application will differ in performance
on the same type of machine. For example, tasks of a CPU
intensive application will perform best on a compute optimised
machine; a memory optimised machine may not be best suited.

In this paper, a heuristic algorithm which considers the
diversity in cost, machine types and application performance
is proposed to solve the problem of executing multiple BoT
applications on the cloud given a user’s budget constraint. The
algorithm efficiently assigns tasks to cloud machines of differ-
ent types such that the budget constraint is not violated while
minimising the execution time. The algorithm is evaluated
against existing approaches and achieves better performance
for a given budget.

The research contributions of this paper are as follows: (i)
a mathematical model of the problem of executing BoT on
the cloud while taking into account a budget constraint, ii) the
development and implementation of a heuristic algorithm that
aims to maximise the performance of a BoT on the cloud while
satisfying the given constraint, and iii) an evaluation which
compares the proposed algorithm with other approaches.

The remainder of this paper is organised as follows. Section
II considers research related to that presented in this paper.
Section III presents a mathematical model of the problem.
Section IV proposes the algorithm for executing multiple
BoT applications. Section V evaluates the proposed algorithm.
Section 6 concludes this paper by considering future work.

II. RELATED WORK

One popular framework for executing BoT is BOINC [3],
which distributes tasks to resources whose computation is
volunteered from around the world.

The MyGrid [4] framework facilitates the execution of a
BoT on the grid by minimising the execution time. This is
achieved by replicating and assigning unfinished tasks to idle
resources. Task scheduling algorithms have been previously
investigated [5]. The location of input data can be taken into
account to reduce the execution time of BoT and improve
the Quality-of-Service (QoS) [6], [7]. Independent file-sharing
tasks can be executed on the grid efficiently by preventing
the bottleneck of all machines executing the tasks requiring
to download data from the centralised server [8]. Scheduling
algorithms in which each task requires data distributed at mul-
tiple sources and satisfies both deadline and budget constraints
have been considered [9].

Executing multiple BoT applications is also widely inves-
tigated by researchers. There are decentralised approaches
to increase the throughput and fairness of the execution
[10]. Another strategy allows multiple tasks to be executed
concurrently on the same machine without severely affecting

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30319519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance [11]. An evaluation of different strategies to
execute multiple BoT applications on the Grid is considered
by Anglano and Canonico[12].

However, those researches in Grid computing may not be
applicable to cloud environment as their resources are already
available (i.e. machines are already running) and usually free
of charge. On the other hand, a cloud user has to decide
(and pay for) the type and the number of resources required
before the actual execution. Furthermore, the applicability of
Grid computing is not as wide as cloud research since those
platforms are mostly accessible to organisations that can afford
to invest into the infrastructure and maintain it.

Recently, researchers have started to focus on employing the
cloud for executing BoT. For example, statistical approaches to
schedule BoT on the cloud given a budget constraint [13] and
approaches to cost-effectively execute BoT on multiple clouds
[14] are recent efforts. A comparison of scheduling algorithms
for executing multiple BoTs on the cloud has been investigated
[15]. Mao et al. propose a approach to scale Cloud resource
based on deadline and budget constraints using constraint pro-
gramming [16]. In our previous work [17], we investigate the
execution of a Bag-of-Distributed-Tasks (BoDT) application,
in which each task required data from a globally distributed
source. Hence, the BoDT application is split into multiple BoT
applications, each of which only contains tasks from one data
source. Due to the geographical and network distance, the task
execution, which includes downloading input data, of tasks
from different applications, i.e. data source, can be different.
With the same amount of money, a user can obtain either a
small number of high performance but expensive machines or
many low performance but cheap ones. The trade-off between
application makespan and execution parallelism is investigated
in [18].

In comparison with [13], [14], [17] which make an assump-
tion that there is a limit to the number of cloud resources,
our paper allows a user to acquire as many resources allowed
by the budget. Moreover, it performs not only resource pro-
visioning [13], [16], but also task assignment for multiple
applications to cloud resources. Even though task assignment
is more complicated due to the high number of tasks, it offers
a better flexibility and is more suitable for cases when the
execution time of each task is not similar due to additional
factor such as their data size.

III. PROBLEM MODELLING

In this section, the problem of executing multiple BoT
applications on the cloud with budget constraint is modelled.

A. System Model

Let M be the number of applications and the set of appli-
cation be A = {A1...AM}. Each application is a collection of
the same type of tasks denoted as Ai = {ti,1...ti,|Ai|}.

Let T =
⋃

Ai∈A Ai = {t1, t2, ...t∑
Ai

|Ai|} be the list
of tasks, thus |T |=

∑
Ai∈A |Ai|. Each task belongs to one

application (∀t ∈ T : ∃!Aj ∈ A), such that ti ∈ Aj . For any
given task t, its application can be found as At.

Each t ∈ T is measured by sizet, which is used to compare
each task of the same application. The size of a task can be
the actual size of its input data or any parameter related to its
complexity; for example, the number of training iteration for
a machine learning application. The value of sizet determines
the time taken by the application to run on similar hardware;
more execution time is required for a larger value.

Let IT = {it1...itN} be the set of N instance types offered
by the cloud providers. The cost per hour of an instance is
denoted as cit.

The performance of each type of instance changes from one
application to another since there are multiple applications. Let
P be the performance matrix of size N×M . Pi,j is the time in
seconds taken by a instance type iti to process one unit of size
of a task of an application Aj . For each instance type iti ∈ IT ,
its performance is the vector Piti = Pi = {Piti,A1

...Piti,AM
}

corresponding to all applications.
In order to acquire the performance between instance types

and applications, we suggest to perform some test runs as,
to the best of our knowledge, there is not yet any research
in predicting application’s performance on different types of
machine.

The execution time of a task t using instance type it
is execit,t = Pit,At

× sizet. Thus, the execution time of
the collection of T on it can be calculated as execit,T =∑

t∈T execit,t.
We assume in this model that there is no pair of instance

types that have the same performance and cost. So in the model
it is possible to have multiple instances with the same either
performance or cost.

Piti = Pitj ∧ citi = citj ⇐⇒ iti = itj (1)

The system in which multiple applications must be executed
on the cloud consisting different VM types can be represented
as (A, IT).

B. Problem Model
The execution plan can be represented as the list of VMs,

each of which is created from one instance type and has the
list of assigned tasks.

So, assume that VM = {vm1...} is the execution plan
in which each vm ∈ VM is created based on one instance
type it ∈ IT . For vm ∈ VM , itvm denotes the type of vm.
Additionally, VMit be the list of VMs created from the same
instance type it.

Let Tvm be the list of tasks assigned to vm ∈ VM . The
time to execute a task t that is assigned to vm is:

execvm,t = execitvm,t = Pitvm,At
× sizet (2)

The following constraint must be satisfied for all tasks to
be executed: ⋃

vm∈VM

Tvm = T (3)

Moreover, one task cannot be assigned to multiple VMs and
this condition is represented as

Tvmi

⋂
Tvmj

= ∅ if vmi 6= vmj (4)

A start up time is required to boot a VM into a usable state
and this overhead is denoted as o. The overhead is paid for by
the user although a task cannot be executed on the VM during
start up.

The execution time of vm ∈ VM is the sum of the time
taken to execute all tasks assigned on the VM and the time
for start up denoted as

execvm = o+
∑

t∈Tvm

execvm,t (5)

We assume that each VM is charged by hour, and hence, if
only a small fraction of the hour is utilised, then the user still
has to pay for the entire hour. The cost of running a vm ∈ VM
is

costvm = dexecvm
3600

e × cpt (6)

The overall time to complete all tasks is the execution time
of the slowest VM (all VMs execute tasks in parallel) and is
denoted as

exec = max
vm∈VM

execvm (7)

The total cost to execute all tasks is the sum of the costs of
all VMs which is

cost =
∑

vm∈VM

costvm (8)

If B denotes the budget constraint for the amount of money
that can be spent for executing T on the cloud, then

cost ≤ B (9)

In this research, the performance of BoTs on the cloud is
maximised by determining VM , referred to as an execution
plan, which contains a set of VMs and the assignment of
tasks onto the VMs, so that the overall execution time, exec,
is minimised while satisfying the budget constraint.

IV. HEURISTIC ALGORITHM

This section presents the algorithm used to solve the prob-
lem of executing multiple BoT applications on the Cloud. The
main steps of the algorithm include, creating VMs, assigning
tasks to VMs, balancing tasks between VMs, generating an
initial plan based on local performance, adding more VMs
based on the user’s budget, keeping VMs’ execution times
under one hour, replacing expensive VMs by cheaper ones
and finding an execution plan.

Our approach to address the problem consists of algorithms
which are presented in Sections IV-A to IV-G. Section IV-H
presents the complete approach.

A. Assign Tasks To VMs
Function ASSIGN aims to assigns a list of tasks to a given

list of VMs. For each task, a receiving VM is selected based
on three criteria: i) the cost of a VM should not increase if
a task is executed in it, moreover, a receiving VM should ii)
require the least time to execute a task and iii) has the lowest
execution time in comparison to other VMs.

After the assignments there may be VMs without any
assigned tasks, since their instance types do not have the best
performance for any task.

B. Balance Tasks Between VMs

When tasks are assigned to VMs of different types, it is
possible to have one VM with a higher execution time than
the others. As shown by Equation 7, this will affect the overall
execution time. Hence, it is necessary for tasks to be evenly
distributed among all VMs so that their execution can be
completed nearly at the same time. This process is performed
by the function BALANCE which moves tasks from VMs
with highest execution times to other ones as long as the
overall execution time does not increase.

C. Create Initial Plan by Selecting Instance Type with Best
Performance for each Application

The best instance type of an application is the one whose
cost is lower than the given budget and maximises perfor-
mance of an application. If there are multiple instance types
that maximise application performance, then the cheapest one
is selected: itbAi

= argminit∈IT (Pit,Ai
, cit).

In the initial plan generated by function INITIAL, the
tasks are assigned to the best instance type. In other words,
an application’s tasks are assigned to the number of VMs of
the same instance type.

For each application, the whole budget is used to hire VMs
of its best instance type: num = b B

itbAi

c. As there are many
applications, the budget is likely to be violated.

D. Reduce cost

As an initial plan is highly likely to violate the budget
constraint, the next step, therefore, is to reduce the overall
cost until the budget constraint is satisfied.

Moving task can potentially increase the cost if it results in
an additional hour added for the receiving VM. So, the goal of
the cost reduction process is to completely remove a number
of VMs by moving all of their tasks to other VMs without
increasing the overall cost.

The cost reduction is performed using function REDUCE
which tries to move all tasks from one VM with lowest
execution time to others. The function has two modes, local
mode only allows tasks to be moved to VMs of the same
type of an initial VM, while global mode allows tasks to be
moved to VM of any type. In order to keep task’s execution
time as low as possible, the function tries to move tasks to
VMs whose require least time to execute them.

E. Add More VMs based on Budget

Until this stage, only the best performing VMs are used.
Based on the remaining budget, a few more VMs can be
added to increase the execution concurrency which results in
lower execution time even though they are not best performing.

Function ADD aims to add the most number of VMs based
on the remaining budget Br = B− cost. The instance type of
the added VMs is the cheapest one with the lowest execution
time for all tasks. By assuming that each of them would not
be executed for more than one hour, it is possible to calculate
a cost for a new VM, and the function keeps added new VMs
until there is not enough money to add any more.

F. Keep VM’s Execution in One Hour

As cloud VMs are usually charged by the hour; running
a VM for two hours will be similar in cost to running two
VMs of the same type in parallel for one hour. Hence, we
introduce function SPLIT which keeps assigning tasks from
a VM whose execution time is more than one hour to two VMs
with the same instance type as long as the budget constraint
is not violated and overall execution time decreases.

G. Replace Expensive VMs by Cheaper Ones

Sometimes, it is cost-effective to use a large numbers of
cheaper and moderately performing VMs than fewer expensive
and high-performing VMs. For example, assuming there are
two instance types IT = {it1, it2} and one application with
10 tasks of size 1: A = {A1}. The cost and performance of
it1 are $2 and $8, which means a VM of instance it1 costs
$2 per hour and takes 8 seconds to execute one task of A1.
Similarly, the cost and performance of it2 are $1 and $10.
With the budget B = $2, it is possible to have one VM of
type it1 and takes 8×10 = 80 seconds to execute all ten tasks
of A1. Alternatively, with the same budget, two VMs of type
it2 can be deployed. As tasks are evenly distributed to both
VMs, each VM executes five tasks and takes 10 × 5 = 50
seconds to complete execution. The execution when two VMs
of instance it2 are employed is 50 seconds. In this case, two
VMs of type it2 perform better.

Function REPLACE aims to replace expensive VMs with
cheaper ones in order to increase the cost-effectiveness of the
execution. First of all, it selects the certain number of VMs
and find their cost. Then, it calculates how many VMs of the
cheaper instance type are affordable based on the cost and
the remaining budget (if there is any). For simplification, only
one instance type is considered of the time, which means the
set of VMs has the same instance type. All tasks from the
selected VMs are assigned to the set of new and cheaper
VMs. After assignment, if the budget is still satisfied and
the overall execution time is reduced, the selected VMs are
officially replaced.

H. Find an Execution Plan based on the Given Budget Con-
straint

Algorithm 1 is used to find the execution plan based on
the given budget constraint using all functions introduces in
the previous sections. First of all, the INITIAL function is
called to create an initial plan, in which all tasks are assigned
to VMs of their best instance types possible, which are then
locally reduced (Lines 2, 3 and 4).

For future comparison, the current plan, cost and execution
time are stored (Lines 7, 5 and 6).

After that, the current plan is globally reduced, in which
tasks can be moved to all VMs except the one which is selected
to be removed. (Line 9). Additional VMs can be added if it
is allowed by the remaining budget (Line 10) and tasks are
balanced between all VMs (Line 11). Then, we try to keep
the execution to all VMs under one hour (Line 12). As it
is not guaranteed that the current execution plan satisfies the

budget constrain, the greater value between the real one and
the current cost of the execution is used as an temporary budget
for REPLACE function, which tries to replace expensive
VMs which more cheaper ones (Line 13).

The Algorithm is an iterative process which tries to optimise
the execution plan by reducing its cost and execution time.
Hence, if the current plan is better than the previous one,
i.e. the execution time of the cost are reduced, the iteration
continues (Line 14). Otherwise, if there is no improvement in
term of cost and execution time, the plan is returned (Line
19).

Algorithm 1 Find

1: function DO ASSIGNMENT(T, IT,B)
2: VM ← INITIAL(AT , IT,B)
3: VM ← ASSIGN(T, V M)
4: VM ← REDUCE(VM ′, B, ∅, TRUE)
5: cost′ ←MAX NUMBER
6: exec′ ←MAX NUMBER
7: VM ′ ← VM
8: loop
9: VM ← REDUCE(VM ′, B, ∅, FALSE)

10: VM ← ADD(IT, V M,B − cost)
11: VM ← BALANCE(VM)
12: VM ← KEEP (VM)
13: VM ← REPLACE(IT, V M,maxB, cost, 1)
14: if cost < cost′ ∨ exec < exec′ then
15: cost′ ← cost
16: exec′ ← exec
17: VM ′ ← VM
18: else
19: return VM ′

20: end if
21: end loop
22: end function

V. EVALUATION

This section evaluates our approach by comparing its per-
formance with two approaches.

A. Approaches for Comparison

The approaches used for comparing our algorithm are as
follows:

1) Minimising Individual Task Execution Time (MI) Ap-
proach: this approach aims to minimise the execution time
of any individual task by selecting the instance type which
has the best performance among all tasks. It can be easily
performed by invoking Algorithm ADD with full budget.

2) Maximising Parallelism (MP) Approach: in this ap-
proach, the cheapest instance type is selected so that the
maximum number of VMs can be purchased based on the
given budget itc = argminit∈IT (cit).

B. Environment Setup

We built a simulation framework using Scala to evaluate the
heuristic algorithm. The framework models multiple instance
types of a cloud with different performance and varying costs
as shown in Table I; this is input to the simulation. In cloud
environment, those inputs can be obtained by sampling the
applications, i.e. running the small amount of their tasks, on
VMs of difference instance types. The framework then uses
Algorithm 1 to generate an execution plan. This plan is then
executed for obtaining the overall cost and time.

1) Applications: Three application A1, A2, A3 were consid-
ered in the experiments. The first one used the same amount of
compute and memory resources and the other two were CPU
and memory intensive applications. Each application consisted
of 250 tasks whose side are equally distributed from 1 to 5.

2) Instance Types: We assumed that there were four in-
stances types it1, it2, it3, it4. The first one was very cheap
and had poor performance for all applications. The second
one was a general instance type which provided the balance
between compute and memory. The third and forth ones were
compute and memory optimised instance types which were
most suitable for CPU and memory intensive applications,
respectively. The last three instance types had the same cost
which was twice in comparison to the first one.

3) Cost and Performance: The description, cost and per-
formance of each instance type is presented in Table I. It can
be seen that even though the last three instance types had the
same price, they performed differently.

Instance Name Description Cost Performance
A1 A2 A3

it1 Small general type 5 20 24 22
it2 Big general type 10 11 13 12
it3 CPU optimised type 10 10 15 9
it4 Memory optimised type 10 10 9 12

TABLE I: Costs and Performances

4) Budget: The budget constraint was set to different values
ranging from 40 to 85.

C. Experimental Results

The result is shown in Figure 1. The x-axis represents
the budget while the y-axis is the execution time. The black
horizontal dashed line represents 3600 seconds, i.e. an hour.

It can be seen that, given the same budget, our approach, i.e.
red and triangle line, always had the lower execution time in
compare to other 2 simple approaches. In comparison with the
MI approach, ours was able to reduce the execution time by
average 13%. The MP approach which focused on maximising
the execution parallelism by choosing the cheapest instance
type performed better than MI approach, which preferred more
expensive instance type. However, in average, its execution
times were still 7% higher than the proposed one.

Furthermore, our approach was also able to handle the low
budget constraint: while MP required the budget to be at least
45 and MI could not satisfy any budget below 50, our approach
satisfies the budget as low as 40.

Fig. 1: Execution Times for Different Approaches

Fig. 2: Number of VMs of Each Type

As mentioned earlier, there is a trade-off between min-
imising an individual task’s execution time with maximising
the parallelism. The trade-off is presented based on instance
selection: powerful but expensive versus less powerful but
cheap instance types. Moreover, using the combination of
different instance types usually results in better performance
in compare to selecting one instance type.

Figure 2 shows the number of VMs and their instance types
used by different approaches for different values of the budget
constraint. It can be seen that the MP (right figure) approach
always went for cheapest instance type (i.e. it1) and managed
to maintain the highest number of VMs. On the other hand,
the MI approach (middle figure) tried to use as much VMs
of instance type it4 as possible since it had the best average
performance in compare to other three. If there were any
remaining budget, MI added an additional VM of it1 in order

to increase the performance.
Instead of following only on trend to select instance type,

our approach (left figure) was more flexible. When the budget
is 40, 50, 60, 70 and 80, it prioritised execution parallelism by
adding more VM of the cheapest instance type it1. However,
then the budget is 45, 55, 65, 77 and 85, none VM of it1
was created. Instead, VMs of it3 and it4, which had the best
performance for tasks of A2 and A3, were created in order
to reduce the overall individual task execution time. As the
result, our approach could achieve the better performance with
the same budget constraint.

VI. CONCLUSION

BoT applications have been widely used in not only sci-
entific but also industrial communities. However, they require
a huge amount of resources which can only be satisfied in
a distributed environment consisting of many interconnected
machines. Many efforts have been spent on optimising the
execution of BoT applications on grid computing in which
resources are already available and users have to compete with
each other to acquire free resources. Hence, the scheduling of
BoT on the Grid mainly focuses on assigning tasks to the
‘best’ suited machines.

Cloud computing on the other hand provides an isolated
environment (not taking into account multitenancy) in which
a user does not need to share her resources with anyone else.
Moreover, it is also possible to select the resource types which
are best suited for the applications. However, cloud computing
resources are not free of charge and a user has to pay as soon as
the VMs start running. Hence, the problem of executing BoT
applications on the cloud is not only about assigning tasks
to resources but also selecting the type of resource(s), which
are most appropriate. Moreover, with multiple applications to
run, the problem is further complicated as each application
potentially requires different types of resource for to achieve
the best performance.

In this paper, we investigated the execution of multiple
BoT applications on the cloud given a budget constraint. The
problem is modelled and a heuristic algorithm was proposed
in order to decide the selection of different cloud resources
and the assignment of tasks onto resources. By comparing our
approach to other simple ones, it was shown that the proposed
heuristic algorithm was able to reduce the execution time from
4% to 15% given the budget constraint.

For future work, we plan to further expand our heuristic
algorithm to take into account the execution deadline while
minimising the cost. Moreover, we also want to incorporate
dynamic scheduling feature to handle any unexpected issues
during runtime, which are inevitable in real-time execution on
the Cloud. Finally, we want to support scheduling tasks whose
execution times are unknown, i.e. non-clairvoyant scheduling.

ACKNOWLEDGMENT

This research is supported by the EPSRC grant ‘Working
Together: Constraint Programming and Cloud Computing’

(EP/K015745/1), a Royal Society Industry Fellowship ‘Bring-
ing Science to the Cloud’, an EPSRC Impact Acceleration
Grant (IAA) and an Amazon Web Services (AWS) Education
Research Grant.

REFERENCES

[1] A. Iosup and D. Epema, “Grid computing workloads,” Internet Com-
puting, IEEE, vol. 15, pp. 19–26, March 2011.

[2] A. Barker, B. Varghese, J. S. Ward, and I. Sommerville, “Academic
cloud computing research: Five pitfalls and five opportunities,” in 6th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud ’14,
2014.

[3] “Boinc.” http://boinc.berkeley.edu/. Accessed: 2014-01-23.
[4] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauve,

F. Silva, C. Barros, and C. Silveira, “Running bag-of-tasks applications
on computational grids: the mygrid approach,” in Parallel Processing,
2003. Proceedings. 2003 International Conference on, pp. 407–416, Oct
2003.

[5] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,” in Proceedings of the Eighth Het-
erogeneous Computing Workshop, HCW ’99, pp. 30–, IEEE Computer
Society, 1999.

[6] K. Ranganathan and I. Foster, “Decoupling computation and data
scheduling in distributed data-intensive applications,” in Proceedings
of the 11th IEEE International Symposium on High Performance Dis-
tributed Computing, HPDC ’02, (Washington, DC, USA), pp. 352–,
IEEE Computer Society, 2002.

[7] C. Weng and X. Lu, “Heuristic scheduling for bag-of-tasks applications
in combination with qos in the computational grid,” Future Gener.
Comput. Syst., vol. 21, pp. 271–280, Feb. 2005.

[8] K. Kaya and C. Aykanat, “Iterative-improvement-based heuristics for
adaptive scheduling of tasks sharing files on heterogeneous master-slave
environments,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 17, pp. 883–896, Aug 2006.

[9] S. Venugopal and R. Buyya, “A deadline and budget constrained
scheduling algorithm for escience applications on data grids,” in in Proc.
of 6th International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-2005, pp. 60–72, Springer-Verlag, 2005.

[10] R. Bertin, A. Legrand, and C. Touati, “Toward a fully decentralized
algorithm for multiple bag-of-tasks application scheduling on grids,”
in Grid Computing, 2008 9th IEEE/ACM International Conference on,
pp. 118–125, Sept 2008.

[11] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien, “Schedul-
ing concurrent bag-of-tasks applications on heterogeneous platforms,”
Computers, IEEE Transactions on, vol. 59, pp. 202–217, Feb 2010.

[12] C. Anglano and M. Canonico, “Scheduling algorithms for multiple bag-
of-task applications on desktop grids: A knowledge-free approach,” in
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna-
tional Symposium on, pp. 1–8, April 2008.

[13] A. Oprescu and T. Kielmann, “Bag-of-tasks scheduling under budget
constraints,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, pp. 351–359, Nov 2010.

[14] M. H. Farahabady, Y. C. Lee, and A. Y. Zomaya, “Non-clairvoyant
assignment of bag-of-tasks applications across multiple clouds,” in
Proceedings of the 2012 13th International Conference on Parallel and
Distributed Computing, Applications and Technologies, PDCAT ’12,
(Washington, DC, USA), pp. 423–428, IEEE Computer Society, 2012.

[15] J. O. Gutierrez-Garcia and K. M. Sim, “A family of heuristics for agent-
based elastic cloud bag-of-tasks concurrent scheduling,” Future Gener.
Comput. Syst., vol. 29, pp. 1682–1699, Sept. 2013.

[16] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline and
budget constraints,” in Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on, pp. 41–48, Oct 2010.

[17] L. Thai, B. Varghese, and A. Barker, “Executing bag of distributed tasks
on the cloud: Investigating the trade-offs between performance and cost,”
in 6th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom 2014), 2014.

[18] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-
stron, “Scale-up vs scale-out for hadoop: Time to rethink?,” in Proceed-
ings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
(New York, NY, USA), pp. 20:1–20:13, ACM, 2013.

http://boinc.berkeley.edu/

	Introduction
	Related Work
	Problem Modelling
	System Model
	Problem Model

	Heuristic Algorithm
	Assign Tasks To VMs
	Balance Tasks Between VMs
	Create Initial Plan by Selecting Instance Type with Best Performance for each Application
	Reduce cost
	Add More VMs based on Budget
	Keep VM's Execution in One Hour
	Replace Expensive VMs by Cheaper Ones
	Find an Execution Plan based on the Given Budget Constraint

	Evaluation
	Approaches for Comparison
	Minimising Individual Task Execution Time (MI) Approach
	Maximising Parallelism (MP) Approach

	Environment Setup
	Applications
	Instance Types
	Cost and Performance
	Budget

	Experimental Results

	Conclusion
	References

