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a b s t r a c t

Pattern classification methods assign an object to one of several predefined classes/categories based on fea-

tures extracted from observed attributes of the object (pattern). When L discriminatory features for the pat-

tern can be accurately determined, the pattern classification problem presents no difficulty. However, precise

identification of the relevant features for a classification algorithm (classifier) to be able to categorize real

world patterns without errors is generally infeasible. In this case, the pattern classification problem is often

cast as devising a classifier that minimizes the misclassification rate. One way of doing this is to consider both

the pattern attributes and its class label as random variables, estimate the posterior class probabilities for a

given pattern and then assign the pattern to the class/category for which the posterior class probability value

estimated is maximum. More often than not, the form of the posterior class probabilities is unknown.

The so-called Parzen Window approach is widely employed to estimate class-conditional probability (class-

specific probability) densities for a given pattern. These probability densities can then be utilized to estimate

the appropriate posterior class probabilities for that pattern. However, the Parzen Window scheme can be-

come computationally impractical when the size of the training dataset is in the tens of thousands and L

is also large (a few hundred or more). Over the years, various schemes have been suggested to ameliorate

the computational drawback of the Parzen Window approach, but the problem still remains outstanding and

unresolved.

In this paper, we revisit the Parzen Window technique and introduce a novel approach that may circumvent

the aforementioned computational bottleneck. The current paper presents the mathematical aspect of our

idea. Practical realizations of the proposed scheme will be given elsewhere.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In mathematical pattern recognition, the problem of pattern clas-

sification entails assigning an object – based on a number of spe-

cific features of the object – to one of a finite set of predefined

classes/categories ωj, where j =1, 2,…, J, with J being the number of

classes/categories of interest. Typically the object (or simply the pat-

tern) is represented by an L-dimensional vector x whose elements,

(x1, x2, . . . , xL), are values assumed to contain the appropriate infor-

mation about the specific pattern features utilized to accurately clas-

sify the pattern represented by x.

When L discriminatory features for a pattern can be determined

accurately, the pattern classification problem presents no difficulty:
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t reduces to a simple look-up table scheme. However, identifying the

elevant features to classify realistic patterns without classification

rrors is generally impossible. Thus, the pattern classification prob-

em is often cast as the task of finding a classifier that minimizes the

isclassification rate [1]. One popular way of achieving this objective

s to treat both the pattern vector x and the class label ωj as ran-

om variables. In this case, the posterior class probabilities p(ωj|x)

or a given pattern x is computed; then pattern x is assigned to the

lass, for which the p(ωj|x) value is maximum [1–6]. (In the last step

t is being assumed that all misclassification errors are equally bad

1,3,4].)

However, in practice, the form of the function p(ωj|x) is unknown;

nstead, N patterns xi and their corresponding correct class labels

i ∈ {ω1,ω2, . . . , ωJ} – i.e., D = {(xi, yi)}N
i=1

, assumed to constitute a

epresentative dataset of the joint probability density function p(ωj,

) for ωj and x – are usually available. It is from these prototype pat-

erns xi and their corresponding class labels yi that one tries to esti-

ate p(ωj|x).
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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According to basic probability rules [1–7],

p(ω j|x)p(x) = p(ω j, x) = p(x|ω j)p(ω j) (1)

hese rules allow one to modularize the estimation problem and es-

imate p(ωj|x) (and, of course, p(x)) in terms of p(x|ωj) and p(ωj):

p(ω j|x) = p(x|ω j)p(ω j)

p(x)
, (2)

hereby we may have a better chance of being able to estimate

(x|ωj) and p(ωj) from D than estimating p(ωj|x) directly from D. In

he denominator, p(x) = ∑J
j=1

p(x|ω j)p(ω j).

In the Bayesian statistics framework, p(ωj) is referred to as the

lass prior probability, which is the probability that a member of

lass ωj will occur. The function p(x|ωj) is called the class-conditional

robability density function, i.e. the probability density of observ-

ng pattern x given that x is a member of class ωj. The denominator

erm on the right hand side of Eq. 2 is often called the “evidence” or

marginal likelihood”. For the purpose of this paper we can afford to

imply view this term as a normalization factor.

If there is evidence that the number of prototype patterns per class

s an indication of the importance of that class, then a sensible ap-

roximation of p(ωj) can be

p(ω j) =
∑N

i=1 ν i
j

N
, (3)

here ν i
j
= 1 if the ith prototype xi belongs to class ωj, otherwise

i
j
= 0; and N is as described before. Nonetheless, p(ωj) is typically

ssumed to be uniform, i.e., p(ω j) = 1
J , where J is as defined before.

Estimating p(x|ωj) from D is not straightforward [1–5]. In the last

alf-century, a plethora of methods have been proposed for estimat-

ng p(x|ωj) based on D, the so-called training set. There are ample

xcellent reviews and text books on this topic; for example, the two

ooks – one by Hand [4] and the other by Murphy [8] – give adequate

nd accessible descriptions of the bulk of these approaches devised

n recent (and not so recent) years.

In this paper we are concerned with one particular approach that

s widely thought to be apropos to the task of estimating p(x|ωj)

rom a representative training dataset: the so-called Parzen Window

ethod [1,2,4,9,10], also known as Parzen estimator, Potential func-

ion technique [10], to name but a few.

In the preceding discussion and in the rest of the paper, the

erms “class”, “label”, “class label” and “category” are employed inter-

hangeably. For notational simplicity we use x, xi and ωj both as ran-

om variables and their realizations. Furthermore we follow (in line

ith the current trend in machine learning and statistics) the conve-

ient – but not necessarily correct – practice of using the term “den-

ity” for both a discrete random variable’s probability function and

or the probability function of a continuous random variable. An im-

licit assumption being made throughout the paper is that all spaces,

atrices, vectors, functions and variables (discrete or not), etc., are

eal.

. Literature review

The Parzen Window approach can approximate p(x|ωj) by a sim-

le formula [1,2,10]:

p̂(x|ω j) = 1∑N
i=1 ν i

j

N∑
i=1

K(x, xi;λ)ν i
j, (4)

here xi ∈ D denotes prototype patterns and ν i
j

is as defined before.

(x, xi; λ) – commonly known as the kernel function – is a two-

ariable function with specific properties, which are abundantly cov-

red in the statistical pattern recognition literature [1,2,9,10]. At any
ate, it might be helpful to think of K(x, xi; λ) as a measure of simi-

arity returning how similar patterns x and xi are, λ being a tunable

smoothing) parameter. In other words, the kernel function peaks at

= xi and decays away elsewhere; the λ parameter, inter alia, has an

mportant role in determining the rate of the decay.

Eq. 4 indicates that p̂(x|ω j) is formed from the superposition of

ernel function K(xi, x; λ) values at the given prototype patterns xi

or class ωj. The Parzen Window method is powerful in the sense

hat, with enough representative data points (prototypes/references),

ts estimate of the class conditional probability density converges

o p(x|ωj) (see Ref. [1], Chapter 4). Although Eq. 4 is conceptually

imple and capable of providing a good estimate of p(x|ωj), it can

omputationally suffer from the requirements that all the proto-

ypes/references xi for class ωj must be retained in main-memory to

ompute p̂(x|ω j), the estimate of p(x|ωj). Furthermore, considerable

PU-time may be required each time this method is used to estimate

(x|ωj) to classify a novel pattern. The fact that the size of the refer-

nce pattern vectors xi can be easily in the hundreds (or more) may

xacerbate the main-memory and CPU-time requirements.

Over the years, various schemes have been developed to address

he computational drawback of this otherwise elegant and power-

ul method. For example, one of these schemes entails – see Ref. [1]

Chapter 4), Ref. [4] (Chapter 2) and Ref. [10] (Chapters 6) for detailed

echnical and practical discussions – expressing the kernel function

s a finite series expansion

(x, xi;λ) =
M∑

m=1

φm(x)φm(xi), (5)

hich renders the right hand side of Eq. 4

1∑N
i=1 ν i

j

N∑
i=1

K(x, xi;λ)ν i
j = 1∑N

i=1 ν i
j

N∑
i=1

ν i
j

M∑
m=1

φm(x)φm(xi), (6)

ith {φm}M
m=1

being appropriate basis functions (not necessarily

olynomials) defined in the feature space in which the pattern vec-

ors x and xi reside.

From Eqs. 4 and 6, we have

p̂(x|ω j) =
M∑

m=1

cmω j
φm(x), (7)

here

mω j
= 1∑N

i=1 ν i
j

N∑
i=1

ν i
jφm(xi),

ith ν i
j
= 1 if pattern xi belongs to class ωj, otherwise ν i

j
= 0.

This scheme certainly removes the reference patterns’ storage

roblem. However, it can create a computational problem of its own,

n particular when both M and L are large, which is often the case in

eal world classification problems. Computing M basis functions of L

ariables to classify a new pattern x is not a trivial computational task

1–4,10–12].

Another approach – albeit a particular case of the scheme above

is that proposed by Specht [13]. It was based on a Taylor series ex-

ansion of ρ(x, xi; λ) (see Eq. 8), such that an rth order polynomial in

variables was required to estimate and store (L+r
L ) terms to approxi-

ate p̂(x|ω j) [10,13,14]. For short but “insightful” descriptions of the

elationship between an appropriate value of r and the smoothing pa-

ameter λ, see Ref. [1] (Chapter 4) and Ref. [14] (Chapter 4). In princi-

le, Specht’s scheme has a strong appeal of simplicity providing the

umber of terms required in the Taylor series can be held to a practi-

al limit. Unfortunately, both r and L can be large in current realistic

lassification problems [1,4,10].

Despite these (and many other) efforts, to the best of our knowl-

dge, the computational bottleneck that the Parzen Window method

ncounters, when N and L are large, remains an unresolved issue.
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Thus, the motivation for this paper is to introduce yet another

scheme that might be able to circumvent the aforementioned com-

putational bottleneck problem, while retaining the estimation power

and conceptual simplicity of the Parzen Window method. This work

is confined to Parzen Window based approaches, in which the kernel

function is – or can be expressed – in the form

K(x, xi;λ) = A f (x;λ)ρ(x, xi;λ) f (xi;λ), (8)

where A > 0; f(x; λ) and f(xi; λ) are any real functions defined in the

feature space; ρ(x, xi; λ) is a polynomial in x and xi; and λ is as de-

fined before. The kernel functions that are or can be written in the

form above are ubiquitous nowadays in data analysis [4,6,8]. They

have most often been successfully applied to discrete data; for this

reason we decided to confine attention to the discrete case. For illus-

trative purposes, we focus on binary data, i.e., xl = 0 or 1 denoting

absence or presence of feature xl in the pattern vector, respectively.

That is to say, both x (test pattern vector) and xi (reference/prototype

pattern vector) reside in a binary feature space X = {0, 1}L.

The extension of the proposed scheme to continuous data – i.e.,

X = RL – is straightforward.

One final, but important remark is that Specht’s approach and our

proposed scheme are arguably similar in spirit. However there are

crucial differences: unlike Specht’s formulation, our scheme does not

estimate (L+r
L ) terms, it does not retain (L+r

L ) terms in main-memory,

nor does the variable r feature in the final form of our algorithm –

instead, in our case, only two L-dimensional vectors and one L-by-L

matrix are required to retain in main-memory. The two vectors and

the matrix can notably be highly sparse. We will briefly expound on

this assertion shortly.

3. Proposed method and discrete Parzen Window approach

As a concrete example, we use the widely utilized kernel func-

tion (albeit in cheminformatics [15,16], and references therein) intro-

duced by Aitchison and Aitken (AA–kernel) [17,18],

K(x, xi;λ) = λL
(

1 − λ

λ

)d(x,xi)

, (9)

where 0.5 < λ < 1 and d(x, xi) denotes the number of components

in which x and xi disagree. This dissimilarity measure d(x, xi) can be

conveniently expressed as [4]

d(x, xi) = xT x − 2xT xi + xT
i xi (10)

In passing, the AA–kernel is basically a discrete analogue of an

isotropic Gaussian kernel [17,18].

From Eqs. 9 and 10, and the fact that eln w = w, we have

K(x, xi;λ) = λLeln ( 1−λ
λ

)(xT x+xT
i

xi) × e−2 ln ( 1−λ
λ

)xT xi

= λLe−α(xT x+xT
i

xi) × e2αxT xi

= λLe−α(xT x) × e2αxT xi × e−α(xT
i

xi), (11)

where α = ln ( λ
1−λ

). The term e2αxT xi can be written as

e2αxT xi =
∞∑

r=0

(2α)r

r!
(xT xi)

r =
∞∑

r=0

γr(xT xi)
r, (12)

where γ r = (2α)r

r! .

Inserting Eq. 12 into Eq. 11 yields

K(x, xi;λ) = λLe−α(xT x)

[ ∞∑
r=0

γr(xT xi)
r

]
e−α(xT

i
xi) (13)

(cf. Eq. 8).

From Eqs. 13 and 4, we have

p̂(x|ω j) = λLe−α(xT x)

∑N
i=1 ν i

j

N∑
i=1

ν i
je

−α(xT
i

xi)
∞∑

r=0

γr(xT xi)
r (14)
Now we come to the main contribution of this paper: removing

he requirement for retaining all the reference/prototype patterns

or class ωj in main-memory to compute p̂(x|ω j) in order to es-

imate p̂(ω j|x) to classify a new pattern x. However, first we sim-

lify the notation by defining these variables Nω j
, a, z and z′, which

ill be consistently used throughout, as follows: Nω j
= ∑N

i=1 ν i
j
;βi =

−α(xT
i

xi); a = ∑Nω j

i=1
βi; z = ∑Nω j

i=1
xi; and z′ = ∑Nω j

i=1
βixi, where Nω j

efers to the number of patterns in the training dataset that belong

o class ωj; N, α and ν i
j

are as described before. In our new notation,

q. 14 becomes

p̂(x|ω j) = B

[
γ0

Nω j∑
i=1

βi +
∞∑

r=1

γr

Nω j∑
i=1

βi(xT xi)
r

]

= B

[
γ0a +

∞∑
r=1

γr

Nω j∑
i=1

(xT (βixi))(xT xi)
r−1

]
, (15)

here B = λLe−α(xT x)

Nω j
.

The main contribution of the paper is formulating Eq. 15 in

erms of γ r , a, z, z′ and an L-by-L matrix, Q which will be defined

hortly. The task of this formulation basically amounts to expressing
Nω j

i=1
(xT (βixi))(xT xi)

r−1 in terms of z, z′ and Q. In doing this, we

ope to ameliorate the computational drawback of the Parzen Win-

ow method based on kernel functions in the form given in Eq. 8.

. Results

When r = 1, the task is trivial:
∑Nω j

i=1
(xT (βixi))(xT xi)

r−1

educes to

Nω j

i=1

xT (βixi) = xT z′ (16)

here, by definition (see Section 3), z′ = ∑Nω j

i=1
(βixi).

However, when r > 1, the task can be taxing. To this end, we

ake use of a simple – but useful – proposition (Proposition 1,

hose proof is provided in Appendices A and B) to demonstrate that
Nω j

i=1
(xT (βixi))(xT xi)

r−1 for r > 1 can be written as (see Eq. 19 in

ppendix C)

Nω j

i=1

(xT (βixi))(xT xi)
r−1 = (xT Qx)(xT z)r−2, (17)

here Q is just an L-by-L matrix, (see Eq. 19).

Inserting Eqs. 16 and 17 into Eq. 15 results in

p̂(x|ω j) = B

[
γ0a + γ1(xT z′) + (xT Qx)

∞∑
r=2

γr(xT z)r−2

]

= B

[
γ0a + γ1(xT z′) +

(
4α2(eμ − μ − 1)

μ2

)
(xT Qx)

]
,

(18)

here B = λLe−α(xT x)

Nω j
;

∑∞
r=2 γr(xT z)r−2 = 4α2(eμ−μ−1)

μ2 , with μ =
α(xT z), γ r = (2α)r

r! , α = ln ( λ
1−λ

) and 0.5 < λ < 1

Evidently, Eq. 18 illustrates that it is not necessary to retain all ref-

rence/prototype patterns for a given class in main-memory to com-

ute the value of p̂(x|ω j) for a test pattern x; instead, all that is re-

uired is an L-by-L matrix Q and two L size vectors (z and z′), which

re computed once and then retained in main-memory. This was the

bjective we set out to achieve in this paper.

One final, but important, remark is that z, z′ and Q can be highly

parse in real world applications when x ∈ {0, 1}, in particular if the



H.Y. Mussa et al. / Pattern Recognition Letters 63 (2015) 30–35 33

v

a

o

v

R
Q

p

P

5

c

a

O

t

s

s

c

s

A

B

l

A

P

t∑
n

P

q

(
F

d

w

e

a

w

(

w

b

(

o

(

w

∑

alue of L is large. The fundamental reason for this sparsity is that in

high-dimensional reference pattern vector xi there is the potential

f many of its components being zero – i.e., many of the features are

ery likely to be absent in xi.

In passing, if we are dealing with continuous data, whereby xi ∈
L, the vectors z, z′ and matrix Q could be dense. Nonetheless, storing

can still be computationally cheaper than retaining Nω j
reference

atterns xi per class in main-memory – providing that Nω j
> L.

The current paper presents the mathematical aspect of our idea.

ractical realizations of the proposed scheme will be given elsewhere.

. Conclusion

The Parzen Window method is a powerful tool for estimating class

onditional probability density functions. However, it can suffer from

severe computational bottleneck when the training dataset is large.

ver the years, attempts have been made to rectify this computa-

ional drawback of the method. To the best of our knowledge the is-

ue has remained unsolved. In this paper we have proposed a novel

cheme, which we hope contributes to our endeavor of alleviating the

omputational bottleneck from which the Parzen Window algorithm

uffers when the training dataset is large.
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ppendix A

roposition 1. Let ai and bi be real variables ∈ [0, ∞). Then

he product of (
∑n

i=1 bi)(
∑n

i=1 ai)
q can be given as

∑n
i=1 bi(ai)

q +
q
j=1

(
∑n

i=1 ai)
j−1

∑
i=1 ai

∑n
i′ �=i bi′(ai′)

q− j, where i′ = 1, 2, . . . , n with

and q ∈ Z
+.

roof. Let us suppose, with no loss of generality, that n = 4 and

= 3. In this scenario, we have the product (b1 + b2 + b3 + b4) ×
a1 + a2 + a3 + a4) × (a1 + a2 + a3 + a4) × (a1 + a2 + a3 + a4).

or the sake of clarity, we write the product as (d1 + d2 + d3 +
4) × (c1 + c2 + c3 + c4) × (a1 + a2 + a3 + a4) × (b1 + b2 + b3 + b4),
here ai = ci = di, with i being 1, 2, 3, 4. To labour the obvious, we

xpress (d1 + d2 + d3 + d4) × (c1 + c2 + c3 + c4) × (a1 + a2 + a3 +
4) × (b1 + b2 + b3 + b4) as follows

(d1 + d2 + d3 + d4) × (c1 + c2 + c3 + c4)

×(a1 + a2 + a3 + a4) × (b1 + b2 + b3 + b4)

= b1a1c1d1 + b2a2c2d2 + b3a3c3d3 + b4a4c4d4

+ d1(b2a2c2 + b3a3c3 + b4a4c4)

+ d2(b1a1c1 + b3a3c3 + b4a4c4)

+ d3(b1a1c1 + b2a2c2 + b4a4c4)

+ d4(b1a1c1 + b2a2c2 + b3a3c3)

+ d1(c1(b2a2 + b3a3 + b4a4) + c2(b1a1 + b3a3 + b4a4)

+ c3(b1a1 + b2a2 + b4a4) + c4(b1a1 + b2a2 + b3a3))

+ d2(c1(b2a2 + b3a3 + b4a4) + c2(b1a1 + b3a3 + b4a4)

+ c3(b1a1 + b2a2 + b4a4) + c4(b1a1 + b2a2 + b3a3))

+ d3(c1(b2a2 + b3a3 + b4a4) + c2(b1a1 + b3a3 + b4a4)

+ c3(b1a1 + b2a2 + b4a4) + c4(b1a1 + b2a2 + b3a3))

+ d4(c1(b2a2 + b3a3 + b4a4) + c2(b1a1 + b3a3 + b4a4)

+ c3(b1a1 + b2a2 + b4a4) + c4(b1a1 + b2a2 + b3a3))

+ d1[c1(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3)) + . . .
+ c4(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3))]

+ d2[c1(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3)) + . . .

+ c4(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3))]

+ d3[c1(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3)) + . . .

+ c4(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3))]

+ d4[c1(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3)) + . . .

+ c4(a1(b2 + b3 + b4) + a2(b1 + b3 + b4)

+ a3(b1 + b2 + b4) + a4(b1 + b2 + b3))], (1)

hich can be written more compactly as:

4∑
i=1

bi

)(
n∑

i=1

ai

)3

=
4∑

i=1

bi(ai)
3 +

4∑
i=1

ai

4∑
i′ �=i

bi′(ai′)
2

+
4∑

i=1

ai

4∑
i=1

ai

4∑
i′ �=i

bi′ ai′

+
(

4∑
i=1

ai

)2 4∑
i=1

ai

4∑
i′ �=i

bi′ (2)

here i′ = 1, 2, 3, 4; note that in Eq. 2 we have made use of fact that,

y definition, ai = ci = di. It readily follows that for the general case

n∑
i=1

bi

)(
n∑

i=1

ai

)q

=
n∑

i=1

bi(ai)
q +

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q−1

+
n∑

i=1

ai

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q−2 + . . .

. . . +
(

n∑
i=1

ai

)q−1 n∑
i=1

ai

n∑
i′ �=i

bi′ , (3)

r in a more compact form

n∑
i=1

bi

)(
n∑

i=1

ai

)q

=
n∑

i=1

bi(ai)
q +

q∑
j=1

(
n∑

i=1

ai

) j−1

×
∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q− j, (4)

hich can be immediately proved by induction, see Appendix B.

This completes the proof of the proposition. �

Clearly Eq. 3 can be rearranged to give

n

i=1

bi(ai)
q =

(
n∑

i=1

bi

)(
n∑

i=1

ai

)q

−
n∑

i=1

ai

n∑
i′ �=i

bi′(ai′)
q−1

−
n∑

i=1

ai

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q−2 − . . .

. . . −
(

n∑
i=1

ai

)q−1 n∑
i=1

ai

n∑
i′ �=i

bi′ (5)
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Remark 1. From Eqs. 1–3, one does not fail to observe that, if n is

large (i.e. asymptotically),(
n∑

i=1

ai

)q−1 n∑
i=1

ai

n∑
i′ �=i

bi′ >

(
n∑

i=1

ai

)q−2 n∑
i=1

ai

n∑
i′ �=i

bi′ ai′

>

(
n∑

i=1

ai

)q−3 n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
2

>

(
n∑

i=1

ai

)q−4 n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
3

> . . . >

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q−1 >

n∑
i=1

bi(ai)
q

(6)

Furthermore, a closer look at the terms above also reveals that one

might – albeit asymptotically – view(
n∑

i=1

ai

)q−1 n∑
i=1

ai

n∑
i′ �=i

bi′ ,

(
n∑

i=1

ai

)q−2 n∑
i=1

ai

n∑
i′ �=i

bi′ ai′ ,

. . . ,

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
q−1,

n∑
i=1

bi(ai)
q

as a geometric progression whose common ratio is in the interval

(0,1).

Remark 2. When n is large (that is, asymptotically), another impor-

tant inference that one could glean from Eqs. 1–3 is that

n∑
i′ �=1

bi′(ai′)
m =

n∑
i′ �=2

bi′(ai′)
m =

n∑
i′ �=3

bi′(ai′)
m = . . . =

n∑
i′ �=n

bi′(ai′)
m, (7)

and even more so in our pattern recognition context whose basic

credo is that all reference/prototype patterns xi for a given class are

similar. i′ = 1, 2, . . . , n and m = q − l, where l = 1, 2, . . . , q − 1

Proposition 1 , Remarks 1 and 2 essentially form the theoretical

basis for the algorithm proposed in this work.

Based on Remark 1, it is justifiable to assume that Eq. 5 can be well

approximated as

n∑
i=1

bi(ai)
q ≈

(
n∑

i=1

bi

)(
n∑

i=1

ai

)q

−
(

n∑
i=1

ai

)q−1 n∑
i=1

ai

n∑
i′ �=i

bi′

−
(

n∑
i=1

ai

)q−2 n∑
i=1

ai

n∑
i′ �=i

bi′ ai′ (8)

Due to space constraints, practical realization and validation of Eq. 8

will be given in application journals on pattern recognition and

cheminformatics.

Appendix B

Proof of Eq. 4 by induction.

Base case: when q = 1, from Eq. 4 we have(
n∑

i=1

bi

)(
n∑

i=1

ai

)1

=
n∑

i=1

bi(ai)
1

+
1∑

j=1

(
n∑

i=1

ai

) j−1 n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
1− j (9)

Clearly the left hand side of the equation can be expressed as∑n
i=1 biai + ∑n

i=1 ai

∑n
i′ �=i bi′ and the right hand side of the equation

is
∑n

i=1 biai + ∑
i ai

∑n
i′ �=i bi′ . Thus Eq. 9 holds for q = 1.
General case:

Assume that Eq. 4 is correct for some positive integer k ∈ Z
+. From

q. 4 we have

n∑
i=1

bi

)(
n∑

i=1

ai

)k

=
n∑

i=1

bi(ai)
k

+
k∑

j=1

(
n∑

i=1

ai

) j−1 ∑
i

ai

n∑
i′ �=i

bi′(ai′)
k− j (10)

e now show that the equation above holds also for k + 1. Starting

ith the left hand side, we have

n∑
i=1

bi

)(
n∑

i=1

ai

)k( n∑
i=1

ai

)
=

(
n∑

i=1

bi(ai)
k +

k∑
j=1

(
n∑

i=1

ai

) j−1

×
n∑

i=1

ai

n∑
i′ �=i

bi′(ai′)
k− j

)(
n∑

i=1

ai

)
,

(11)

here we have made use of the assumption that Eq. 10 is correct;

ence

n∑
i=1

bi

)(
n∑

i=1

ai

)k( n∑
i=1

ai

)
=

n∑
i=1

bi(ai)
k

(
n∑

i=1

ai

)
+

k∑
j=1

×
(

n∑
i=1

ai

) j ∑
i

ai

n∑
i′ �=i

bi′(ai′)
k− j,

(12)

here
∑n

i=1 bi(ai)
k
(∑n

i=1 ai

)
can be expressed as

n

i=1

bi(ai)
k

(
n∑

i=1

ai

)
=

n∑
i=1

bi(ai)
k+1 +

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
k (13)

nserting Eq. 13 into Eq. 12 results in

(
n∑

i=1

bi

)(
n∑

i=1

ai

)k( n∑
i=1

ai

)
=

n∑
i=1

bi(ai)
k+1

+
[

n∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
k +

k∑
j=1

(
n∑

i=1

ai

) j ∑
i

ai

n∑
i′ �=i

bi′(ai′)
k− j

]

(14)

∑n
i=1 ai

∑n
i′ �=i bi′(ai′)

k + ∑k
j=1 (

∑n
i=1 ai)

j
∑

i ai

∑n
i′ �=i bi′(ai′)

k− j] is ba-

ically
∑k

j=0 (
∑n

i=1 ai)
j
∑

i ai

∑n
i′ �=i bi′(ai′)

k− j, which can be rewritten

s
∑k+1

j=1 (
∑n

i=1 ai)
j−1

∑
i=1 ai

∑n
i′ �=i bi′(ai′)

(k+1)− j . Inserting this ex-

ression in Eq. 14 and rewriting (
∑n

i=1 ai)
k(

∑n
i=1 ai) on the left hand

ide of Eq. 14 as (
∑n

i=1 ai)
k+1 yield

(
n∑

i=1

bi

)(
n∑

i=1

ai

)k+1

=
n∑

i=1

bi(ai)
k+1

+
[

k+1∑
j=1

(
n∑

i=1

ai

) j−1 ∑
i=1

ai

n∑
i′ �=i

bi′(ai′)
(k+1)− j

]
, (15)

hich is what we set out to prove. Thus, Eq. 4 (and for that matter

q. 3) in Appendix A hold for all values of q ∈ Z
+.

ppendix C

In this work: bi = xT (βixi); bi′ = xT (βi′ xi′); ai = xT xi; ai′ = xT xi′ ;
= r - 1; and n = Nω j

, where x, β i, βi′ , xi, xi′ , r and Nω j
are
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[

[

s described in the main text (see Section 3). Hence, from Eq. 8

e have

Nω j

i=1

(xT (βixi))(xT xi)
r−1 ≈ cr−1

(
xT

Nω j∑
i=1

(βixi)

)

−cr−2

( Nω j∑
i=1

xT xi

Nω j∑
i �=i′

xT (βi′ xi′)

)

−cr−3

( Nω j∑
i=1

xT xi

Nω j∑
i �=i′

(xT (βi′ xi′))(xT xi′)

)

(16)

here c = (xT
∑Nω j

i=1
xi).

Making use of the two definitions z′ = ∑Nω j

i=1
(βixi) and z =

Nω j

i=1
xi given in Section 3 in the main text and with some algebraic

anipulation (such as the fact that gTh = hTb for any vectors g and

), the three lines on the right hand side of Eq. 16 can be recast in a

ore simple and familiar form:

• Line 1: cr−1(xT
∑Nω j

i=1
(βixi)) = (xT z)r−1xT z′

• Line 2: cr−2 = (xT z)r−2, whereas

( Nω j∑
i=1

xT xi

Nω j∑
i �=i′

xT (βi′ xi′)

)
= xT Yx,

where Y = (
∑Nω j

i=1
xi

∑Nω j

i �=i′ (βi′ xi′)
T ) is an L-by-L matrix.

• Line 3: cr−3 = (xT z)r−3, whereas

( Nω j∑
i=1

xT xi

Nω j∑
i �=i′

(xT (βi′ xi′))(xT xi′)

)

= xT

Nω j∑
i=1

xix
T

Nω j∑
i �=i′

(
(βi′ xi′)xT

i′
)
x

= xT

Nω j∑
i=1

xi(xT Six), (17)

where Si = ∑Nω j

i �=i′ ((βi′ xi′)xT
i′ ) is an L-by-L matrix.

According to Eq. 7, the matrices S1, S2, . . . , SNω j
can be considered

equivalent/similar. Hence, Eq. 17 modifies to

( Nω j∑
i=1

xT xi

Nω j∑
i �=i′

(xT (βi′ xi′))(xT xi′)

)
= (xT z)(xT Sx), (18)

where S = Si and (xT z) = xT
∑Nω j

i=1
xi
Expressed in terms of Y, S, z′ and z, Eq. 16 becomes

Nω j

i=1

(xT (βixi))(xT xi)
r−1

≈ (xT z)r−1(xT z′) − (xT z)r−2(xT (Y + S)x)

= (xT z)r−2((xT z′)(xT z) − xT (Y + S)x)

= (xT z)r−2((xT z′zT x) − xT (Y + S)x)

= (xT z)r−2(xT Qx), (19)

here Q = z′zT − (Y + S), an L-by-L matrix.

Note that (xT z)r−2 ≥ 0, (xT z′zT x) ≥ xT (Y + S)x; hence,

xT z)r−2(xT Qx) ≥ 0 as it should be – because, by definition,
Nω j

i=1
(xT (βixi))(xT xi)

r−1 ≥ 0.
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