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Abstract

We present a class of generalized energy inequalities and indicate their use in
investigating higher multifractal moments, in particular Lq-dimensions of images of
measures under Brownian processes, Lq-dimensions of almost self-affine measures,
and moments of random cascade measures.

1 Introduction
sec:0

Calculations in fractal geometry often fall into two parts: a geometric part and
an analytic part. The geometric part may involve expressing geometric or metric
aspects of a problem in mathematical terms leading to an analytic argument to
estimate the integrals, sums, etc. so obtained. There are a range of analytic methods
that are applicable to problems in fractal geometry of apparently different natures,
for example covering or potential theoretic methods for estimating dimensions. We
will look at an analytic technique which extends the potential theoretic method to
higher moments and give several applications.

2 Lq-dimensions and images of measures
sec:1

Coarse multifractal analysis reflects the asymptotic behavior of the moment sums
of measures over small grid cubes. Let Mr be the set of mesh cubes of side r, that
is cubes in Rn of the form [j1r, (j1 +1)r)×· · ·× [jnr, (jn+1)r) where j1, . . . , jn ∈ Z.
Let µ be a Borel measure of bounded support on Rn. Define the q-th power moment
sum of µ by

Mr(q) =
∑
C∈Mr

µ(C)q. (2.1) momentdef

The Lq-dimension or generalized q dimension of µ is given by

Dq(µ) =
1

q − 1
lim
r↘0

logMr(q)
log r

(q > 0). (2.2) lqdef
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If this limit does not exist we may still take lower or upper limits to get the lower
and upper Lq-dimensions:

Dq(µ) =
1

q − 1
lim
r↘0

logMr(q)
log r

and Dq(µ) =
1

q − 1
lim
r↘0

logMr(q)
log r

. (2.3) ulqdef

The definitions (
lqdef
2.2) and (

ulqdef
2.3) are unchanged ifwe replace the moment sum by a

moment integral

Mr(q) =
∫
µ(B(x, r))q−1dµ(x) (q > 0), (2.4) momentint

see
Lau
[17] for the case of q > 1 and

PS
[23] for 0 < q < 1.

Often of interest are the dimensions of the image of a set or the generalized
dimensions of the image of a measure under a parameterized family of mappings.
Let X be a metric space, and let xω : X → Rn be a family of continuous mappings
where ω ∈ Ω for some parameter space Ω. Let µ be a Borel measure on X and let
µω be its image measure under xω, so

µω(A) = µ(x−1
ω (A)) (A ∈ Rn)

or ∫
f(x)dµω(x) =

∫
f(xω(t))dµ(t) (f : Rn → R).

For a basic example, xω might be orthogonal projection from Rm onto a line Lω
(which we may identify with R) in direction ω , with µω the corresponding projection
of the measure µ on Rm onto Lω.

Now suppose (Ω,P,F) is a probability space and write E for expectation. One
way of obtaining lower estimates for Lq-dimensions of µω valid for almost all ω is
to bound the mean moment integrals. When q ≥ 2 is an integer:

E

∫
µω(B(x, r))q−1dµω(x)

= E

∫
µω{y1 : |x− y1| ≤ r} . . . µω{yq−1 : |x− yq−1| ≤ r}dµω(x)

= E

∫
µ{t1 : |xω(t)−xω(t1)| ≤ r} . . . µ{tq−1 : |xω(t)−xω(tq−1)| ≤ r}dµ(t)

= E

∫
· · ·
∫
χ{|xω(t)−xω(tj)|≤r for all j}(t1, . . . , tq−1, t)dµ(t1) . . . dµ(tq−1)dµ(t)

=
∫
· · ·
∫

P{|xω(t)− xω(tj)| ≤ r for all j}dµ(t1) . . . dµ(tq−1)dµ(t). (2.5) expint

We may be able to use the geometry of the situation to estimate P{|xω(t)−xω(tj)| ≤
r for all j}, which depends on the relative closeness of the t1, . . . , tq−1, t in the metric
space. For example, with xω : Rm → Lω as projection onto the line Lω where
ω ∈ Ω is distributed according to the natural invariant measure on the space of
directions Ω, the probability P{|xω(t) − xω(tj)| ≤ r for all j} is affected more, but
not exclusively, by the tj that are furthest from t, see Figure 1. In particular,
bounding (

expint
2.5) by const·rs(q−1) may lead to a lower bound of s for the Lq-dimension

of µω for almost all ω.
In the case when q = 2 the integral (

expint
2.5) may be estimated by∫ ∫

P{|xω(t)− xω(t1)| ≤ r}dµ(t1)dµ(t) ≤
∫ ∫

E

(
rs

|xω(t)− xω(t1)|s

)
dµ(t1)dµ(t)

2



projections

Figure 1: Projection of three points onto a line parameterized by ω

for all s > 0. This expectation can often be estimated using a transversality ar-
gument which results in an energy-type integral. The classic case of this is in the
projection theorems, see for example

Fa,Mat
[7, 21] for the projection case and

PSc
[24] for a

more general setting.

3 The main inequality
mainineqsec:2

In this section we consider an approach to estimating integrals such as (
expint
2.5) for

q > 1 and present an inequality which we may be applied in various settings. It
is convenient to take X to be the symbolic space on a set of m ≥ 2 symbols,
Λ ≡ {1, . . . ,m}. Thus Λk consists of the words of length k for k ≥ 0 and we write
Λ∗ ≡ ∪ki=0Λk which we identify with the vertices of the m-ary rooted tree in the
usual way. The infinite sequences, identified with the boundary of the tree, are
denoted by Λ∞. For i = i1, . . . , ik ∈ Λ∗ we write i = k for the length of the word i.
For i ∈ Λ∗ and j ∈ Λ∗ ∪ Λ∞ we write j � i to mean that i is an initial segment of
j. The cylinders are the sets Ci = {j ∈ Λ∞ : j � i} for each i ∈ Λ∗. The cylinders
provide a basis for the natural topology on Λ∞.

Write j1 ∧ j2 ∈ Λ∗ for the join of j1, j2 ∈ Λ∞, that is the longest i ∈ Λ∗ such
that j1 � i and j2 � i. For an integer q ≥ 2 we define the set of join points
i1, . . . , iq−1 ∈ Λ∗ of j1, j2, . . . , jq ∈ Λ∞ to be the set

J(j1, j2, . . . , jq) = {ji ∧ jj : 1 ≤ i < j ≤ m},

see Figure
tree
2. This set will always consist of exactly q− 1 points provided that they

are counted according to multiplicity, that is if there are r distinct points ji1 , . . . , jir
such that i = jip ∧ jiq for all 1 ≤ p < q ≤ r then i is counted as a join point with
multiplicity r − 1. (If m = 2, corresponding to a binary tree, then all join points
have multiplicity 1.)

In bounding expressions such as (
expint
2.5), where we now take X = Λ∞ so that the

ti ∈ X are replaced by j ∈ Λ∞, a generalised transversality argument may lead to
an estimate of the form

P{|xω(jq)− xω(jj)| ≤ r for all j} ≤ F (j1, j2, . . . , jq) (3.1) transest

where F may be expressed as a product over the join points

F (j1, j2, . . . , jq) = f(i1)f(i2) . . . f(iq−1) where {i1, . . . , iq−1} = J(j1, j2, . . . , jq),
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Figure 2: A set of 7 points in Λ∞ with their 6 join points in Λ∗ tree

for some f : Λ∗ → R+ defined on the vertices of the tree. Then (
expint
2.5) takes the form

E

∫
µω(B(x, r))q−1dµω(x) ≤

∫
· · ·
∫
F (j1, j2, . . . , jq)dµ(j1) . . . dµ(jq−1)dµ(jq).

(3.2) expgendim
The following theorem estimates this integral in terms of f and the cylinder measures
µ(Ci).

mainthm Theorem 3.1 For each real number q > 1 there is a polynomial p such that∫
··
∫
F (j1, j2, . . . , jq)dµ(j1) . . . dµ(jq) ≤

( ∞∑
k=0

p(k)
[ ∑
|i|=k

f(i)q−1µ(Ci)q
] 1

q−1

)q−1

.

(3.3) ineq

Proof. We give the proof in the special case when q = 3, that is∫ ∫ ∫
F (j1, j2, j3)dµ(j1)dµ(j2)dµ(j3) ≤

( ∞∑
k=0

[ ∑
|i|=k

f(i)2µ(Ci)3
]1/2

)2

. (3.4) case3

Splitting this integral into a sum over possible pairs of join points, see Figure
figjoin3
3,∫ ∫ ∫

F (j1, j2, j3)dµ(j1)dµ(j2)dµ(j3) ≤
∑
i∈Λ∗

∑
j∈Λ∗, j�i

f(i)f(j)µ(Ci)µ(Cj)2. (3.5) firstest

We first estimate the restriction of this double sum over vertices of the tree for given
levels |i| = k and |j| = l where 0 ≤ k < l; Cauchy’s inequality is used at the places
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figjoin3

Figure 3: The arrangement of three points in Λ∞ the join points used in the proof of
Theorem 1

indicated.∑
|i|=k

∑
|j|=l, j�i

f(i)f(j)µ(Ci)µ(Cj)2

=
∑
|i|=k

[
f(i)µ(Ci)

][ ∑
|j|=l, j�i

(
f(j)µ(Cj)3/2

)
µ(Cj)1/2

]

≤
∑
|i|=k

[
f(i)µ(Ci)

][( ∑
|j|=l, j�i

f(j)2µ(Cj)3
)1/2( ∑

|j|=l, j�i

µ(Cj)
)1/2

]
(Cauchy)

=
∑
|i|=k

[
f(i)µ(Ci)

][( ∑
|j|=l, j�i

f(j)2µ(Cj)3
)1/2

µ(Ci)1/2

]

=
∑
|i|=k

[
f(i)µ(Ci)3/2

][ ∑
|j|=l, j�i

f(j)2µ(Cj)3

]1/2

≤
[ ∑
|i|=k

f(i)2µ(Ci)3

]1/2[ ∑
|i|=k

∑
|j|=l, j�i

f(j)2µ(Cj)3

]1/2

(Cauchy)

=
[ ∑
|i|=k

f(i)2µ(Ci)3

]1/2[∑
|j|=l

f(j)2µ(Cj)3

]1/2

Summing over all levels 0 ≤ k, l gives inequality (
case3
3.4). 2

When q is a larger integer, (
ineq
3.3) may be established using an induction on

configurations of join points, requiring frequent uses of Hölder’s inequality rather
than Cauchy’s inequality. A further extension of the calculation establishes that
(
ineq
3.3) remains valid for any real number q > 1, see

Fa6, FX
[9, 11] for further details.

In applications f(i) ≡ fs(i) typically depends on a parameter s such that∑
|i|=k

fs(i)q−1µ(Ci)q � (λs)k
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for some λs > 0. Combining (
ineq
3.3) with (

expgendim
3.2) gives

E

∫
µω(B(x, r))q−1dµω(x) ≤ c

( ∞∑
k=0

p(k)(λs)k/(q−1)
)q−1

,

so the value of s for which λs = 1 is critical for bounding the mean Lq dimensions
of µω.

4 Images of measures under Gaussian processes
sec:3

For a first application of inequality (
ineq
3.3), we examine images of measures under

certain Gaussian processes. Let {xω : [0, 1] → R, ω ∈ Ω} be index-α fractional
Brownian motion (0 < α ≤ 2) defined on a suitable probability space Ω, see

Ad, Kah1,ManVN
[2, 15,

20]. It was shown by Kahane
Kah1
[15] that for a Borel set E ⊆ R

dimHX(E) = min
{

1,
dimHE

α

}
a.s.,

where dimH denotes Hausdorff dimension. It is natural to seek similar relation-
ships between the generalized dimensions of measures and their images under such
processes.

Figure 4: A measure µ and its image µω under a process xω

Theorem 4.1 Let xω : [0, 1]→ R be index-α fractional Brownian motion, let µ be a
finite measure on [0, 1] and let µω be the image of µ under xω. Letq > 1. Assuming
that Dq(µ) exists then Dq(µω) exists almost surely and

Dq(µω) = min
{

1,
Dq(µ)
α

}
a.s..

Sketch of proof. Since index-α fractional Brownian motion almost surely satisfies
an (α − ε)-Hölder condition for all ε > 0, it follows easily from the definition of
Lq-dimensions that Dq(µω) ≤ Dq(µ)/α.

For the opposite inequality we use the local nondeterminism (LND) of fBm.
Roughly this states that the variance of xω(t1) conditional on xω(t2), . . . , xω(tq) is
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comparable with the variance of xω(t1)−xω(tj) for the j for which |t1− tj | is least),
see

Be,Xi06,Xi11
[3, 25, 26]. It may be shown that the calculations are essentially unaffected if, for

a suitably large m, we consider the numbers in [0, 1] to base m and identify the base
m number 0.a1a2a3 . . . with (a1 + 1, a2 + 1, a3 + 1, . . .) ∈ Λ∞, so that the hierarchy
of m-ary subintervals of [0, 1] are the cylinders Ci in symbolic space. Using LND
inductively we obtain, in symbolic space notation,

P{|xω(jq)− xω(jj)| ≤ r for all j} ≤ cF (j1, j2, . . . , jq)

where F is a product over the join points i1, . . . , iq−1 ∈ J(j1, j2, . . . , jq) of the form

F (j1, j2, . . . , jq) = crs(q−1)m|i1|αsm|im|αs · · ·m|iq−1|αs

for any s > 0, where we have replaced Euclidean distance on [0, 1] by the m-ary
ultrametric d(j1, j2) = m−|j1∧j2|. In this notation (

expint
2.5) becomes

E

∫
µω(B(x, r))q−1dµω(x)

≤crs(q−1)

∫
· · ·
∫
i1,...,iq−1∈J(j1,...,jq)

m|i1|αsm|im|αs · · ·m|iq−1|αsdµ(j1) . . . dµ(jq).

Inequality (
ineq
3.3) with f(i) = fs(i) ≡ m|i|αs now gives

E

∫
µω(B(x, r))q−1dµω(x) ≤ crs(q−1)

( ∞∑
k=0

p(k)
[ ∑
|i|=k

λs,k

]1/(q−1))q−1
(4.1) sumbound

where
λs,k ≡

∑
|i|=k

fs(i)q−1µ(Ci)q = m|i|αs(q−1)
∑
|i|=k

µ(Ci)q. (4.2) sums

The sum in (
sumbound
4.1) is finite if lim supk→∞(λs,k)1/k < 1, that is if αs < Dq(µ) using (

lqdef
2.2)

and noting that the sum in (
sums
4.2) is a sum over the m-ary mesh intervals of lengths

m−|i| that are identified with the cylinders Ci. It follows that if s1 < s < Dq(µ)/α
then

E
∞∑
k=1

2−s1(q−1)

∫
µω(B(x, 2−k))q−1dµω(x)

= E

∫ ( ∞∑
k=1

2−s1(q−1)µω(B(x, 2−k))q−1
)
dµω(x) <∞,

which implies that Dq(µω) > s1 almost surely, since the generalized dimensions are
determined by the sequence of r = 2−k. 2

This method yields similar conclusions for the Lq-dimensions of the images of
measures under other classes of Gaussian process such as fractional Riesz-Bessel
motion and infinity scale fractional Brownian motion, see

FX
[11].

5 Measures on almost self-affine sets
sec:4

Next we consider Lq-dimensions of measures on self-affine and almost self-affine sets.
For i = 1, . . . ,m let Ti be linear contractions on Rn and let ωi be translation vectors.
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The iterated function system {Tj(x) + ωj}mj=1 has an non-empty compact attractor
E satisfying E = ∪mj=1(Tj(E) + ωj); such a set is termed a self-affine set. Writing
ω = (ω1, . . . , ωm) for the set of translations, the attractor E may be characterised
in terms of m-ary sequences: Eω =

⋃
j∈Λ∞ xω(j), where xω : Λ∞ → Rn is given by

the single point in the decreasing intersection

xω(j) ≡ xω(j1, j2, . . .) =
∞⋂
k=1

(Tj1 + ωj1)(Tj2 + ωj2) · · · (Tjk + ωjk)(B), (5.1) defxwj

where B is any ball such that Tj(B) + ωi ⊆ B for all j.
Let p1, . . . , pm be probabilities, so that 0 < pj < 1 and

∑m
j=1 pj = 1. Let µ be

the Bernoulli probability measure on Λ∞ defined by

µ(Cj) = pj1pj2 . . . pjk j = (j1, . . . , jk) ∈ Λ∗, (5.2) mucyl

and extended to a Borel measure on Λ∞. For each ω ∈ Ω let µω be the image
measure of µ under xω, which is supported by Eω.

We wish to find the generalized dimensions Dq(µω). This is well-known in the
case where the Tj + ωj are similarities and Eω is a self-similar set. Provided the
open set condition is satisfied (that is, there exists a non-empty open set U such
that ∪mj=1(Tj(U)+ωj) ⊂ U with this union disjoint), then the generalized dimension

Dq(µω) = d0 where d0 satisfies the equation
∑m

j=1 r
(1−q)d0
j pqj = 1, see

CM,Fa
[4, 7]. Closed

formulae have also been obtained for the generalized dimensions or self-affine ‘car-
pets’ and ‘sponges’, where the Tj are all equal and the affine transformations Tji +ωji
map a given cube onto similarly-aligned rectangles or rectangular parallelepipeds
K,O
[16, 22].

In general it is difficult to obtain formulae for Lq-dimensions of measures on
self-affine sets, or even for the Hausdorff dimension of the supporting self-affine
sets, not least because they need not be continuous in ω. Nevertheless, using a
potential-theoretic approach, one may obtain formulae that are valid for almost all
ω = (ω1, . . . , ωm) in the sense of mn-dimensional Lebesgue measure in the case that
1 < q ≤ 2, see

Fa5
[8]. However, in general there is ‘not enough transversality’ as ω

varies for the estimates to extend to q > 2.
almostsa

Figure 5: Hierarchical construction of an almost self-affine set Eω
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One way of circumventing this difficulty is to introduce more randomness by
allowing a random perturbation in the translation component at each stage of the
construction. We let

ω = {ωj1,j2,...,jk : (j1, j2, . . . , jk) ∈ Λ∗} ∈ (Rn)Λ∗ (5.3) uwdef

be a family of translation vectors in Rn which we assume to be bounded. Analo-
gously to (

defxwj
5.1) we let

xω(j) =
∞⋂
k=1

(Tj1 + ωj1)(Tj2 + ωj1,j2)(Tj3 + ωj1,j2,j3) · · · (Tjk + ωj1,j2,...jk)(B)(5.4)

= lim
k→∞

(Tj1 + ωj1)(Tj2 + ωj1,j2)(Tj3 + ωj1,j2,j3) · · · (Tjk + ωj1,j2,...jk)(0)

= ωj1 + Tj1ωj1,j2 + Tj1Tj2ωj1,j2,j3 + · · ·

for each j ≡ (j1, j2, . . .) ∈ Λ∞, for some ball B large enough to ensure that Tj(B) +
ωj1,j2,...,jk ⊆ B for all j1, j2, . . . , jk ∈ Λ∗. We call

Eω =
⋃

j∈Λ∞

xω(j)

an almost self-affine set, see Figure
almostsa
5.

We may randomize the translation vectors in the self-affine construction. Assume
now that wj1,j2,...,jk in (

uwdef
5.3) are independent identically distributed (i.i.d.) random

vectors for j1, j2, . . . , jk ∈ Λ∗ with absolutely continuous density with respect to n-
dimensional Lebesgue measure. We put the product probability measure on (Rn)Λ∗ .
We then term Eω a random almost self-affine set, see Figure 6.

Figure 6: A self-affine set and a random almost self-affine set with the same linear com-
ponents in the defining transformations

To analyse self-affine and almost self-affine sets we utilize the singular values of
the mappings which control the proportions of the components in the construction.
The singular values α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 of a linear mapping T : Rn → Rn are
the positive square roots of the eigenvalues of TT ∗ or equivalently are the semi-axis
lengths of the ellipsoid T (B) where B is the unit ball. The singular value function
of T is then defined by

φs(T ) = α1 . . . αp−1α
s−p+1
p (5.5) svn

where p is the integer such that p − 1 ≤ s ≤ p. (If T is a similarity then φs(T ) is
just the sth power of the scaling ratio of T .)
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There are two important properties of φs. Firstly it is submultiplicative, that is

φs(T1T2) ≤ φs(T1)φs(T2), (5.6) phisub

and secondly, if T is a contracting linear map, then φs(T ) is continuous and strictly
decreasing in s, see

Fa1
[5]. It follows, writing

Φs
k :=

∑
i1,...,ikΛk

φs(Ti1 ◦ · · · ◦ Tik),

that Φs
k itself is also submultiplicative, that is Φs

k+l ≤ Φs
kΦ

s
l , so, by the standard

property of submultiplicative sequences, the limit

Φs := lim
k→∞

(Φs
k)

1/k

exists and is decreasing in s.
The positive number d0 that satisfies Φd0 = 1 is called the affinity dimension

d0 ≡ d0(T1, · · · , Tm) of the self-affine set Eω that is the attractor of the IFS of affine
maps {Ti + ωi}mi=1. In other words d0 is given by

Φd0(T1, . . . , Tm) ≡ Φd0 = lim
k→∞

( ∑
i1...ik∈Λk

φd0(Ti1 ◦ · · · ◦ Tik)
)1/k

= 1; (5.7) affdim

notice that the affinity dimension depends only on the linear parts of the IFS
functions. Affinity dimensions provide ‘generic’ values for the Hausdorff and box-
counting dimensions of self-affine sets. We write dimH and dimB for Hausdorff and
upper box-counting dimensions respectively

Proposition 5.1 Let Eω be a self-affine or almost self-affine subset of Rn. Then

dimHEω ≤ dimBEω ≤ d0(T1, · · · , Tm) (5.8) dimineq

where (T1, · · · , Tm) are the linear parts of the affine contractions in the construction
of Eω. If Eω is self-affine with ‖Tj‖ < 1

2 for all j then there is equality in (
dimineq
5.8) for

almost all translation sets ω ∈ (Rn)m. If Eω is a random almost self-affine set then
there is equality in (

dimineq
5.8) for almost all ω ∈ Ω with no restriction on ‖Tj‖.

Proof. Inequality (
dimineq
5.8) is obtained by a covering method. Almost sure equality

for self-affine sets and random almost self-affine sets may be derived from energy
estimates for measures supported on the sets, see

Fa1
[5] and

JPS
[12] for the two settings.

2

To obtain generic formulae for Lq-dimensions, we adapt the definition of affine
dimension. With µ to be a Bernoulli measure on Λ∞ defined by (

mucyl
5.2), let

Φs
q = lim

k→∞

( ∑
i1,...,ik∈Λk

φs(Ti1 ◦ Ti2 ◦ · · · ◦ Tik)1−qµ(Ci1,i2,...,ik)q
)1/k

= lim
k→∞

( ∑
i1,...,ik∈Λk

φs(Ti1 ◦ Ti2 ◦ · · · ◦ Tik)1−q(pi1pi2 . . . pik)q
)1/k

. (5.9)

Again the limits exist as a consequence of supermultiplicativity, and if q > 1 then
Φs
q is strictly increasing and continuous in s. Thus we may define positive numbers

dq by the requirement that
Φdq
q = 1. (5.10) dqdef
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As before we write µω for the image of the Bernoulli measure µ under xω. We refer
to µω as a self-affine measure for ω ∈ Λ when the support Eω is a self-affine set,
and as an (random) almost self-affine measure when ω ∈ Ω and the support is a
(random) almost self-affine set.

prop1q2 Proposition 5.2 Let 1 < q ≤ 2. Let µ be a Bernoulli measure on Λ∞. For every
self-affine or almost self-affine measure µω on Rn

Dq(µω) ≤ min{dq, n} (5.11) dqeq

where dq is given by (
dqdef
5.10). Moreover, Dq(µω) exists and

Dq(µω) = min{dq, n}

in the self-affine case provided ‖Tj‖ < 1
2 for all j, for almost all ω ∈ (Rn)m ,

and also in the random almost self-affine case for almost all ω ∈ (Rn)Λ∗ (with no
restriction on the ‖Tj‖).

Note on proof. This is proved in
Fa5
[8] using a potential-theoretic method; the proof

adapts easily to give equality in the random almost self-affine case. 2

It is natural to ask whether the conclusion of Proposition
prop1q2
5.2 is valid for q > 2

when the basic potential-theoretic method is inadequate. This higher moment case
can be addressed using the inequality of Section

mainineq
3. However, for self-affine measures

µω there is not-enough randomness or transversality to get an adequate estimate
in (

transest
3.1) to lead to equality for almost all ω ∈ (Rn)m. Thus we can only obtain the

lower bound for random almost self-affine measures.

Theorem 5.3 Let q > 1. Let µ be a Bernoulli measure on Λ∞. For every self-affine
or almost self-affine measure µω on Rn

Dq(µω) ≤ min{dq, n} (5.12) dqeq1

where dq is given by (
dqdef
5.10). If µω is a random almost self-affine measure then

Dq(µω) exists and
Dq(µω) = min{dq, n}

for almost all ω ∈ (Rn)Λ∗.

Sketch of proof. The upper bound (
dqeq1
5.12) comes from splitting ellipses of the form

that occur in the intersections in (
ellipses
5.4) into appropriate pieces and summing the

powers of the measures, see
Fa5,Fa6
[8, 9].

For the case where q ≥ 2 is an integer and µω a random almost self-affine set,
let j1, . . . , jq ∈ Λ∞. Using the geometry and randomness or higher transversality
available in the construction, we may obtain an estimate

P{|xω(jq)− xω(jj)| ≤ r for all j} ≤ crs(q−1)φs(Ti1)−1φs(Ti2)−1 . . . φs(Tiq−1)−1

(5.13) transest1
where i1, . . . , iq−1 are the join points of j1, . . . , jq. Using (

expint
2.5) we get, for all s > 0,

E

∫
µω(B(x, r))q−1dµω(x)

≤ crs(q−1)

∫
· · ·
∫
φs(Ti1)−1φs(Ti2)−1 . . . φs(Tiq−1)−1dµ(j1) . . . dµ(jq)

≤ crs(q−1)

( ∞∑
k=0

p(k)
[ ∑
|i|=k

φs(Ti)1−qµ(Ci)q
] 1

q−1

)q−1

,

11



for some polynomial p, taking f(i) = φs(Ti)−1 in inequality (
ineq
3.3). From the defini-

tion (
afflq
5.9),(

dqdef
5.10) of Φs

q, this series converges if 0 < s < dq, in which case

E
∞∑
k=1

2−s1(q−1)

∫
µω(B(x, 2−k))q−1dµω(x)

= E

∫ ( ∞∑
k=1

2−s1(q−1)µω(B(x, 2−k))q−1
)
dµω(x) <∞,

for all 0 < s1 < s, giving Dq(µω) > s1 for all s1 < dq, as required.
For full details of this argument and the case of non-integer q > 1 see

Fa7
[10]. 2

6 Random multiplicative cascade measures
sec:5

Let Λ = {1, 2, . . . ,m}, let Wi be independent positive random variables indexed by
i = i1, i2, . . . , ik ∈ Λ∗ and let

Xi = Wi1Wi1,i2 · · ·Wi1,i2,...,ik .

We may identify the cylinders in symbolic space with the hierarchy of m-ary subin-
tervals of of [0, 1] in the obvious way, see Figure

figmart
6. We assume that E(Wi) = 1 for all

figmart

Figure 7: A random multiplicative binary cascade measure represented on the interval
[0, 1], with Xj|k a martingale for each j ∈ [0, 1].

i ∈ Λ∗ in which case (Xj|k,Fk) is a martingale for each j ∈ Λ∞, where j|k denotes the
curtailment of j after k terms and Fk is the σ-field generated by {Wi : i ∈ ∪kl=1Λl}.

These martingales, termed random multiplicative cascade measures, were intro-
duced and studied in the 1970s by Mandelbrot

Man
[19] and Kahane and Peyrière

Kah,KP
[13, 14]

12



who obtained many properties in the ‘self-similar’ case, that is when the Wi are in-
dependent and identically distributed. Let µ be a Borel probability measure on Λ∞.
Of particular interest are k-th level sums∑

|i|=k

Xi µ(Ci) ≡
∫
Xj|kdµ(j),

which moments of the sums remain bounded as k →∞ and in what setting the inte-
gral converges. It follows from Minkowski’s inequality that if E

((∑
i∈Λk Xi µ(Ci)

)q)
is bounded in k then so is

∑
i∈Λk E

((
Xi µ(Ci)

)q), so of more interest are opposite
implications. Using the inequality from Section

mainineq
3 we get the following result.

randcas Theorem 6.1 Let q > 1 be a real number. If

lim sup
k→∞

(∑
|i|=k

E(Xq
i )µ(Ci)q

)1/k
< 1 (6.1) thm1

then

lim sup
k→∞

E

((∑
|i|=k

Xi µ(Ci)
)q)

<∞ (6.2) thm2

and
∫
Xj|kdµ(j) converges a.s. and in Lq. Note that we require the underlying Wi

to be independent but not necessarily identically distributed.

This, and other properties of these martingales were obtained by Kahane and
Peyrière

Kah,KP
[13, 14] when the random cascade is ‘self-similar’, that is when the Wi

are identically distributed, utilizing the self-similarity to show that the sums satisfy
a random difference equation. There have been many subsequent extensions and
variants, see

BM,Liu
[1, 18] which contain many further references. Barral

BM
[1] proved this

result without the i.i.d. requirement on the Wi in the case 1 < q ≤ 2, with the
martingales defined in a more general continuous, rather than discrete, setting.

Note on the proof of Theorem
randcas
6.1. When q > 1 is an integer we may expand

E

((∑
|i|=k

Xi µ(Ci)
)q)

=
∑

|i1|,|i2|,...,|iq |=k

E(Xi1Xi2 · · ·Xiq)µ(Ci1)µ(Ci2) · · ·µ(Ciq)

≤
( ∞∑
k=0

p(k)
(∑
|i|=k

E(Xq
i )µ(Ci)q

) 1
q−1

)q−1

.

for a polynomial p, where this inequality may be established using induction in a
manner akin to that of Theorem

mainthm
3.1 by relating the expectations of products of

the Xij to expectations of powers of the Xi at the join points of i1, . . . , iq. The
conclusion (

thm2
6.2) then follows from (

thm1
6.1).

As with Theorem
mainthm
3.1 the argument for non-integer q requires a more involved

induction argument. 2
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