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Abstract. Automatic presentations, also called FA-presentations, were introduced
to extend finite model theory to infinite structures whilst retaining the solubility

of fundamental decision problems. This paper studies FA-presentable algebras. (The
word ‘algebra’ is used in the sense of universal algebra: a set equipped with a collection
of operations.) First, an example is given to show that the class of finitely generated

FA-presentable algebras is not closed under forming finitely generated subalgebras,
even within the class of algebras with only unary operations. In contrast, a finitely
generated subalgebra of an FA-presentable algebra with a single unary operation is
itself FA-presentable. Furthermore, it is proven that the class of unary FA-present-

able algebras is closed under forming finitely generated subalgebras, and that the
membership problem for such subalgebras is decidable.

1. Introduction

Automatic presentations, also known as FA-presentations, were introduced

by Khoussainov & Nerode [8] to fulfill a need to extend finite model theory to

infinite structures while retaining the solubility of interesting decision prob-

lems. Informally, an FA-presentation for a relational structure consists of a

regular language of abstract representatives for elements of the structure such

that the relations of the structure are recognized by finite automata. FA-pre-

sentations have been considered for structures such as orders [9, 10, 5], graphs

[7], and groups, semigroups, and rings [14, 2, 13].

This paper studies subalgebras of FA-presentable algebras. (The word ‘alge-

bra’ is used in the sense of universal algebra: a set equipped with a collection of

operations.) In the particular case of groups, it was already known that there

exists an FA-presentation for the group Z×Z under which the sublanguage of

representatives for elements of any non-trivial cyclic subgroups is not regular

[12, § 6]. However, such subgroups, like all abelian groups [14, Theorem 3],
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are FA-presentable with a different language of representatives. By construct-

ing an example of a finitely generated FA-presentable algebra that contains

a non-FA-presentable finitely generated subalgebra, we show that the class of

FA-presentable algebras is not closed under taking finitely generated subalge-

bras (Theorem 3.3). Furthermore, this non-closure holds even within the class

of algebras equipped with only unary operations (Remark 3.7). However, the

class of FA-presentable algebras with a single unary operation is closed under

forming finitely generated subalgebras (Proposition 3.2).

On the other hand, we prove that the class of algebras that admit unary FA-

presentations (that is, FA-presentations over a one-letter alphabet) is closed

under forming finitely generated subalgebras (Theorem 5.2). The proof de-

pends on the sublanguage of representatives for elements of the subalgebra be-

ing regular and effectively constructable (Theorem 5.1), which also implies that

the membership problem is decidable for such subalgebras (Theorem 5.3). We

also prove that finitely generated unary FA-presentable algebras have growth

level bounded by a linear function (Proposition 5.5). These results fit the

general pattern of unary FA-presentations having nice closure and decision

properties; see for instance [1, Ch. 7] and [11].

These results for unary FA-presentations are proved using a new diagram-

matic representation, developed in § 4. This representation allows us to visual-

ize and manipulate elements of a unary FA-presentable relational structure in a

way that is more accessible than the corresponding arguments using languages

and automata. In a forthcoming paper [3], we deploy this representation in an

analysis of unary FA-presentable binary relations. This representation is thus

potentially a unifying framework in which to reason about unary FA-present-

able algebraic and relational structures.

2. Preliminaries

The reader is assumed to be familiar with the theory of finite automata and

regular languages; see [6, Chs 2–3] for background reading. The empty word

(over any alphabet) is denoted ε. Alphabets are always finite.

Throughout the paper, functions are written on the right: xϕ is the result

of applying the function ϕ to x.

The set of positive integers {1, 2, 3, . . .} is denoted N, the set of non-negative
integers {0, 1, 2, . . .} is denoted N0.

Definition 2.1. Let L be a regular language over an alphabet A. Define, for

n ∈ N,

Ln = {(w1, . . . , wn) : wi ∈ L for i = 1, . . . , n}.



Vol. 00, XX Subalgebras of FA-presentable algebras 3

Let $ be a new symbol not in A. The mapping conv : (A∗)n → ((A ∪ {$})n)∗
is defined as follows. Suppose

w1 = w1,1w1,2 · · ·w1,m1 ,

w2 = w2,1w2,2 · · ·w2,m2 ,

...

wn = wn,1wn,2 · · ·wn,mn ,

where wi,j ∈ A. Then conv(w1, . . . , wn) is defined to be

(w1,1, w2,1, . . . , wn,1)(w1,2, w2,2, . . . , wn,2) · · · (w1,m, w2,m, . . . , wn,m),

where m = max{mi : i = 1, . . . , n} and with wi,j = $ whenever j > mi.

Observe that the mapping conv maps an n-tuple of words to a word of

n-tuples.

Definition 2.2. Let A be a finite alphabet, and let R ⊆ (A∗)n be a relation

on A∗. Then the relation R is said to be regular if

convR = {conv(w1, . . . , wn) : (w1, . . . , wn) ∈ R}

is a regular language over (A ∪ {$})n.

This paper considers algebras as relational structures. An operation of arity

n is viewed as a relation of arity n+ 1. For instance, a unary operation (that

is, an operation of arity 1, such as inversion in a group) is viewed as a binary

relation (that is, a relation of arity 2).

Definition 2.3. Let S = (S,R1, . . . , Rn) be a relational structure. Let L be

a regular language over a finite alphabet A, and let ϕ : L → S be a bijective

mapping. Then (L, ϕ) is an automatic presentation or an FA-presentation for

S if, for all relations R ∈ {R1, . . . , Rn}, the relation

Λ(R,ϕ) = {(w1, w2, . . . , wr) ∈ Lr : R(w1ϕ, . . . , wrϕ)},

where r is the arity of R, is regular.

If S admits an FA-presentation, it is said to be FA-presentable.

If (L, ϕ) is an FA-presentation for S and L is a language over a one-letter

alphabet, then (L, ϕ) is a unary FA-presentation for S, and S is said to be

unary FA-presentable.

The usual definition of an FA-presentation (L, ϕ) allows the map ϕ to be

surjective and not necessarily injective and requires Λ(=, ϕ) to be regular.

However, if a relation structure admits an FA-presentation in this more general

sense, it admits an FA-presentation in the sense we use, where the map ϕ is

bijective [8, Corollary 4.3].

Every FA-presentable structure admits a binary FA-presentation; that is,

where the language of representatives is over a two-letter alphabet; see [1,
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Lemma 3.3]. Therefore the class of binary FA-presentable structures is sim-

ply the class of FA-presentable structures. However, there are many structures

that admit FA-presentations but not unary FA-presentations: for instance, any

finitely generated virtually abelian group is FA-presentable [14, Theorem 8],

but unary FA-presentable groups must be finite [1, Theorem 7.19]. Further-

more, the two classes have different decidability properties: FA-presentable

structure have decidable first-order theory (cf. Proposition 2.4 below), but

unary FA-presentable structures have decidable monadic second-order theory.

Thus there are fundamental differences between unary FA-presentable struc-

tures and all other FA-presentable structures.

The fact that a tuple of elements (s1, . . . , sn) of a structure S satisfies a

first-order formula θ(x1, . . . , xn) is denoted S |= θ(s1, . . . , sn).

Proposition 2.4 ([8, Theorem 4.4]). Let S be a structure with an FA-pre-

sentation (L, ϕ). For every first-order formula with parameters θ(x1, . . . , xn)

using relation symbols from the structure and equality, the relation

Λ(θ, ϕ) =
{
(w1, . . . , wn) ∈ Ln : S |= θ(w1ϕ, . . . , wnϕ)

}
is regular, and an automaton recognizing it can be effectively constructed.

Proposition 2.4 is fundamental to the theory of FA-presentations and will

be used without explicit reference throughout the paper.

The following important result shows that in the case of unary FA-presenta-

tions for infinite structures, we can assume that the language of representatives

is the language of all words over a one letter alphabet:

Theorem 2.5 ([4, Theorem 3.1]). Let S be an infinite relational structure

that admits a unary FA-presentation. Then S has an unary FA-presentation

(a∗, ψ).

The proof of Theorem 2.5 relies on the essentially ‘linear’ nature of the

set a∗: the the idea is that if we have a unary FA-presentation (L, ϕ) with

L ⊆ b∗, then in the new FA-presentation (a∗, ψ), the word ai represents the

same element as i-th word of L in increasing order of length. This idea has no

direct extension to the case of non-unary alphabets.

We reiterate that ‘unary’ is used here in two ways: a unary operation of an

algebra is an operation of arity 1 (viewed as a relation of arity 2), and a unary

FA-presentation is an FA-presentation over a one-letter alphabet.

Definition 2.6. Let {Si : i ∈ I} be a set of semigroups. The zero-union of

the Si is the set {0S}∪
∪

i∈I Si, where 0S is a new element, with multiplication

defined as follows: if s, t ∈ Si, then their product st ∈ Si is as before; otherwise

their product is 0S . This multiplication is associative and so the zero-union of

the Si is itself a semigroup.

Definition 2.7. Let A be an alphabet equipped with some total order ≤. Let

L ⊆ A∗. The length-plus-lexicographic ordering of words in L induced by ≤,
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denoted by ⊑, is the total order

x1x2 · · ·xk ⊑ y1y2 · · · yl

⇐⇒ k < l ∨
(
k = l ∧ (∃i)

(
xi ≤ yi ∧ (∀j < i)(xj = yj)

))
.

That is, ⊑ first orders words by length and then orders words of the same

length lexicographically with respect to ≤.

3. Subalgebras of FA-presentable algebras

This section presents various contrasting results for finitely generated sub-

algebras of FA-presentable subalgebras. After a preliminary discussion of al-

gebras equipped with a single unary operation, we prove that the class of FA-

presentable algebras is not closed under taking finitely generated subalgebras

(Theorem 3.3), by exhibiting an example of a finitely generated FA-present-

able algebra that admits a non-FA-presentable finitely generated subalgebra.

Although this example algebra is equipped with a binary operation, we note

afterwards how it can be modified into an algebra with only unary operations

(Remark 3.7), which contrasts the situation for an algebra with a single unary

operation.

Although this section shows that the class of FA-presentable algebras is

not closed under forming finitely generated subalgebras, closure under form-

ing finitely generated subalgebras may hold within classes of FA-presentable

algebras of a particular type. For instance, the following result holds:

Proposition 3.1. Any finitely generated subgroup of an FA-presentable group

FA-presentable.

Proof. A finitely generated subgroup of an FA-presentable group is virtually

abelian by [13, Theorem 10(i)] and hence FA-presentable by [14, Theorem 3].

□

In the case of algebras whose signature comprises a single unary operation,

a positive result holds again: the class of FA-presentable such algebras is closed

under forming FA-presentable subalgebras. This follows a fortiori from the

following stronger result:

Proposition 3.2 (Kuske [Personal communication]). Let S = (S, σ) be a

finitely generated algebra with a single unary operation σ. Then S is unary

FA-presentable.

Proof. The algebra S is simply a set with a single unary operation. Thus we

can view S as a directed graph with vertex set S and edge relation σ. It is

easy to see that this graph consists of a finite graph (consisting of the elements

x such that xσk = xσk+l for some k, l ∈ N) with finitely many infinite rays

attached (consisting of the elements x such that elements xσk are distinct for

all k ∈ N). Suppose that the finite part contains m elements and that there
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are n such infinite rays. Let ϕ : a∗ → S map the words a0, . . . , am−1 to the m

elements of the finite part and map am+ni+j (where i ∈ N0 and 0 ≤ j < n) to

the i-th element of the j-th infinite ray. Then Λ(σ, ϕ) is the union of a finite

relation and

{(am+ni+j , am+n(i+1)+j) : i ∈ N0, 0 ≤ j < n} = (a, a)∗(am, am+n);

thus Λ(σ, ϕ) is regular. Thus (a∗, ϕ) is a unary FA-presentation for S. □

Note, however, that Proposition 3.2 does not yield an effective algorithm

for constructing the subalgebra. If such an algorithm existed, reachability in

the configuration graphs of deterministic Turing machines would be soluble.

Theorem 3.3. The class of FA-presentable algebras is not closed under taking

finitely generated subalgebras.

Proof. We will construct an FA-presentable X and show it contains a finitely

generated non FA-presentable subalgebra. The example algebra X will consist

of the disjoint union of a semilattice and two copies of the configuration graph

of a Turing machine, augmented by extra unary operations.

For each i ∈ N, let Mi be a chain of 2i elements. Let S be the zero-union

of all the Mi; the zero of S is denoted 0S . Notice that S is a semilattice and

can be viewed either as a partially-ordered set or as a semigroup where the

multiplication is the meet operation.

Let T be a deterministic Turing machine that generates sequences of sym-

bols aj
2

, where j ∈ N. More precisely, T starts with an empty tape, performs

some computation and arrives in a distinguished state q□ with its tape con-

tents being a1
2

, then computes again and reaches state q□ with its contents

being a2
2

. In general at various points during its computation T has tape con-

tents aj
2

for every j ∈ N, and T enters state q□ exactly when its tape contents

are aj
2

for some j ∈ N. Notice that T runs forever without halting. Suppose

Q is the state set and B the tape alphabet of T.

Recall that an instantaneous description, or configuration, of T consists

of its state, its tape contents, and the position of its read/write head on its

tape. The configuration graph of T is an infinite graph whose vertices are all

conceivable configurations of T, with a directed edge from g to g′ precisely

if T, when in configuration g, can make a single computation step and reach

configuration g′. Note that in general not all configurations are reachable from

the initial configuration.

Let G⊤ and G⊥ be two copies of the configuration graph of T. The carrier

set for the algebra X will be X = S ∪G⊤ ∪G⊥. The semilattice S is already

equipped with a multiplication ◦; extend this multiplication to X by defining

g◦g′ = g and g◦s = s◦g = g for g, g′ ∈ G⊤∪G⊥ and s ∈ S. The configuration

graph G⊥ is equipped with a directed edge relation δ. Since T is deterministic,

each vertex of the graph has outdegree 1, and so the relation δ can be viewed

as a unary operation. Extend δ to X by xδ = x for all x ∈ S ∪ G⊤. We



Vol. 00, XX Subalgebras of FA-presentable algebras 7

emphasize that δ acts like a computation step by T in the configuration graph

G⊥, but acts like the identity map on the configuration graph G⊤.

Now define three new unary operations. First, α sends each configuration in

G⊤ to the corresponding configuration in G⊥, and otherwise (for all elements

of S∪G⊥) acts like the identity map. Second, β sends each element of a chain

Mi to the element immediately below it in that same Mi, sends the minimum

element of each Mi to 0S , and otherwise (for all elements of {0S} ∪G⊤ ∪G⊥)

acts like the identity map. Third, γ maps configurations in G⊥ with state q□
and tape contents ak to the maximum element of the chainMk, and otherwise

(for all other elements of G⊥ and all elements of S ∪G⊤) acts like the identity

map.

So far, we have a set X equipped with operations ◦, α, β, γ, and δ. We

still have to define one more unary operation ζ before we obtain our exam-

ple algebra X = (X, ◦, α, β, γ, δ, ζ). However, we must first start to define an

FA-presentation (L, ϕ) for X , because we will define ζ in terms of the repre-

sentatives in L.

Let L be the language {z} ∪ {0, 1}∗ ∪ {⊤,⊥}B∗QB∗, where z is a new

symbol not in B or Q. Define ϕ : L→ X as follows:

• zϕ = 0S .

• If u ∈ {0, 1}k, then uϕ is the u-th element (interpreting u as a binary

number) from the bottom in Mk. (Notice that since Mk contains exactly

2k elements, ϕ restricts to a bijection between {0, 1}k and Mk.)

• If t ∈ {⊤,⊥}, u, v ∈ B∗ and q ∈ Q, then (tuqv)ϕ is the configuration in

Gt where the state is q, the tape contains uv, and the head points to the

first symbol in v.

Let us first show that the definition of FA-presentability is satisfied for the

operations ◦, α, β, γ, and δ.
To see that Λ(◦, ϕ) is regular, it is simplest to notice that the Λ(≤, ϕ) is

regular, where ≤ is the order on the semilattice S. This is true because an

automaton recognizing Λ(≤, ϕ) must simply perform two tasks: (1) compare

the lengths of two strings over {0, 1}∗ and then compare them as binary num-

bers, and (2) always accept if the left-hand input word is z and the right lies

in {z} ∪ {0, 1}∗. The operation ◦ is first-order definable in terms of ≤, since

s ◦ t = x ⇐⇒ (x ≤ s) ∧ (x ≤ t)

∧ (∀y ∈ S)
((
(y ≤ s) ∧ (y ≤ t)

)
=⇒ (y ≤ x)

)
.

Thus Λ(◦, ϕ) is regular.
Next,

Λ(α, ϕ) = {(⊤uqv,⊥uqv) : u, v ∈ B∗, q ∈ Q}
∪ {(w,w) : w ∈ {z} ∪ {0, 1}∗ ∪ ⊥B∗QB∗}

is clearly regular.
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g0 q□a q□aaaa q□aaaaaaaaa · · ·
g

δ δ δ δG⊥

g0 q□a q□aaaa q□aaaaaaaaa
g

α α α α α

ζG⊤

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0S

γ

γ

γ

β

β

Figure 1. Schematic diagram of the algebra X from the

proof of Theorem 3.3 . The unary operation α maps each

configuration of G⊤ to the corresponding configuration of G⊥;

the operation β maps ‘down’ within the semilattice; the oper-

ation γ maps from ‘q□’ configurations of G⊥ to the maximum

element of Mi, where i is the number of symbols a on the

tape; the operation δ mimics the computation step of the

Turing machine T; and the operation ζ iterates through G⊤
in length-plus-lexicographic order.

An automaton recognizing Λ(β, ϕ) need only decrement a binary number by

1, recognize (0k, z), and recognize the identity relation on {z}∪{⊤,⊥}B∗QB∗.

Now,

Λ(γ, ϕ) = {(⊥akq□al, 1k+l) : k, l ∈ N0} ∪ {(u, u) : u ∈ L−⊥a∗q□a∗},

which is easily seen to be regular.
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The relation Λ(δ, ϕ) is easily seen to be regular, since each computation of

a Turing machine makes only a small localized change to the configuration as

represented by words in B∗QB∗; see [8, p. 374] and [15, Example B.2.19].

We can now define our last operation ζ. Let ⊑ be the length-plus-lexico-

graphic ordering of words in ⊤B∗QB∗ induced by some order on {⊤}∪B∪Q.

For any element g ∈ G⊤, define gζ as follows. Let u be the unique word in

⊤B∗QB∗ with uϕ = g. Let u′ be the word in ⊤B∗QB∗ that succeeds u in the

⊏ ordering. Then gζ is defined to be u′ϕ. For all x ∈ S ∪G⊥, define xζ = x.

Notice that

Λ(ζ, ϕ) =
{
(u, u′) : u ∈ ⊤B∗QB∗ ∧ (u ⊏ u′)

∧ (∀v ∈ ⊤B∗QB∗)(u ⊏ v =⇒ u′ ⊑ v)
}

∪ {(w,w) : w ∈ L−⊤B∗QB∗}

is regular since a synchronous automaton can recognize the ⊏ relation [15,

Example B.1.10].

Thus (L, ϕ) is an FA-presentation for the algebra X = (X, ◦, α, β, γ, δ, ζ).

Lemma 3.4. The algebra X is finitely generated.

Proof. Let u be the⊑-minimal word in⊤B∗QB∗. Recall that uϕ is the element

of X represented by u; thus uϕ ∈ G⊤. Let T be the set of elements in the

subalgebra generated by uϕ ∈ G⊤; the aim is to show that T = X.

By repeated application of the operation ζ to uϕ, all elements of G⊤ lie in

T . By applying α to elements of G⊤, all elements of G⊥ lie in T . By applying

γ to those configurations in G⊥ where the state is q□ and the tape contains

ak for some k ∈ N, the maximum elements of each chain Mi lie in T . By

repeatedly applying β to these maximum elements, all elements of the chains

Mi lie in T , as does 0S . Hence all elements of X lie in T and so X = T . □

Let g0 be the initial configuration of T in the configuration graph G⊥. Let

Y be the subalgebra generated by g0. In order to prove that Y is not FA-

presentable, we require the following combinatorial lemma:

Lemma 3.5. Let ϑ : N0 → N0 be an injection. Then there are infinitely many

i ∈ N such that i ≤ iϑ.

Proof. Suppose, with the aim of obtaining a contradiction, that there are only

finitely many i ∈ N0 such that i ≤ iϑ. Let I = {i ∈ N : i ≤ iϑ}; by supposition,

I is finite. Let m = max(I) and n = max(Iϑ). Then m ≤ mϑ and mϑ ≤ n,

so m ≤ n. Furthermore, iϑ < i for i /∈ I, and iϑ ≤ n for i ∈ I. Hence

iϑ ≤ n for all i ≤ n. Since m = max(I) and m ≤ n, it follows that n + 1 /∈ I

and so (n + 1)ϑ < n + 1. Putting the last two sentences together shows that

{0, . . . , n + 1}ϑ ⊆ {0, . . . , n}, which contradicts ϑ being an injection. Thus

there are infinitely many i ∈ N0 such that iϑ ≥ i. □

Lemma 3.6. The subalgebra Y is not FA-presentable.
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Proof. The first step is to show that the subalgebra Y contains the chainsMj2

and no other chains Mi.

Recall that Y is generated by g0, the initial configuration of T in G⊥. The

operation δ applied repeatedly to g0 yields every element reachable from g0
in the configuration graph G⊥. Let H be the set of these reachable elements.

By the definition of T, the set H includes configurations with state q□ and

tape contents aj
2

for all j ∈ N. Furthermore, the definition of T ensures that

H includes no other configuration with state q□. The operation γ applied to

H yields the maximum element of every Mj2 (where j ∈ N). The operation

β now yields all elements of each Mj2 and also yields 0S . So Y contains the

set Y = {0S} ∪H ∪
∪

j∈NMj2 . It is easy to see that Y is closed under every

operation. So the domain of Y is Y . In particular, Y contains the chains Mj2

and no other chains Mi.

Now suppose, with the aim of obtaining a contradiction, that Y admits an

automatic presentation (L, ϕ). Let

Y1 = {y ∈ Y : y ◦ 0S = 0S}; (3.1)

notice that Y1 = {0S} ∪
∪

j∈NMj2 . Notice further that Y1 is defined by a first

order formula and so L1 = Y1ϕ
−1 is regular. Observe that the order relation

≤ on the subsemilattice Y1 is first-order definable in terms of ◦. Let

K1 =
{
u ∈ L1 : (∀v)

(
(uϕ ≤ vϕ) =⇒ (uϕ = vϕ)

)}
. (3.2)

Then K1 consists of representatives in L of the maximum elements in the

various sub-chains Mj2 of Y1. Since it is defined by a first-order formula, K1

is regular. Let

K2 =
{
u ∈ K1 : (∀v ∈ L1)

(
(v ∈ K1 ∧ |u| = |v|) =⇒ (v ⊑ u)

)}
;

then K2 consists of length-plus-lexicographically minimal words of each length

in K1. The language K2 is regular. The relation

R1 =
{
(u, v) : (u ∈ K2) ∧ (uϕ ≥ vϕ) ∧ (vϕ ̸= 0S)

}
(3.3)

is regular. Notice that R1 relates a word u ∈ K2, which represents the max-

imum element of some chain Mj2 , to all the words v representing elements

of that chain. Let n be the number of states in an automaton recognizing

conv(R1).

If (u, v) ∈ R1, then |v| ≤ |u|+n, for otherwise one could pump the subword

of v that extends beyond u to obtain infinitely many words representing ele-

ments of a single Mj2 , which would entail infinitely many distinct elements of

Mj2 (since ϕ is injective), which is a contradiction.

Let

R2 = {(u#n, v) : (u, v) ∈ R1},
where # is a new symbol. By the observation in the last paragraph, if (u, v) ∈
R2, then |u| ≥ |v|. Furthermore, if (u, v), (u′, v′) ∈ R2 and |u| = |u′|, then
u = u′ by the definition of R2 and K2. Moreover, no word in conv(R2)
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contains a letter whose left-hand component is $. Therefore the number of

words of length k in conv(R2) is either 0 or, if there is a word u ∈ K2 of length

k − n, the number of possible words v such that (u#n, v) lies in R2, which is

in turn the number of elements of the chainMj2 in which uϕ lies, which is 2j
2

.

Let zk be the number of words in conv(R2) of length k. By the observation

in the last paragraph, whenever zk is non-zero, it is the number of elements in

some chainMj2 . Since conv(R2) is a regular language, the generating function

f(x) =
∞∑
k=0

zkx
k

is a rational function with no singularity at 0. Thus the radius of convergence

of its power series expansion must be strictly greater than zero. The aim

is to obtain a contradiction by showing that this power series has radius of

convergence zero.

By the pumping lemma for regular languages, there are constants p, q such

that zp+kq is non-zero for all k ∈ N0. So for every k ∈ N0, there exists kϑ ∈ N0

such that zp+kq = 2(kϑ)
2

. This defines an injection ϑ : N0 → N0. By Lemma

3.5, k ≤ kϑ for infinitely many values of k ∈ N0. So by choosing k to be large

enough and also satisfying k ≤ kϑ, the value

|zp+kq|1/(p+kq) =
∣∣∣2(kϑ)2 ∣∣∣1/(p+kq)

=
∣∣∣2(kϑ)2/(p+kq)

∣∣∣
can be made arbitrarily large. Therefore

lim sup
k→∞

|zp+kq|1/(p+kq) = ∞,

and hence lim supk→∞ |zk|1/k = ∞, from which it follows that the radius of

convergence of the power series
∑∞

k=0 zkx
k is zero. □

By Lemma 3.4, the algebra X is finitely generated, but contains the finitely

generated subalgebra Y, which is not FA-presentable by Lemma 3.6. This

completes the proof of Theorem 3.3. □

Remark 3.7. In the proof of Theorem 3.3, the algebra X has exactly one

binary operation, namely the multiplication ◦. However, this is not used for

the finite generation of X or Y, and is used in only three places in the proof

of Lemma 3.6, namely (3.1), (3.2), and (3.3). (In the latter two, it is hidden

within the first-order definition of the order ≤ on S.)

However, we can modify X by removing ◦ and adding two new unary oper-

ations λ and µ to obtain a new algebra X ′, where the subalgebra Y ′ generated

by g0 has the same domain Y as Y and where the Y ′ can be proved to be

non-FA-presentable in the same way. Hence, even the class of FA-presenta-

ble algebras with only unary operations is not closed under forming finitely

generated subalgebras.

The first operation λ sends every element of each chainMi to the maximum

element of that chain, and acts like the identity map elsewhere (that is, on
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{0S}∪G⊤ ∪G⊥). The second operation µ sends every element of S to 0S and

acts like the identity map elsewhere (on G⊤ ∪G⊥). Notice that

Λ(λ, ϕ) = {(u, 1|u|) : u ∈ {0, 1}∗} ∪ {(u, u) : u ∈ {z} ∪ {⊤,⊥}B∗QB∗}
Λ(µ, ϕ) = {(u, z) : u ∈ {z} ∪ {0, 1}∗} ∪ {(u, u) : u ∈ {⊤,⊥}B∗QB∗};

both relations are clearly regular. Thus X ′ = (X,α, β, γ, δ, ζ, λ, µ) is FA-pre-

sentable and has only unary operations.

To prove that the subalgebra Y ′ (generated by g0) is not FA-presentable,

follow the proof of Lemma 3.6, with the following definitions for Y ′, K1, and

R1 replacing (3.1), (3.2), and (3.3):

Y1 = {y ∈ Y : yµ = 0S},

K1 =
{
u ∈ L1 : ((uϕ)λ = uϕ) ∧ (uϕ ̸= 0S)

}
,

R1 =
{
(u, v) : (u ∈ K2) ∧ (uϕ = (vϕ)λ)

}
.

Note that these are first order definitions in terms of the new signature in

which λ and µ replace ◦.

Remark 3.8. An anonymous referee of a previous version of this paper

pointed out that the proof of Theorem 3.3 can be adapted to give an example

of a subalgebra that does not have solvable first order theory (and so cannot

be FA-presentable by Proposition 2.4). The idea is as follows. Let K ⊆ N
be recursively enumerable but not recursive. Replace the Turing machine T

in the proof of Theorem 3.3 with one that enumerates K, in the sense that it

enters the state q□ exactly when its tape contains ak for some k ∈ K. Using

this modified version of the algebra X , the subalgebra Y contains exactly the

chains Mk for k ∈ K. That is, k ∈ K if there is a maximal chain (with respect

to the relation ≥) of k elements y1 > y2 > . . . > yk not equal to 0S in the

subalgebra Y. Since this condition can be expressed in a first-order formula,

it follows from the fact that K is not recursive that Y cannot have solvable

first-order theory.

4. Diagrams for unary FA-presentations

This section develops a diagrammatic representation for unary FA-present-

ations. In the following section, we apply this representation to prove results

about subalgebras of unary FA-presentable algebras.

Let S be a unary FA-presentable structure with relations R1, . . . , Rn. Then

by Theorem 2.5 it admits a unary FA-presentation (a∗, ϕ). For each i ∈
{1, . . . , n}, let Ai be a deterministic ri-tape automaton recognizing Λ(Ri, ϕ),

where ri is the arity of Ri. Let us examine the structure of the automata Ai.

For ease of explanation, view Ai as a directed graph with no failure states: Ai

fails if it is in a state and reads a symbol that does not label any outgoing

edge from that state.



Vol. 00, XX Subalgebras of FA-presentable algebras 13

(a, a)
(a, $)

($, a)

(a, $)($, a)

(a, $) ($, a)

(a, $) ($, a)

Figure 2. Example of an automaton recognizing Λ(Ri, ϕ)

where ri is 2. Edges labelled (a, a) form a path that leads into

a uniquely determined loop. From this path and loop paths la-

belled by (a, $) or ($, a) branch off. (Notice that (a, $), ($, a) ≺
(a, a).)

Define a partial order ≺ on elements of {a, $}ri as follows: (x1, . . . , xr1) ⪯
(x′1, . . . , x

′
r1) if and only if x′i = $ =⇒ xi = $ for all i. Since Ai recognizes

words in conv((a∗)ri), it will only successfully read words consisting of a ⪯-

decreasing sequence of tuples in {a, $}ri . Thus an edge labelled by a tuple b

leads to a state all of whose outgoing edges are labelled by ⪯-preceding tuples.

Since Ai is deterministic, while it reads letters of a fixed tuple b ∈ {a, $}ri ,
it follows a fixed path which, if the string of letters b is long enough, will form

a uniquely determined loop. This loop, if it exists, is simple. From various

points along this loop and the path leading to it, paths labelled by ≺-preceding

letters of {a, $}ri may ‘branch off’. Figure 2 shows an example where ri is 2.

We are going to define a constant D which functions as a ‘universal’ pump-

ing constant: subject to certain restrictions, we will be able to pump so as to

increase or decrease lengths by D. When we define the diagrammatic represen-

tation, it is this ‘universality’ that will allow us to view pumping as translation

in the diagram.

Let Di be a multiple of the lengths of the loops in Ai (as discussed above)

that also exceeds the number of states in Ai. Let D be a multiple of the various

Di.

Fix some i. Let Ai have initial state q0 and transition function δ. We

extend the transition function in the usual way from single symbols to words.

Consider a word uvw ∈ conv(L(Ai)), where v = bβ for some b ∈ {a, $}ri
and β ≥ D. Suppose that (q0, u)δ = q. When Ai is in state q and reads

v, it completes a loop before finishing reading v. (By the discussion above,

the loop is simple and uniquely determined.) So v factorizes as v′v′′v′′′, with

|v′′| > 0, such that (q, v′)δ = (q, v′v′′)δ = q′. Assume that |v′| is minimal,

so that q′ is the first state on the loop that Ai encounters while reading v.
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Assume further that |v′′| is minimal, so that Ai makes exactly one circuit

around the loop while reading v′′. Now, by definition, D is a multiple of

|v′′|. Let m = D/|v′′|. So |v(v′′)m+1v′′′| = |v| +D. By the pumping lemma,

uv′(v′′)m+1v′′′w ∈ conv(L(Ai)).

Consider what this means in terms of the tuple p⃗ = (ap1 , . . . , apri ) such that

conv(p⃗) = uvw. Since v′ ∈ b∗, it follows that

uv′(v′′)m+1v′′′w = conv(ap1+q1 , . . . , apri
+qri ),

where

qj =

{
0 if pj ≤ |u|
D if pj ≥ |uv|.

(Note that either pj ≤ |u| or pj ≥ |uv| since v ∈ b∗ for a fixed b ∈ {a, $}ri .)
Therefore we have the following:

Pumping rule 1. If the components of a tuple in Λ(Ri, ϕ) can be partitioned

into those that are of length at most l ∈ N and those that have length at least

l + D, then [the word encoding] this tuple can be pumped so as to increase

by D the lengths of those components that are at least l+D letters long and

yield another [word encoding a] tuple in Λ(Ri, ϕ).

(Notice that this also applies when all components have length at least D;

in this case, set l = 0.)

With the same setup as above, suppose |v| ≥ 2D. Then Ai must follow

the loop labelled by v′′ starting at q′ at least m = D/|v′′| times. That is, v

factorizes as v′(v′′)mṽ′′′. By the pumping lemma, uv′ṽ′′′ ∈ conv(L(Ai)) and

|v′ṽ′′′| = |v| −D. Therefore, we also have the following:

Pumping rule 2. If the components of a tuple in Λ(Ri, ϕ) can be divided

into those that are of length less than l ∈ N and those that have length at least

l + 2D, then [the word encoding] this tuple can be pumped so as to decrease

by D the length of those components that are at least l+ 2D letters long and

yield another [word encoding a] tuple in Λ(Ri, ϕ).

This ability to pump so as to increase or decrease lengths of components by

a constant D lends itself to a very useful diagrammatic representation of the

unary FA-presentation (a∗, ϕ). Consider a grid of D rows and infinitely many

columns. The rows, from bottom to top, are B[0], . . . , B[D−1]. The columns,

starting from the left, are C[0], C[1], . . .. The point in column C[x] and row

B[y] corresponds to the word axD+y. For example, in the following diagram,

the distinguished point is in column C[3] and row B[2] and so corresponds to

a3D+2:
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B[0]

B[1]

B[2]

B[3]

B[4]

B[D − 1]

C[0] C[1] C[2] C[3] C[4] C[5] C[6]

a3D+2

The power of such diagrams is due to a natural correspondence between

pumping as in Pumping rules 1 and 2 and certain simple manipulations of

tuples of points in the diagram. Before describing this correspondence, we

must set up some notation. We will not distinguish between a point in the grid

and the word to which it corresponds. The columns are ordered in the obvious

way, with C[x] < C[x′] if and only if x < x′. Extend the notation for intervals

on N to intervals of contiguous columns. For example, for x, x′ ∈ N with

x ≤ x′, let C[x, x′) denotes the set of elements in columns C[x], . . . , C[x′ − 1],

and C(x,∞) denotes the set of elements in columns C[x+1], C[x+2], . . .. For

any element u ∈ a∗, let c(u) be the index of the column containing u.

Consider the components of an ri-tuple p⃗ in Λ(Ri, ϕ), viewed as an ri-tuple

of points in the diagram. If there is a column C[x] that contains none of

the components of p⃗, then all the components that lie in C[0, x) are at least

D shorter than those lying in C(x,∞). Hence the word encoding the tuple

p⃗ can be pumped between these two sets of components in accordance with

Pumping rule 1. This corresponds to shifting all those components that lie in

C(x,∞) rightwards by one column. The tuple that results after this rightward

shift of some components also lies in Λ(Ri, ϕ). [Notice in particular that if

column C[0] contains none of the components of p⃗, then every component can

be shifted right by one column, giving a new tuple that also lies in Λ(Ri, ϕ).]

This rightward shifting of components can be iterated arbitrarily many times

to yield new tuples. Thus we have the following diagrammatic version of

Pumping rule 1:

Shift rule 1. Consider the components of an ri-tuple p⃗ in Λ(Ri, ϕ), viewed

as an ri-tuple of points in the diagram. If there is a column C[x] that contains

none of the components of p⃗, then for any k ∈ N, shifting the components in

C(x,∞) to the right by k columns yields a tuple that also lies in Λ(Ri, ϕ).

Similarly, if there are two adjacent columns C[x] and C[x+1] that contain

none of the components of p⃗, then every component in C[0, x) is at least 2D

shorter than every component in C(x + 1,∞). Therefore the word encoding

this tuple can be pumped between these sets of components in accordance with

Pumping rule 2. This corresponds to shifting all components in C(x + 1,∞)

leftwards by one column. The tuple that results after this leftward shift of



16 A. J. Cain and N. Ruškuc Algebra univers.

some components also lies in Λ(Ri, ϕ). [Notice in particular that if columns

C[0] and C[1] contain none of the components of p⃗, then every component can

be shifted left by one column, giving a new tuple that also lies in Λ(Ri, ϕ).]

This leftward shifting of components can be iterated to yield new tuples for

as long as the two columns C[x] and C[x+ 1] do not contain any elements of

the latest tuple. Thus we have the following diagrammatic version of Pumping

rule 2:

Shift rule 2. Consider the components of an ri-tuple p⃗ in Λ(Ri, ϕ), viewed

as an ri-tuple of points in the diagram. If the columns in C[x, x+ h] contain

none of the components of p⃗, then for any k with 0 < k ≤ h, shifting the

components in C(x + h,∞) to the left by k columns yields a tuple that also

lies in Λ(Ri, ϕ).

For convenience, define for every n ∈ Z a partial map τn : a∗ → a∗, where

akτn is defined to be ak+nD if k + nD ≥ 0 and is otherwise undefined. Notice

that if n ≥ 0, the map τn is defined everywhere. In terms of the diagram, akτn
is the element obtained by shifting ak to the right by n columns if n ≥ 0 and

to the left by −n columns if n < 0. The values of k and n < 0 for which akτn
are undefined are precisely those where shifting ak to the left by −n columns

would carry it beyond the left-hand edge of the diagram.

Example 4.1. In order to illustrate Shift rules 1 and 2, consider a 4-tuple p⃗ =

(a2D+1, aD+2, a5D+3, a7D+2). This corresponds to the following four points in

the diagram.

B[0]

B[1]

B[2]

B[3]

B[4]

B[D − 1]

C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]

aD+2

a2D+1

a5D+3

a7D+2

Shift rule 1 (or the corresponding Pumping rule 1) can be applied in exactly

three ways here:

(1) The column C[0] contains no components of p⃗, so, by Shift rule 1, for any

k ∈ N, all components can be shifted rightward by k columns, yielding

the tuple (a(2+k)D+1, a(1+k)D+2, a(5+k)D+3, a(7+k)D+2).

(2) The columns C[3] and C[4] contain no components of p⃗, so, by Shift rule 1,

for any k ∈ N, the third and fourth components can be shifted rightwards

by k columns, yielding the tuple (a2D+1, aD+2, a(5+k)D+3, a(7+k)D+2).
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(3) The column C[6] contains no components of p⃗, so, by Shift rule 1, for any

k ∈ N, the fourth component of p⃗ can be shifted rightwards by k columns,

yielding the tuple (a2D+1, aD+2, a5D+3, a(7+k)D+2).

Shift rule 2 (or the corresponding Pumping rule 2) can be applied in only

one way here: columns C[3] and C[4] contain no component of p⃗, so the third

and fourth components can be shifted leftwards by one column, yielding the

tuple (a2D+1, aD+2, a4D+3, a6D+2).

5. Unary FA-presentable algebras

This section studies finitely generated subalgebras of unary FA-presentable

algebras. The key result, Theorem 5.1, shows that the language representing

elements of such a subalgebra is regular and that there is an algorithm that

effectively constructs this language. From this it follows that the class of unary

FA-presentable algebras is closed under taking finitely generated subalgebras

(Theorem 5.2) and that the membership problem for finitely generated sub-

algebras is decidable (Theorem 5.3). Note that Theorem 5.2 does not hold

without the hypothesis of finite generation: an arbitrary subsemigroup of a

unary FA-presentable semigroup may not even be FA-presentable [4, Exam-

ple 9.4].

Theorem 5.1. Let S be an algebra that admits a unary FA-presentation

(a∗, ϕ) and let T be a finitely generated subalgebra of S. Let L be the sublan-

guage of a∗ consisting of representatives of elements of T . Then L is regular,

and an automaton recognizing L can be constructed effectively from a finite set

of words representing a generating set for T .

We will prove this result using the diagrammatic representation discussed

in the previous section. Remark 5.4 outlines an alternative proof technique

using monadic second-order logic, pointed out to us by the anonymous referee,

and dicusses our reasons for preferring the diagrammatic proof.

Proof. We will first of all show that the language L is regular and then show

how an automaton recognizing L can be constructed effectively.

Regularity. Let r be the maximum arity of any of the operations in the signa-

ture of S. (That is, r is the maximum of their arities qua operations, not qua

relations.) Choose the constant D in accordance with § 4.

Before embarking on the proof proper, let us describe the strategy infor-

mally. For x, y ∈ N0 with x ≤ y, define new notation L[x] = C[x] ∩ L and

L[x, y] = C[x, y] ∩ L. So L[x] is the set of points in the column C[x] repre-

senting elements of the subalgebra. Our strategy will be to prove that the

sequence of sets L[x] becomes ‘periodic’, in the sense that for some h, h′ ∈ N0

with h < h′, the column L[h′] is identical to L[h] shifted to the right by h′ −h

columns. This ‘periodicity’ is sufficient to prove L is regular.



18 A. J. Cain and N. Ruškuc Algebra univers.

x

y
pj

z

pi p′i

C[h] C[h+ r] C[h′] C[h′ + r]

Figure 3. Here, the indices h and h′ are such that L[h, h+

r]τh′−h ⊆ L[h′, h′ + r]. The point p′i is defined to be piτh′−h.

The solid lines indicate how piϕ is obtained by an application

of some operation to the elements xϕ, yϕ, zϕ, and pjϕ (where

j < i).

To prove this ‘periodicity’, we will show that for some fixed m, and any

h′ > h > m the set L[h + r + 1] is ‘almost’ determined by the set L[h, h + r]

and the set L[0,m], in the following sense: If every element in L[h, h+r], when

shifted to the right by h′−h columns, gives an element L[h′, h′+ r] (condition

(5.1) below), then every element in L[h+ r + 1], when shifted to the right by

h′ − h columns, gives an element L[h′ + r + 1] (condition (5.2) below). Now,

‘new’ elements that do not correspond to L[h+r+1] may appear in L[h′+r+1],

but because each column contains only D elements, ‘new’ elements can appear

only finitely many times, after which our ‘periodicity’ must hold.

The rest of the proof of the regularity of L is simply a formalization of this

strategy.

First, since the subalgebra T is finitely generated, it is generated by the

elements in L[0,m]ϕ for some m ∈ N0.

Suppose that h, h′ ∈ N0, where h′ > h > m, are such that

L[h, h+ r]τh′−h ⊆ L[h′, h′ + r]. (5.1)

The immediate aim is to prove that

L[h+ r + 1]τh′−h ⊆ L[h′ + r + 1]. (5.2)

These conditions are formal restatements of those described above.

Because h + r > m, the elements of L[0, h + r]ϕ generate the elements of

L[h+r+1]ϕ. That is, by applying the operations of S to elements of L[0, h+r]ϕ,

one can obtain a finite sequence of points p1, . . . , pn ∈ L[h+r+1,∞) such that

each piϕ is obtained by a single application of some operation to elements from

(L[0, h + r] ∪ {p1, . . . , pi−1})ϕ, and such that L[h + r + 1]ϕ ⊆ {p1, . . . , pn}ϕ.
[It may be necessary for some pi to lie in columns to the right of C[h+ r+1],

in order to later generate the elements of L[h+ r + 1]ϕ.]
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x

y
pj

z

pi

p′j

zτh′−h

p′i

C[h] C[h+ r] C[h′] C[h′ + r]

Figure 4. The dotted lines indicate how p′i is obtained by

an application of the same operation to the elements x, y,

zτh′−h, and p
′
j = pjτh′−h.

For each i ∈ {1, . . . , n}, let p′i = piτh′−h. The aim is to prove by induction

on i that p′i ∈ L. We will show that, just as piϕ is obtained by an application

of some operation to elements from (L[0, h+ r] ∪ {p1, . . . , pi−1})ϕ, so p′iϕ can

be obtained by an application of the same operation to elements of(
L[0, h+ r] ∪ L[h′, h′ + r] ∪ {p′1, . . . , p′i−1}τh′−h

)
ϕ.

So suppose that p′1, . . . , p
′
i−1 ∈ L. Suppose piϕ = (x1ϕ, . . . , xkϕ)f , where f

is an operation of arity k ≤ r and x1, . . . , xk ∈ L[0, h+r]∪{p1, . . . , pi−1}. (See
Figure 3.) Without loss of generality, assume that c(xj) ≤ c(xj+1) for all j ∈
{1, . . . , k−1}. Since k ≤ r, there is at least one column C ′ in C[h], . . . , C[h+r]

that does not contain any point x1, . . . , xk. Let x1, . . . , xj be the points lying

to the left of this column, and xj+1, . . . , xk be those lying to the right.

For l ∈ {j + 1, . . . , k}, let x′l = xlτh′−h. Recall that p′i = piτh′−h. Now,

since xl ∈ L[h, h+ r], it follows that x′l ∈ L[h′, h′ + r] by (5.1). On the other

hand, if x′l is one of the points p′1, . . . , p
′
i−1, then it lies in L by the induction

hypothesis. The application of the operation f to the elements x1ϕ, . . . , xkϕ

gives piϕ. Let p⃗ = (x1, . . . , xk, pi) ∈ Λ(f, ϕ). Then by Shift rule 1, the tuple

q⃗ = (x1, . . . , xj , x
′
j+1, . . . , x

′
k, p

′
i),

obtained by shifting rightwards the components xj+1, . . . , xk, pi, also lies in

Λ(f, ϕ). Since all of x1ϕ, . . . , xjϕ and x′j+1ϕ, . . . , x
′
kϕ lie in the subalgebra T ,

so does p′iϕ. (See Figure 4.) Hence p′i ∈ L.

Therefore, by induction, all the points p′i lie in L, and hence condition (5.2)

holds. Thus condition (5.1) entails condition (5.2).

Since each of the sets L[h, h+ r] contains at most (r+ 1)D elements, there

must exist h, h′ ∈ N0 with h′ > h such that (5.1) holds. Fix two such values

h and h′. Then it follows by induction on i that L[i]τh′−h ⊆ L[i+ h′ − h] for

all i ≥ h. Since the size of the sets L[i] is bounded above by D, there exists

g ∈ N such that L[i]τh′−h = L[i+ h′ − h] for all i ≥ g. Thus

L = L[0, g − 1] ∪ (aD(h′−h))∗L[g, g + h′ − h− 1]
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and so is regular.

Effective construction. Let L0 be a finite set of words representing a generating

set for the subalgebra T . We will inductively construct a sequence of regular

sublanguages Li of L for i ∈ N0. From some point onwards, every language

in this sequence will be L itself. We will be able to detect when Li = L, but

we cannot bound in advance the number of terms we must compute before

obtaining L. For all i, x, y ∈ N0 with x ≤ y, let Li[x] = C[x] ∩ Li and

Li[x, y] = C[x, y] ∩ Li.

Inductively define the language Li+1 as follows: find the minimal h such

that there exists h′ such that

Li[h, h+ r]τh′−h ⊆ Li[h
′, h′ + r].

(Notice that this is (5.1) restated with Li in place of L.) Let hi be h and let

h′i be minimal among corresponding such h′, and let

Li+1 = Li ∪
(
(aD(h′

i−hi))∗Li[hi, h
′
i − 1]

)
∪Ki+1

where

Ki+1 =
{
(s1, . . . , srj , x)fj :

j ∈ {1, . . . , k}, s1, . . . , srj ∈ Liϕ, fj has arity rj
}
ϕ−1.

[Notice that hi and h
′
i always exist since because the sets Li[hi, h

′
i + r] are

all of bounded size. Notice further that when Li is finite, Li[hi, h
′
i + r] may

be empty. Observe that hi and h′i can be found simply by enumerating sets

Li[h, h+ r].]

Let us prove by induction that Li ⊆ L. Clearly L0 ⊆ L. Suppose that

Li ⊆ L. By the reasoning in used in the proof of regularity above, each

element of (aD(h′
i−hi))∗Li[hi, h

′
i − 1] lies in L. The language Ki+1 consists

of representatives of elements obtained by applying the operations of S to

elements of Liϕ. Since T is a subalgebra, every element of the language Ki+1

thus lies in L. Hence Li+1 ⊆ L.

Furthermore, the language Ki+1 consists of representatives of elements sat-

isfying a first-order formula. Hence, if Li is regular and given by a finite au-

tomaton, a finite automaton recognizing Li+1 can be effectively constructed.

Since L0 is finite, it follows by induction that every Li is regular, and that for

any i ∈ N0 an automaton recognizing Li can be effectively constructed.

Notice further that Li ⊆ Li+1 and that for any u ∈ L, there exists some Li

such that u ∈ Li.

By the reasoning in the proof of regularity above, there exist g, h, h′ ∈ N be

such that L[i]τh′−h = L[i + h′ − h] for all i ≥ g. Note that L = L[0, g − 1] ∪
(aD(h′−h))∗L[g, g+h′−h]. Let n be such that L[0, g+h′−h] ⊆ Ln. Then, by

definition, Ln+1 contains Ln and (aD(h′−h))∗L[g, g+h′−h]. Hence L ⊆ Ln+1.

Therefore, the algorithm constructing the various Li will at some point

construct Ln+1 = L. Furthermore, the algorithm can check whether Li is L
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simply by checking whether Li = Li+1, for if this holds, then Liϕ is closed

under all the operations of S and hence must be the domain of the subalgebra

T . Thus there is an effective procedure that constructs L. □

Theorem 5.2. The class of unary FA-presentable algebras is closed under

taking finitely presented subalgebras.

Proof. Let S be an algebra that admits a unary FA-presentation (a∗, ϕ) and

let T be a finitely generated subalgebra of S. Let L be the sublanguage of a∗

consisting of representatives of elements of T . By Theorem 5.1, L is regular,

whence

Λ(R,ϕ|L) = Λ(R,ϕ) ∩
(
L× L× . . .× L︸ ︷︷ ︸

k times

)
for any k-ary relation (or operation) R of S, which shows that (L, ϕ|L) is a

unary FA-presentation for T . □

The following theorem deals with the membership problem for finitely gen-

erated subalgebras of unary FA-presentable algebras. This problem is not

decidable for general FA-presentable algebras, because reachability in the con-

figuration graph of a Turing machine is undecidable.

Theorem 5.3. There is an algorithm that takes a unary FA-presentation

(a∗, ϕ) for an algebra S, a finite set X of words in a∗, and a word w ∈ a∗, and

decides whether wϕ lies in the subalgebra generated by Xϕ.

Proof. By Theorem 5.1, there is an algorithm that takes the finite set of words

X and constructs the sublanguage L of a∗ consisting of representatives of

elements of the subalgebra T generated by Xϕ. To decide whether wϕ lies in

T , it remains to check whether w lies in L. □

Remark 5.4. The anonymous referee also pointed out that Theorem 5.1 and

Theorem 5.2 could also be proven by using the fact that unary FA-presentable

structures are monadic second-order definable in (N, <). The idea is as follows:

membership of the subset of N corresponding to the subalgebra can be defined

by a monadic second-order formula that says (informally) that x belongs to the

smallest (with respect to inclusion) subset of N that contains all the generators

and is closed with respect to the operations of the algebra. This formula can

then be effectively translated back to an automaton recognizing the language

words an such that n satisfies this formula (see, for example, [16]).

However, the diagrammatic proof above has the advantage of using purely

automata-theoretic methods, without having to translate to monadic second-

order logic and back. Although passing to and from the monadic second-order

formula is effective, the underlying constructions are intricate (see [16, Theo-

rem 3.1]), and in this context they obscure how the unary automatic presenta-

tion governs the subalgebras and interacts with the language of representatives

for the subalgebra. The diagrammatic proof is much more transparent in this
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regard. Moreover, the diagrammatic proof has certain parallels with the au-

thors’ proof of that the class of unary FA-presentable binary relations is closed

under taking transitive closures [3, Theorem 4.1], and serves to illustrate the

breadth of results that can be proved using diagrams.

Let S be a finitely generated algebra. Let f1, . . . , fk be the operations of S.
Let G0 be a finite generating set for S. Inductively define the following finite

sets for all i ∈ N:

Gi = Gi−1 ∪
{
(s1, . . . , srj )fj :

j ∈ {1, . . . , k}, s1, . . . , srj ∈ Gi−1, fj has arity rj
}
.

Define g : N0 → N0 by n 7→ |Gn|. The function g is called the growth level

of S with respect to the generating set G0. (This definition is taken from [8,

§ 4].) If S is FA-presentable, then there exist constants s, a, b ∈ N such that

(n)g ≤ sa+1+bn for all n ∈ N0 [8, Lemma 4.5].

Proposition 5.5. If S is a unary FA-presentable algebra, then there exist

constants a, b ∈ N such that (n)g ≤ a+ bn for all n ∈ N0.

Proof. Let (a∗, ϕ) be a unary FA-presentation for A. Let x ∈ N0 be such that

G0 ⊆ C[0, x]ϕ. The first aim is to prove, by induction, that Gn ⊆ C[0, x+n]ϕ

for all n ∈ N0. This clearly holds for n = 0.

Let fj be an operation of S whose arity is rj . Let u1, . . . , urj ∈ Giϕ
−1 ⊆

C[0, x + n]. Let v ∈ a∗ be such that (u1ϕ, . . . , urjϕ)fj = vϕ. Suppose for

reductio ad absurdum that c(v) > x+ n+ 1. (Recall that c(v) is the index of

the column containing v.) Then no component of the tuple (u1, . . . , urj , v) ∈
Λ(fj , ϕ) lies in C[x + n + 1] and v is the only component lying in C[x +

n + 2,∞) and so, by Shift rule 1, (u1, . . . , urj , vτ1) ∈ Λ(fj , ϕ). Hence vϕ =

(u1ϕ, . . . , urjϕ)fj = (vτ1)ϕ, which contradicts the injectivity of ϕ. Therefore

v ∈ C[0, x + n + 1]. Since vϕ is the result of applying an arbitrary operation

fj of S to arbitrary elements of Gn, it follows that Gn+1 ⊆ C[0, x+ n+ 1]ϕ.

Let a = (x + 1)D; then |C[0, x]| = a. Furthermore, |C[0, x + n + 1]| =
|C[0, x + n]| + D. Let b = D; then |C[0, x + n + 1]| = a + bn. Since Gn ⊆
C[0, x+ n+ 1]ϕ, it follows that (n)g = |Gn| ≤ a+ bn. □

The contrast between the growth levels of finitely generated FA-present-

able algebras (bounded by an exponential function) and finitely generated

unary FA-presentable algebras (bounded by a linear function) resembles the

contrast between the growth of finitely generated FA-presentable semigroups

(polynomial growth [2, Theorem 7.4]) and finitely generated unary FA-pre-

sentable semigroups (sublinear growth, which implies finiteness [4, Proof of

Theorem 13]). Note, however, the difference between the two types of growth:

the growth level of an algebra counts elements of a given term complexity, and

the growth of a semigroup or group counts elements of given word length.
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