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Abstract

A method suitable for the calibration of the spring constants of all torsional and lateral

eigenmodes of micro- and nanocantilever sensors is described. Such sensors enable

nanomechanical measurements and the characterization of nanomaterials, for example with

atomic force microscopy.

The method presented involves the interaction of a flow of fluid from a microchannel with the

cantilever beam. Forces imparted by the flow cause the cantilever to bend and induce a

measurable change of the torsional and lateral resonance frequencies. From the frequency

shifts the cantilever spring constants can be determined. The method does not involve

physical contact between the cantilever or its tip and a hard surface. As such it is non-

invasive and does not risk damage to the cantilever.

Experimental data is presented for two rectangular microcantilevers with fundamental flexural

spring constants of 0.046 and 0.154 N/m. The experimentally determined torsional stiffness

values are compared with those obtained by the Sader method. We demonstrate that the

torsional spring constants can be readily calibrated using the method with an accuracy of

around 15%.
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1. Introduction

Micro- and nanocantilevers are increasingly used in micro- and nanoelectromechanical

systems (MEMS and NEMS), for example as pressure and acceleration sensors, linear

actuators, or valves [1]. Microcantilevers in particular are employed as probes in atomic force

microscopy (AFM) to image surface properties [2]. They have also been applied as

independent sensors for mass [3], surface stress [4], chemical identification [4], viscosity and

density of liquids [5, 6], or for measuring viscoelastic properties of cells [7]. Small changes in

the oscillation properties of the eigenmodes of the cantilevers can be exploited to quantify

various physical properties.

Most of the current AFM applications make use of the flexural deflection of the cantilever

sensor. In conjunction with mapping of friction forces [8], however, the static torsional

deflection of the cantilever is monitored and the related spring constant is required for

quantification. The dynamic properties of a torsional eigenmode can be exploited in

frequency modulated AFM, where the tip probes forces parallel to the surface with high

resolution while scanning [9-11]. Similar resolution has been displayed by images collected

using tapping mode and torsional resonance AFM [12]. Images using the oscillation of the

true lateral mode have also been collected [10]. The higher quality factor of torsional

compared to flexural oscillations in liquid can be utilized to collect images of samples where

imaging with the fundamental flexural mode is problematic [13]. If measurements involving

lateral or torsional deflections shall be quantified then the associated spring constants must

be calibrated [14]. Methods to calibrate the lateral and torsional deflections may be split into

three categories: static, dynamic and theoretical. In the former, stationary bending of the

cantilever is monitored during physical contact between the cantilever or tip and a calibration

sample to produce a lateral/torsional force and therefore involve a high risk of damage. The

lateral force can be applied by moving the tip sideways into a step on a calibration grid [15,

16], by scanning the cantilever up and down slopes of a known angle on a calibration sample

[17-20], or by bringing the tip of the cantilever to be calibrated into contact with another

calibrated cantilever that is rotated 90 degrees with respect to the first such that its flexural

deformation causes a torsional twist in the first cantilever [21]. Loads could also be applied

directly to the cantilever surface, with the resulting cantilever twist being monitored [22, 23].

Methods to calibrate cantilevers by optical means also exist. Whilst these methods do not

risk damage to the cantilever, they are sensitive to detector non-linearity [24-26] or rely on

the tilting of a calibration surface, which may have a different reflectivity to that of the

cantilever [27-29].

Dynamic calibration methods monitor the cantilever’s resonance frequency as a pathway to

analyzing the interaction of the cantilever with external influences or its response to masses

attached to the cantilever [30]. The torsional Cleveland method allows for the determination



Calibration of the torsional and lateral spring constants of cantilever sensors

3

of torsional spring constants by on-axis loading of masses on the cantilever surface [30]. The

torsional Sader method determines the torsional spring constant of cantilevers via their

interaction with a surrounding (resting) fluid [30]. Following the determination of a

‘hydrodynamic function’ for a cantilever of a certain shape, all similar cantilevers can be

calibrated, provided the cantilever length is much greater than its width and its thickness.

The spring constants of a cantilever may also be calculated theoretically. Analytical

equations can be used along with knowledge of the cantilever dimensions and elastic

properties to calculate the spring constants [31]. However, large errors (30-50%) are

introduced via assumptions on the elastic constants and in the measurement of the

cantilever thickness. Analytical equations can only be used for simple geometries. For more

complicated cantilever beams, finite element simulations can be used to determine the spring

constants [32].

Simple, non-destructive methods for the calibration of the torsional and lateral stiffness of

microcantilevers are highly desirable. In this document we describe a new method that can

be utilized to calibrate the torsional and lateral spring constants of cantilever beams in

general and is applied to microcantilevers in particular.

2. Method

The operating principle of our method is to apply external forces that change the static

cantilever shape, but which do not affect the free torsional and lateral movement of the

cantilever for example by causing friction or damping. Figure 1 displays the side-view of a

straight cantilever and a cantilever that is bent due to external forces.

Figure 1: Side view of a non-bent cantilever (a) and a cantilever bent due to forces (b). The dashed

lines indicate the rotational axes around which the free torsion occurs. The axis changes along the

cantilever if the cantilever is curved.

For the unbent cantilever the centroid of the cantilever coincides with its shear axis. For the

bent shape u(x) (figure 1 b)) the centroid of the cantilever is at a distance, c(x), from the

shear-center [33]. Depending on the shape change the torsional modes couple to the lateral
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and/or flexural modes when the cantilever oscillates [33]. If the deflection is entirely in the

direction of the flexural modes (y-direction in figure 1) then the torsional oscillations will

couple to the lateral oscillations (in the z-direction) only. The effective distance c(x) between

the centroid and the shear axis can be obtained by weighting )'(xux , which is the distance

of the position of the cantilever at coordinate x to the tangent to the cantilever in x’, with the

angle dthat the cantilever structure at position x rotates around the tangent in x’. This

leads to:
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The following differential equations for the position dependent part of the coupled torsional
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[33]:
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where G is the shear modulus, K is a geometric function of the cross section [34], (x) is the

torsional angular deviation from the equilibrium position along the cantilever when oscillating,

c is the density, Ip the polar moment of inertia about the centroid [34], A(x) is the cross

section of the cantilever, E is Young’s modulus, Iy is the moment of inertia around the y-axis,

Z(x) is the lateral deflection along the cantilever when oscillating, and is the radial

frequency of oscillation.

The lateral and torsional eigenmode shapes of non-bent rectangular cantilevers, Zm(x) and

n(x), respectively, can be obtained analytically [33]. The eigenmodes of many non-

rectangular cantilevers for both flexural and torsional vibrations can be determined
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numerically for example by using the Ritz method [33, 35]. Note that the uncalibrated

torsional modal shapes n(x) and the lateral mode shapes Zm(x) are entirely determined by the

geometry of the cantilever via the dependence of the parameters G, K, Ip, and c on x

(geometry) in case of  n(x), and E, Iy and c in case of Z m(x), but not by their absolute values.

Solutions of the differential equations (2a) and (2b) are given by linear superpositions of the

functions n and Zm with coefficients n and m, respectively, which have to be determined.

Using the Ritz method this leads to a system of linear equations giving the frequencies  and

the corresponding eigenmodes of the bent cantilever.

In general the coupling between a torsional and a lateral mode is strongest if their frequency

values are ‘close’. The torsional modes will therefore in many cases couple to the nearest

lateral mode only and vice versa. In these cases it is sufficient to consider the coupling

between one torsional mode n and one lateral mode Zm (although more modes can be taken

into account if necessary). Without coupling, two independent values for the undistorted

torsional and lateral frequency, tors and lat, respectively, are obtained. For the coupled

oscillations also two values  result, that can be determined using the Ritz method [33]:
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where L is the length of the cantilever. The coupling is given by the two integrals I1 and I2 via

c(x) and hence the bent shape u(x). No coupling exists if u(x) and therefore c(x) are zero. For

convenience, the modal shapes n and Zm can be pre-normalized such that  
L
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and  
L

m dxZ
0

2
1 , where w is the width of the cantilever. Note, however, that the method is

independent of the pre-normalization.

For data evaluation a single parameter, (corresponding to A in case of the above described

pre-normalization), or two independent parameters, one for n and one for Zm, can be fitted in

equation (3), such that the theoretical frequencies match those observed in the experiment.

Two parameters are required if the ‘pre-normalization’ is different from the one above. If the

cantilever behaves like an ideal rectangular cantilever a single parameter should reproduce

the experimental data well with the above pre-normalization. However, a real cantilever will

often display some non-ideal behavior. Fitting two independent parameters can then account

for some of the non-ideal behavior with respect to the torsional and lateral oscillations.

The fitting enables the normalization of the eigenmode functions n(x) and Zm(x) such that:
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With the normalized function, mẐ , the true lateral spring constant klat,m for a lateral force

applied at the free end of the cantilever can be obtained [35]:
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3. Experimental Details

3.1 Setup and dynamic measurements

Experiments were performed with a commercial AFM Explorer system (ThermoMicroscopes,

Sunnyvale, CA, USA). To test the method two commercially available tipless rectangular

silicon cantilevers were investigated. Both cantilevers had a nominal width of 35 ± 3 m and

length of 350 ± 5 m. ‘Nominal’ refers to the information provided by the manufacturer. The

first cantilever (Mikromasch), labelled R-E1, had an Al backside coating, a nominal spring

constant, kflex, of 0.03 N/m, and a nominal thickness of 1 m. The second (Mikromasch, no

backside coating), labelled R-E2, had a nominal spring constant of 0.3 N/m and a nominal

thickness of 2 m. The plan view dimensions of both microcantilevers were also determined

with an Olympus optical microscope.

In our setup a homemade smooth parallel plate microchannel of height 100 m and length

3.5 mm was fixed on the sample stage of the AFM and positioned such that fluid flow from its

exit interacted with the cantilever as illustrated in figure 2. The channel was aligned such that

the free end of the cantilever was level with the edge of the channel and 50 m above the

channel exit.

Nitrogen gas was used as the working fluid. Pressure differences were applied to the

microchannel to drive the flow, establishing stable Poiseuille velocity profiles [36]. The

maximum pressure applied to the channel in our experiments was ~1.7 kPa causing a

velocity value of nitrogen in the channel mid-line of about 35 m/s [37]. The highest Reynolds

number for our setup did not exceed 200. In combination with the Knudsen number in the

channel, which is about 0.0008, this Reynolds number corresponds to the laminar regime of

incompressible flow [38].

Figure 2: Schematic side view of the microchannel with Poiseuille profile of the fluid and a cantilever

that bends due to forces exerted by the fluid.
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The forces applied to the cantilever by the fluid flow cause a static flexural bending, u(x). The

bending is sufficient to ensure that the centroid of the cantilever and the shear-center no

longer coincide, causing a coupling of the torsional and the lateral oscillation modes and

therefore a change in the torsional and lateral resonance frequencies, which can be

monitored.

Power spectral densities of thermal noise spectra were recorded with an external interface

with an accessible frequency range of ~700 kHz (National Instruments, USB-6251) as a

function of fluid velocity. Resonance frequency values, Q-factors, and peak areas for each

mode were monitored during measurement with a homewritten LabVIEW™ routine by fitting

Lorentzian curves to the resonance peaks. All resonance frequencies were monitored

simultaneously and are based on the average of 50 individual spectra. Note that a standard

AFM setup is used where a laser spot is focused on the cantilever and reflected into a

photodiode detector. It is the coupling of the torsional mode with the first lateral mode which

allows us to observe the resonance curve of the latter: when coupled the initially purely

torsional mode takes on a small amount of lateral character and vice versa. Hence, the

lateral resonance peak was only observable with fluid flow for the bent cantilever but not

without flow (see figure 3).

Figure 3: Frequency spectrum of cantilever R-E2 with and without flow, showing the region of the third

flexural and fundamental lateral and torsional modes. A constant offset was added to the resonance

spectra with flow for reasons of clarity. The arrows indicate the shifts of the lateral and torsional

resonance frequencies due to the fluid flow.
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3.2 Determination of the bent shape u(x) and the spring constants

To provide information about the interaction of the flow from the channel with the cantilever

we performed finite element method simulations with the open-source, multi-physics software

package of Elmer [39]. Meshes required in the simulations were created with Gmsh [40]. The

mesh independence of the results was confirmed by mesh refinement. The forces applied to

the static cantilever by the fluid flow were directly extracted from the simulations. Figure 4

displays the forces applied to 350 m long rectangular microcantilevers (R-E1 and R-E2)

with fluid speeds at the center of the microchannel of 6, 14, 22 and 30 m/s.

Figure 4: Simulated fluidic forces applied to a rectangular cantilever of 350 m length and 35 m

width at speeds of 6, 14, 22 and 30 m/s in the center of the microchannel

The static deflection u(x) depending on the applied fluidic forces was determined with a

home written MATLAB® routine by generalizing the results reported in [35, 41] for the force

profiles extracted from Elmer and the flexural rigidity of each cantilever. The flexural spring

constants were obtained beforehand independently as described in [42]. Note that the static

equilibrium bent shape u(x) could also be determined with other methods: for example via

interferometry or by taking a photograph if the cantilever and its deflection are large enough.

In our experiments the highest value for
2)/( dxdu was ~0.007 in accordance with the

derivation of equation (1). The effective distance c(x) was then determined from equation (1).

The experimental frequency data was fitted using equation (3) with both a single as well as

two independent parameters and the spring constants determined via equations (6) and (7).

4. Results

4.1 Cantilever dimensions and flexural spring constant calibration
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The plan view dimensions of the cantilevers are summarized in table 1. Significant

discrepancies from the manufacturer’s (nominal) dimensions were found, particularly in

relation to the width of the beams. Both cantilevers had a reasonably rounded or picketed

free end. The quoted lengths were taken to be at the extreme of the structures. Also shown

are the experimentally determined static flexural spring constants kflex, the nominal values

quoted by the manufacturers, and ‘ideal’ values, which were determined theoretically by

using the experimentally determined plan view dimensions and the nominal thickness values

together with a density of 2330 kg/m3 and a Young’s modulus of 169 GPa [43].

L (m) w (m) t (m) kflex (N/m)

Exp. Nom. Exp. Nom. Nom. Exp. Ideal Nom.

R-E1 340 350 30.7 35 1 0.046 0.034 0.03

R-E2 341 350 31.0 35 2 0.154 0.273 0.3

Table 1: Plan view dimensions and static flexural spring constants of the cantilevers tested.

4.2 Frequency shifts

Table 2 summarizes the experimental flexural, torsional and lateral frequency values of the

non-bent cantilevers and the values for the ideal cantilevers obtained from calculation with

the measured plan view dimensions. A shear modulus of 51 GPa was used [43].

The experimental lateral frequencies f0,lat without flow were extrapolated from the values

obtained with flow, with an estimated uncertainty in the frequency of less than 5%. The ideal

torsional and lateral oscillation frequencies show some deviation from the experimentally

determined ones, indicating that the cantilevers behave non-ideally.

fflex (kHz) ftors (kHz) flat (kHz)

Exp Ideal Exp Ideal Exp Ideal

R-E1 11.9 11.8 247 222 ‘308’ 365

R-E2 17.1 23.7 358 443 ‘320’ 367

Table 2: Flexural, torsional and lateral frequencies of the first dynamic modes of the cantilevers

tested.
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Model calculations were performed to solve equations (2) numerically with a home-written

MATLAB® routine for the ideal cantilevers taking the first two torsional and the first two

lateral modes into account. Table 3 summarizes the contributions of the ‘pure’ uncoupled

modes to the coupled oscillations. The contributions were calculated for deflections of 1 m

and 3.75 m at the free end of each cantilever, which are typical values in our experiment.

Note that the absolute values of the contributions depend on the deflection, but the ratio of

the contributing non-major modes is rather similar.

Modes Defl (m) 1
st

tors (%) 2
nd

tors (%) 1
st

lat (%) 2
nd

lat (%)

R-E1

1
st

tors coupled
1

3.75

99.59

94.94

0.00

0.05

0.41

4.99

0.00

0.02

1
st

lat coupled
1

3.75

0.06

0.69

0.10

1.46

99.84

97.85

0.00

0.00

R-E2

1
st

tors coupled
1

3.75

99.19

91.17

0.00

0.07

0.81

8.74

0.00

0.02

1
st

lat coupled
1

3.75

1.69

16.70

0.06

0.68

98.25

82.62

0.00

0.00

Table 3: Percentage contributions of the uncoupled modes to the coupled oscillations for deflections

of 1 m and 3.75 m at the cantilevers free end.

Figure 5 shows typical frequency shifts,
2

0

22 )( fff  , where f0 is the frequency without

flow and f the frequency measured with flow, of the first torsional and lateral resonance

frequencies for cantilevers R-E1 and R-E2, depending on the speed of the fluid escaping

from the microchannel. Also shown are fits with two independent fit parameters for the

torsional and the lateral mode, respectively, based on equation (3). Using a single fit

parameter did not produce results of similar quality. In particular for R-E2 fits with a single

parameter did not resemble the experimental data well.

.
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Figure 5: Frequency shifts of the first torsional (blue circles) and first lateral (green squares)

eigenmodes of cantilevers R-E1 (top) and R-E2 (bottom) due to static bending caused by fluid flow

from a microchannel. The solid red lines show the fit from the model.

4.3 Torsional and lateral spring constant calibration

The procedure described above produces values for the dynamic torsional and lateral spring

constants. The corresponding static spring constants can be determined from the first

dynamic spring constants by dividing the lateral value by 1.03 [35] and the torsional value by

2/8. The results are summarized in table 4 together with values obtained by the Sader

method [30] and theoretical values for ‘ideal’ cantilevers. Note that the Sader method is in

general not applicable to lateral stiffness [30].

In case of atomic force microscopy the ‘lateral’ spring constant, kl, relevant in connection with

measuring a lateral force when the scanning tip of an AFM cantilever is in contact with a

surface, can be obtained from ktors [44] via:
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2

tip

tors
l

h

k
k  , (8)

where htip is the height of the tip attached at the free end of the AFM cantilever.

A lateral force applied to a tip attached at the end of the AFM cantilever causes a torsional

twist of the beam, which is measured. This ‘lateral’ spring constant however is different from

the true lateral spring constant that can be obtained from the normalized lateral eigenmode

Z1 using equation (6). The latter corresponds to the stiffness of the cantilever in relation to

true lateral deflections. The resulting values are displayed in table 4. It is difficult to obtain

these values experimentally in atomic force microscopy or for microcantilevers, because a

lateral movement can in general not be detected with the standard readout system for

microcantilevers. A rough estimate can be deduced based on the flexural spring constant

and the assumption of an ‘ideal’ cantilever as has been executed in table 4.

static ktors (x10
-9

Nm) static klat ( N/m)

Our method Sader [30] Ideal Our method Sader [30] Ideal

R-E1 1.7 2.1 2.0 25 N/A 32

R-E2 3.7 3.1 8.5 57 N/A 64

Table 4: Comparison of the torsional and true lateral spring constants calibrated by the method

described here, the Sader method, and those of ideal rectangular cantilevers with the experimentally

determined plan view dimensions and the manufacturer’s nominal thickness and material properties

values.

5. Discussion

5.1 Coupling of modes and the number of modes required

The procedure presented exploits the coupling between torsional and lateral modes of

oscillation to determine the torsional and lateral stiffness of cantilevers. Coupling between

lateral and torsional modes can be observed in AFM [45], or for free cantilevers where there

is off-axis mass, e.g. if the tip is displaced from the cantilever center line. In that case the

non-symmetrical mass distribution is the origin of the coupling. For the calibration method

described here, the static bending of the cantilever breaks the symmetry of the cantilever to

induce coupling of the torsional and lateral eigenmodes.

When coupled, the formerly pure torsional eigenmode takes on a small lateral movement and

the formerly pure lateral eigenmode involves a component of torsional movement (see table

3). The magnitude of the coupling of one mode to another is in general related to their
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separation in frequency space. If the first lateral resonance is higher than the first torsional

frequency then as the cantilever is bent the lateral frequency will increase and the torsional

will decrease, as was observed for cantilever R-E1. Opposite behavior is expected if the

lateral frequency is lower than the torsional frequency as was the case for cantilever R-E2.

There are some cases where this simple rule might not be valid and others where higher

eigenmodes must be considered. The model calculations performed for the ideal cantilevers

taking into account a higher number of torsional and lateral modes indicate that considering

only two modes is sufficient when determining the torsional spring constants of both R-E1

and R-E2, and the lateral spring constant of R-E2 (see table 3). The mainly lateral mode of

the bent cantilever R-E1 however has a significant contribution from the second torsional

mode, which was not taken into account in the current experimental determination of the

lateral spring constant (equation (3)). Part of the deviation for the lateral value of R-E1 from

the ideal value might therefore be due to the contribution of the second torsional mode. The

influence of the second torsional mode can be understood by the ‘closeness’ of the

frequencies involved: based on the first torsional resonance of R-E1 at 247 kHz the second

is expected around 740 kHz, while the lateral was found at 308 kHz. In contrast, for R-E2 the

lateral frequency was at 320 kHz, while the first torsional was 357 kHz and the second

torsional is expected around 1075 kHz.

5.2 Influence of cantilever thickness

The thickness of the cantilevers is not known accurately and it is in general difficult to

determine it experimentally. It has however a negligible effect on the forces due to the fluid

flow from the microchannel experienced by cantilevers R-E1 and R-E2 (figure 4). There was

virtually no difference (less than 1%) in the simulated total force applied to a 1 and 2 m thick

cantilever. A deviation from the nominal thickness values might be responsible however for

some of the difference between the ideal (based on the nominal thickness) and measured

values found for the torsional spring constants (table 4).

5.3 Single parameter fit versus two parameter fit

The cantilevers studied deviate from ideal rectangular cantilevers with regard to torsional and

lateral behavior as can be seen by the measured frequency values (table 2). It is therefore

not surprising that single parameter fits did not reproduce the experimental data with the

same quality as those obtained with two parameters. For R-E1 the deviation in the frequency

values from the ideal values was relatively small. This could explain why a single parameter

fit produced reasonable results for R-E1 but not for R-E2, where the discrepancy was much

larger. However, in both cases the experimental data were better reproduced and results

more reliable for a two parameter fit.
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It should also be noted that correct torsional and lateral frequency values are crucial if a

single parameter is fitted to the experimental data, but not in case of two independent

parameters. This is due to the structure of equation (2): Different frequency values will result

in correspondingly different fit parameters that are then used for the normalization of the

mode shapes. The uncertainty in the lateral frequency without flow therefore does not

contribute to the uncertainty in the spring constant determined from equation (6).

5.4 Spring constant values and influence of uncertainty in bent shape

The determined torsional spring constants show some deviation from the values obtained

with the Sader method (table 4), which is applicable to ideal rectangular cantilevers. The

cantilevers used were reasonably picketed and displayed some non-ideal behavior

supported by the observed frequency values. In addition, one of the cantilevers (R-E1) had

an aluminum back coating that can also contribute to non-ideal behavior and influence the

stiffness. This can explain some of the deviation of the results obtained with the method

reported here and the Sader method.

The accuracy with which the bent shape of the cantilever is known has a direct influence on

the accuracy of the determined spring constant and its uncertainty. All contributing factors

have therefore to be considered carefully. The error in the flexural spring constant is

estimated to be around 5% [42]. Positioning of the cantilever relative to the microchannel can

be easily achieved within 5 m with our current setup. In addition, there is an uncertainty in

the exact force exerted by the fluid flow, partially due to the thickness of the cantilever, but

also based on the exact channel dimensions, and the pressure applied to the channel. Based

on our simulations and experiments a 5 m deviation from the assumed cantilever position

relative to the microchannel, a cantilever thickness variation of ~1m, and a deviation in the

fluid flow of ~2% have a very small influence (~3%) on the overall resulting force. We

therefore estimate the overall uncertainty in the bent shape to be not more than ~8%. Fitting

the experimental data with an 8% higher and an 8% lower value of deflection resulted in

spring constants with less than 15% deviation from the reported values. In consequence we

estimate the current uncertainty to be ~15%. Note however, that with a more accurate

determination of the bent shape this uncertainty could be significantly reduced.

6. Conclusions

We have demonstrated that with knowledge of the shape of a cantilever beam and a

measure of its resonance frequency in a number of static equilibrium positions, the torsional

and lateral spring constants of the cantilever can be determined. The method can be
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performed in situ and does not involve direct contact of the cantilever or tip with another

object. This is particularly important when the cantilever or tip have been covered with a

sensitive coating or biofilm.

While the tested cantilevers were tipless, the method can also be applied to cantilevers that

have a tip or a colloidal probe attached. If the mass of the tip or colloidal particle is significant

then this can have an effect on the modal shape and should be taken into account [46].

Whilst coupling between the torsional and lateral modes has been demonstrated, coupling

between torsional and flexural modes could similarly be exploited by inducing a static bend in

the lateral direction. The method was demonstrated with rectangular microcantilever beams

but has the potential to be extended to other cantilever sizes and shapes, e.g. triangular

cantilevers. Finally, we note that in cases where the lateral spring constant has been

independently calibrated, only the torsional mode needs to be monitored and a single

parameter determined for its calibration.

Acknowledgements

Financial support from the EPSRC (EP/K000411/1) and the University of St. Andrews under

an Impact Acceleration Account (EP/K503940/1) are gratefully acknowledged.



Calibration of the torsional and lateral spring constants of cantilever sensors

17

References

[1] Beeby S, Ensell G, Kraft N and White N 2004 MEMS Mechanical Sensors (London:
Artech House )

[2] Giessibl F J 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949-83

[3] Parkin J D and Hähner G 2011 Mass determination and sensitivity based on
resonance frequency changes of the higher flexural modes of cantilever sensors Rev.
Sci. Instrum. 82 035108

[4] Boisen A, Dohn S, Keller S S, Schmid S and Tenje M 2011 Cantilever-like
micromechanical sensors Rep. Prog. Phys. 74 036101

[5] McLoughlin N, Lee S L and Hähner G 2007 Temperature dependence of viscosity
and density of viscous liquids determined from thermal noise spectra of uncalibrated
atomic force microscope cantilevers Lab Chip 7 1057-61

[6] McLoughlin N, Lee S L and Hähner G 2006 Simultaneous determination of density
and viscosity of liquids based on resonance curves of uncalibrated microcantilevers
Appl. Phys. Lett. 89 184106

[7] Thomson N H, Fritz M, Radmacher M, Cleveland J P, Schmidt C F and Hansma P K
1996 Protein tracking and detection of protein motion using atomic force microscopy
Biophys. J. 70 2421-31

[8] Garcia R and Herruzo E T 2012 The emergence of multifrequency force microscopy
Nat. Nanotechnol. 7 217-26

[9] Kasai T, Bhushan B, Huang L and Su C M 2004 Topography and phase imaging
using the torsional resonance mode Nanotechnology 15 731-42

[10] Reinstadtler M, Kasai T, Rabe U, Bhushan B and Arnold W 2005 Imaging and
measurement of elasticity and friction using the TRmode Journal of Physics D-
Applied Physics 38 R269-R82

[11] Huang L and Su C M 2004 A torsional resonance mode AFM for in-plane tip surface
interactions Ultramicroscopy 100 277-85

[12] Turner J A and Wiehn J S 2001 Sensitivity of flexural and torsional vibration modes of
atomic force microscope cantilevers to surface stiffness variations Nanotechnology
12 322-30

[13] Mullin N and Hobbs J 2008 Torsional resonance atomic force microscopy in water
Appl. Phys. Lett. 92 053103

[14] Song Y X and Bhushan B 2005 Quantitative extraction of in-plane surface properties
using torsional resonance mode of atomic force microscopy J. Appl. Phys. 97 083533

[15] Cannara R J, Eglin M and Carpick R W 2006 Lateral force calibration in atomic force
microscopy: A new lateral force calibration method and general guidelines for
optimization Rev. Sci. Instrum. 77 053701

[16] Choi D, Hwang W and Yoon E 2007 Improved lateral force calibration based on the
angle conversion factor in atomic force microscopy J. Microsc.-Oxf. 228 190-9



Calibration of the torsional and lateral spring constants of cantilever sensors

18

[17] Ogletree D F, Carpick R W and Salmeron M 1996 Calibration of frictional forces in
atomic force microscopy Rev. Sci. Instrum. 67 3298-306

[18] Varenberg M, Etsion I and Halperin G 2003 An improved wedge calibration method
for lateral force in atomic force microscopy Rev. Sci. Instrum. 74 3362-7

[19] Ling X, Butt H J and Kappl M 2007 Quantitative measurement of friction between
single microspheres by friction force microscopy Langmuir 23 8392-9

[20] Asay D B and Kim S H 2006 Direct force balance method for atomic force microscopy
lateral force calibration Rev. Sci. Instrum. 77 043903

[21] Ecke S, Raiteri R, Bonaccurso E, Reiner C, Deiseroth H J and Butt H J 2001
Measuring normal and friction forces acting on individual fine particles Rev. Sci.
Instrum. 72 4164-70

[22] Reitsma M G 2007 Lateral force microscope calibration using a modified atomic force
microscope cantilever Rev. Sci. Instrum. 78 106102

[23] Reitsma M G, Gates R S, Friedman L H and Cook R F 2011 Prototype cantilevers for
quantitative lateral force microscopy Rev. Sci. Instrum. 82 093706

[24] Cain R G, Reitsma M G, Biggs S and Page N W 2001 Quantitative comparison of
three calibration techniques for the lateral force microscope Rev. Sci. Instrum. 72
3304-12

[25] Liu E, Blanpain B and Celis J P 1996 Calibration procedures for frictional
measurements with a lateral force microscope Wear 192 141-50

[26] Tocha E, Song J, Schonherr H and Vancso G J 2007 Calibration of friction force
signals in atomic force microscopy in liquid media Langmuir 23 7078-82

[27] Feiler A, Attard P and Larson I 2000 Calibration of the torsional spring constant and
the lateral photodiode response of frictional force microscopes Rev. Sci. Instrum. 71
2746-50

[28] Bogdanovic G, Meurk A and Rutland M W 2000 Tip friction - torsional spring constant
determination Colloid Surf. B-Biointerfaces 19 397-405

[29] Xie H, Vitard J, Haliyo S and Regnier S 2008 Optical lever calibration in atomic force
microscope with a mechanical lever Rev. Sci. Instrum. 79 096101

[30] Green C P, Lioe H, Cleveland J P, Proksch R, Mulvaney P and Sader J E 2004
Normal and torsional spring constants of atomic force microscope cantilevers Rev.
Sci. Instrum. 75 1988-96

[31] Neumeister J M and Ducker W A 1994 Lateral, Normal, and Longitudinal Spring
Constants of Atomic-Force Mircroscopy Cantilevers Rev. Sci. Instrum. 65 2527-31

[32] Hazel J L and Tsukruk V V 1998 Friction force microscopy measurements: Normal
and torsional spring constants for V-shaped cantilevers J. Tribol.-Trans. ASME 120
814-9

[33] Timoshenko S, Young D H and Weaver Jr. W 1974 Vibration Problems in
Engineering (New York: John Wiley )



Calibration of the torsional and lateral spring constants of cantilever sensors

19

[34] Landau L D and Lifschitz E M 1991 Elastizitätstheorie (Berlin: Akademie Verlag)

[35] Hähner G 2010 Dynamic spring constants for higher flexural modes of cantilever
plates with applications to atomic force microscopy Ultramicroscopy 110 801-6

[36] Lubarsky G V and Hähner G 2007 Calibration of the normal spring constant of
microcantilevers in a parallel fluid flow Rev. Sci. Instrum. 78 095102

[37] Lubarsky G V and Hähner G 2008 Hydrodynamic methods for calibrating the normal
spring constant of microcantilevers Nanotechnology 19 325707

[38] Hetsroni G, Mosyak A, Pogrebnyak E and Yarin L P 2005 Fluid flow in micro-
channels Int. J. Heat Mass Transfer 48 1982-98

[39] http://www.csc.fi/elmer

[40] Geuzaine C and Remacle J F 2009 Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities Int. J. Numer. Methods Eng. 79 1309-31

[41] Hähner G 2008 Normal spring constants of cantilever plates for different load
distributions and static deflection with applications to atomic force microscopy J. Appl.
Phys. 104 084902

[42] Parkin J D and Hähner G 2013 Determination of the spring constants of the higher
flexural modes of microcantilever sensors Nanotechnology 24 065704

[43] http://www.spmtips.com/afm-probes-faq.afm#6.

[44] Munz M 2010 Force calibration in lateral force microscopy: a review of the
experimental methods Journal of Physics D-Applied Physics 43 063001

[45] Song Y X and Bhushan B 2006 Coupling of cantilever lateral bending and torsion in
torsional resonance and lateral excitation modes of atomic force microscopy J. Appl.
Phys. 99 094911

[46] Kiracofe D and Raman A 2010 On eigenmodes, stiffness, and sensitivity of atomic
force microscope cantilevers in air versus liquids J. Appl. Phys. 107 033506


