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Asymmetric Isothiourea-Catalysed Formal [3++2] Cycloadditions of
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Louis C. Morrill, Alexandra M. Z. Slawin, and Andrew D. Smith*[a]

Abstract: A highly enantioselective Lewis base-catalysed

formal [3++2] cycloaddition of ammonium enolates and oxa-

ziridines to give stereodefined oxazolidin-4-ones in high
yield is described. Employing an enantioenriched oxaziridine

in this process leads to a matched/mis-matched effect with

the isothiourea catalyst and allowed the synthesis of either

syn- or anti-stereodefined oxazolidin-4-ones in high d.r. ,

yield and ee. Additionally, the oxazolidin-4-one products
have been derivatised to afford functionalised enantioen-

riched building blocks.

Introduction

The ubiquitous use of heterocycles in the pharmaceutical,

agrochemical as well as in the dye and fine-chemical industries
has led to the establishment of numerous strategies for their

synthesis and functionalisation.[1] Stereodefined heterocycles
are also significant components of numerous biologically

active natural products.[2] As a result of the widespread preva-
lence of heterocyclic motifs in synthetic chemistry,[3] alongside

the continued drive for efficient, selective synthetic protocols

within the chemical community, there is an ongoing require-
ment for novel asymmetric syntheses of heterocyclic scaffolds.

Oxazolidin-4-ones represent a unique heterocyclic structural
motif found within natural products and bioactive molecules.

For example, the oxazolidin-4-one core is found in the natural
products synoxazolidinone A and B which were isolated from

S. pulmonaria and exhibit antibiotic and antifungal activity at

low concentrations (Figure 1).[4] In addition, oxazolidin-4-ones
are found in lipoxazolidinones A, B, and C isolated from
a marine actinomycete strain.[5] These naturally occurring oxa-
zolidin-4-ones also exhibit antibacterial activity comparable

with the commercial antibacterial agent Linezolid (Zyvox) that
contains a structurally related oxazolidin-2-one core.[6] There-

fore, the development of a synthetic strategy for the asymmet-
ric generation of heterocyclic scaffolds of this type is a worth-
while goal. In this manuscript, we describe an isothiourea-cata-

lysed formal [3++2] cycloaddition using both racemic and enan-

tioenriched oxaziridines[7] to form stereodefined oxazolidin-4-
ones.

Building on Birman and Okamoto’s introduction of isothiour-
ea catalysts for kinetic resolutions[8] we have recently estab-
lished, alongside Romo,[9] isothiourea Lewis base catalysis[10] for
the preparation of a range of synthetically relevant heterocyclic

scaffolds. Substituted THFs,[11] dihydrobenzofurans and pyrroli-
dines[12] have been accessed by an asymmetric intramolecular
Michael addition/lactonisation process. In addition, stereode-

fined anti-d-lactams[13] and dihydropyranones[14] were obtained
by related intermolecular Michael addition/cyclisation proto-

cols. This methodology was extended using a strategic PhSH
elimination as part of a cascade process for the synthesis of

substituted pyrones[15] and functionalised pyridines.[16] Addi-

tionally, asymmetric formal [2++2] cycloadditions employing N-
sulfonyl imines to form anti-b-lactams have been studied.[17]

However, to date, formal [3++2] cycloaddition processes cata-
lysed by isothioureas have not been developed.[18]

Oxaziridines have previously been reported as electrophiles
for the synthesis of oxazolidin-4-ones by Ye and co-workers

Figure 1. Biologically active natural products and medicinal agents based
upon the oxazolidinone core.
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using ketenes in the presence of
either N-heterocyclic carbene

(NHC) precatalyst 1 or cinchona
alkaloids.[19] The a,a-disubstitut-

ed oxazolidin-4-ones were isolat-
ed in good yield and with high
diastereo- and enantioselectivity

(Scheme 1a), although this pro-
cess is somewhat limited due to
the use of synthetically challeng-
ing ketenes and their precursors.

More recently, Feng described
chiral bisguanidinium salt 2 for

the asymmetric oxyamination of

azlactones with concurrent ki-
netic resolution of the oxaziri-

dine (Scheme 1 b).[20] Building
upon these precedents, herein

we report our results on the iso-
thiourea-catalysed asymmetric

formal [3++2] cycloaddition of

homoanhydrides and oxaziri-
dines to form stereodefined oxa-

zolidin-4-ones (Scheme 1c) and
their subsequent derivatisations.

Results and Discussion

Optimisation

Our investigation began with the Lewis base-catalysed reaction
of commercially available phenylacetic acid 4 with racemic ox-
aziridine 5 (Table 1, conditions A). Treatment of the acid with
pivaloyl chloride and iPr2NEt to form a mixed anhydride in situ

followed by addition of (2S,3R)-HyperBTM 3[21] and oxaziridine
5 gave high conversion into the desired [3++2] oxazolidin-4-
one product 6, with a small amount of imine 14 and b-lactam
15 (derived from a previously disclosed[17] intramolecular
formal [2++2] cycloaddition of an ammonium enolate and

imine 14) also observed by 1H NMR spectroscopy (Table 1,
entry 1). However, imine 14 was difficult to remove from the

desired product by column chromatography, resulting in con-

taminated oxazolidin-4-ones. To probe the origin of imine 14,
control experiments demonstrated that treating oxaziridine 5
in CH2Cl2 with iPr2NEt (1 equiv) led to the formation of
iPr2(Et)N-oxide and imine 14. To prevent this undesired imine

formation through oxidation of the base a number of alterna-
tive bases was examined. Disappointingly, 2,6-lutidine and

Cs2CO3 gave comparable amounts of imine 14 (entries 2 and

3). In the reaction with Cs2CO3 (entry 3), imine formation is pre-
sumably derived from reaction of oxaziridine 5 with chloride

ions[7b] generated from the reaction of phenylacetic acid 4 with
pivaloyl chloride to form the “activated” mixed anhydride. To

overcome this problem and remove the need for an activation

Scheme 1. Formal [3++2] intermolecular cycloadditions for the synthesis of
oxazolidin-4-ones catalysed by a) NHC precatalyst 1; b) bisguanidinium salt
2 ; c) HyperBTM 3.

Table 1. Reaction optimisation and oxaziridine scope.

Entry Oxaziridine Product Base Yield [%][a] d.r.anti/syn
[b] eeanti/syn [%][c] Imine 14 [%]

1[d] 5 6 iPr2NEt 64 82:18 >99:>99 6
2[d] 5 6 2,6-lutidine 57 75:25 – 8
3[d] 5 6 Cs2CO3 72 61:39 – 9
4[e] 5 6 Cs2CO3 83 57:43 97:97 –
5[e] 8 11 Cs2CO3 78 55:45 78:78 –
6[e] 9 12 Cs2CO3 82 55:45 99:95 –
7[e] 10 13 Cs2CO3 73 59:41 85:80 –

[a] Combined isolated yield of both diastereoisomers. [b] Determined by 1H NMR spectroscopic analysis of the
crude reaction product. [c] Determined by HPLC analysis. [d] Conditions A. [e] Conditions B.
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step, homoanhydride[22] 7 was used in place of phenylacetic
acid and assessed under similar reaction conditions (Table 1,

conditions B). Pleasingly, this alternative ammonium enolate
precursor resulted in formation of oxazolidin-4-one 6 exclusive-

ly in high yield with excellent enantiocontrol, however lower
levels of diastereoselectivity were obtained (entry 4). The oxa-

zolidin-4-one diastereomeric mixture 6 a and 6 b was reduced
using LiAlH4 to give diol 16 in good yield maintaining stereoin-
tegrity (Scheme 2),[23] confirming that the configuration at C(5)

is equivalent in both the syn- and anti-diastereomers formed.
The absolute configuration was determined by comparison of

the specific rotation of diol 16 with literature values (see the
Supporting Information for details). To assess the effect of the

oxaziridine on the stereochemical outcome of the process, al-

ternative oxaziridines were investigated using phenylacetic an-
hydride 7 as the standard ammonium enolate precursor (en-

tries 5–7). Aromatic halogen substitution in the ortho- and
para-position was examined under the optimised conditions

and led to high yields of the de-
sired [3++2] products 11 and 12,

both in approximately 55:45 d.r.

but with slightly reduced levels
of enantiocontrol for both dia-

stereoisomers. Gratifyingly, the
scope of the process could be

extended with regards to the N-
substituent. Replacing the N-

tosyl group with an N-nosyl led

to the formation of oxazolidin-4-
one 13 in high yield, however

slightly reduced ee values were
obtained for the syn- and anti-
products.

These reaction conditions

were next applied to a range of
homoanhydrides to assess the
scope of the reaction (Table 2).
Anhydrides with both electron-
withdrawing and -donating aro-

matic substituents were tolerat-
ed, giving a range of oxazolidin-

4-ones in high yields with ap-
proximately 50:50 d.r. , but with
excellent levels of enantiocontrol

observed for each diastereoiso-
mer 6, 17 and 18 (up to

99 % ee). Extended aromatic sys-
tems and aromatic groups bear-

ing substituents in the ortho-, meta- and para-position also
participated well under the previously optimised reaction con-

ditions giving oxazolidin-4-ones 19–22 in good yields again
with excellent levels of ee for both diastereoisomers. 3-Thio-

phenylacetic anhydride led to isolation of oxazolidin-4-one 23
in 79 % yield but lower levels of ee were obtained for both the

syn- and anti-diastereoisomer (87 and 81 %, respectively). Pleas-
ingly, the reaction was extended beyond aromatic substitution

patterns to include alkenyl oxazolidin-4-one 24, obtained in

good yield and high ee (syn- and anti-diastereoisomer). Unex-
pectedly, p-trifluoromethyl substitution gave oxazolidin-4-one

25 in 49:51 d.r.anti/syn, with both diastereoisomers formed with
low levels of enantioselectivity (43 % eeanti, 36 % eesyn).

Whilst these results are synthetically relevant, their utility for
the synthesis of oxazolidin-4-ones is partially limited due to

the diastereomeric mixtures of heterocycles obtained. Al-

though this methodology is applicable to the synthesis of
enantioenriched diols (Scheme 2), further investigations sought

to investigate the cause of low diastereocontrol in this process
allowing selective access to either syn and anti diastereoiso-

mers. The conversion of (�)-oxaziridine 5 into product 6 under
the standard reaction conditions was monitored over time by
1H NMR spectroscopy and the ee of unreacted oxaziridine 5
and oxazolidin-4-one 6 was analysed by chiral HPLC analysis
(Table 3). Notably, over the early part of the reaction the d.r. of

6 remains fairly constant with the initial d.r. of 78:22 anti/syn at
1 min, reducing to 71:29 after 4 h at ¢78 8C. The ee of both

Scheme 2. LiAlH4 reduction of oxazolidin-4-one 6.

Table 2. Investigation of homoanhydride substrate scope.

Products Yield [%][a]

d.r.anti/syn
[b]

eeanti/eesyn [%][c]

Products Yield [%][a]

d.r.anti/syn
[b]

eeanti/eesyn [%][c]

83
57:43
97:97

73
54:46
99:99

89
55:45
97:94

48
53:47
99:99

88
53:47
97:99

79
59:41
92:94

96
53:47
99:99

79
59:41
87:81

61
54:46
99:99

68
49:51
43:36

[a] Combined isolated yield of both diastereoisomers. [b] Determined by 1H NMR spectroscopic analysis of the
crude reaction product. [c] Determined by HPLC analysis.
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diastereoisomers of oxazolidin-4-one 6 remain consistently

high throughout the duration of the reaction. Interestingly, the

ee of the unreacted oxaziridine 5 gradually increased with con-
version up to 41 % ee at 4 h, which indicates that a partial ki-

netic resolution was occurring under the reaction conditions.
The ee values of 5 obtained experimentally in Table 3 correlate

with the predicted values based upon the given conversion
and d.r. , within error. Significantly, high conversion was only

achieved after an extended reaction time and upon warming

to room temperature, which indicates that one enantiomer of
the oxaziridine requires increased temperature to react effi-

ciently with the ammonium enolate. This experiment also pro-
vided evidence that chirality transfer from (�)-oxaziridine 5 to

product 6 was the cause of the low diastereocontrol in this
process, which has implications with regard to the mechanism

of this isothiourea-catalysed formal [3++2] process.

To further investigate and utilise the chirality transfer in this
process the use of an excess of (�)-oxaziridine 5 (2 equiv with
respect to homoanhydride 7) was trialled (Scheme 3).[24] In this
case, oxazolidin-4-one 6 was isolated in 71 % yield with an im-

proved 75:25 d.r. , with both diastereoisomers again formed
with excellent enantioselectivity. The remaining oxaziridine 5
was isolated in 42 % ee, with the (S,S)-enantiomer in excess.
This formally represents a kinetic resolution of (�)-5 with 49 %
conversion with respect to the oxaziridine (as judged by crude

1H NMR spectroscopic analysis) equating to a selectivity factor
S = 4.[25]

In light of these results, it was reasoned that using an enan-
tiomerically pure oxaziridine would lead to the formation of

a single diastereoisomer of the corresponding oxazolidin-4-one
product through complete chirality transfer. To assess this,

enantioenriched oxaziridine (R,R)-5 was accessed in 94 % ee
(following a single recrystallisation) using a modified procedure

developed by Jørgensen and co-workers (Scheme 4).[26]

Pleasingly, using enantioenriched oxaziridine (R,R)-5 with

phenylacetic anhydride 7 and (2S,3R)-HyperBTM 3 (Scheme 5a)
gave anti-oxazolidin-4-one 6 a in high yield, ee and excellent

d.r. (93:7, anti/syn). This matched case arises from the ammoni-

um enolate generated with homoanhydride 7 and (2S,3R)-Hy-
perBTM 3 reacting with (R,R)-5 with excellent stereocontrol.

Using enantiomeric catalyst (2R,3S)-HyperBTM ent-3, low reac-
tivity and reduced isolated yields were observed at ¢78 8C.

However, performing the reaction at 0 8C allowed the desired
syn-oxazolidin-4-one 6 b to be isolated in 95 % yield and

80:20 d.r. (syn/anti), with the major syn product formed in ex-

cellent ee (98 %) (Scheme 5 b). This again suggests complete
chirality transfer from the oxaziridine with the configuration at

C(5) determined by the catalyst. In the mis-matched case the
minor anti-oxazolidin-4-one product was isolated in reduced ee

Table 3. Investigation of enantio- and diastereoselectivity over time.

t Conv.[a] [%] d.r.anti/syn
[b] 6 eeanti/eesyn

[%][c]

5 ee
[%][c]

1 min 9 78:22 >99:99 7
5 min 24 75:25 >99:99 10

15 min 25 70:30 >99:99 11
30 min 26 74:26 >99:99 12
60 min 26 75:25 >99:99 13

120 min 30 75:25 >99:99 17
240 min 52 71:29 >99:99 41

18 h 91 59:41 >99:99 –

[a] Determined by 1H NMR spectroscopic analysis. [b] Determined by
1H NMR spectroscopic analysis of the crude reaction product. [c] Deter-
mined by HPLC analysis.

Scheme 4. Synthesis of enantioenriched oxaziridine (R,R)-5. m-CPBA = meta-
chloroperbenzoic acid.

Scheme 3. Use of excess (�)-oxaziridine 5.
Scheme 5. Investigation of a) matched and b) mis-matched effects between
ammonium enolate and enantiomerically enriched oxaziridine.
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(67 %), presumably as a result of a competitive uncatalysed
background reaction for this catalytically unfavoured process.

The results described in Scheme 5 lead us to propose a cata-
lytic cycle for the synthesis of oxazolidin-4-ones, shown in

Scheme 6. Firstly, homoanhydride 26 acylates HyperBTM 3 to
give acyl ammonium 27. Subsequent deprotonation of 27 to

give (Z)-ammonium enolate 28, stabilised by a favourable no to

s*C¢S interaction,[8h, 9d, 27] followed by intermolecular stereoselec-
tive a-oxidation[28] leads to acyl ammonium 29. Finally, lactami-

sation gives the oxazolidin-4-one
product and regenerates the cat-

alyst. This mechanism provides
an alternative to that proposed

by Ye and co-workers who sug-

gest that for their related NHC-
catalysed formal [3++2] process

the azolium enolate generated is
oxidised by an oxaziridine to

form a transient epoxide species
and an imine, with subsequent

collapse of the epoxide and nu-
cleophilic attack onto the imine
generating an acyl azolium spe-

cies that can cyclise into an oxa-
zolidin-4-one. Our observation of

a matched/mis-matched effect
using enantioenriched oxaziri-

dine suggests the formation of
a transient planar imine inter-
mediate in this process is unlike-

ly. However, the possibility of an
alternative mechanistic pathway

operating in the mis-matched
case cannot be ruled out.

The significance of the matched/mis-matched effect was fur-
ther demonstrated through reaction of a range of homoanhy-

drides with (R,R)-oxaziridine 5 (94 % ee) using HyperBTM 3
(Table 4). Under the previously optimised conditions, electron-

donating and -withdrawing aromatic substituents were easily
incorporated resulting in high yields, enantioselectivities and,

importantly, high d.r. of oxazolidin-4-ones 17 a and 18 a, re-
spectively. Substitution in either the ortho- or meta-positions of

the aryl ring was also well tolerated, forming oxazolidin-4-ones

19 a, 21 a and 22 a as single diastereoisomers with excellent
levels of enantioselectivity. Alkenyl and heteroaryl homoanhy-

dride substituents were also successfully incorporated to give
30 a and 31 a respectively, with high levels of stereocontrol.

However, the introduction of a p-trifluoromethyl substituent
gave oxazolidin-4-one 25 in a reduced 60:40 d.r.anti/syn, with

both diastereoisomers formed in high enantioselectivity

(>99 % ee). This suggests that major product anti-25 a is
formed with high levels of enantioselectivity but undergoes

base-mediated epimerisation at C(5) into syn-25 b. This result
also provides a plausible explanation for the unexpected result

using the p-trifluoromethyl-substituted homoanhydride with
(�)-oxaziridine 5, with epimerisation at C(5) in combination

with the expected mixture at C(2) leading to the observed

drop in ee of both diastereoisomers of 25 (Table 2).
To demonstrate the synthetic utility of this [3++2] process,

additional product derivatisations have been investigated
(Scheme 7). Removal of the N-tosyl protecting group on oxazo-

lidin-4-ones 6 a and 17 a–18 a was achieved with SmI2 at low
temperature to give the parent heterocycles 32–34 in high

yields, with complete retention of ee. Further hydrolysis of oxa-

zolidin-4-one 32 with HCl led to formation of (R)-mandelic acid
35 in quantitative yield.

Table 4. Investigation of the substrate scope with enantioenriched oxaziridine 5.

Major Product Yield [%][a]

d.r.anti/syn
[b]

eeanti [%][c]

Major product Yield [%][a]

d.r.anti/syn
[b]

eeanti [%][c]

81
94:6
99

87
95:5
97

60
95:5
>99

87
>95:5
>99

95
>95:5
>99

71
96:4
>99

61
94:6
>99

49
60:40
>99:99

[a] Isolated yield. [b] Determined by 1H NMR spectroscopic analysis of the crude reaction product. [c] Deter-
mined by HPLC analysis.

Scheme 6. Proposed mechanism for Lewis base catalysed formal [3++2] cy-
cloaddition of ammonium enolates with oxaziridines.
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Conclusion

The asymmetric formal [3++2] cycloaddition of ammonium eno-
lates with both (�)-oxaziridines and (R,R)-oxaziridines has been

developed using a range of 2-aryl and 2-alkenylacetic anhy-
drides with the commercially available isothiourea catalyst Hy-

perBTM 3. This process allows access to stereodefined oxazoli-
din-4-ones that can be readily deprotected or reduced to give

enantioenriched building blocks in high yield. Further studies

using enantioenriched oxaziridines led to the observation of
a matched/mis-matched effect with isothiourea HyperBTM 3,

which has been utilised to obtain oxazolidin-4-ones in high d.r.
with excellent ee. Ongoing studies within this laboratory are

focused upon the continued development of Lewis base catal-
ysis.

Experimental Section

General

For general experimental details, full characterisation data, NMR
spectra, and HPLC traces, see the Supporting Information.

General procedure for the asymmetric organocatalytic for-
mation of oxazolidin-4-ones

The appropriate oxaziridine (1 equiv) and (2S,3R)-HyperBTM 3
(10 mol %) were added to a solution of the appropriate homoanhy-
dride (1.5 equiv) and cesium carbonate (2 equiv) in CH2Cl2 (0.2 m)
at ¢78 8C. The reaction mixture was stirred at ¢78 8C then warmed
slowly to room temperature over 16 h before being quenched
with HCl (1.0 m). The reaction mixture was extracted with CH2Cl2 (Õ
2), the combined organics dried over MgSO4, filtered and concen-
trated in vacuo. The crude residue was purified by column chroma-
tography on silica gel (eluent petrol/Et2O 80:20 unless otherwise
stated) to afford the desired oxazolidin-4-one.
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