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ABSTRACT 

Efficient space use is a critical challenge for animals relying on stationary resources. It is often 

difficult with purely observational methods to gain unambiguous insight into any ability of primates 

to manage and process spatial information. Investigating the visible signs of the decision 

processes underlying space use often leaves open important issues. We applied the Change 

Point Test [Byrne et al. 2009], a statistical tool to objectively determine change points in animal 

travel paths, to investigate to what degree directional changes in our study group's (Papio 

ursinus) dry season ranging were associated with important resources and prominent landmarks. 

One third of directional changes were associated with fruit feeding, 1/3 with traveling, and 1/3 

with dry matter feeding, travel feeding and with drinking. When directional changes were 

associated with traveling, the subsequent directional changes were likely to result in fruit feeding. 

Fruit feeding mostly occurred at the apex of the day journeys, while drinking, dry matter feeding 

and travel feeding often occurred along straight travel segments. The majority of directional 

changes did not occur in clusters at distinctive locations, but at distances of more than 120 m 

apart from each other, many of them along prominent landmarks. We conclude that the change 

points do not represent nodes or route bends of a network map. Rather, they represent 1) 

locations where the decision to turn back to their sleeping site was taken, and 2) locations next to 

important landmarks (changes of slope, car tracks) where slight adjustment of a movement 

direction was possible. We found no evidence for a Euclidean map and discuss our findings in 

the light of a network map representation of space.  

 

Key words: spatial cognition, change point analysis, baboon travel routes, network map, large-

scale space. 
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INTRODUCTION 

Efficient space use is a critical challenge for animals relying on stationary resources. Finding 

patchily distributed fruit in large-scale space that cannot be perceived from the present location 

has been proposed as an evolutionary trigger for the brain enlargement and increased cognitive 

ability observed in primates and other animal taxa [Clutton-Brock and Harvey 1980; Milton 1981; 

1988; 2000]. However, it is often difficult with purely observational methods to gain unambiguous 

empirical insight into any ability of primates to manage and process spatial information [but see 

Janson 1998; 2007; Noser and Byrne 2007b; Menzel 1999; Garber and Dolins 1996; Garber 

2000, for experimental approaches). Investigating the visible signs of the decision processes 

underlying space use - a combination of travel journeys and resource use - often leaves open 

important issues: for example, we cannot know to what degree a visit to a resource place had 

been planned in advance [see Janson, this issue], and if so, where and when the decision was 

taken. Tantalizingly, the answers to these questions could potentially open up crucial insights into 

the mental processes involved in primate navigation.  

 

In order to tackle these issues, we [Byrne et al 2009] have developed the Change Point Test 

(CPT), a statistical tool allowing researchers to apply objective criteria to interpret animal travel 

journeys. This test allows identification of the locations in space where, independently of the 

possible reasons, directional changes in travel paths occur. Once these ‘change points’ (CPs) are 

detected, biologically meaningful parameters associated with those locations can be investigated: 

for example, resource use, patterns of vocalizations, simultaneous movements of competitors, 

mates or predators, visibility of resources, topographical information, etc. If certain parameters 

systematically occur at CPs, we can conclude post hoc that they are likely to play an important 

role in the spatial decisions taken by the individuals or groups under investigation. Thus, the CPT 

opens up the possibility to study variation in spatial decision-making on the level of individuals, 

groups or species that live in a wide variety of habitats. 
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To date, two studies have used the CPT to investigate primate routes in combination with data on 

resource use at the locations where directional changes occurred. Joly and Zimmermann [2011] 

investigated the first CPs in mouse lemur (Microcebus murinus) travel paths ranging in a dry 

deciduous forest in NW Madagascar. They found that CPs were associated with important 

stationary food sources, such as gum or honeydew. Because these resources were situated 

more than 100 m away from the sleeping trees, and rejecting visual or olfactory cues as 

alternative explanations of directionality, the authors concluded that mouse lemurs routinely show 

intentional directional travel towards the first food source of a given foraging trip at the time when 

they leave their sleep tree. Asensio et al [2011] sampled 5 day travel routes of 11 gibbon groups 

(Hylobates lar) living in the wet, evergreen forest at Khao Yai National Park in Central Thailand. 

They found that the majority of CPs of all study groups was associated with preferred fruit tree 

species; few CPs were associated with feeding on other plant species or with group encounters, 

and few travel routes changed direction without any obvious behavioral changes. Distances 

between CPs ranged from 70 to 390m, and two subsequent CPs were often out of sight from 

each other. The authors concluded that gibbons travel in straight lines from one fruit tree to the 

next, and, since direct perception of the next food tree from a given tree was unlikely, that they 

use spatial memory to locate many trees.  

 

Many baboons live in habitats where important resources are typically situated at large distances 

from each other, so that direct perception of the next resource at travel onset can be excluded a 

priori [eg. Sigg and Stolba 1981]. This was also the case in our study group, a small chacma 

baboon group living in a dry woodland savannah in Northern South Africa [Noser and Byrne 

2007a]. Some of their most important resources (water holes, sleep site, fruit species available 

during the dry season) were extremely sparse. Since a random search strategy would not result 

in repeated visits to these locations, the observed spatial behavior could only be explained by the 

use of spatial memory for several resource locations [Noser and Byrne 2007a; 2010].  
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Our study group used a network map rather than a Euclidean map to find the 5 water holes in 

their home range [Noser and Byrne 2007b]. We drew this conclusion from their travel patterns in 

space after unexpected group encounters that often took place next to the water holes. After 

running away from the opponents, the baboons always waited for long time periods and then 

resumed their initial route rather than visiting the water hole directly from their new location. Thus, 

they seemed to be tied to a specific route that they were unable to abandon, rejecting the 

hypothesis that they encoded the distances and directions to the water holes by means of a 

Euclidean mental map. Rather, their behavior suggested that they represented information about 

how landmarks and potential goals were interconnected in space by means of a network map 

[sensu Byrne 2000; see also Poucet 1993, Garber 2000]. Converging evidence for the use of 

network maps in primates came also from other nonhuman primate species (Yellow baboons, 

[Altmann and Altmann 1970]; Orang Utans, [Mac Kinnon 1974]; Hamadryas baboons, [Sigg and 

Stolba 1981]; Howler and Spider monkeys, [Milton 1981], [Milton 2000]; Olive baboons, [Ransom 

1981]; Tamarins, [Garber 1989], [Garber 2000]; Spider and Woolly monkeys, [Di Fiore and 

Suarez 2007]; Sifakas and Brown lemurs, [Erhardt and Overdorff 2008], whereas evidence for 

Euclidean maps remained limited (but see [Boesch and Boesch 1984], [Normand and Boesch 

2009] for wild chimpanzees, and [Menzel et al. 2002], for a study with a captive bonobo). 

 

Theoretically, network maps can be complex, containing a large number of routes to many goals, 

alternative routes to a single goal, and intersections of routes, where animals are likely to take 

spatial decisions. In practice, however, it is often difficult to decide what constitutes a "route". For 

example, Di Fiore and Suarez [2007] found that 95% of the locations recorded over several 

months of three Spider monkey (Ateles belzebuth) females living at Yasuni National Park in 

Ecuador fell within 50 m of a repeatedly traveled route. Thus, these spider monkeys traveled 

along relatively narrow repetitive routes. On the other extreme, Sigg and Stolba [1981] felt that a 

"buffer zone" of 500 m was appropriate to define a repeatedly traveled "street segment" in a 
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group of Hamadryas baboons living in the semi-desert of Erer-Gota, Ethiopia. To date it is 

unknown to what degree these differences in data analysis reflect differences in ecological 

parameters, navigational strategies and cognitive abilities. 

 

We applied the CPT to investigate whether directional changes in our study group's dry season 

ranging were associated with important resources, to be comparable with the findings in gibbons 

[Asensio et al. 2011]. In particular, we investigated the degree to which fruit feeding was decisive 

for the observed travel patterns, that is, whether baboons, like gibbons, mainly travel from fruit 

tree to fruit tree. Second, we examined the nature of the baboon mental network maps more 

closely. Therefore, we investigated the locations where directional changes occurred in relation to 

each other, with the aim to identify their degree of clustering. By doing so we hoped to identify 

important network map "nodes", that is, locations where routes intersect and spatial decisions 

can be taken. Third, we examined CPs in relation to prominent landmarks in two topologically 

distinct areas: a hill where a large number of natural structures such as the slope, several valleys 

and views potentially guided movements, and a plain where (to us) vegetation was extremely 

uniform and only very few prominent landmarks were available. Assuming that these landmarks 

offer opportunities for reorientation for the baboons as well, we expected to find many directional 

changes next to them.  
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METHODS 

We carried out fieldwork at Blouberg Nature Reserve (BNR; 22°58ʹ′S, 29°09ʹ′E) in the Limpopo 

Province, South Africa (see [Noser and Byrne 2007a] for details) between August 2000 and 

August 2002. The woodland savannah of BNR is naturally divided into two parts, mixed bushveld 

in the plain area ("the plain") and an arid mountain biome [Low and Rebelo 1996] on the foothills 

of Blouberg Mountain ("the hill"). The two areas were topologically distinct: on the hill a large 

number of natural structures such as the slope, several valleys and views potentially guided 

movement. In the plain orientation was difficult due to uniform vegetation and relatively low 

visibility (see below). However, changes in vegetation around the water holes, some car tracks 

and the distant hill offered opportunities for orientation.  

 

At BNR, rainfall of 350 mm per year on average was confined to a single rainy season (October - 

April), while winter months were completely dry. In the plain, maximum distance from which a 

white, moving flag could be spotted at 1.5 m above ground was 104 m on average in peak dry 

season (July), while the highest branches of trees could be seen from a distance of 304 m 

maximally [Noser and Byrne 2007a for details). Visibility on the hill was highly variable and could 

not generally be determined. For example, some fig trees were visible from a distance of more 

than 1000m, whereas others could be seen only from a few meters distance (see [Noser and 

Byrne 2010] for details).  

 

With approximately 25 members, the focal "Kloof group" was the smallest of at least 9 baboon 

groups living at BNR. In contrast to baboon groups observed elsewhere (eg. [Hamilton 1982]; 

[Kummer 1992]), this group used a single sleeping site throughout the study (24 months), 

situated in one of the very restricted cliffs at the foot of the hill. Also, a single male occupied the 

alpha position throughout the duration of this study. The group's home range was 13.5 km2 in  
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size and contained five waterholes, including three natural pools carrying rainwater and two 

artificial dams that were fed by ground water.  

 

For the present purpose, we used data collected during 370 h of observation on 35 days in the 

two dry seasons 2001 (May - Oct; 16 days of observation) and 2002 (May - August; 19 days). We 

met the Kloof group at their sleeping site at dawn, and followed them on foot to dusk. Every 5 min 

we took a GPS reading (Trimble Geoexplorer 3) of the individual at the rear of the group. At the 

same time, we scanned the behavior of all visible individuals (move, feed, stand, sit, lie, groom, 

drink). We estimated group spread ad libitum, when we were able to overlook a large part of the 

group. We determined ‘potentially important’ food sources ad libitum, when at least three animals 

fed from the same food source for a minimum of 3 min. Sometimes, this criterion was met in 

several nearby trees or bushes; we then viewed these locations as a single food resource, and 

took a single GPS reading in the center. For each food source, we determined which part was 

used (fruit, leaves, kernels, flowers, roots, etc). We collected samples of all food sources in the 

field and identified them in the lab.  

 

In order to examine the extent to which natural and human-made landmarks affected spatial 

decisions, we mapped all roads of BNR by slowly driving along them and taking GPS readings at 

intervals of approximately 1 second. In addition we mapped the most prominent landmarks on the 

hill, three valleys, by walking along the line of the most prominent change of slope, and by taking 

GPS readings at intervals of 1 min approximately. We used a 1: 50'000 digital map of the area to 

plot contour lines.  

 

GPS accuracy at the study site was around 16 m [Noser and Byrne 2007a for details). For this 

reason, we deleted the second of two subsequent GPS readings when they were less than 20 m 

apart. This was usually the case when slow "travel-feeding" occurred.  
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Before data analysis, we translated the individual behavior recorded at 5 min intervals (move, 

feed, stand, sit, lie, groom, drink) into "group behavior" by viewing the behavior of the majority of 

visible group members as characteristic for the group at the given location. Thereby, we 

collapsed the observed individual behavior into 5 categories:  foraging, resting, moving, and 

drinking; travel-feeding was defined as occurring when all of the following criteria applied: 1) the 

majority of all visible group members foraged, 2) our criteria for an "important food source" did 

not apply (e.g. no synchronized feeding at the same food source was observed), 3) progression 

was so slow that two subsequent GPS readings were less than 20 m apart from each other. In 

contrast, when progression was faster, we defined the group as "moving", even when some 

individuals foraged. Furthermore, we subdivided foraging into two categories, fruit feeding 

(feeding on fruits and berries) and dry matter feeding (kernels, pods).  

 

We applied the change-point test (CPT; [Byrne et al. 2009] to determine at which spatial 

locations baboon routes significantly changed direction, starting from the sleep site in the 

morning and ending at the sleep site in the afternoon. In brief, the CPT can be applied to a series 

of waypoints that represents an animal travel route (note that the CPT does not require waypoints 

to be equidistant). For any given waypoint of that route, the test compares whether a set of 

vectors before that point is collinear with a set of vectors after that point, whereby the lengths of 

the three resultant vectors Rq, Rk and Rq+k are used as indicators for collinearity (Figure 1, see 

[Byrne et al. 2009] for details). If Rq and Rk are collinear, then the test is re-applied at the next 

waypoint (note that the CPT works backwards in time). When Rq and Rk depart from collinearity 

at the preset level of significance, a change-point is identified. 
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Previous analysis [Byrne et al. 2009] had revealed that the CPT was most sensitive to directional 

changes in the Kloof group's dry season ranging when using q=6, and this was the criterion used 

here (that is, we considered six vectors describing travel before each potential change point to be 

compared with the vectors after each change point, see [Byrne et al. 2009] for details. Note that 

the value of q should be established anew for each data set). When a CP was detected, the CPT 

was re-run from this location. This procedure was repeated until all CPs of a given day were 

detected. In addition, we used an alpha level of P < 0.01.  

 

We calculated day journey length by summing the distance between all subsequent GPS 

readings of a given day. We determined post hoc the behavior that the baboon group exhibited at 

each CP detected by the CPT. Since with q=6 the CPT had a tendency to sometimes "look 

around the corner" (that is, to identify as a CP the location next to the intuitive CP, see [Byrne et 

al. 2009], we also took into account the two GPS locations sampled before and after a CP for this 

analysis. As a control, we repeated this procedure with the same amount of Non-CPs along the 

same foraging routes; Non-CPs were random locations generated with R software (version 

2.15.1). 

Figure 1 

Basic idea of the change point test. An 

animal route is viewed as a series of 

vectors v1, v2, ...., vn. The possibility of 

a change point between v2 and v3 is 

examined by comparing the distances 

Rk + Rq with the length of the resultant 

Rk+q (figure originally published in 

[Byrne et al. 2009]). 
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We investigated whether CPs occurred more often at some resource types than at others. We 

therefore counted how many times per day the study group visited a water hole, fruit or dry 

matter resources, and how many times they "travel fed". We then calculated the ratio of the 

number of resource types that were associated with a CP per day (water holes, fruit feeding, dry 

matter feeding, travel feeding) relative to the number of times these resource types were used. 

We named this the "CP ratio".  For example, for fruit feeding, the CP ratio of a given day was the 

number of CPs associated with fruit feeding divided by the total number of GPS readings that 

were associated with fruit feeding that day. Since flower and leaf feeding did not occur every day, 

we discarded these two categories from the analysis. We interpreted a value close to 1 as an 

indication that the resource type preferentially elicited directional changes. For example, if travel 

feeding occurred at three locations on a given day, and we obtained a CP at all three locations, 

the CP ratio of that day would equal 1. In contrast, values close to 0 indicated that the number of 

CPs at a resource type was small relative to the number of locations where the focal group used 

this resource type. Thus, small CP ratios suggested that bee-line routes usually led beyond these 

resources, while high CP ratios suggested that directional changes often occurred next to them. 

We fitted a linear mixed-effect model with resource type (fruit feeding, dry matter feeding, travel 

feeding, drinking) as a fixed effect and day as a random effect [Pinheiro and Bates, 2000]. We 

used treatment contrasts to compare fruit feeding with the three other resource types.  

 

In order to investigate to what degree CPs occurred in clusters, we calculated the distances 

between the CPs. We viewed two or more CPs as belonging to the same cluster when they were 

situated less than 120 m apart from each other. We based this criterion on our finding that the 

study group was seldom spread out over more than 100 m. Since GPS readings (accurate to 20 

m) represented the location of the individual at the rear of the group, rather than the group's 

center, this definition gave us some confidence that we did not over- or underestimate the 

number of clusters.  
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This research adhered to the American Society Principles for the ethical treatment of primates, 

and permission to conduct this research was approved by our institutional animal care committee 

and the government of South Africa. 
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RESULTS 

We detected a total of 222 CPs in the 35 day journeys of the Kloof group, that is, 6.34 ±1.98 CPs 

per day (mean ± SD). The 2001 dry season ranging gave a total of 112 CPs (7.0 ± 1.83 per day), 

with 69 CPs situated on the hill, and 43 next to the hill, in the plain. The 2002 dry season ranging 

data gave a total of 110 CPs (5.79 ± 1.99 per day), with only a single CP situated on the hill and 

109 CPs situated in the plain. The difference reflects the overall home range use of the Kloof 

group: exclusively  foraging on and next to the hill in 2001, but using this area only on the way to 

and from distant fruit feeding areas in the plain in 2002. For illustration, the locations of CPs and 

their relation to the resources used by the study group during two days are shown in Figure 2.  

 

 

 

 

 

 

 

 

 

Day journey length was 6031 ± 2036 m in the dry season 2001, and 9557 ± 487 m in 2002. While 

the absolute number of CPs per day did not differ between the years, there were significantly 

more CPs per daily distance traveled in 2001 (1.18 ± 0.27 CPs per km traveled), compared to 

2002 (0.60 ± 0.20 CPs; Figure 3). A random effects model, treating year effects as random 

variations around the population means [Pinheiro and Bates, 2000] gave an estimated mean 

intercept of 0.89, with an estimated between year SD of 0.4, while the within-year SD of 0.2 was 

considerably smaller. 

Figure 2 
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Figure 2 

Directional changes (CPs) in relation to 

feeding and drinking behavior during two dry 

season day journeys recorded in 2001 (left) 

and in 2002 (right). Black ovals: Sleep site. 

Arrows: direction of day journey. Triangles: 

Fruit feeding. Circles: Dry matter feeding. 

Diamonds: Travel feeding. Rectangles: 

Drinking. Stars: Moving CPs. Grey symbols: 

Feeding/drinking behavior associated with a 

CP. Open symbols: Feeding/drinking 

behavior unassociated with a CP.  
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Average distance between CPs (including distance from the sleeping site to the first CP of a 

given day) was 969 ± 852 m (mean ± SD; range 94 m to 3997 m). Note that, due to using q=6 in 

the CPT, any directional changes that may have occurred in the six first GPS readings of a given 

day could not be detected. This is critical when comparing the distance traveled to the first CP of 

a given day with the distance from which resources can be perceived.  In order to account for 

this, we re-calculated the distances covered to the first CP of a given day by considering only the 

distance between the 6th GPS reading to the first CP of that day.  This gave an average distance 

traveled between CPs of 922 ± 805 m (range 64 m to 3997 m), with an average of 632 ± 386 m 

for 2001, and of 1214 ± 993 for 2002. While visibility on the hill was highly variable and could not 

be generally determined [see methods; Noser and Byrne 2010], inter-CP-distances in the plain 

were far beyond the maximum distance (304 m) from which the highest branches of trees could 

be spotted.  Thus, while at least some of two consecutive CPs were out of sight of each other in 

2001, the vast majority of them were in 2002.  

 

Investigating the behavior at the locations of directional changes revealed that approximately 1/3 

(32.4 %) of the CPs were associated with fruit feeding. The corresponding fruiting trees or 
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Figure 3 

Number of change points per km 

travelled in 2001 (1) and 2002 (2). In 

2001, the study group ranged on and 

next to the hill where a large number of 

landmarks such as the general slope, 

several valleys and views offered plenty 

of opportunities for orientation. In 2002, 

the baboons mainly used the plain where 

landmarks were rare: human observers 

could only use the shape of the hill at a 

distance and several car tracks for 

orientation.  

	
  



  15	
  

bushes belonged to 16 different species, with 10 of them occurring on the hill and 6 on the plain 

of the baboon home range. An additional 1/3 of CPs were associated with other meaningful 

events such as feeding on dry matter (13.1%) and on flowers (3.2%), with travel feeding (12.2%), 

with drinking (8.6%), and with external disturbances (1.2%, a car driving by in 2 cases, repeated 

antelope alarm calling in a single case). The remaining 1/3 of the CPs were not associated with 

any behavior other than moving (29.3%); henceforth we refer to them as "moving CPs".  

 

Investigating the behavior that was associated with the CPs following "moving CPs" (n=65, Table 

1) we found that 43.1 % were associated with fruit feeding, and a total of 15.3 % were associated 

with feeding on other foods (dry matter, travel feeding, flowers), while 7.7% were associated with 

drinking. In 9.2% of the cases, "moving CPs" were followed by direct travel to the sleep site. In 

two additional cases (3.1%), the baboons were heading to the sleep site after a "moving CP", but 

they were disturbed by external factors. Notably, 21.5% of the CPs following a "moving CP" were 

again associated with moving. Examining the CPs following these "second order moving CPs" 

(N=14, Tab. 1), we found that they were associated with fruit feeding in 50% of the cases, with 

the sleep site in 21.4%, and with a water hole in 14.3 % of the cases. In one case, the CP was 

associated with an external disturbance (a car driving by), and in another case with travel 

feeding. 

 

Fruit feeding occurred roughly twice as often at CPs, compared to Non-CPs (Table 1). 

Furthermore, when moving was associated with a CP, the subsequent CP was roughly three 

times as often associated with fruit feeding, compared to a Non-CP following a Non-CP that was 

associated with moving. Finally, when two subsequent CPs were associated with moving, the 

next CP was five times more likely to be associated with fruit feeding, compared to Non-CPs.  
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Table 1 further shows that when two subsequent "moving CPs" occurred, water holes and the 

sleep site were more often associated with the next CP, compared with Non-CPs. (Note that we 

did not formally test the sleep site with the CPT. However, it was obviously a crucial resource, 

given that the Kloof group returned to this site every night for two years). Although the Kloof 

group visited at least one of the water holes every day, there was no difference in the percentage 

of CPs and Non-CPs that were associated with drinking at water holes. 

 

Table 1  

Behavior at change points in baboon travel journeys. 
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Figure 4 shows the overall mean CP ratio (horizontal line) relative to the mean CP ratio of the 

four categories of resource use (F = fruit feeding, H = drinking, D = dry matter feeding, S = travel 

feeding), relative to the days of observation (D1 - D35 = daily CP ratios), and relative to the two 

dry seasons (Y1, Y2 = yearly CP ratios). The CP ratio was largest for fruit feeding, and smallest 

for travel feeding, and suggests that both, "dry matter feeding" and "travel feeding" were more 

likely to occur in the course of straight travel, whereas "fruit feeding" and "drinking" were more 

likely to be associated with a CP. Also, Figure 4 shows that the variability between days was 

relatively large. Furthermore, the CP ratio was higher in 2001 than in 2002, suggesting that more 

CPs occurred at locations of feeding or drinking in 2001.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, variability between years was relatively small relative to the variability between the 

categories of behaviors associated with CPs. The overall mixed-effects model was significant 

(n=134 observations, ANOVA, df=3, F=3.57, p=0.017), indicating that the variability between 

Figure 4 

Overall mean CP ratio (hori-

zontal line) relative to the 

mean CP ratio of four beha-

vioral categories (F = fruit 

feeding, W = drinking, D = dry 

matter feeding, T = travel 

feeding), relative to the mean 

CP ratio of days of obser-

vation (D1 - D35 = daily CP 

ratios), and relative to the CP 

ratios of two years (1, 2). The 

differences between fruit fee-

ding and dry matter feeding, 

and between fruit feeding and 

travel feeding were significant.  
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usage of resource types was large. This was due to a significant difference between fruit feeding 

and dry matter feeding (p = 0.0125) and between fruit feeding and travel feeding (p = 0.002), 

whereas there was no difference between fruit feeding and drinking at water holes (p > 0.2). 

Thus, travel routes of the Kloof group changed direction significantly more often after fruit feeding 

compared to dry matter feeding, travel feeding and drinking. 

 

 

 

 

 

 

 

 

 

 

Figure 5 shows the locations of all CPs (A), of CPs that were associated with fruit feeding (B), 

and of "moving CPs" (C) relative to the most prominent landmarks available to the study group: 

car tracks in the plain and three valleys and the slope on the hill. (Note that the outermost CPs 

approximately indicate the home range border).  
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Figure 5 

Kernel density plots showing the spatial distribution of CPs in relation to landmarks in the plain (area N of 

"Mountain Road") and on the hill (area S of "Mountain Road).  Grey lines in the plain: car tracks. Grey lines on 

the hill: valleys. Dotted line: 1080 m contour line, most prominent change of slope. (A) All CPs. A large number 

of change points occurred along the car tracks in the plain, and along prominent slope differences (foot of the hill 

running parallel to "Mountain Road", valleys). (B) CPs associated with fruit feeding. Fruit was relatively abundant 

on the hill, but in the plain the baboons traveled long distances to reach a single, large fruit patch NW of the 

sleep site, forming the apex of day journeys in 2002. (C) Moving CPs. In the plain, the majority of "moving CPs" 

were associated with either the fruit patch NW of the sleep site, or with car tracks (the baboons did not usually 

follow the car tracks). 
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CPs were not evenly distributed in this area. 127 CPs (57.2%) belonged to a cluster of at least 

two CPs, whereas 95 (42.8%) occurred singly, that is, with the next neighboring CP more than 

120 m apart. 64 CPs belonged to a cluster of two, 34 to a cluster of three, 22 to a cluster of four, 

and 7 to a cluster of five CPs. However, Figure 5 also shows that many CPs did not occur in 

discrete clusters, but frequently occurred next to landmarks. Most prominently, a large number of 

CPs occurred at the foot of the hill, paralleling the "Mountain Road" to its South, or directly on the 

"Mountain Road" (Figure 5A). On the hill, almost all CPs were either situated in or next to one of 

the three valleys, or next to another very prominent change of slope, the dotted 1080 m contour 

line. Most obviously, the CPs associated with fruit feeding on the SW border of the home range 

were the turning points of most of day journeys recorded in 2001 (Figure 5B). In the plain, CPs 

were mainly clustered around one of the water holes, along the roads, and in a large patch on the 

N border of the home range where predominantly fruit feeding (and to a lesser degree also dry 

matter feeding and moving) occurred. These CPs illustrate the turning points of all day journeys 

recorded in 2002.  

 

"Moving CPs" could potentially result from 1) external factors disrupting travel journey such as 

nearby baboon groups, or human activity, 2) re-orientation at the locations where important 

resources come into sight, 3) re-orientation based on landmarks that are out of sight of important 

resources, and 4) failure to find food at formerly productive resource places. We examined these 

possibilities, by first excluding external factors as a possible explanation. Therefore, we examined 

whether more CPs than Non-CPs were associated with the audible signs (wahoos, barks, 

screams) of neighboring baboon groups that foraged in the vicinity. We found that this was not 

the case: while a total of 58 CPs were associated with such vocalizations, 79 Non-CPs were. 

Vocalizations of neighboring groups were associated with roughly 1/4 of "moving CPs" (23.1%), 

but also of other CP classes; with 24.5% of CPs associated with fruit feeding, and with 27.6% of 

CPs associated with dry matter feeding. Thus, the presence of neighboring groups in the area 
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could be excluded as explaining "moving CPs". Human made disruptions of the study group's 

travel journey were not associated with "moving CPs", suggesting that external factors did not 

account for their occurrence. Also, we excluded reorientation when fruit trees came into sight as 

a possible explanation for the occurrence of "moving CPs": distance covered between a "moving 

CP" and the next CP associated with fruit feeding was 1348 ± 1126 m, ranging from 243 to 3978 

m. When two "moving CPs" occurred consecutively, the distance between them was 1527 ± 605 

m. And last, Figure 5C shows that only a few "moving CPs" occurred in areas where fruit feeding 

occurred. Rather, they were primarily situated in the areas connecting the sleep site area and the 

fruit feeding areas. This also excludes failure to find food at formerly productive resource sites as 

a possible explanation for the occurrence of "moving CPs". Rather, "moving CPs" indicate subtle 

directional changes along the directed movement from and to the two fruit feeding areas SW and 

N of the home range, and the sleep site area. In the plain, "moving CPs" often occurred next to 

roads. On the hill, "moving CPs" sometimes occurred next to the valleys, suggesting that the 

baboons used roads and valleys for subtle re-orientation along their directed travel from the sleep 

site to areas of high fruit density and back to their sleep site. 

 

 

DISCUSSION 

The Change Point Test [Byrne et al. 2009] is a useful tool to investigate the factors affecting the 

spatial decisions of animals. Variation of the relation between directional changes in travel routes 

and behavior of individuals, groups, populations or species at these locations can give important 

insight into foraging strategies and the underlying cognitive mechanisms. Our results allow the 

distribution of change points in the travel of baboons living in a dry woodland savannah to be 

compared with previously analyzed foraging journeys of gibbons living in a wet evergreen forest 

[Asensio et al. 2011]. Fruit feeding was very important for both species. In our baboons, fruit 

feeding accounted for roughly 1/3 of directional changes, and considerably more fruit feeding 
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occurred at change points compared to control locations along travel routes. Furthermore, 

directional changes occurred more often at locations of fruit feeding than at locations where other 

resources were used, suggesting that fruit played a crucial role in the spatial decisions taken by 

our study group. However, unlike the gibbon groups, our baboon group did not merely travel from 

one fruiting tree to the next. Fruiting trees determined day journey lengths: although 

comparatively scarce in the study group’s range, fruiting trees constituted the turning points of 

day journeys, after which the baboons re-approached the sleep site. In between these extremes 

of day journeys, directional changes also occurred elsewhere: at water holes, at places where, on 

a behavioral level, dry matter feeding (kernels, pods) and slow travel feeding were observed. 

However, these resources only played a minor role in the spatial decisions of our study group: 

they occurred at change points and at control locations to the same extent. For kernels, pods, 

and probably also for most items ingested during travel feeding, this makes sense in the light of 

absolute abundance: in comparison to fruit and water, these resources occurred virtually 

everywhere in the Kloof group's home range so that no planning was required to reach them.  

 

Water was an important, but scarce resource in the dry winters at the study site, and the baboons 

visited at least one of the four available water holes on a daily basis. Travel speed of the Kloof 

group was generally increased before reaching the water holes and route segments were 

particularly straight [Noser and Byrne 2007a], two features that researchers often associate with 

goal-directed travel and mental anticipation. Interestingly, the Kloof group did not systematically 

change travel direction shortly before or after drinking.  Water holes were associated with 

directional changes to the same extent as with control locations along straight route segments. 

Thus, water holes were often situated on the straight route segments connecting two other 

resources. On a behavioral level, the baboons often drank "en passant", refraining from resting 

next to the water, especially when they were on their way to more distant fruiting trees in the 

mornings. Rather, they quickly descended the rocks (natural pools) or walls (artificial dams) to 
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the water one after the other, and the individuals in front of the group continued progression at 

high speed while group members at the rear still waited for their turn to drink. One possible, but 

not an exclusive explanation for this finding is that the baboons planned their routes beyond the 

water holes, and approached them with a more distant goal already in mind.   

 

To our knowledge, a single study suggests that monkeys are capable of planning more than a 

single step ahead: captive vervet monkeys were tested with three grapes that were presented 

simultaneously, in a small arena that could be perceived at a glance. They did not travel first to 

the nearest grape, but collected the grapes in a sequence suggesting that they may have 

planned three steps ahead [Gallistel and Cramer 1996; Cramer and Gallistel 1997]. However, 

besides some methodological issues of the study (see [Janson, this issue]) this finding has never 

been replicated, and it is unclear how choices of simultaneously presented stimuli in small-scale 

space would translate into a natural foraging context. Empirical evidence coming from wild 

primates does not support the notion of a two-step planning mental capacity: gibbons mostly 

travel in straight lines between out-of-sight fruit trees, suggesting that they plan a single step 

ahead [Asensio et al. 2011]. Janson [1998] drew the same conclusion from the way a group of 

capuchin monkeys (Sapajus nigritus, formerly Cebus apella nigritus) traveled among several 

experimentally placed feeding platforms: the monkeys did not optimize the overall distance 

among platforms, but generally chose the nearest neighbor platforms even if they had previously 

experienced larger rewards at more distant ones. Thus, both empirical evidence from other 

primates as well as Ockham's razor applied to our data suggest that explanations other than a 

mental ability to plan two (or more) steps ahead should be considered (see also [Janson, this 

issue]).  

 

Alternatively, baboons may sometimes travel in straight lines beyond water holes because they 

follow habitual routes that have been shaped in the course of a long time. Indeed, we found that 
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the Kloof group strictly followed a habitual route in a very specific condition [Noser and Byrne 

2010]: during a comparatively short time period in summer, when they foraged for rare but highly 

preferred Mountain figs (Ficus glumosa) under pronounced time pressure due to intergroup 

competition. The corresponding travel routes, when superimposed on each other, were 

comparable to the narrow corridors that woolly monkeys and spider monkeys used daily when 

foraging in primary rain forest [Di Fiore and Suarez 2007].  

 

However, during winter, when the present data set was collected, the Kloof group did not strictly 

use repetitive travel routes: a large number of directional changes occurred more than 120 m 

apart from the nearest neighbor, suggesting that many routes ran far from each other. Rather 

than occurring at specific locations, directional changes of travel routes were often associated 

with continuous prominent landmarks such as sudden changes in slope of the hill, and with car 

tracks occurring in the otherwise monotonous plain area of the home range. In addition, 

approximately 1/3 of the CPs did not correspond with any resources, but were simply associated 

with the study group "on the move". Sometimes, two subsequent directional changes of this type 

preceded a change point at a fruit tree. These "moving change points" were particularly often 

situated close to dominant landmarks (car tracks in the plain, along valleys and pronounced 

changes of slope on the hill). 

 

How do these findings fit with our earlier work [Noser and Byrne 2007b] suggesting that the 

spatial representation underlying the observed foraging routes is a network map rather than a 

Euclidean or vector map? The behavioral manifestation of a simple form of a network map would 

be a network of travel routes, and as a result, clustering of change points, for example, at the 

nodes of the network, or at bends of certain repeatedly used routes. However, we found only a 

limited degree of clustering, suggesting that change points may not represent the nodes of a 

network map. In addition, many change points represented minor directional changes in the 
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course of highly directed travel, suggesting that at the corresponding locations the baboons 

slightly adjusted the movement direction they had already chosen rather than taking any novel 

decisions. 

 

A possible explanation for these findings is that the baboons possess knowledge about an 

extremely complex network of routes, and our data set only captured a small part of it. However, 

a more parsimonious explanation is more likely: the network map of the Kloof group contained a 

few large, prominent landmarks, many of them out-of-sight of each other. When traveling 

between landmarks, the baboons either navigated by holding visual contact with a distant 

landmark (maybe a tall tree, or the overall shape of the hill when navigating towards the hill in the 

plain area), or held an approximate bearing, which they adjusted, if necessary, as soon as a the 

next landmark came into sight (for example a car track). This resulted in relatively broad corridors 

along which they travelled, and in relatively subtle directional changes when traveling in these 

corridors ("moving change points"). In addition, the baboons possessed finer-grained knowledge 

about the routes to a few discrete locations such as to a few water holes [Noser and Byrne 

2007b] and to certain important trees (eg. Fig trees, Ficus glumosa, [Noser and Byrne 2010]). 

However, given that many food sources at Blouberg Nature Reserve were either more or less 

evenly distributed or else occurred in relatively large patches (eg the fruit trees used in winter 

2002), the number of routes to discrete locations to remember in detail remained relatively small. 

 

In contrast to Poucet [1993], who proposed that animals use a Euclidean (or vector) map when 

navigating in small-scale space and a network map when traveling in large-scale space, we 

found no evidence for a Euclidean map. Combining our earlier [Noser and Byrne 2007b, 2010] 

and the present findings, we conclude that baboons use a network map in both situations, for 

travel among prominent landmarks and large resource patches in large-scale space [this study] 

as well as for route-based travel to pinpoint relatively small resource locations ([Noser and Byrne 
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2007b]; [Noser and Byrne 2010]; see [Garber and Porter, this issue], for a similar conclusion for 

saddleback tamarins). This claim assumes that both travel along repetitive routes and travel 

along broad corridors is based on the same basic cognitive mechanism. For example, when 

traveling to a water hole over a large distance, the network map may become more detailed close 

to the water hole. As a result, when superimposing a large number of travel routes to that water 

hole, the physical width of the resulting route would narrow down in vicinity to the water hole. 

However, it is also possible that the varying travel patterns result from a hierarchy of navigational 

methods, a more general heuristic to get to an approximate resource area, and a local network 

map for pinpointing discrete, relatively small resources. 

 

Sigg and Stolba [1981] found that, similar to our study group, a Hamadryas baboon group living 

in the Ethiopian semi-desert traveled along relatively broad corridors during a large part of their 

daily ranging, but used narrow, repetitive routes shortly before arriving at the water holes. Thus, 

this travel pattern applies to both a chacma baboon and a hamadryas baboon group living in a 

dry and a semi-arid habitat respectively, both covering large distances every day to find sufficient 

food and water. However, it contrasts with travel patterns found in spider monkeys, woolly 

monkeys [Di Fiore and Suarez 2007], and probably also in gibbons [Asensio et al. 2011] living in 

wet forest. Whether these differences correspond to the fundamental habitat differences of these 

primates, requiring differing navigational strategies, or whether they actually reflect variation of 

cognitive abilities remains to be clarified in the future. For example, a combination of the change 

point test [Byrne et al. 2009] with methods that asses area-restricted search [Knell and Codling 

2012] may allow to control for ecological variation of habitats and for differences in foraging 

strategies and ultimately to shed more light on the question of interspecific variation in spatial 

cognition in wild primates. 
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