QUANTITATIVE AND EVOLUTIONARY GLOBAL ANALYSIS
OF ENZYME REACTION MECHANISMS

Neetika Nath

A Thesis Submitted for the Degree of PhD
at the
University of St Andrews

2015

Full metadata for this item is available in
Research@StAndrews:FullText
at:
http:/ /research-repository.st-andrews.ac.uk

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/6899

This item is protected by original copyright


http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/6899

University of
St Andrews

600

YEARS

PuD THESIS

Quantitative and Evolutionary Global Analysis of
Enzyme Reaction Mechanisms

Author: Supervisor:
Neetika Nath Dr. John BO Mitchell

This thesis presented for the degree of
Doctor of Philosophy

School of Chemistry
University of St Andrews
United Kingdom
Friday 17** March, 2015



Declaration

I, Neetika Nath, declare that this thesis titled, ‘ Quantitative and Evolution-
ary Global Analysis of Enzyme Reaction Mechanisms’ and the work pre-
sented in it are my own. I confirm that:

m This work was done wholly or mainly while in candidature for a re-
search degree at this University.

m Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other insti-
tution, this has been clearly stated.

m Where I have consulted the published work of others, this is always
clearly attributed.

m Where I have quoted from the work of others, the source is always
given. Except such quotations, this thesis is entirely my own work.

m [ have acknowledged all main sources of help.

m Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:




Supervisor’s Declaration

I hereby certify that the candidate has fulfilled the conditions of the Reso-
lution and Regulations appropriate for the degree of PhD in the University
of St Andrews and that the candidate is qualified to submit this thesis in
application for that degree.

Signed:

Date:

ii



Supporting Statement

In submitting this thesis to the University of St Andrews I understand that
I am giving permission for it to be made available for use in accordance
with the regulations of the University Library for the time being in force,
subject to any copyright vested in the work not being affected thereby. I
also understand that the title and the abstract will be published, and that
a copy of the work may be made and supplied to any bona fide library or
research worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested below,
and that the library has the right to migrate my thesis into new electronic
forms as required to ensure continued access to the thesis. I have obtained
any third-party copyright permissions that may be required in order to allow
such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding
the publication of this thesis:

PRINTED COPY

a No embargo on print copy

b Embargo on all or part of print copy for a period of ... years (maxi-
mum five) on the following ground(s):

— Publication would be commercially damaging to the researcher,
or to the supervisor, or the University
— Publication would preclude future publication
— Publication would be in breach of laws or ethics
¢ Permanent or longer term embargo on all or part of print copy for a

period of 1 years (the request will be referred to the Pro-Provost and
permission will be granted only in exceptional circumstances).

ELECTRONIC COPY
a No embargo on electronic copy

b Embargo on all or part of electronic copy for a period of ... years
(maximum five) on the following ground(s):

iii



— Publication would be commercially damaging to the researcher,
or to the supervisor, or the University

— Publication would preclude future publication

— Publication would be in breach of law or ethics

¢ Permanent or longer term embargo on all or part of electronic copy
for a period of 1 years (the request will be referred to the Pro-Provost
and permission will be granted only in exceptional circumstances).

Supporting statement for electronic embargo request:

Signature of Candidate:

Signature of Supervisor :

Date:




“Statistics is the grammar of science.”

Karl Pearson



Contents

Acknowledgements X
Publications xii
Abstract xiii
List of Figures XV
List of Tables xvi
1 Introduction 1
1.1 Motivation . . . . . .. . . .. 1
1.2 Contributions . . . . . . . ... o 3
1.3 Thesis Structure . . . . . ... oL 5

2 Enzymes, Function, and Bioinformatics 7
2.1 Enzyme Function or Catalytic Tool Kit . . . . .. ... .. 10
2.1.1 Enzyme Catalytic Residues . . . . .. ... ... .. 11

2.1.2  Enzyme Structure-Cofactor Relationships . . . . . . 12

2.1.3 Catalytic Mechanisms . . . . ... ... ... .... 13

2.2 Evolution of Enzyme Function . . . ... ... ... .... 14
2.2.1 More Definitions Suggesting Evolution Strategy . . . . 15

2.2.2  Biostatistics to Study Evolution . . . ... ... .. 16

2.3 Bioinformatics . . .. ... ... ... . . 17
2.3.1 In lieu of Wet Experiments . . . . . ... ... ... 17

2.3.2 Functional Prediction by Database Search . . . . . . 18

2.3.3 Functional Prediction by Biostatistical Methods . . 20

2.3.4 Enzyme Catalytic Tool Kit . . . . . ... ... ... 23

2.4 Applications . . . . . . ... L 25

vi



2.4.1 Enzyme Engineering . . . . . .. ... ... 25

2.4.2 DrugDiscovery . . . . .. ... Lo 26
2.4.3 Clinical Implications . . . . . .. .. ... ... .... 26
2.5 Summary ... ... e e 27
Data and Databases 29
3.1 Enzyme Mechanism Reactions Database . . . . . .. ... .. 30
3.1.1 MAGIE Database . . . . . ... ... ... ....... 31
3.1.2 Components of MACIE . . ... ... ......... 32
3.1.3 Catalytic Information Available in MAGIE . . . . . . . 32
3.1.4 Definitions of Enzyme Function . . . . . ... ... .. 35
3.2 Metal-MACGIE . . . . . ... .. ... ... 37
3.3 Molecular Ancestry Network (MANET) . ... ... ... .. 38
3.4 Challenges and Limitations in Bioinformatics . . . .. .. .. 39
3.4.1 Challenges Faced in Bioinformatics . . . . . .. .. .. 39
342 Caveats . . . . . . . ... 40
3.5 Summary ... 41

Quantitative Global Analysis of Enzyme Reaction Mecha-

nisms 42
4.1 Previous Studies of Cluster Analysis . . . .. ... ... ... 43
4.2 Data . . . . .. 43
4.3 Motivation . . . . ... 44
4.4 Brief Introduction of Various Clustering Algorithms . . . . . 44
4.4.1 Hierarchical Clustering Method . . . . . . . .. .. .. 45
4.4.2 Partitional Clustering Method . . . . ... ... ... 45
4.4.3 Density-Based Clustering . . . . ... ... ... ... 47
4.4.4 PFClust: Parameter Free Clustering . . . . . . .. .. 49
4.5 Evaluating Clustering Solutions . . . . . . . .. .. ... ... 52
46 Result . . . ... . 99
4.6.1 Part A . .. ... 57
462 Part B. ... ... 58
4.6.3 Propensities of EC Classes to Cluster Together . . . . 61
4.7 Two Case Studies . . . . . . . . .. ... 64

4.8 Summary . ... ... e e e e 67



5 Prediction of Enzymatic Function 68

5.1 Introduction . . . . . . . . . . ... 68
5.2 Introduction: Enzyme Function Prediction. . . . . .. .. .. 69
5.2.1 Using Sequence . . . . . . . . . . o 69
5.2.2 Using Structure . . . . . . . . . ... ... 69
5.2.3 Using Overall Chemical Transformation . . .. . . .. 70
53 Method . .. ... ... 70
5.3.1 Data Culling . ... .... ... ... ... ...... 71
5.3.2 Step 1: Data Preparation . . ... ... ... ..... 72
5.3.3 Step 2: Internal and External N-Fold Cross-Validation 72
5.3.4 Machine Learning Methods . . . . . . ... ... ... 75
5.3.5 Step 3: Validation . . . ... ... ... ........ 82
54 Results. . . . . . . . . 84
5.4.1 Classification: Enzyme Function Prediction . . . . . . 84
5.4.2 Regression Analysis . . . ... ... ... ... ..., 87
5.5 Summary ... ... e e e 88
6 Enzyme Function Evolution: Chemolution Study 90
6.1 Background . . . . .. .. ... Lo 90
6.2 Method . . ... . . . . ... 91
6.2.1 Data Culling . ... ... ... ... ... ..., 91
6.2.2 Phylogenetic Analysis: . . . . .. ... ... ... ... 92
6.3 Findings . . . . . . .. L 93
6.3.1 A General Approach Grounded in Protein Domain
Structure . . . . . . .. ... 93
6.3.2 Historical Trends Unfold a Natural History of Biocat-
alytic Mechanisms . . . . .. .. .. ... ... 94

6.3.3 Ancient H-level Structures are Popular, Central and
Versatile . . . ... ... ... .. .. ... ... ... 97
6.3.4 Some Structures Hold Exceptionally Diverse Mecha-

nistic Step Types . . . . . . . .. ... L. 101
6.3.5 The Combinatorics of Mechanistic Steps Reveals Win-
10 1S 102
6.4 Conclusion . .. ... ... ... 107

6.5 Summary . . . ... 108



7 Conclusion and Discussion 110

7.1 Global Analysis of Enzyme Reaction Mechanisms . . . . . . . 110
7.1.1 PFClust: Results and Discussion . . . ... ... ... 111
7.1.2 Results From Mechanistic Annotation . . . . ... .. 111

7.2 Enzyme Function Prediction. . . . . . .. .. ... ... ... 112

7.3 Application of Machine Learning Method . . . ... .. ... 116

7.4 History of Biocatalytic Mechanisms . . . . . . ... ... ... 116

7.5 Future Work . . . . . ... ... 118

7.6 Summary . . . ... e e 119

A Data and Tables 121

A.1 Results from Quantitative Global Analysis of Enzyme Reac-
tion Mechanisms . . . . . . . ... ... ... .. ... ... 121

A.2 Table for Chapter 6: Enzyme Function Evolution: Chemolu-

tion Study . . . . . . . 136

B Data and R Code 139



Acknowledgements

First and foremost, I am deeply indebted to my promoter and supervisor
Dr. John BO Mitchell, for his guidance and contribution to this thesis. His
guidance, advice and flexibility, stimulating suggestions and encouragement
helped me during all ups and downs I faced in my research.

I wish to express my deep sense of gratitude to Prof. Gustavo Caetano-
Anollés, Department of Crop Science, University of Illinois at Urbana -
Champaign, USA, for having fruitful discussions, sharing knowledge on en-
zyme function evolution, granting access to his lab for a scientific visit and
in research collaboration with some parts of this thesis.

It is my pleasure to thank many collaborators and supporters from many
parts of the world: Prof. Gustavo Caetano-Anollés (University of Illinois,
United States), Minglei Wang (University of Illinois, United States), Syed
Abbas Bukhari (University of Illinois, United States), Dr. Tanja van Mourik
(University of St Andrews, United Kingdom), James L. McDonagh (Univer-
sity of St Andrews, United Kingdom), Dr. Lazaros Mavridis (Queen Mary,
University of London, United Kingdom), Dr. Luna De Ferrari (Compu-
tational Systems Biology group at CISA, United Kingdom) and PD Dr.
Reinhard Guthke (Hans Knoll Institute (HKI), Germany).

I would like to thank my colleagues Lazaros Mavridis, Luna De Ferrari,
Rosanna Alderson, and James McDonagh for providing valuable informa-
tion to build a strong background in enzyme function evolution and machine
learning model. Additionally, I would like to thank other colleagues includ-
ing Dr. Ludovic Castro, Luke Crawford, Leo Holroyd, Rachael Skyner, Ava
Sih-Yu Chen, and Jose Garrido Torres for assisting in many ways during my
research work.

I am very grateful for access to the EaStCHEM Research Computing

Facility and to Dr Herbert Friichtl for its maintenance.



I am very grateful to the Scottish Universities Life Sciences Alliance
(SULSA) and the Scottish Overseas Research Student Awards Scheme of
the Scottish Funding Council (SFC) for providing enough financial grants
to pursue this PhD.

I am happy to have wonderful friends from different parts of the world
and would like to thank and a BIG hug to many including Himan (my
partner), Piyush, Geetanshu, Iram, Ruchi, Rewis, Jessy, Rohit, Swati urf
ChiChi, Iron Kirti, Satish, James, Laz, Rosie, Leo, Luna, Fabian, Nina, Ju-
dith, Priyanka, Kaveri, EHG (extremely hilarious group) - Shyam, Nouchali,
Haifa, Ildiko, Vinodh, Shantanu, Sayantan, for supporting directly or indi-
rectly during my PhD work. I would also like to thank to my Unsocial
friends members of Santos’ group - Himan, Jitu, Divu, Susu, Sonika, Neenu,
Manu, Varu.

I received particular assistance in the writing of this work with respect
of matters of grammar, style, vocabulary, spelling or punctuation. The
assistance was provided by: Leo, Rosie, John and Naomi.

I would like to give my special thanks to my lovely parents and my
brother whose love and blessings enabled me to successfully complete this
work.

I offer my regards and benedictions to all of those who supported me in
any respect during the completion of my thesis.

It takes a village to raise a PhD student.



Publications

N Nath & JBO Mitchell, Is EC class predictable from reaction mech-
anism? BMC Bioinformatics, 13:60 (2012)

RG Alderson, L De Ferrari, L Mavridis, JL McDonagh, JBO Mitchell
& N Nath, Enzyme Informatics, Current Topics in Medicinal
Chemistry, 12, 1911-1923 (2012)

L Mavridis, N Nath & JBO Mitchell, PFClust: a novel parameter free
clustering algorithm, BMC Bioinformatics, 14:213 (2013)

JL McDonagh, N Nath, L. De Ferrari, T van Mourik & JBO Mitchell,
Uniting Cheminformatics and Chemical Theory to Predict the Intrin-
sic Aqueous Solubility of Crystalline Druglike Molecules, Journal of
Chemical Information and Modeling, 54, 844-856 (2014)

N Nath, JBO Mitchell & G Caetano-Anollés, The Natural History
of Biocatalytic Mechanisms, PLoS Computational Biology, 10,
€1003642 (2014)

xii



Abstract

The most widely used classification system describing enzyme-catalysed re-
actions is the Enzyme Commission (EC) number. Understanding enzyme
function is important for both fundamental scientific and pharmaceutical
reasons. The EC classification is essentially unrelated to the reaction mech-
anism.

In this work we address two important questions related to enzyme
function diversity. First, to investigate the relationship between the re-
action mechanisms as described in the MACIiE (Mechanism, Annotation,
and Classification in Enzymes) database and the main top-level class of the
EC classification. Second, how well these enzymes biocatalysis are adapted
in nature.

In this thesis, we have retrieved 335 enzyme reactions from the MACIiE
database. We consider two ways of encoding the reaction mechanism in
descriptors, and three approaches that encode only the overall chemical
reaction.

To proceed through my work, we first develop a basic model to clus-
ter the enzymatic reactions. Global study of enzyme reaction mechanism
may provide important insights for better understanding of the diversity of
chemical reactions of enzymes. Clustering analysis in such research is very
common practice. Clustering algorithms suffer from various issues, such as
requiring determination of the input parameters and stopping criteria, and
very often a need to specify the number of clusters in advance.

Using several well known metrics, we tried to optimize the clustering
outputs for each of the algorithms, with equivocal results that suggested the
existence of between two and over a hundred clusters. This motivated us to
design and implement our algorithm, PFClust (Parameter-Free Clustering),

where no prior information is required to determine the number of clusters.

xiii



The analysis highlights the structure of the enzyme overall and mechanistic
reaction. This suggests that mechanistic similarity can influence approaches
for function prediction and automatic annotation of newly discovered protein
and gene sequences.

We then develop and evaluate the method for enzyme function prediction
using machine learning methods. Our results suggest that pairs of similar
enzyme reactions tend to proceed by different mechanisms. The machine
learning method needs only chemoinformatics descriptors as an input and
is applicable for regression analysis.

The last phase of this work is to test the evolution of chemical mecha-
nisms mapped onto ancestral enzymes. This domain occurrence and abun-
dance in modern proteins has showed that the o/ architecture is probably
the oldest fold design. These observations have important implications for
the origins of biochemistry and for exploring structure-function relation-
ships.

Over half of the known mechanisms are introduced before architectural
diversification (nd <0.39) over evolutionary time. The other half of the
mechanisms are invented gradually over the evolutionary timeline just after
organismal diversification (0.67 > nd > 1). Moreover, many common mech-
anisms including fundamental building blocks of enzyme chemistry were

found to be associated with the ancestral fold.
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Introduction

1.1 Motivation

WITH the growing amount of available genomic information, it is a chal-
lenge to make the process faster in executing the time required for
the annotation of newly discovered proteins. Many informatics groups have
tried to use protein sequence and structural information in order to un-
derstand and reproduce the classification system of enzymes with some suc-
cess. The Enzyme Commission (EC) number system is designed to represent
functional classification based on the overall chemical transformation in en-
zyme catalysis. The EC classification does not explore the detailed chemical
mechanism of the enzyme reaction. Thus, it is essential to integrate such
information in order to annotate function to newly discovered proteins.

The most essential property of enzymes is their ability to catalyze very
specific chemical reactions. To make the functional annotation of proteins
faster, it is essential to represent the chemical reaction of enzymes quanti-
tatively. Numerous authors have attempted to represent enzymatic activity
quantitatively based on quite different information such as substrate, reac-
tion, cofactors. By definition, EC function describes the overall reaction of
an enzyme. Thus, a full description of the overall chemical transformation
from starting materials to products should, in principle, lead to the perfectly
accurate assignment of the EC number.

Our motivation in this work is to understand enzyme function diversity.
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For this we looked into the descriptors that encode the overall reaction as
well as mechanism-rich information. Our intention with such information
is to investigate the relationship between the reaction mechanism and EC
classification using unsupervised and supervised classification methods.

Unsupervised global analysis of enzyme reactions is helpful to get bet-
ter insight into the understanding of the diversity of chemical reactions of
enzymes. We proposed a novel clustering algorithm, PFClust (Parameter
Free Clustering), which is suitable for finding the structure of data when no
prior information is available.

Moreover, supervised learning methods have also proven their worth in
understanding the structure of the given data. Machine learning methods
are suitable for molecular biology data to construct classifiers that can ex-
plain complicated relationships in the data. Machine learning algorithms,
such as the support vector machine, can learn the patterns in the data with
respect to given class and use that information to predict the function of
newly discovered proteins.

Another important challenge in molecular biology is to understand how
enzymes adapt their chemical mechanisms under evolutionary pressure. Such
global study of enzyme reaction mechanisms may provide important insights

for better understanding of the diversity of chemical reactions of enzymes.

Thesis Questions In this thesis, we address two important questions re-
lated to enzyme function diversity. First, to investigate the relationship
between the reaction mechanisms as described in the MACIiE (Mechanism,
Annotation, and Classification in Enzymes) database and the main top-level
class of the EC classification. Second, how well these enzymes’, biocatalytic
processes are adapted in nature.

To address these questions, we retrieve data from MACIE which is then
used to quantitatively encode overall and reaction mechanisms as chemoin-
formatics descriptors. These chemoinformatics descriptors are used to inves-
tigate the relationship with the main top-level class of the EC classification.
Enzyme function prediction is an important question in post-genomic bioin-
formatics to understand enzyme function diversity.

Traditionally, two strategies are used in order to address this ques-
tion: first, transferring function annotation to similarly annotated proteins

through homology, and second, machine learning algorithms to treat this as
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a classification problem against a fixed taxonomy, such as EC hierarchy.

This work examines the potential of a workflow designed using machine
learning to automate the function prediction. In addition, this approach
examines the potential to predict the solubility of drug-like molecules as a
regression problem. It is noteworthy that the performances of the learning
algorithms are highly dependent on the nature of the training data provided.

Moreover, we investigate the diversity of enzyme reactions using unsu-
pervised clustering algorithms. By identifying critical features of enzyme
functions, further use of such information could improve enzyme reaction
classification, computational annotation, and function prediction for newly
discovered proteins.

Furthermore, a challenge in molecular biology is to explore the chemical
mechanisms used in biochemical reactions catalysed by ancestral enzymes.
Such investigation has important implications for exploring structure-function
relationships. The main challenge in molecular biology is to understand how

new enzyme activities evolve in nature.

1.2 Contributions

The primary contribution of this thesis is the development of a sophisticated
biostatistical method to examine the diversity of enzyme mechanisms and
function prediction. Our work makes important contributions to the field of
understanding function diversity, which leads to better function prediction.
Another contribution of this thesis is a machine learning pipeline that can
handle a number of problems including classification and regression. Also, it
unifies inbuilt validation and evaluation of the machine learning algorithms
to optimise the parameter and output.

We realise that there are missing pieces of the puzzle that need to be
put together in order to meet the challenges of enzyme annotation, such as
to blend various biological sources and to incorporate computational power
to automate function prediction. In more detail, the contributions of this

thesis are listed below:

e One of the main contributions of this thesis is PFClust (Parameter
Free Clustering), a clustering algorithm that is suitable for use when

no prior information is available.
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o A quantitative analysis of enzyme function and exploring the biological

attributes in each cluster.

e Another contribution is a workflow designed using various machine

learning algorithms, with inbuilt internal validation and parameter

optimisation.

e Also, we looked into function prediction of enzyme reaction mecha-

nisms and evaluation of the predictions.

o We investigated how enzyme activities adapt in nature.

A summary of the claims and contributions is shown in Table 1.1, where

the columns represent relevant reference, contribution in the paper and rel-

evant chapters in this thesis.

Table 1.1: The following table lists my contributions in this work. Details
are explained in respective chapters.

] Reference

Contribution ‘ chapters in thesis

PFClust [1]

Enzyme function
prediction [2]

Solubility predic-
tion of drug-like
molecules [3]

Natural history of
enzyme biocatal-
ysis [4]

My main contribution in this | Chapter 4
work is to design the exper-
imental and validation stud-
ies and carry out the compari-
son of PFClust with the other
methods.

I designed the workflow, car- | Chapter 5
ried out the majority of the
computations and performed
the statistical analysis.

I designed the workflow for | Chapter 5
this work and also produced
machine learning R script in
collaboration with Dr. Luna
De Ferrari

I designed and executed the | Chapter 6
whole experiment for this
work.
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1.3 Thesis Structure

Chapter 2: Enzymes, Function, and Bioinformatics In this chapter,
we review the exquisite catalytic properties of enzymes and the active site
residues that comprise their catalytic tool kits. Furthermore, we elaborate
various definitions of functions and their usages for addressing the prob-
lem of protein function classification. In addition, we discuss the potential

applications of this work in enzyme engineering and clinical implication.

Chapter 3: Data and Databases This chapter describes the descrip-
tors and databases, from which the data is retrieved for use in this thesis.
According to the definition of bioinformatics, well-defined quantitative repre-
sentation of biological data is important for the interpretation. This chapter

describes the limitations and challenges related to our work in this thesis.

Chapter 4: Quantitative Global Analysis of Enzyme Reaction
Mechanisms In this chapter, we describe the unsupervised clustering
analysis of enzyme reaction mechanisms. The motivation here is to un-
derstand the ‘important’ biological factors associated with enzyme reaction
clusters. Based on the results from various clustering algorithms, we discuss
the implications of a novel clustering algorithm: PFClust. Also, we discuss
the issues suffered by various clustering algorithms such as optimising the
input parameter and stopping criteria, and specifying the number of clusters

in advance.

Chapter 5: Prediction of Enzymatic Function Here, we describe
the bioinformatics workflow using machine learning methods that are ap-
plied for predicting enzymatic function with good accuracy. The motivation
here is to test the enzyme mechanistic descriptors’ performance for function

annotation. Furthermore, this workflow is applied to a regression problem.

Chapter 6: Enzyme Function Evolution Chemolution Study Here
we demonstrate the mapping of the enzymatic function onto enzyme do-
mains. The motivation here is to test if the oldest folds have higher numbers
of mechanistic step types compared to younger fold structures. We discuss

the complete data culling process and its representation.
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Chapter 7: Conclusion and Discussion This chapter outlines the con-
clusion of the thesis work and details its implications to other research areas,
and beyond, while also identifying new research questions that could be ad-

dressed by future research.



Enzymes, Function, and

Bioinformatics

BIOCHEMICAL reactions, nearly all of which are mediated by a series of
remarkable catalysts known as enzymes, shape all living systems. En-
zymes exhibit remarkable selectivity and specificity for selecting a molecule
and producing a single product. The list of functions done by enzymes
ranges from alcoholic fermentation to ribozymes, including ribosomal RNA,
which catalyze the formation of peptide bonds between amino acids. En-
zymes are subject to the same laws of nature that govern the behavior of
other substances, but enzymes differer from ordinary chemical catalysts in

several important respects:

e High reaction rate: the rates of enzymatically catalyzed reactions are
typically 105 to 102 times greater than those of the corresponding un-
catalyzed reactions and are at least several order of magnitude greater

than those of the corresponding chemically catalyzed reactions.

o Milder reaction conditions: enzymatically catalyzed reactions occur
under relatively mild conditions: temperature below 100’C atmospheric
pressure and nearly neutral pH. In contrast, efficient chemical catalysis
often requires elevated temperatures and pressures as well as extremes
of pH.

o Greater reaction specificity: enzymes have a vastly greater degree of

7



Chapter 2

specificity with respect to the identities of both their substrates and
their products than do chemical catalysts: that is, enzymatic reactions

rarely have side products.

o Capacity for regulation: the catalytic activities of many enzymes vary
in response to the concentrations of substances other than the sub-
strates. The mechanisms of these regulatory processes include al-
losteric control, covalent modification of enzymes, and variation of

the amounts of enzymes synthesized.

However, listed properties of the enzymes depend on the external environ-
ment of the reaction. Temperature and pH both affect the rates at which a
reaction takes place, and there exists an optimum value for each.

To eliminate the confusion in rationally naming the rapidly growing num-
ber of newly discovered enzymes, a scheme for the systematic functional
classification and nomenclature of enzymes was adopted by the International
Union of Biochemistry and Molecular Biology (IUBMB, we discuss this in
detail in Chapter 3) [5]. Enzymes are classified and named according to the
nature of the overall chemical reactions they catalyze. Enzymes are proteins
made up of various combinations of 20 different amino acids, that catalyse
biochemical reactions. In humans, enzymes represent drug targets [6] for
clinical diagnostics due to their exquisite properties. Enzymes are a profi-
cient and robust apparatus for executing functions within the body. Also,
enzymes show remarkable evolutionary adaptation in nature.

Here, we discuss enzyme function and the features that are profoundly
used in various function annotation schemes. The enzyme function predic-
tion starts from sequence. Here, our work is not on technicality of sequences
or structures of enzymes. Rather, our work depends on the definition of
enzyme biocatalysis translated into chemoinformatics descriptors for func-
tion prediction and to understand the diversity of function. In addition, we
have developed robust computational approaches to address such biological
questions.

To describe the function of a protein is not an easy task as the function
can be described at all levels of the enzyme function classification hierarchy;,
such as EC number. There are also examples of ‘moonlighting’ proteins,
which play many roles in the cell (some nonenzymatic) by acquiring minimal

changes either in sequence or structure. Thus, this suggests many ways one
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can define the classification and annotation of enzyme function by using
information at different levels of data present, starting from sequence /
structure or components of catalytic sites [7]. Our focus here is on the
quantitative representation of function definition at mechanistic and overall
levels of enzyme reaction to study the diversity of function.

Overall, the idea of such studies is to understand how well an enzyme
adapts its function. Indeed, evolutionary relationships exist between pro-
teins that show diverse folds or topologies, but share similar function. It is
unlikely that these folds evolved independently. Many elegant studies [8, 9]
suggest that enzymes evolved from pre-existing enzymes via gene duplica-
tion using common binding sites or mechanistic features to catalyze dif-
ferent reactions. The most probable scenario is that these folds evolved
from a smaller, less diverse set of ancestral proteins. The earliest enzymes
were probably weakly catalytic and multifunctional with broad specifici-
ties [10-12]. Gradually, evolutionary events (gene duplication, mutation
and divergence) helped the evolution of more numerous, effective, and spe-
cific enzymes to evolve from the multifunctional enzymes [10]. Hence, they
share a set of protein functions to effect the reaction [4,13]. This in turn
suggests that there are numerous functions which have evolved in unrelated
structures.

Evolvability of promiscuous function provides immediate advantage to
new enzymes to become positively selected [9]. Once the promiscuous func-
tion got selected, it can go through a series of reconstructions for improve-
ment without abolishing the primary, native function of the enzyme [9]. For
example enzymes belonging to alpha/beta hydrolase fold share conserved
mechanistic features that are evolved to catalyze different reactions [13].

In this chapter, we review some aspects of enzyme function as well as
traditional and modern ways of annotating newly discovered proteins and
their limitations. We will also discuss evolutionary aspects of such studies,

their application for clinical purposes and their limitations.



Chapter 2 2.1. Enzyme Function or Catalytic Tool Kit

Definition 1.

Homologous - Proteins which have evolved from a common ances-

tral, and whose evolutionary relationship is evident from similarities

in sequence, structure and/or function.

Analogous - Proteins where no evidence of a common ancestry is
found, yet which are similar in some properties such as sharing the

same fold. Analogous enzymes perform the same function.

Divergent - Proteins derived from a common ancestor to form

different functionalities.

Convergent - Proteins without any trace of evolutionary relationship

but which have evolved to possess a similar function.

2.1 Enzyme Function or Catalytic Tool Kit

The reaction centre of the enzyme structure is built of amino acid residues.
The amino acid residues that form the binding site are arranged to specifi-
cally attract the substrate. Enzymes are very specific both in binding sub-
strate and in catalysing their reaction. Molecules that differ in shape or
functional group distribution from the substrate cannot productively bind
to the enzymes.

For the proper functioning of the enzyme, there are many components
that can be represented for function prediction models such as active sites,
cofactors. Cactors often play a vital part for the catalytic entities. Func-
tional components such as overall reactions, catalytic residue, cofactors or
mechanistic step types can serve as chemoinformatics descriptors from en-
zyme reaction centre. These quantitative representations of an enzyme re-
action centre are thus considered for further investigation. Such data, which
is now available databases, can be used to investigate function annotation.
Also, robust bioinformatics approaches can be designed which greatly accel-
erate the process of functional annotation of the genome sequence, as manual

annotation of enzyme function would be a very labour-intensive and time-
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consuming process. For quick annotation of protein function, it is essential
to represent data in a computationally accessible form, which may enhance
accuracy as well as completeness of the protein function annotation [14].
In this section, we discuss the enzyme functional toolkits that are quan-
titatively represented and favoured for functional prediction and the contri-
bution of such work towards our understanding of enzymatic function. In
addition, we discuss the limitations of representing the data for examining

the enzyme function diversity.

2.1.1 Enzyme Catalytic Residues

The enzyme catalytic residues are the central part of the enzyme struc-
ture where substrate molecules bind and undergo a chemical reaction. The
catalytic residues are evolutionarily conserved, typically hydrophilic, and
located inside the pockets of enzyme structure [15]. The catalytic residues
are placed precisely in the pocket of the protein structure. Knowledge and
improved understanding of the properties of enzyme active sites and their
assorted catalytic mechanisms is vital for novel protein design and predicting
protein function from structure [16].

Experimentally determining the catalytic residues requires extensive ex-
perimentation (mutagenesis experiments) followed by exhaustive testing of
the enzyme’s catalytic performance, including concentration assays. Thus,
with the help of bioinformatics approaches one can boost the function an-
notation process.

Traditionally, catalytic residues are identified by multiple sequence align-
ment or structure template search with enzymes whose catalytic residues are
already annotated [17]. The focus of multiple sequence alignment [18] is on
the conserved sequence signature, which is evolutionary conserved patterns,
as attributes for enzyme function prediction [16].

Using information on catalytic residues available in databases it was
found that the most common catalytic residues in enzymes to effect the re-
action are histidine, aspartate, glutamate, lysine, cysteine, arginine, serine,
threonine, tyrosine and tryptophan [16,19]. Most of the catalytic residues
are recruited to contribute to the stability of the transition state. Generally
these catalytic residues take part in general acid/base chemistry (proton
acceptor and proton donor) or nucleophilic addition (nucleophile and nu-

cleofuge) to complete the reaction [20]. Sometimes these common catalytic
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residues share the responsibilities by various means such as direct acid-base
action or by increasing the effect of charge in the locality [16]. Some catalytic
residues perform different functions as per the requirement.

A database that possesses the relevant information on the catalytic sites
of enzymes is the Catalytic Site Atlas (CSA) [21]. Detailed information on
catalytic residues of enzymes is very important to understand the structure-
function relationship and for good annotation of novel proteins. Another
such database is InterPro [22], a resource which provides sequence signatures
for function analysis. Using sequence features, a study by Ferrari et al.
[23], was able to successfully provide 99% accurate prediction of enzymatic
activity. Sequence is less conserved than structure, making such methods
vulnerable to false positive results. With available information on structure
we need to add this information to make better predictions.

The main challenge in such studies is to reduce the time required for
annotating the newly discovered protein by using fast, accurate methods.
As sequence is less conserved than structure one needs to be careful of false

positive results.

2.1.2 Enzyme Structure-Cofactor Relationships

A cofactor is a non-protein chemical compound that is required as an ad-
ditional factor to be included in the enzymatic reactions. These cofactors
help in catalysing chemical reactions either directly or indirectly. The co-
factors are classified as either metal ions (such as Ca?*, Mg*"), also known
as metalloproteins [24], or as small organic molecules (such as nicotinamide-
adenine - dinucleotide phosphate (NADP)) [25].

A wide variety of enzymatic function is dependent on such cofactors: for
example, photosystem oxygen-evolving complex (OEC) is a metallo-oxo clus-
ter, containing M ¢** and Ca®* [26]. Another example is fructose - bispho-
sphate aldolase (EC: 4.1.2.13, MACIE: M0052), a zinc-dependent enzyme
which catalyses the reversible aldol cleavage or condensation of fructose-
1,6-bisphosphate into dihydroxyacetone - phosphate and glyceraldehyde 3-
phosphate [27]. There are two distinct types of mechanistic reaction ex-
ecuted by this enzyme: class I (Schiff-base) and class II (metallo). The
class II aldolases utilise zinc as an electrophile in the catalytic cycle; no
obvious structural similarities between class I and II aldolases are found.

Three forms of class I proteins are found in vertebrates which participate in
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glycolysis.

Some databases store information relevant on roles of cofactors as they
participate in the chemical reaction, such as Metal-MACiE [24] and CoFac-
tor [25,28]. Metal-MACIE presents information on the metal cofactors in-
volved in the catalytic mechanisms of the metalloenzymes present in MACIE,
while the CoFactor database contains knowledge on each organic enzyme co-
factor, integrated with the corresponding enzyme’s sequence, structure and
reaction.

This mainly contributes towards cofactor engineering, a subset of protein
engineering [29]. This type of engineering is used to increase the efficacy
of metabolic networks by optimising the production of metabolites. The
most basic strategy is to change the concentration of the cofactors to either
increase or decrease the efficiency of a metabolic network.

In addition, the understanding of how well cofactors affect the enzymes
in nature is valuable information for evolutionary studies. The cofactors
are evolutionarily conserved in nature. According to Ji et al. [30], cofactors
played an important role in the early history of life, allowing primordial

proteins to perform oxidative functions.

2.1.3 Catalytic Mechanisms

FEnzymes achieve their enormous rate accelerations via the same catalytic
mechanistic principles used by chemical catalysts, stabilising the transition
state and thereby lowering the activation energy. Through evolution, some
enzymes have simply become efficient in stabilising the transition state more
and therefore providing a greater acceleration of the reaction.

Conventionally, the reactions are described with the use of the curly ar-
row convention to represent the electron rearrangements that occur in going
from reactants to products. Such information is available mostly in papers
and textbooks, but recent effort in collaborative project between the Thorn-
ton Group at the European Bioinformatics Institute and the Mitchell Group
at the University of St Andrews [31] made this information easily available in
computer-readable form in the MACIE database (this is discussed in detail
in Chapter 3).

The EC classification system evidently shows its worth in cataloguing
the overall reaction of enzymatic reactions. However, this system lacks the

mechanistic information that is increasingly available now [31,32]. In order
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to answer biological questions using computational methods, it is important
to represent the enzyme reaction mechanism quantitatively. The information
available in MACIE is very useful for representing enzyme reactions not only
at the overall reaction but also at the mechanistic level of reactions. One way
is by representing data in a fingerprint [20], another by using sophisticated
bioinformatics or statistical methods to estimate the similarities between
reactions [20,33].

For investigating the enzyme reaction of hydrolase family EC 3.b.c.d
Oliver Sacher [34] represented the data by combing active site and physio-
chemical effects on the chemical reaction. They showed that physiochemical
property overall compares well with the EC system. The enzyme reactions
can be represented by the elementary steps of the reaction such as bond
breakage in addition to its physiochemical effects [35, 36].

Again, using MOLMAP descriptors defining the difference between the
products and the reactants from the KEGG database [35], an investiga-
tion was carried out to automate an assignment of EC number using the
sophisticated decision making algorithm, Random Forest.

Such information is essential for the annotation and association of the
EC classification system to newly discovered proteins. However, one should
consider another possibility where enzymes with very similar overall reac-
tions (EC number) can have quite different mechanistic steps to effect the
reaction [20]. For example, MACIE recorded six different mechanistic reac-
tions for metallo-g-lactamase (M002 - Class A, M0015, M0016 & M0258 -
Class B, M0210 - Class D & M0257 - Class C) where they possess hydrolase
reaction (EC 3.5.2.6). Another well studied example is the mechanistically

diverse enolase superfamily [32,37].

2.2 Evolution of Enzyme Function

Enzymes are very adaptive by nature. Through the course of evolution, the
scaffold of enzymes has improved their functional, and specifically catalytic,
efficiency. The main driving force for these evolutionary advances in enzymes
is the requirement of natural selection to improve molecular and cellular
function, increasingly optimising both catalytic capability and regulation.
The ancestral proteins are thought to have had very broad specificity

and performed multiple functions. With due course of time these enzymes
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evolved exquisite catalytic properties to effect the reaction [10]. Broadly
speaking, during evolution some enzyme superfamilies exhibit divergent cat-
alytic activity, whereas others possess common mechanistic features such as
a cofactor, mechanistic step or strategy as a point to evolve into a new func-
tion. At some point, these features are shared during evolution to improve
the quality of function.

The evolutionary strategies are concatenated to provide two scenarios
which are broadly registered as using similar properties, either chemistry or
substrate, to evolve enzyme function. The one where enzymes share similar
catalytic residues but perform dissimilar catalysis is called the ‘chemistry
driven scenario’. Conversely, in the ‘substrate driven scenario’, different cat-
alytic residues are recruited to yield the same required product [38,39]. For
example, pairs of enzymes in tryptophan and histidine biosynthesis provide
two examples of substrate-driven evolution. The increasing understanding
of chemical mechanism and its role of active site features will continue to
enrich our understanding of molecular evolution.

Such scenarios have suggested the possibility of proteins sharing com-
mon function with completely different structures. One striking example is
that of the Ser-His-Asp catalytic triad [40], which is very commonly found
in a number of folds that have no significant sequence or structural similar-
ity. Another example is functional convergence found in antifreeze protein
(AFP, also known as thermal hysteresis proteins) [41]: they have a dissim-
ilar sequence in plants and fish, but perform the same function, producing
a difference between the freezing and melting points by depressing the non-
equilibrium freezing point.

This phenomenon is quite common and often occurs to preserve the
overall function of protein [42]. Understanding how the enzyme function
evolved is vital to get insight for annotation, function prediction, and protein
engineering [38,43]. Also, this is one of the most intriguing problems in

molecular biology: to understand the vast diversity of protein function.

2.2.1 More Definitions Suggesting Evolution Strategy

Evolutionary evidence supports the idea that the computational representa-
tion of enzyme function should include structural elements which deliver cat-
alytic ability. This is especially so in cases where enzymes perform different

overall functions by utilising similar mechanistic steps. Such understanding
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will aid our ability to predict the function of newly sequenced enzymes and
in efforts to engineer new functions into existing enzymes.

As we mentioned in the previous section, one of the reasons for the
false assignment of function to a novel enzyme is due to mechanistically di-
verse enzymes. A mechanistically diverse enzyme [44-46] superfamily is a
set of enzymes that utilize common mechanistic attributes, such as mech-
anistic steps, to catalyse different reactions. An example supporting this
scenario is phosphoglucomutase (MACIiE: M0194; EC 5.4.2.8) and phospho-
noacetaldehyde hydrolases (MACIiE: M0181; EC 3.11.1.1). Another well
studied example is the pentein superfamily (CATH 2.60.40.1700) [47] which
are functionally diverse proteins grouped together based on similarity at
structural fold level §/a. That includes enzymes that modify guanidines.
The enzymes in this superfamily participate in diverse biological roles in-
cluding gene regulation, translation and signalling. Assigning structure and
function to penteins is difficult due to low sequence similarity between mem-
bers of this superfamily.

Another definition that is preferred for classification of enzyme function
is ‘functionally distinct enzymes’. ‘Functionally distinct enzymes’ are groups
of divergently evolved enzymes which perform different overall reactions and
for which no common mechanistic steps are found to complete the reaction
[45,48].

2.2.2 Biostatistics to Study Evolution

Understanding how well enzyme function adapts its nature is still a challeng-
ing task in molecular biology. To understand evolutionary trends of proteins,
the biological data can be represented quantitatively to study the overall
trend. The quantification of the relationships between various genomic and
molecular variables are termed as ‘quantitative evolutionary genomics’ [49].

Quantitative evolutionary genomics has helped to understand depen-
dency between structure and function [50]. For example, Log-normal dis-
tribution shows the global trend of evolution rates between orthologous
genes [49] and Power-law like distribution [49,51] represents a membership
in paralogous gene families. A power-law-like distribution shows that a few

parts occur many times and most occur infrequently.
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2.3 Bioinformatics

The functional annotation of newly discovered proteins is a fruitful area
for the application of the phenomenally large quantity of protein data now
available. Broadly speaking, there are two major concerns related to the
annotation of enzyme function: first, the clear definition of an enzyme func-
tion, which is important in order to get correct prediction, and second, a
fast and efficient bioinformatics approach to manage the huge datasets as
well as save time. Developing robust bioinformatics tools for managing huge
data sets or mapping onto genome is ongoing research with many benefits
for reducing the execution time of function annotation tasks.

Furthermore, the development of bioinformatics tools will improve the
quality of addressing biological questions, which in turn improve the ex-
planation of the enzyme chemical mechanism, molecular evolution, and
structure-function relationship [52].

The challenge is found when the definition of protein’s function is not
clear. Protein function annotation is a multi-step process, proceeding from
sequencing the corresponding nucleotides to building a predictive model for
annotating function. In practice, it is done by classifying newly discovered
proteins based on functional domains, folds or motifs followed by assigning
homologous annotation.

In this section, we discuss the challenges faced during the performance
of a wet experiment to annotate function and how designing bioinformatics
models, tools and approaches can be beneficial. Further, we also discuss
some biostatistical methods that are currently very famous in exploring
problems for clear interpretation of enzyme function prediction and under-

standing the diversity of enzyme function.

2.3.1 In lieu of Wet Experiments

Even before high throughput techniques, biologists had collected large vol-
umes of data that end up in repositories where most of the proteins are
annotated as ‘hypothetical protein’ [53]. The final aim after the data is
produced through sequencing experiment or determining structure of the
protein is to annotate the produced sequence and make that available pub-
licly such that this information can be used for further studies (see Figure
2.1).
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One of the major goals of developing a robust bioinformatics approach
is to provide a cheaper and faster computational alternative to wet lab ex-
periments. For better annotation of protein function, the vast accumulation
of data that is currently available may hold enough information to be used.
Such experiments would be dependent on previously determined targets to
predict outcomes for newly discovered proteins. For example, given previous
sequence signatures, it is possible to characterise protein function [23] with
good accuracy.

Another goal of this work is to understand the underlying mechanism of
how enzymes adapt to execute sophisticated reactions. To achieve this goal,
one can accumulate selective information from various sources to guide an
experimentalist in designing and coordinating an experiment. One of the
important data sources is the Enzyme Portal [54] which integrates publicly
available information about enzymes, such as small-molecule chemistry, bio-
chemical pathways and drug compounds. This portal is designed to display
available enzyme-related information publicly. Bringing together chemoin-
formatics and biological data, so that information can be explored in one
place, is useful for further studies and a very important step where ample

amount of data are available.

2.3.2 Functional Prediction by Database Search

Various bioinformatics methods are designed to identify the function of
a novel protein sequence or structure through a homologous search in a
database. This is a very straightforward way to identify the function of
an unknown protein by searching for a strong similarity from the protein
sequence against available databases such as RefSeq or UniProtKB/Swiss-
Prot. With the help of a search algorithm, such as BLASTp, PSI-BLAST
(Position-Specific Iterating BLAST) [55], one can achieve this task. Infor-
mation available in databases is very valuable for understanding enzyme
function and for annotating function to novel enzymes. However, such in-
formation may not be enough for final prediction due to misannotations of
definitions present in databases [56].

The annotation of a newly discovered protein can be done by using either
the sequence or the structure of the protein.

The annotation of a sequence or a structure is important as it bridges

the gap between the sequence or structure to the biological process of the
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Figure 2.1: This figure illustrates workflow to generate raw data through
‘wet’ bench experiments which is further considered for bioinformatics anal-
ysis. It is becoming very popular to combine the experimental and compu-
tational approaches. The main aim of this is to produce publicly available
data and annotate newly discovered proteins.

organism. However, similar sequence does not necessarily mean similar func-
tion [57]. This suggests more detailed analysis is required so that we can
collect attributes that could help for annotation.

To overcome this difficulty one can use a structure homology search in-
stead [58]. Structures are 3-10 times more conserved than sequences [59].
Nonetheless, in biology we can find many striking examples suggesting sim-
ilar protein structures perform different functions. Gerlt and Babbitt [60]
have shown that the functionally diverse enolase superfamily has conserved
structures that include the (8/a)s TIM barrel domains, sharing a common
catalytic site.

The existence of such examples in nature adds to the difficulty of an-
notating function to enzyme structure or sequence. In summary, there are
many enzymes whose sequence / structures are found to be very similar but
which perform different functions, and the reverse is also true. We have
discussed some examples and definitions in the previous section.

It is found that ‘mechanistic’ and ‘transformational analogues’ are not

a rare phenomenon [61] in nature. Here, ‘mechanistic analogues’ are de-
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fined as those enzymes which use the same mechanism to perform related
reactions, in other words they share a similar EC number until the third
level. The ‘transformational analogues’ are enzymes which share identical
EC numbers but use different mechanistic steps to effect the reaction, for
example the metallo-beta-lactamase. To annotate such examples is difficult
using homologous search. Thus, we need more sophisticated and robust
methods such as machine learning algorithms that have already begun to
successfully address this question [2,62,63].

It is noteworthy that assignment of function prediction depends on the
accuracy of the database entries which in turn depends on any divergence
of sequence and function in the course of evolution [56]. Moreover, the
subjectivity of the definition of function and various aspects of biology could
lead to false prediction of the function annotation [64]. The assignment of
function to domains also depends on multi-domain organization of proteins,
and low sequence complexity [65].

Another difficulty is where proteins can have a molecular function, a
cellular role and be part of a complex pathway. Simplistically, one can use
the EC numbering scheme to annotate the function.

There are various databases available for annotating function through
homology search, such as RefSeq, PDB, InterPro etc. In addition to these
databases, there are many databases available where information is inte-
grated in one place such as FunTree, UniProt, SFLD. Also, for further in-
vestigation one can examine proteins of analogous function with the infor-
mation available in MACIE. In order to perform a database search one needs
to keep the database up-to-date, which means assigning meaningful biolog-
ical information to newly discovered proteins. Collecting, organizing, and
interpreting such data often requires the input of experts in the biological
field of study [66].

2.3.3 Functional Prediction by Biostatistical Methods

With recent developments in biostatistics and advanced statistical methods
such as machine learning algorithms, it is possible to design an efficient
predictive model to extract patterns from a given dataset [2,62,67-69]. One
strategy for predicting function is to reduce the problem to a classification
exercise using data whose ontology allows each item to be identified with a

specific category, for example top level EC class.

20



Chapter 2 2.3. Bioinformatics

In statistics, classification is defined as a problem that identifies the
patterns in datasets and further arranges together those which are alike
and separates those which are unlike. The idea is that the new individual
items should be placed into groups based on one or more criteria. The
application of classification analysis can be seen in various research fields
such as bioinformatics, cheminformatics [68], drug discovery, toxicogenomics
and many more. Classification methods could be further divided into two

approaches, as supervised and unsupervised algorithms.

Supervised algorithm A supervised classification algorithm uses defined
examples to learn patterns and, based on this learning, it then classifies the
data points. It has been shown that many machine learning methods have
profound improvement on the prediction of function when chemoinformatics
descriptors were designed using sequence or structure information [23,70,71].
In bioinformatics and system biology, machine learning methods are widely
applicable [72].

The machine learning method focuses on prediction, based on learning
from known properties from the training data. Machine learning algorithms
are also beneficial in investigation into the structure of the data and handling
a huge dataset. In other words, a machine learning algorithm constructs a
model in order to predict the outcome of an experiment. However, the
disadvantage of machine learning algorithms is that they hugely depend on
the nature, source and quality of the data.

We preferred supervised classification methods because we wanted to
see if our descriptors could show patterns which could be used further to
annotate enzyme functions. This is a machine learning task, to infer function
from given examples. Although algorithms of machine learning methods are
often very complex, they nonetheless work on the very basic philosophy of
learning from examples.

Machine learning algorithms are applicable to problems such as predict-
ing the structure of a protein [72]. Prediction of protein structure has been
a challenge for decades and with the advent in technology we are able to get
some successful output. Machine learning methods have many advantages
to map the input sequence of amino acid to the features of output sequences.

Where an inadequate amount of information is available for two proteins

sharing the same function annotation, machine learning algorithms can be
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very profitable through extracting more information from multiple proteins

[2,23,73,74].

Unsupervised Clustering Analysis As its name suggests, this type
of classification is not supervised by any examples. In this method, the
data points are grouped together based on some criteria such that they can
distinguish between self and non self. There are two ways a distinct cluster
is defined, either by finding greater similarities within the members of the
group or finding clear separation between the clusters. Sometimes clustering
analysis is only used to summarise the data which could further be used for
analysis purposes. In biology, bioinformatics, pattern recognition and social
science, cluster analysis is commonly used for understanding the data or to
annotate function.

Indeed, human eyes are skilled in grouping objects based on certain cri-
teria, for example, a child can label a photograph as a building, vehicle,
people etc. Biologists have used clustering analysis to create a taxonomy
of living things: kingdom, phylum, class, order, family, genus and species.
Among many unsupervised classification algorithms, hierarchical clustering
is the simplest and very popularly used by biologists. An example of hierar-
chical clustering in biology is Gene Ontology (GO) which classifies genes into
hierarchies of biological processes and molecular functions. Moreover, three
structural classification databases which define sequence-structure-function
relationship are SCOP, CATH and DALI. The EC nomenclature and classi-
cal taxonomy are both hierarchical methods used to classify enzymes based
on biochemical classes and organism-level morphological features, respec-
tively.

Another database using microarray data to study a large variety of bi-
ological mechanisms, including association with diseases, is the Database
for Annotation, Visualization and Integrated Discovery (DAVID ) [75,76].
This database is popularly used to understand biological meaning of gene

list using various sophisticated statistical methods.

As indicated schematically in Figure 2.2, biophysical information, with
bioinformatics analyses of an entire set of related or non-related proteins,
can be used to identify novel function by one of the two strategies using

either supervised or unsupervised classification method. A new protein can
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be classified either as a member or non-member depending on its feature

vector by using these machine learning methods.
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Figure 2.2: Schematic representation of an interactive approach to function
annotation and prediction. It starts with extracting useful information from
sequence or structure such as catalytic residues, reaction entities, to build
a predictive model. Once the data is pre-processed, it can be further used
for annotation using either supervised learning or unsupervised method. To
get fewer false positives, the practice of evaluation is highly recommended.

2.3.4 Enzyme Catalytic Tool Kit

Our intentions with information related to catalytic residues are to investi-
gate sequence property to understand the mechanism of the enzyme reaction.
Based on input types, prediction methods are divided into sequence-only,
structure-only, or a combination.

Multiple sequence alignment and database search are the two easiest
ways to annotate newly discovered proteins, where two proteins are evolu-
tionarily related. However, examples exist when the related sequences are
diverged so much that they lose any evidence of homology [77]. In either of

the cases, catalytic residues proved to be a good predictive attribute.
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Using sequence information, such as sequence profile or location of the
active site one can design a computational approach to annotate the novel
function [78]. Considering only functionally annotated sequence, catalytic
residues and position of catalytic residues within the sequence for glyco-
hydrolase family of enzymes Sterner et. al. [78] could obtain ~ 80% of
prediction using kNN classification method.

Chou et al. [79] extracted the catalytic site from the non-catalytic sites of
serine hydrolase with ~99% predictive accuracy using a covariance matrix.
Many times the enzyme catalytic sites are mistakenly predicted as non-
catalytic antibodies [80]. It is noteworthy, while developing the prediction
model, that the catalytic pocket of the enzymes is buried much deeper inside
than non-catalytic antibodies.

The gap between the sequence profile and function annotation is usually
bridged based on the sequence similarity with enzymes whose functions are
experimentally known [81]. Even with the excellent databases detailing bi-
ological properties embodied in protein sequence patterns and motifs, this
method shares many of the limitations of sequence alignment approaches.
One basic problem here is that sequence is not as conserved as structure.

Structures of proteins are much more conserved in nature than their se-
quences [82]. Distant evolutionary relationships, undetectable by sequence
comparisons, can be revealed by similarities in structures. Common ances-
try can be indicative of a functional relationship, although the correlation
between fold and function is strong for only some folds [83], others are
highly functionally promiscuous. Structural genomics seeks to determine
the structures of all protein folds, which would ultimately be highly valu-
able for data annotation and have other applications such as drug design.
Luiz C. Borro [84] predicted enzyme function classification at the top EC
level with an accuracy of 45%. In his study, he combined the strengths of
statistical and data-mining methods using structural parameters. On the
other hand, Dobson and Doig’s [85] approach combined many support vec-
tor machine models with structural parameters and could predict EC class
to an accuracy of only 35% for the top ranked prediction.

The idea of such methods is to give clues for functional annotation of
proteins which could be used for further analysis. From the above mentioned
studies it can be concluded that predictive models (either supervised or

unsupervised method) for prediction of enzyme class from protein sequence
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or from its structure is tricky as the prediction accuracy is pretty low. Thus,
we need to develop more computational approaches that integrate various
sources for function prediction. The interpretation of the results for the

biologist will be improved when computational power is improved.

2.4 Applications

2.4.1 Enzyme Engineering

Enzyme design and engineering is the ability to incorporate rational change
to the protein structure to enhance the activity of an enzyme. Enzyme
design has fruitfully shown its worth in producing new metabolites, to allow
new pathways for reactions to occur and to convert certain compounds into
others [86,87]. To achieve the goal of enzyme engineering one can alter the
substrate specificity (e.g., NADP* versus NAD™T) and catalytic efficiencies
without altering the overall reaction of enzymes [86,88,89].

The ultimate goal of redesigning enzymes is to enhance their catalytic
efficiency, bearing in mind the properties of enzyme structure and chemical
reactions which closely resemble the enzyme reaction in nature [90].

Two complementary approaches have been developed over the past decades
for enzyme engineering: directed evolution and rational design [91]. Directed
evolution mimics the natural evolution process in the laboratory which could
be achieved via two different pathways, one by randomly recombining a set
of related sequences(e.g. gene shuffling) and the other by random changes
in one protein sequence (e.g. error prone PCR). Whereas rational design
involves alteration of knowledge-based specific and selected residues in a
protein to cause predicted changes in function, which are introduced by
site-specific mutagenesis.

Understanding catalytic structure has potential application in improv-
ing the enzymatic activity by selectively introducing single point mutations
in the proteins [87]. For example, mutation of His94 to Asn uncovers an
aldolase activity from L-ribulose-5-phosphate epimerase, which is a key en-
zyme in the bacterial arabinose metabolic pathway. This mutant is able to

perform aldol condensation, which was not present in the wild type [8].
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2.4.2 Drug Discovery

The use of drugs to treat various maladies has a long history, but the modern
pharmaceutical industry, which is based on science (rather than tradition or
superstition), is a product of the twentieth century. Identifying the target of
disease is not sufficient in order to achieve successful treatment, a lead drug
needs to be developed. There are many aspects that should be considered
while engineering a drug. For example, a drug must influence the target
protein in such a way that it does not interfere with normal metabolism [92].
Bioinformatics methods have been developed to virtually screen the target
for compounds that bind and inhibit the protein. Bioinformatics methods
and tools play a vital role in every aspect of drug discovery, drug assessment
and drug development [93,94].

Typically, drug discovery starts by identifying the target protein, choos-
ing a biochemical mechanism involved in a disease condition, and the process
is completed by approval from FDA, Food and Drug Administration.

In recent years, many major pharmaceutical companies have invested
heavily in high throughput screening (HTS) [93,94]. Not only conventional
multivariate statistical methods, i.e. principal components’ analysis and
partial least squares, but also sophisticated machine learning methods are
of great utility and continue to improve commercial tools [92].

Encouragingly, the machine learning methods have shown their potential
to use chemoinformatics descriptors for developing methods for better drug
targets [92]. Using chemoinformatics descriptors, which combine chemical
properties and high throughput screening measurements, a classifier can be
trained for ‘virtual screening’ for discovering molecules with specific thera-
peutic target affinities from potentially millions of representations [3,92,94].

In biochemistry and pharmacology, an active area of study is to tar-
get enzyme inhibitors as drug molecules [53]. During the lead compound
screening, protein function prediction can impact on target selection. In
cases where experimental information is not available, in silico function pre-
diction methods can prove rewarding to provide functional insight for the

target protein [53].

2.4.3 Clinical Implications

Enzymes play a major role in analytical diagnosis [6]. Due to their specific

and selective nature, they are preferred as diagnostic analytes. The mea-
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surement of the enzymes in the serum level indicates damage in the tissue.
For example, when a physician performs an assay for liver enzymes, the
purpose is to indicate the potential damage to liver cells.

Alkaline phosphatase (ALP, MACIiE: M0044, EC 3.1.3.1) is a hydrolase
enzyme which is responsible for removal of phosphate group in many types of
molecules. In children, these enzymes are important for the growth of bone.
Increase in the concentration of these enzymes could lead to rheumatoid
arthritis. Low concentration of such enzymes, which is rare, could cause
hypophosphatasia [6].

Another such example is D-alanine transaminase (ALAT, MACiE: M0066,
EC 2.6.1.2), commonly found in plasma. Clinically, the concentration of this
enzyme has been used to diagnose hepatocellular injury in order to deter-
mine liver health [6].

An increase in our understanding of how enzymes work will surely have

implications for the clinical treatment of disease.

2.5 Summary

The existence of a complex relationship between structure and function im-
plies that there is a richness in the diversity of function that is still uncov-
ered. This kind of work has the potential to be applied in enzyme tech-
nology, which is one of the corner stones of Industrial Biotechnology [95].
The benefit of knowing the structure-function relationship is to guide the
experimental work such as site directed mutagenesis, protein-protein inter-
action studies and identification of ligands (e.g. inhibitors). The research in
this area involves both fundamental and applied enzymology, biocatalysis,
molecular modelling, structural biology and diagnostics. The overall goal
is to develop new and more sustainable products, processes and services to
meet human needs or to improve processes to produce existing products
from new raw materials and biomass.

In summary, we can see that the structure-function relationship is com-
plex, and annotating function of newly discovered proteins is not as straight-
forward as searching through a database. Here, we have explored the com-
plex relationship between sequence, structure and function. In our opinion,
the development of computational technologies will lead to more productive

exploitation of the information contained in such data.
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The next chapter is about data and databases, where we discuss in detail
the databases from which we have extracted information for our work in this

thesis.
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Data and Databases

T \NZYMES are proteins which catalyse the chemical reactions necessary to

|/ support life and significantly enhance the rate of biological processes.
Traditionally, enzyme functions are classified based on biochemical reactions
using a system by the Enzyme Commission (EC) of the International Union
of Biochemistry and Molecular Biology (NC-IUBMB)! [5]. The EC sys-
tem represents the hierarchy based on the overall catalytic transformation,
which fails to represent the correlation between structure and function [83].
To get a better understanding of the structure-function relationship and for
predictability of function we require a good quantitative representation of
enzymatic function. For this the data should be quantitative, and compu-
tationally accessible, informed by sequence and structure to enable use of
genomic information for functional inference, and other applications. In this
chapter, we discuss some databases and attributes that are derived to rep-
resent enzyme function at overall and mechanistic levels to get some insight
into enzymatic functions.
A great deal of information [90] exists for enzymes in well known databases,

including their 3D structure (CATH [96] and SCOP [97]), sequence (UniProt
Knowledgebase?), catalytic reaction (Mechanism, Annotation and Classifi-

cation in Enzymes® [98]), for metabolic pathways (Kyoto Encyclopedia of

!'NC-TUBMB: http://www.chem.qmul.ac.uk/iubmb/enzyme/
2UniProtKB: http://www.uniprot.org/
SMACIE: http://www.ebi.ac.uk/thornton-srv/databases/ MACIE/
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Genes and Genomes: KEGG*) and kinetic data (BRENDA® [99]).

Some databases combine various information on protein structure, func-
tion, and catalysis to explore structure-function relationships, such as Struc-
ture - Function Linkage Database (SFLD® [100]) and Enzyme Catalytic
- mechanism Database(EzCatDB” [101]) . Also, databases such as Fun-
Tree [102] map available information of enzyme function onto the phylogeny
build based on protein structure to explore evolution of enzyme function.
Moreover, the Caetano-Anollés group has developed Molecular Ancestry
Network (MANET?®) to facilitate evolutionary studies [103]. Such applica-
tions represent interesting and exciting ways to explore evolution.

In this chapter, we discuss resources that we use in our work to explore
and understand enzyme functions. The data for overall study in this thesis
is retrieved from the MACIE database. We also discuss the importance
of data management in our work. By the definition of Bioinformatics (see
Definition 2), it is clear that organising and arranging the data is important

to get a clearer and better understanding of the relevant scientific questions.

[Deﬁnition 2 (Bioinformatics) ]

bio - informatics: bioinformatics is a tool to help understand the
conceptual biology in terms of molecules and applying ‘informat-
ics techniques’ and to organise the informatics associated with these
molecules. In other words, bioinformatics is an information man-
agement system to address scientific questions for molecular biology

and its applications. This definition is adapted from [104].

3.1 Enzyme Mechanism Reactions Database

Our understanding of enzyme structure and function applies to the problems
in enzyme engineering and drug design [83,105]. In this section, we discuss
the databases dedicated to enzyme function at overall and mechanistic levels.

Also, we discuss various quantitative representations of enzyme catalysis.

*KEGG: http://www.genome.jp/kegg/
*BRENDA: http://www.brenda-enzymes.info/
SSFLD: http://sfld.rbvi.ucsf.edu/django/
"EzCatDB: http://mbs.cbrc.jp/EzCatDB/
SMANET: http://manet.illinois.edu/
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3.1.1 MACIE Database

MACIE integrates a wide range of enzyme reactions with details of stepwise
chemical transformation in the reaction [98,106]. MACIE is a publicly avail-
able resource for enzyme reactions. The home page of MACIE (as shown
in Figure 3.1) illustrates various search possibilities from the database such
as by enzyme name, MACIE entry, by EC code, by CATH code as well, for
information regarding enzyme mechanisms if known. MACIE holds entries
for each EC sub-subclass representative, where the crystal structure of an
enzyme is available in the PDB, and sufficient evidence of its mechanistic
steps exists in the literature. The reaction steps of enzymes are thought
to be an evolutionary unit of enzyme function evolution [107], which is the
minimal unit present in the database to study. Such a database is valuable
to advance our knowledge of the chemistry of enzyme reaction mechanisms
and also for better understanding how enzymes adapt their chemical mech-
anisms under evolutionary pressure.

The current version of MACIE(V 3.0) possesses 335 enzyme entries [108].
An example of MACiE’s representation of mechanism of catalysis, M0033
(EC Number: 5.1.99.1 ;| corresponds to methylmalonyl-CoA epimerase), is
shown in Figure 3.2. The distribution of enzyme folds in the database is as
follows: out of 335 entries there are 321 entries which are unique functions
(EC level 1) at the 4th level of the EC number. These 335 enzyme entries
are associated with 308 enzyme entries which are assigned to a CATH H
homologous superfamily; the rest of the enzyme entries are not assigned to
the CATH H-level superfamily. These 308 enzymes are associated with 236
unique CATH-H superfamilies.

A survey of the MACIE database [98] suggests that there are important
catalytic residues such as histidine, cysteine and aspartate: these residues
are more likely to act as reactants rather than spectators. The most com-
monly occurring mechanistic step types are proton transfer and nucleophilic
reactions, which are supported by the generally nucleophilic nature of the
naturally occurring amino acid residues [106]. Such studies suggest that
MAGIE possesses data that reveal the general trends in enzyme catalysis
over a broad base of different enzyme reaction mechanisms and can be used

for further such studies.
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Figure 3.1: This figure illustrates the homepage of the MACiE database that
provides various gateways for searching information on enzymatic reactions.

3.1.2 Components of MACiIE

Information provided in MACIE can be divided into catalysis specific infor-
mation and non-catalysis specific information (see Table 3.1). In the follow-
ing section, we discuss the catalysis specific information and the quantitative
representation of the data fetched from MACIE.

Table 3.1: Annotation Components in MACiE

Catalysis specific information Non-Catalysis specific information

Enzyme name PDB code

EC code non-catalytic UniProt Code

Catalytic CATH domain non-Catalytic Domain CATH code
Reactant and products Species name

Bond involved and formed, cleaved and changed in order Other databases such as KEGG, GO, SFLD
Reactive centres Literature

Overall Reaction comment
Mechanistic annotations

3.1.3 Catalytic Information Available in MACiE

Here, we consider only catalytic information from the MACIiE database that
is appropriate to design scaffolds for engineering new functions, such as cat-
alytic residue and mechanistic step types. To understand enzymatic function
we use bond involved, formed, broken and changed in order, and quantify
these features into chemoinformatic descriptors [20]. We choose five descrip-
tor sets to represent enzymatic reactions by using fingerprints from [20] and

similarity scores using [33]. The human designed descriptor is designed in-
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Figure 3.2: This figure shows an example of the overall reaction and catalytic
steps of M0033 represented in MACIiE. M0033 is a member of isomerase
(enzyme name: methylmalonyl-CoA epimerase (EC 5.1.99.1)).

tentionally to express the important and correlated features of enzyme activ-
ity. One would expect to get accurate function prediction if the quantitative
representation of enzyme function follows the definition of EC classification.
Here, we discuss chemoinformatics descriptors to understand ‘best’ features
from enzyme function clusters (detail in Chapter 4), whether representation
in terms of mechanistic steps is better for enzymatic function prediction
(detail in Chapter 5) and the evolutionary role of these enzymatic functions
(detail Chapter 6). Also, we discuss the mechanistic annotations retrieved
from MACIE for Chapter 4 and 6.

Human Designed (HD): This descriptor is designed in order to rep-
resent the specific features involved in enzymatic activity. These features
are based on the overall reaction, not mechanism. For example; f:X-H, the
total number of bonds to hydrogen formed. Some features quantified in this
descriptor are deliberate attempts to correlate with specific EC classes, such
as water.OH-.su is set to 1 whenever water (or OH-) is a substrate on the
left hand side of the overall reaction equation, it should take the value 1 for
all EC 3._._ .. Moreover, one feature also calculates the difference be-
tween the molecular weight (Mod__Diff) of the largest substrate and largest
product, this is specifically beneficial to detect EC 5._ . .
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Overall Bond Change (OBC): This descriptor is designed based on the
overall reactions of enzymes. Holliday et al. [31] list the number of covalent
bonds between a given pair of elements i.e. count both the number and
the bond change. For instance, the descriptor C.C_0.1 gives the number
of carbon-carbon single bonds formed in the reaction, O.0O_ 2.1 is the num-
ber of oxygen-oxygen double bonds in the starting materials that become
single bonds in the products. These descriptors depend only on the overall

reaction, not on mechanism.

Overall Reaction Similarity (OS): The algorithm computes the over-
all reaction similarity of any two of the 260 mechanisms present in MACiE
V 2.4. The similarity score is the Tanimoto coefficient of the bond changes
in the reaction. Due to the nature of similarity matrix, also to prevent over-
fitting, similar columns and rows are deleted for training the model. These

numbers range between 0 and 1 where 1 means the identical reaction.

Composite Bond Change (CBC): MACIE also represents stepwise re-
actions of the reaction pathways. This information is represented [106] in
this descriptor. The Composite Bond Change descriptor is derived by sum-
ming all bond changes in a stepwise reaction mechanism; hence they depend
on mechanism, not just on overall reaction. This means that, for exam-
ple, a C-O single bond formed in one step and broken in a subsequent one
will appear as both C.O_0.1 and C.O_1.0 in the Composite Bond Change

description of the mechanism.

Mechanistic Similarity (MS): The mechanistic similarity is computed
by first aligning the steps of two reactions using a Needleman-Wunsch algo-
rithm, as explained in [33]. The similarity is calculated in both directions,
first canonical in MACIE and then reverse, the best similarity out of two is
selected for further analysis. Thus, the range of similarity score is between

0 and 1 where 1 means identical mechanism.

Definition of molecular mechanism (mechanistic step types): For
enzyme mechanistic step type definitions, the data are retrieved from the
MAGIE database, specifically the functional annotations describing the chem-

ical nature of individual reaction steps; frequently observed examples are
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‘proton transfer’ and ‘bimolecular nucleophilic substitution’. These MA-
CiE annotations relate specifically to the steps of the mechanisms by which
the reactions occur, rather than to the overall chemical transformation; the
EC number covers the latter. This is one of the important and interest-
ing features in MACIE; that it provides mechanistic annotations® [106] or
mechanistic definitions for each step of the catalytic reaction. For example,
in MACGIE, M0033 (methylmalonyl-CoA epimerase, EC 5.1.99.1) uses three
mechanistic steps to convert substrate ((R)-2-methyl-3-oxopropanoyl-CoA)
to product ((S)-2-methyl-3-oxopropanoyl-CoA) by using two mechanistic an-
notations’: ‘proton transfer’ and ‘assisted keto-enol tautomerisation’. There
are 51 mechanistic definitions available in MACIiE'?, among which ‘proton
transfer’, ‘bimolecular nucleophilic addition’ and ‘unimolecular elimination
by the conjugate base’ are the most commonly preferred annotations in order

to complete the reaction (see Figure 3.3).

3.1.4 Definitions of Enzyme Function

Enzyme Commission number All characterised enzymes have an FEn-
zyme Commission number (EC number), also known as ITUBMB’s Enzyme
nomenclature system [5], that represents the overall chemical transforma-
tion of a substrate to a product. This is a very popular system to classify
enzyme activity. The classification system is a hierarchy where the reaction
is divided into 6 classes, (oxidoreductases: EC 1, transferases: EC 2, hydro-
lases: EC 3, lyases: EC 4, isomerases: EC 5 and ligases: EC 6), which are
then split at a further three hierarchical levels. The second level subclass
and third sub-subclass usually describe the bonds or functional groups of the
enzymes. The fourth level defines the actual substrate in the reaction. Iden-
tifying and annotating enzyme function is important for biological, medical,
environmental and industrial problems.

Although the EC number system is very useful for many tasks, this
system fails to reflect any mechanistic, sequence, protein structure or evo-
lutionary information. Its design represents only the overall reaction of an
enzyme, which makes it difficult to use for global classification or compar-

isons of biochemical activities. Indeed, the classification was designed before

9“mechanistic annotations" is used interchangeably with “mechanistic step types"

10T he reaction definitions are available in following URL:
http://www.ebi.ac.uk/thornton-srv/databases/ MACiE /glossary.html
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Proton transfer
A reaction in which a proton is transferred from one reacting species to another

Bimolecular Nucleophylic Addition
An addition of a nucleophilic species over a n-bond or another species.
The reaction involves the collision of two species in its rate determining step.
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Bimolecular Nucleophylic Substitution

A nucleophilic substitution which proceeds with second order kinetics, i.e. the rate
determining step of the reaction involves the collision of two chemical species.
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Unimolecular elimination by the Conjugate Base

N

A unimolecular elimination reaction in which conjugate base species eliminates an
atom or group from itself to form a double bond (or cyclic compound). The actual
elimination mechanism is shown on the blue box.
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Figure 3.3: This figure illustrates the definitions of the mechanistic step
types, which include fundamental building blocks of enzyme chemistry: ‘pro-
ton transfer’, ‘bimolecular nucleophilic addition’, ‘bimolecular nucleophilic
substitution’, and ‘unimolecular elimination by the conjugate base’. We
follow MACiE’s terminology, though the latter could perhaps be better de-
scribed as ‘unimolecular elimination from the conjugate base’, being the
second and last step of the ElcB ‘unimolecular elimination via the conju-
gate base’ mechanism. These definitions are adapted from MACIE glossary
www.ebi.ac.uk/thornton-srv/databases/MACIE/glossary.html

much information concerning enzyme structures and mechanisms was avail-
able.

MACIE is designed to be as complete as possible at the 1st, 2nd and 3rd
levels of EC, but only representative at the 4th level. Its coverage, relative
to the numbers of nodes for which the PDB structures exist, is 6/6 (1st
level); 54/57 (2nd level); 165/194 (3rd level); 249/1547 (4th level) according
to figures collated in 2010 [31,98,106].

QuickGO Gene Ontology (GO) is an impressive consortium for the de-

velopment of control vocabularies for shared use in different domains [109].
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The GO database represents the relationship between gene and gene prod-
uct information across all species. The GO terms describe the functions at
three levels: molecular functions (the activity described at the molecular
level that the protein performs), biological process (assemblies of proteins
and their functions such as in a metabolic pathway) and cellular compo-
nents (the location where a protein performs its function). A review [110]
discussed shortcomings of the GO database. One of the major shortcom-
ings of using annotations from GO [111] is how to deal with a term that
is represented in several, possibly overlapping, ontologies. For example, in
MetaCyc [112] contains a term for which the ID is ‘NAD BIOSYNTHESIS
IIT’. This term is synonymous to GO:0019360 in GO, which corresponds to
nicotinamide nucleotide biosynthesis from niacinamide.

One can also find GO information in MACIE entries. For example,
MO0033 (enzyme name:methylmalonyl-CoA epimerase, EC: 5.1.99.1) suggests
two molecular functions: isomerase activity (GO:0016853) and methylmalonyl-
CoA epimerase activity (GO:0004493). This information is directly anno-
tated using AmiGO!.

3.2 Metal-MACIiIE

The Metal-MACIE database is a sister database of MACiE, possessing com-
plementary information on enzyme metal cofactors!? [24,113]. The role of
metal cofactors for enzymatic activity is well established. This information
is collected and gathered in Metal-MACIE, providing properties and roles
of metal ions involved in the reaction [113]. Currently, there are only 188
enzyme entries from MACIE that are metalloenzymes. These enzyme en-
tries can be examined using various search terms such as using MACIE id,
EC number, enzyme name or according to metal ions (Figure 3.4). The en-
tries are selected based on the metal-dependent enzymes by annotating the
enzyme structure using the PDBSProtEC database!® [114]. Where enough
evidence was not present to suggest the use of a particular metal ion in
enzyme activity, a literature search for such evidence was conducted.

It appears that the metal ion which is most often involved in the function-

ing of enzymes is magnesium, followed by iron and zinc (see Figure 3.5). We

" AmiGO: http://amigol.geneontology.org/cgi-bin/amigo/go.cgi
2Metal-MACIE: http://www.ebi.ac.uk/thornton-srv/databases/Metal_ MACIE/home.html
BPDBSPortEC http://www.bioinf.org.uk/pdbsprotec/
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Figure 3.4: This figure shows the homepage for Metal-MACIE where one can
retrieve properties and roles of metals in the catalytic mechanisms present
in MACIE.

found that in many Metal MACIE entries, the enzyme uses a two-metal ion
catalysis that presumably involves the same metal ion, for example M0058
(adenylate cyclase, EC: 4.6.1.1) uses two metal ions and both are Mg?* in
the cell. For Figure 3.5, we consider the occurrence of one metal ion only.
Figure 3.5 shows that magnesium is the most abundantly used metal co-
factor, while second place goes to iron which almost every time is used in
oxidoreductase reaction (EC 1._. . ). Whereas, we found that zinc as a

metal cofactor is not specific to any one type of biocatalytic reaction.

3.3 Molecular Ancestry Network (MANET)

The MANET database [103] contains information on enzyme structure traced
onto an evolutionary time line. MANET explores the evolution of modern
metabolism by mapping enzyme domain structural data from SCOP [97,115]
onto the KEGG, and is based on phylogenetic reconstructions depicting the
evolution of protein fold architecture (shown in Figure 3.6). The protein fold
architecture age definition is designed and evaluated by Gustavo Caetano-
Anollés et. al. [116] to explore the usage of enzymatic function in the dataset
of folds.

Biocatalytic mechanisms operating in metabolic enzymes were traced

along an evolutionary timeline of appearance of domain structures defined
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Figure 3.5: This figure shows the distribution of metal cofactors in the
catalytic mechanisms of metalloproteins in the MACIE database, Part A.
Part B represents the metal distribution specific to EC top class.

at the homologous superfamily (H) level of structural abstraction of CATH.
Hereafter, we refer to these fold superfamilies as H-level structures. CATH
unifies domain structures hierarchically from bottom to top into sequence
families (SF), homologous superfamilies (H), topologies (T), architectures
(A) and classes (C). H-level structures are considered evolutionary units.
The timeline (nd) was built directly from a phylogenomic tree describing
the evolution of 2,221 H-level structures [117].

3.4 Challenges and Limitations in Bioinformatics

3.4.1 Challenges Faced in Bioinformatics

Research in bioinformatics presents a number of exciting challenges and
opportunities for biologists, computer scientists, information scientists and
in particular bioinformaticists. These challenges are related to the current
status of the flood of raw data, and evolving knowledge arising from the
study of the genome and its manifestation. The challenges faced in bioin-

formatics and its applications have been reviewed multiple times by various
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Figure 3.6: Principles of database design: The metabolic MANET database
links the KEGG database, the SCOP database and a database of phyloge-
nomic trees of protein fold architecture.

authors [104,118-121]. By the definition of bioinformatics (see Definition
2), as mentioned in the beginning of this chapter, data mining, curation and
pre-processing are among the exciting challenges [119] we have addressed in
our work. These are important processes to deal with at the beginning of
any study. Data curation and pre-processing are equally important whether
treated together or separately. These issues together will condition the qual-
ity of pattern discovery as well as reduce the danger of over-fitting to the
statistical models which further improves the interpretations.

It is important to gather relevant data to get better analysis, for example
adding sequence or catalytic sites serves to facilitate better predictions of
unannotated enzymatic function [23]. In Chapter 5, we have used mecha-
nistic enzymatic activity to predict enzymatic function. Here, we use var-
ious pre-processing stages for the data in order to improve the prediction.
There are various web sources that integrate relevant biological informa-
tion together to give a clearer picture, such as SFLD, MACiIiE, FunTree and
MANET. With these resources available it is important to perform rigor-
ous data culling. This information is used for our work that is discussed in
Chapters 4, 5 and 6.

3.4.2 Caveats

For the purpose of our work in this thesis we have retrieved data mainly

from the MACIE database. In addition to MACIiE we data mined mech-
anistic annotations, enzyme metal (MACiE-Metal), GO annotation (GO),
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enzyme pathways (KEGG) and evolutionary time line (MANET). Thus, it
is important to mention that the result and interpretation mostly depends
on the information in the database, which in turns depends on the manual
extraction of information from the primary literature. Thus, the annotation
used in our study is as good as that in the literature. There are some caveats
or limitations that could lead to difficulties in interpretation; for example, in
serine protease like mechanisms some literature studies note oxyanion hole
stabilising residues and some do not.

Based on this potentially inconsistent information, each entry in MACIiE
is evaluated manually [106]. It should be noted that the information in the
literature in turn depends on the accuracy and reliability of the structural
data in the PDB, and other chemical and biochemical studies from which
the catalytic residues and mechanisms have been proposed. In cases, where
more than two possible mechanistic step pathways were noted, the most

likely pathway was reviewed and selected by an expert.

3.5 Summary

In this chapter, we discussed the resources used in this work. We delve into
the quantitative representation of the data as chemoinformatics descriptors
coupled with the importance of data culling and pre-processing, which is
at the heart of all interpretations. We also discussed the advantages and

disadvantages of the resources we are using.
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Quantitative Global Analysis of
Enzyme Reaction Mechanisms

N this chapter we will discuss the clustering analysis of enzyme reaction
mechanisms. Here, we analyse clusters of chemical mechanisms defined by
chemoinformatics descriptors, using unsupervised global analysis. These de-
scriptors map the chemical changes which are represented with curly arrows
to track the electron movements. These descriptors have been explained in
the previous chapter (Chapter 3). In this study, we use two descriptors:
OBC and CBC. Formally, the enzyme reaction is defined by EC annota-
tion, which lacks information for mechanistic steps. There is supporting
evidence in the literature [33,122] to suggest that in nature there are some
examples of different overall reactions following similar reaction steps to ef-
fect the reaction. Studies of this kind give better insight at the finer level
of enzyme function classification, further improving our understanding of
structure-function relationships.

Fuelled by the availability of chemoinformatics resources, several meth-
ods have emerged to quantify overall [36,69,123,124] and mechanistic [33]
enzyme reactions. In this chapter, we investigate the significant patterns of
reaction entities defined from MACIE [31,106]. For this, we first clustered
enzyme reactions using PFClust [1], seeking biologically rich information
provided in the clusters of enzyme reactions.

Here, we will first discuss some similar studies where clustering analysis
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is performed using enzyme reaction, followed by brief descriptions of various
clustering algorithms. Next, we describe the results produced by PFClust for

enzymatic reaction descriptors and further its biological enrichment analysis.

4.1 Previous Studies of Cluster Analysis

Traditionally, enzyme overall chemical functions are manually classified by
experts using the Enzyme Commission (EC) number system, lacking any
evolutionary and mechanistic information. This EC system is a popular
label to annotate enzymatic function and has many benefits. However, with
the increase of data and computational technology it is of importance to
design an automated system that can annotate newly discovered enzyme
functions. A study of a similar nature was conducted by [69] where they
represented overall enzyme chemical reactions in a vector fashion to optimize
these enzymes’ reactions into 21 groups, which is far more clusters than the
six overall reactions in the EC classification. This suggests that we need
robust representation of the data and method to determine the enzymatic

reaction groups.

4.2 Data

The data was retrieved from the MACIiE database [98]. MACIE is a repos-
itory of enzymatic reactions at overall and stepwise reactions. To find the
similar patterns of enzymatic reaction, we use the OBC and CBC' defini-
tions by Holliday et al. [31]. The data matrix of the counts of bond for-
mation, bond breakage or bond order change between each pair of elements
are reported in the columns of the data matrix, with each enzyme reaction
corresponding to one particular row. Next, the Tanimoto similarity of the
enzyme reactions are calculated using “proxy” [125] packages in R [126]. For
each of OBC and CBC, we calculate the similarities of all pairs of reactions,
and each reaction is represented by a vector comprising 320 similarities.
For further investigation, data from different resources were mapped onto
the clusters formed by PFClust. Resources such as mechanistic step types
(or mechanistic annotation) are available in MACIE, for example ‘proton
transfer’, ‘electron transfer’, ‘bimolecular nucleophilic addition’ and ‘uni-

molecular elimination by the conjugate base’. Functional annotations were
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taken from QuickGO database [127,128], for metal-cofactor we have used
the Metal-MACIE database [24,113]. For pathway analysis we gather infor-
mation from the KEGG database [129].

4.3 Motivation

Global study of enzyme reaction mechanisms may provide important in-
sights for better understanding of the diversity of chemical reactions of en-
zymes. Our motivation is to endeavour to address the challenge of how
the chemical mechanisms of enzyme reactions cluster in a space defined by
chemoinformatics descriptors, using unsupervised global analysis. Moreover,
we designed a clustering algorithm, PFClust, which is parameter free.

For a global analysis of enzyme mechanisms, we have performed an un-
supervised clustering analysis, the idea being to find the closest reaction
neighbours. Before performing clustering analysis, we asked two questions:
first, how to determine the number of clusters, and second, how to validate
the results? Validation plays an important role in the analysis. Using an
internal (Silhouette width) validation measure, one can decide the optimal
number of clusters by selecting the best score from a range of possible num-
bers of clusters, and an external (Rand Index) validation measure can be
used to compare the results with gold standards. Initially, we used well-
established clustering algorithms such as hierarchical clustering, k-means,

and density based clustering. Finally, we analysed results of PFClust.

4.4 Brief Introduction of Various Clustering Algo-

rithms

Clustering is a very useful approach for discovering groups, identifying inter-
nal distribution and patterns. The main idea behind clustering algorithms
is to group the entities together based on similar properties. For example,
imagine a basketful of different colour (yellow, red, green) balls: a cluster-
ing algorithm will group these balls into homogeneous groups based on one
property, in this case it is colour [130]. Broadly, the clustering algorithm
can be grouped into three categories, first, hierarchical clustering [131], sec-
ond, partition clustering [132,133] and third, density based clustering [134].

These algorithms are well documented and have been applied to various
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research fields.

It is not uncommon practice, in biology, to use cluster analysis for de-
termining natural structure in data. Clustering analyses have predominated
not only in microarray data analysis [124,135-138] for the interpretation of
the results but also in neuroscience [139] and also for bioinformatics anal-
ysis [135,136], image analysis [140], pattern recognition [138] and in phar-
maceutical industry [141]. The simple task of clustering, by definition, has
many limitations attached to it. In the following section, we will briefly

describe various clustering algorithms and their limitations.

4.4.1 Hierarchical Clustering Method

For a given dataset D with n objects, in this study n = 320 enzymes. A
hierarchical algorithm clusters a given set of n objects in stepwise fashion.
First, the two closest objects are linked together, the closeness of the ob-
ject is evaluated based on a (dis)similarity measure. There are various ways
to calculate (dis)similarity, for example Euclidean distance or Tanimoto co-
efficient. In this study, we have calculated Tanimoto coefficients [125] for
counts of enzyme reaction entities as a vector. The next step is to find the
next connection between the first group that will lead to second level and
so on. These steps are iterated until no data points are left to be connected
as clusters [131].

The clustering algorithms preferring hierarchical strategy such as agnes
seek the hierarchical structure in the data, where the objects are linked
together. There are two approaches in hierarchical clustering algorithms:
the top-down (also known as Divisive) and bottom-up (also known as Ag-
glomerative) approach (for visual illustration see Figure 4.1). The difference
between these two algorithms is that in one the clustering starts by consid-
ering every data point to be included in one cluster, and in the other, each
data point is considered as a singleton before starting the clustering. The
disadvantage of using this clustering algorithm is the vagueness of termina-
tion criteria. Without prior knowledge of data, it is difficult to determine

the cut-off value for determining the number of clusters.

4.4.2 Partitional Clustering Method

In partitional clustering algorithms [132,133], such as in the k-means clus-

tering algorithm [133], one tries to find the centre of highly dense group
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Agglomerative A,B,C,D,E
Pas o ___Level l

Level 2

Divisive

Figure 4.1: This figure illustrates the strategy of hierarchical clustering
where top-down arrow suggests divisive clustering and bottom up suggests
agglomerative clustering. Number of clusters can be decided at level 1 or
level 2. In some cases, it is possible to get A, B, C, D and E (in this exam-
ple) all in different clusters when using agglomerative clustering algorithm.
makind A, B, C, D and E all singletons.
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iteratively till a homogeneous group is formed. The partition clustering
algorithm finds clusters simultaneously.

In k-means clustering, in the first step k clusters are either selected ran-
domly or input by assigning as cluster centres, then each object is assigned
to the nearest centre. Next, recalculation is done by calculating the mean
of the elements in the cluster provided. Again the average of the cluster
is treated as the next centre point and recruits new members iteratively.
These steps are iterated until no reassignment of object occurs (see Figure
4.2). The obvious limitation found in this algorithm is to decide the number
of clusters (k), as an input parameter. Deciding this parameter is not easy
if one is working with a new dataset. In addition, this algorithm is sensitive
to outliers and noisy data. Nevertheless, this algorithm is popular because

of its easy interpretation and simplicity of implementation [142].
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Figure 4.2: This figure illustrates k-means clustering algorithm. In this
given example, when k is selected to be two, there are two possible ways
this algorithm will optimise the groups, while when k is selected to be four
it will find four groups in the data provided. In this algorithm parameter k
plays an important role for determining the structure of given dataset.

4.4.3 Density-Based Clustering

Density-based clustering [134] clusters a highly dense group of objects to-
gether, separating them from the other density-based clusters. The first step
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is to calculate densities of the given dataset and then to determine the num-
ber of clusters of maximum density. In this algorithm, clusters are regarded
as regions in the data space in which the objects are dense, and which are
separated by regions of low object density (noise). Such algorithms are very
efficient to handle large and noisy datasets. An example of density-based
clustering is DBSCAN [143].

The DBSCAN algorithm recognises clusters of local density using two
global parameters: € - (Reachability distance) and MinPts (minimum num-
ber). A cluster in this algorithm is defined if at least two objects lie within
defined radius ¢, also known as € - neighbourhood, and there is a minimum
number of points, MinPts, within that distance. For example, in Figure 4.3,
instance p is a part of a cluster C' and instance ¢ is density reachable from
point p with minimum number of points if ¢ is also a part of cluster C'. Here,
q is a core object which obeys the reachability distance containing at least
minimum number of objects. As a consequence, it can find arbitrary shapes
of the cluster in the given dataset. The results are highly dependent on
these two parameters. The popular application of this algorithm is in image

analysis as well as in zoology, specifically for species divergence [134,143].

O R B,
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p : border point
q : core point

Figure 4.3: This figure illustrates a part of the algorithm to find the density
population in the data based on two parameters explained in main text.
This figure shows the connection between the core data point ¢ and border
point p. Definition explained in main text.
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4.4.4 PFClust: Parameter Free Clustering

Our motive in this work is to overcome the limitations of deciding the num-
ber of clusters, hence we aim to design a novel clustering algorithm PF-
Clust! is to overcome the pitfalls of current methods. The idea behind this
algorithm is to find “meaningful” groups, where enzyme reactions can find
themselves clustered with similar reactions as neighbours. This clustering
algorithm is suitable when no prior information, except similarity matrix,
is available. This algorithm is discussed in four sections; first randomiza-
tion, from which 20 candidate thresholds of intra-cluster similarity (7;) are
retrieved, second the clustering for each threshold, third, cluster optimiza-
tion, and fourth, once the best threshold (7") has been selected, convergence.
The PFClust algorithm is also illustrated in Figure 4.4.

Step 1 Randomization: The first step in this clustering analysis is to estimate
the thresholds. For a given data set, a random number of clusters (k;
1 < k < n, where n is the number of data points) are chosen and each
data point is randomly assigned to a cluster. For each cluster i, the
mean intra-cluster similarity was computed using Equation 4.1: which

is defined as the expected value of the distribution,

BIX{] = (71) >3 Saaq) (41)
2

where n; is the number of members of the cluster i and Soja is the
similarity between elements o;,a,. This step is repeated N = 10"
times, where r is the iteration of the algorithm. We retrieved 20 T;
from the intra-cluster mean similarity, F[X;], distribution at 95% -
99.75% significance levels, that is the 5% of the clusters with the high-
est mean intra-cluster similarities. Using this number of thresholds
provides a way of reducing the random element of our sampling. This

step is illustrated in Figure 4.4 in Step B.

Step 2 Clustering: Now, for each T', a similarity—based clustering is performed
for the given data set. First, the two most similar elements are placed

together in a cluster. In each iteration, a new element is added to

'PFClust is designed on the JAVA platform
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an existing cluster, provided that two criteria are fulfilled. First, the
average similarity between the new element and the existing members
of a cluster must be greater than 0.85 % T', and second, the resulting
intra-cluster mean similarity must be greater than 7. The P% of T
cut-off was selected as a way to restrict the intra-cluster variation of
the similarities since, in a very tight cluster, outlier members could
be included because, even if they are distant from the other cluster
members, the total F[X] could still be above T. A value of P = 85%
of T gives the optimal results with respect to the Silhouette width
as well as the number of clusters (see Table 4.1), with multi-member
clusters and singletons being shown separately.In this way, clusterings
are obtained for each of the 20 values of T;. This step is illustrated in
Figure 4.4 in Step C.

Table 4.1: The table summarizes the performance of the different P values
for the threshold inclusion rule. The numbers of multi-member clusters and
singletons are given separately, so that the total numbers of clusters at each
P values are 36, 14, 11, 10, 10, and 10 respectively. The Silhouette width and
the average of the standard deviations of the distributions of intra-cluster
similarities in each cluster are also shown.

P Value Clusters Singletons Silhouette width Avg Std

T 30 6 0.1719 1.1740
0.95*T 10 4 0.5240 4.2715
0.90*T 10 1 0.5650 4.3176
0.85*T 10 0 0.5961 4.6604
0.80*T 10 0 0.5955 4.8175
0.75*T 10 0 0.5955 4.8175

Step 3 Cluster optimization: Here, we optimize the cluster memberships for
the clustering for each value of T;. For each point in each cluster, we
calculate its average similarity with all members of its current cluster.
If this average similarity <7, and if its average similarity with the
elements of any alternative cluster is greater than with the parent
cluster, then we move the point to the alternative cluster. Based
on the highest Silhouette width (averaged over all points, singletons
counting -1) of the outputs for each T;, the best T is selected. This
step is illustrated in Figure 4.4 in Step D.

Step 4 Convergence: The whole process (Steps A, B and C) is repeated 4
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times and outputs (clusters) are compared. Thus, we have four clus-
terings output. The Rand Index is calculated for each pair of outputs
(6 pairs) to estimate the concordance between different clusterings. If
the average Rand Index is >0.99, this means that there are no signif-
icant differences in the outputs of 4 runs, the algorithm is said to be

converged, and it stops. Otherwise, the output with the lowest average

Silhouette width is discarded, and steps A to D are repeated.

When PFClust was compared with other well-known clustering algo-

rithms (including hierarchical, partition, and density based clustering algo-
rithms) using a synthetic data set, for more detail see [1], it outperformed
other algorithms. We have explained various validation measures used in

this algorithm in the following section.

ﬂ. Dataset

C. Expectation Clustering

ExpectationIX] lustering  Final Refinement

E. Validation - Convergence

Average Rand Index

B. Threshold Estimation \

Randomly Assign Elements to Clusters

1000 * 10'time Teshol ttimation

D. Selecting the Best Threshold

Clustering with the
best Dunn Index
J o % d e

“)=> ' Dunnindex >

- F. Result

-4

Figure 4.4: This figure illustrates the work-flow of PFClust. Each step is
explained in the main text.
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Performance of PFClust Performance evaluation: The performance of

PFClust was done on the following configuration:

o Hardware: 2.2 GHz Intel(R) Core(TM) i5-3470S CPU @ 2.90 GHz,
8.00 GB RAM

» Operating system: Scientific Linux release 6.3 (Carbon)
e JVM: 1.6.0_45-b06

The time difference was significantly lower for larger dataset (size > 1000
data point) from 35000 seconds to 10 seconds [144].

Limitations of clustering methods Overall, three major limitations in
the above mentioned clustering algorithms are: first defining the number of
clusters k, second input parameters, and last validating the results. There is
no straightforward ‘best’ way to evaluate clustering methods, as the results
are dependent on the dataset provided. Different techniques often highlight
different patterns in the data, so complementary methods may be helpful
in analysing a single data set. This also makes interpretation of the results
harder. To evaluate the results, many authors combine different evaluation
measures, discussed later in this chapter, to get a clearer interpretation of
the results [135,136].

In the next section, we will discuss the work-flow of evaluating results
from different clustering algorithms using ‘clValid’ [145] and ‘fpc’ [146] pack-

ages in R. Moreover, we also discuss results from PFClust.

4.5 Evaluating Clustering Solutions

There is more than one definition of clusters depending on the dataset used
for that particular study [147]. In fact, most authors define different group-
ing criteria to cluster an item, for example, a cluster or group is formed
based on the principle of minimum distance between two items or by maxi-
mum separation of clusters. Today, with well known clustering criteria, we
need a measure that validates the output.

Validity is a certain amount of confidence that is added to the patterns

recognised by the cluster algorithms [135,147]. Validation also serves an
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important implication on the problems or limitations discussed in the pre-
vious section, by defining the number of clusters or to optimise the param-
eters [148]. Broadly, the validation methods are grouped into external and
internal validation. The fundamental difference between the two types of val-
idation method is that the external validation method uses some reference
classification method whereas there is no external label required in internal
validation methods. Both of these methods are equally important [149]. In

PFClust, we have used both validation criteria.

External Validation: Standard external validation measures take gold -
standard class labels and compare with the labels provided by the cluster
algorithm wvia contingency table of the pairwise assignment of data items.
Probably the best known index is the Rand Index (Rand, 1971) (Equation
4.2), following the simple criteria of comparing gold-standard class labels
with labels provided. The Rand Index is defined as:

a+b
AND = ——— 4.2
R a+b+c+d ( )

Where a is the number of pairs of instances that are assigned to the same
cluster in clustering (C}) and to the same cluster in clustering (C2); b is the
number of pairs of instances that are in the same cluster in Cy, but not in
the same cluster in Cs; ¢ is the number of pairs of instances that are in the
same cluster in Co, but not in the same cluster in C7; and d is the number

of pairs of instances that are assigned to different clusters in C; and Cs.

Internal Validation: In contrast to external validation, internal valida-
tion evaluates the intrinsic quality of the cluster. The qualities we are inter-
ested in here are compactness, connectedness and separation of the cluster.
Here, compactness suggests finding homogeneity of intra-cluster variance,
connectedness provides the degree of partitioning observed local densities
and groups data items together with their nearest neighbours in the data,
and separation includes the measure to quantify the degree of separation
between the individual clusters. All these aspects hold important places
in internal validation separately as well as with some combinations. The
most popular combination is between compactness and separation. Several

techniques therefore assess both intra-cluster homogeneity and inter-cluster
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separation such as Silhouette width [150] and Dunn Index [151].

The Silhouette width is a useful measure when one is seeking compact
and clear separation between clusters. Once the data is clustered the dis-
tance within and between clusters is quantified with respect to each object 7.
Suppose object i belongs to cluster A then average dissimilarity of object 7 is
computed to other members of the same cluster, this is assigned to a;. Next,
the average dissimilarity of i to all objects that are different from cluster A
is computed. Then, the minimum distance from ¢ to objects not belonging
to cluster A is recorded in b;, which is also known as neighbour of object 7.
Note that the construction of b; depends on the other clusters, so it is an
underlying assumption that there are more than one clusters. The number

of s; is obtained as following Equation 4.3.

bz' — Qg
§i = ———— 4.3
" maz(a;, b;) (43)
Another method to assess the compactness and separation of the cluster

output is Dunn Index. Dunn Index is defined in Equation 4.4.

D, = min (min dist(Cr, C1) ) (4.4)

CreC \ CieC max c,,ec)ydiam(Cy,)

where diam(C),) is the maximum intra-cluster distance within cluster
Cp, and dist(Cy, ¢;) is the minimal distance between pairs of data items i and
jwithi € Cy and j € C). Higher Dunn Index is better for a given assignment
of clusters. One of the limitations is that this method is computationally
costly. The Dunn Index measures the ratio between the smallest cluster

distance and the largest intra-cluster distance in a partitioning.

Statistical analysis: In order to find association between the clusters
and biologically relevant information we use residual test statistics, which
performs cell-to-cell comparisons within the cluster. For this test, the first
step is to summarise the data into a contingency table, to get better insight
into the clustering results. In this matrix, column is represented by the label
for each cluster (arbitrary number was assigned to cluster in order to keep
track) and row represents the counts of mechanistic annotations defined in
MACIE. The x? test [148,152] of the mechanism annotations within each
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cluster suggests a significant association between the annotations and the
clusters at P < 0.001.

Further, we examine the patterns of association within observed fre-
quency of mechanistic annotation using residual test statistics to determine
strong or weak association. For this, we arranged data into contingency
table, mentioned earlier, and calculated how much deviation of observed
frequency from the expected by using residual analysis [153,154]; Equation
4.5.

. (Observed — Expected) (4.5)
N v Expected ’

where Expected = (i =) [n. Expected is the expected frequency count

between mechanistic step type ¢ and clusters j. n; is the total number of
sample observations at cluster ¢ of Variable A: mechanistic step type; n; is
the total number of sample observations at cluster j of Variable B: Clusters
labels, and n is the total sample size. The results of this test are represented

as a heatmap in the next section.

4.6 Result

There is no straightforward way to determine number of clusters. However, a
common way to deal with such a situation is to compare different algorithms
using various validation methods hoping to get common results. Using such
a strategy and results from PFClust, we discuss the result in three different
sections: first in Part A, the comparative analysis of various clustering al-
gorithms. Second in Part B, we discuss the results from PFClust algorithm.
And third in Part C, we describe extending the results of PFClust to EC
top class.

In order to test PFClust, we used a number of synthetic 2D datasets
and the 224 protein domains in 11 CATH superfamilies. To show how
well the PFClust algorithm applies to biological questions, we discuss re-
sults of 224 protein CATH domains only. In order to validate PFClust
results, we compared results from PFClust with six other current state-
of-the-art algorithms. These are (i) the hierarchical clustering algorithm
Hierarchy [155]; (ii) the hierarchical AGglomerative NESting (Agnes), (iii)
the partitional k-means clustering algorithm [133], (iv) Clustering Large
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Applications (Clara) [156], which is based on repeated k-means clustering
of samples, (v) Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases (DBSCAN) [157] and (vi) Model-Based Clustering (Mix
Model) [158].

Direct comparison of results (k), where k is the number of clusters, for
all these clustering algorithms is not possible. Only PFClust and DBSCAN
amongst the methods considered here can determine the clusters, and in
fact the latter algorithm requires two parameters to be optimised before it
decides the number of clusters. Hence, for the five other methods, we use
the externally defined ‘correct’” number of clusters (this definition includes
singletons in the count of clusters) as a given parameter and compare how
well each algorithm clusters the data compared to the original classification.
In order to compare the different clustering approaches, we select the Rand
Index as a measure of agreement between the externally known ‘correct’
clustering and that produced by the clustering algorithms.

The agreement between the PFClust and CATH classification is nearly
perfect with a Rand Index of 0.996. There is only a minor difference be-
tween the original classification and the classification of PFClust, where
the 1q27A00 protein domain is classified as a singleton by PFClust, whereas
CATH has it assigned to the 3.90.79.10 (Nucleoside Triphosphate Pyrophos-
phohydrolase) superfamily. We also test the other clustering algorithms
against this dataset and set the number of clusters to 11 for the five algo-
rithms requiring this parameter. Figure 4.5 visually illustrates the agree-
ments and disagreements between the different clustering algorithms. We
see that Mix Model and Clara are the top performing clustering algorithms,
reproducing the exact CATH classification.

For each of the aforementioned algorithms, the Silhouette width was used
as the criterion for identifying the number of clusters similarly to the way
we ran DBSCAN. Since all the algorithms depended on a single parameter
k (number of clusters, inclusive of singletons), we varied this number from
2 to 50 and the results are shown in Figure 4.6. Note that these data are
considered separately and do not contribute to the main results described
previously, for which purpose the ‘correct’ number of clusters was instead

passed to Hierarchy, Agnes, Clara, k-means and Mix Model as a parameter.
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Figure 4.5: The results of each of the different clustering algorithms as
coloured lines. Heat map of protein domain to protein domain density simi-
larities. On the row side, the protein domains are coloured according to the
CATH classification; on the column side, the protein domains are coloured
according to PFClust.

4.6.1 Part A

To address the difficulty of determining the number of clusters, we designed
a workflow which includes results from various clustering algorithms, illus-
trated in Figure 4.7, for better interpretation of the clustering of enzyme re-
actions. In this workflow, first the enzymatic reaction (OBC and CBC') [106]
is calculated into similarity matrix using the Tanimoto coefficient. Next, us-
ing several well known validation measures we solved two criteria: first, to
find the number of clusters and second, to optimise the required parameters.
Ideally, if all the cluster algorithms agreed on single results, that could be
the best possible answer [135]. Using several well known evaluation indices,
we optimized the clustering outputs for each of the algorithms with equiv-

ocal results (Figure 4.8) that suggested the existence of between two and
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Figure 4.6: As an addendum to the main work, we test the use of the Sil-
houette width as a characteristic measure from which to decide the correct
number of clusters. We ran the deterministic methods once each. We also
ran the stochastic Clara and k-means algorithms 100 times each for every
number of clusters, k, between 2 and 50. The run with the best Silhou-
ette width for a given algorithm was selected, thus deciding the number of
clusters to report.

over a hundred clusters.

4.6.2 Part B

Here, in part B we have analysed results generated from PFClust. We feel
that this algorithm provides reasonable results without any additional in-
formation being required. We understand that our results are limited by
the annotations available in the databases. For OBC descriptor, PFClust
produced 39 clusters and 57 singletons. We found that there are 8 MACIiE
enzymes that were found to be singletons in both of the datasets; those
are: M0128 (photinus-luciferin 4-monooxygenase, EC: 1.13.12.7), M0140
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Figure 4.7: This figure illustrates the workflow designed to determine the

number of clusters using various state-of-the-art algorithms.
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Figure 4.8: This figure illustrates the performance of different clustering
algorithms using Silhouette width. Here, x-axis represents Silhouette width
and y-axis is the range of number of clusters.
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Table 4.2: The table summarizes the comparison between PFClust and the
other six clustering algorithms based on the Rand Index between the clus-
tering predicted by the method in question and the original gold standard
clusters,

Data Set 300 450 1500 3000 5000 CATH

Hierarchy  0.88 0.94 0.89 0.920 0.981 0.964
Agnes 094 097 0.83 0.820 0.976 0.906
Clara 096 098 0952 0.948 0.987 1.000
K-means 096 098 0.958 0.966 0.986 0.738
Mix Model 0.960 0.98 0.959 0.911 0.990 1.000
PFClust 0.96 1.00 0.958 0.949 0.986 0.996
DBSCAN 097 0.97 0.930 0.92 0.978 0977

(ribonucleoside-triphosphate reductase, EC: 1.17.4.2), M0145 (isopenicillin-
N synthase, EC: 1.21.3.1), M0207 (pyruvate, phosphate dikinase, EC: 2.7.9.1),
MO0212 (nitrogenase, EC: 1.18.6.1), M0286 (O - phospho - L - seryl - tR-
NASec : L - selenocysteinyl - tRNA synthase, EC: 2.9.1.2), M0294 (suc-
cinate dehydrogenase (ubiquinone), EC: 1.3.5.1) and M0297 (alkylmercury
lyase, EC: 4.99.1.2). There were 13 clusters (Figure 4.11) produced when
the data were clustered using CBC' descriptors. For further investigation,
we created a contingency table with enzyme function annotation “mecha-
nism annotation” in a given cluster. Applying x? test, we concluded that
there is an association between the mechanistic annotations and clusters of
enzymes at p < 0.001. Further “mechanism profile” is created using stan-
dardized residual analysis for further analysis. These results show fewer
clusters when clustered with CBC than OBC' descriptors, suggesting that
enzymes often use different mechanistic steps to perform similar functions.
These two distinct patterns observed in this analysis suggest that using the
EC classification system is not sufficient to annotate enzyme function. We
aim to find conserved patterns of mechanistic steps that lead the enzymes
to perform different functions.

Further, we looked for the association of ‘mechanistic annotation’ and
various other information related with enzyme function such as KEGG [129],
QuickGO [128], Metal MACIE [24] within a cluster group of enzymes (Figure
4.9), in order to get better insight of the cluster patter we found. The
“mechanism profile” retrieves strong signals as shown in heat map (Figure

4.10 and 4.11) where colour yellow represents the high (>2) association of
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the “mechanisms” within the clusters.

Cluster

N

Cluster
A

. l L l A l

08 08 08

0.6 0.6 0.6

04 04 04

02 . l 02 I I 02 .
, , N , H

GO MetalMacie Co-factor  Mech. GO MetalMade Co-factor  Mech. GO MetalMacie Co-factor  Mech.
Annot. Annot. Annot.

Figure 4.9: This figure illustrates the data mining for analysing the output
of PFClust. For this work, we retrieved data from various resources such as
KEGG, Metal MACIE, Quick GO, CoFactor to associate, and determined
the important features of enzyme reaction in each clusters.

4.6.3 Propensities of EC Classes to Cluster Together

Here, we show the pairs of reactions grouped together in the cluster with
respect to the EC top class. For this, first we calculated the pairs of reac-
tions to be grouped together out of 3 x (320) x (320 — 1) = 51, 040 pairs of
reactions in the dataset (Figure 4.12). Figure 4.12 illustrates the propensi-
ties for the different EC classes, with the OBC and CBC' in different shades
of red. To calculate propensities for different EC classes we divide each of
these class proportions by the overall value. Where the values are above
1, this indicate that pairs of top level EC class members are more likely to
cluster together than are randomly chosen mechanisms. We can see from
Table 4.3 and Table 4.4 that 29% of all possible pairs of hydrolases are clus-
tered together when clustered using OBC' dataset and 60% when clustered
by CBC descriptors. This example shows that there are more enzymes that
use similar enzymatic reaction steps to complete the reaction as a hydrolase
(EC 3). Moreover, for ligases (EC 6) it was suggested that 30% of possible

pairs were clustered together when clustered according to OBC' descriptors,
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stronger association and blue means weak.
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stronger association and blue means weak.
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whereas when clustered according to CBC' we noticed that 40% of all pos-
sible pairs were grouped together. Overall we noticed CBC has a greater

proportion of enzymes grouped together than OBC.

8

7

6

S H Overall Bond Change

4

3 Composite Bond
Change

2

l I

o M

EC1 EC2 EC3 EC4 ECS ECo

Figure 4.12: Bar plot representing the proportion of enzyme OBC and en-
zyme mechanisms pairs CBC' grouped together in the same cluster for each
EC top class, ECx (x = 1 to 6).

Table 4.3: When clustered with OBC': proportion and propensity of the
pairs of enzymes, according to the top EC class, grouped in PFClust

OBC EC1 EC2 EC3 EC4 EC5 EC6  All same EC

Proportion 0.027 0.063 0.292 0.070 0.142 0.309 0.121
Propensity 0.667 1.522 7.006 1.692 3.416 7.420 2.090

Table 4.4: When clustered using CBC descriptors this table shows the pro-
portion and a propensity for each EC top class.

CBC EC1 EC2 EC3 EC4 EC5 EC6  All same EC

Proportion 0.224 0.278 0.603 0.301 0.218 0.404 0.328
Propensity 1.104  0.88 2974 1483 1.076 1.076 1.620

4.7 Two Case Studies

It is difficult to provide a discussion of the complete results therefore here,
we discuss two case studies, and further information for complete discussion

of the results is available in the appendix Al.
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Case 1: In OBC clustering these two enzymes, M0033 (methylmalonyl -
CoA epimerase EC 5.1.99.1) and M0070 (methylmalonyl-CoA decarboxy-
lase, EC 4.1.1.41), are assigned to different clusters whereas according to
CBC clustering they are grouped together. Another MACIiE enzyme M0182
(methylisocitrate lyase, EC: 4.1.3.30) is grouped together with M0070 when
clustered with OBC and these three enzymes are grouped together when
clustered with CBC. These enzymes share common reaction elements i.e. or-
der change from single bond to double bond between carbon and oxygen and
a bond formation between carbon and hydrogen. All these three enzymes
participate in a similar pathway (see Figure 4.13): ec00640 Propanoate
metabolism? also known as propinoate metabolism. The metabolism of pro-
pionic acid (propanoate) begins with its conversion to propinoyl coenzyme
A [159]. Studies concerning the role of enzymes involved in pathways have
gathered special focus for Mycobacterium tuberculosis [160]. It is important
to understand propinoate metabolism as any change in propinoate pathway
could lead to accumulation of toxic metabolites [160].

Thymine

Uracil

Tsoleucine

Methionine
Cholesterol

Odd chain fatty acids

|
|
I
I
v

Oe— 41141 «——0€¢— | 5.1.99.1 —>0€¢—|54.992
Propinovl-CoA (S)2 Methylmalonyl-  (R)-2 Methyvlmalonyl-

A CoA CoA

1

1

t-—->0 4.1.3.30 O

Succinate Succinyl-CoA

Figure 4.13: This figure illustrates the precursors of pathways for propionate.
A number of clinical disorders arise from errors at various steps in these
pathways. Here, broken arrows indicate the presence of several reactions to
complete the pathways.

Case 2: Another interesting OBC cluster of enzymes: M0123 ( adenylyl-
sulfate reductase; EC Number: 1.8.99.2 ) and M0279 (phosphoadenylyl-

*KEGG: http://www.genome.jp,/kegg-bin /show,athway?ec00640
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sulfate reductase (thioredoxin) EC Number: 1.8.4.8) participating in sulfur
metabolism ec00920 3. When clustered by CBC, we found that MO0279 is
clustered with another group of enzymes which included M0153 that also
participates in similar pathways. Whereas, M0123 was treated as a single-
ton for CBC. Sulfur is an essential element for life and the metabolism of
organic sulfur compounds plays an important role in the global sulfur cycle.
Sulfate reduction can both occur as an energy consuming assimilatory path-
way, participated by M0279 and an energy producing dissimilatory pathway,
participated by M0123 (see Figure 4.14). Assimilatory pathway is more com-
monly found in different organisms, producing reduced sulfur compounds for
the biosynthesis of S-containing amino acid, while in dissimilatory pathway,
which is restricted to anaerobic bacteria, sulfate is the terminal electron
acceptor of the respiratory chain producing large quantities of inorganic sul-
fide. It was interesting but not surprising to find that the MACIiE entries
MO0123 and M0279 share similar overall reaction entities: those are oxy-
gen and hydrogen bond formation, sulfur and oxygen bond formation and

sulfur-oxygen bond order change.

APS
r 1.8.99.2 T
Oe—— | 1848 |—

Sulfite PADS

Figure 4.14: This figure illustrates precursors of pathways for sulfur
metabolism. This illustrates that the enzymes participating in assimila-
tory pathway and dissimilatory pathways are grouped together as overall
they perform similar reactions using different step types.

SKEGG: http://www.genome.jp/kegg-bin/show,athway?ec00920
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4.8 Summary

In this chapter, we looked into the diversity of enzyme chemical reactions
where chemical reactions were defined for overall as well as for mechanis-
tic reactions. Ambiguous results from various clustering algorithms led to
the design of an in-house clustering algorithm, PFClust, that outperformed
other clustering algorithms in recognising the data structure.

We have performed a clustering analysis of enzyme reactions described
first by OBC descriptors, and second by CBC' descriptors. We find that
the CBC' descriptors cluster the data into significantly fewer clusters than
OBC' descriptors, suggesting that different functions tend to share similar
mechanisms. Moreover, at a finer level of enzyme classification, we have
also observed that enzymes often use different mechanistic steps to perform
similar functions.

Our results suggest that, in spite of the simplicity of PFClust, our
method was able to capture the important features of an enzyme reaction.
Our study shows an interesting diversity of reaction clusterings, where every
clustering suggested different factors that are similar in the clusters, such as
metal cofactor, mechanism annotation etc. The distinct patterns observed in
this analysis suggest that using the EC classification system is not sufficient
to annotate enzyme function. In future, we aim to find conserved patterns
of mechanistic steps that lead the enzymes to perform different functions
and can create a library. By screening a library of enzyme variants one
can discover variants with greatly improved activities for various cyclization

reactions [161].
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Prediction of Enzymatic
Function

5.1 Introduction

ONE of the many challenges in post-structural genomic functional elu-
cidation is to design computational methods to annotate function of
uncharacterised proteins (or unannotated proteins), especially enzymes. Nu-
merous informatics groups have addressed this issue using protein sequence
[23, 85, 162] and structural information to understand and to predict EC
number?!, successfully providing up-to 97% correct prediction [23,163]. Some
have also tried predicting enzyme function by defining overall transformation
and not considering mechanism of enzymatic activity, also ignoring protein
structure and function [35, 36, 164].

Our motivation is to investigate the relationship between the reaction
mechanism as described in the MACIE database and the main top-level class
of the EC classification. In order to do this, we generate supervised machine
learning models to predict EC class from data on the chemical reaction or its
mechanism.We consider two ways of encoding the mechanistic information in
descriptors, and also three approaches that encode only the overall chemical
reaction.

We compare enzyme mechanistic descriptors derived from the MACIE

!Note that EC number will be used interchangeably with EC class
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database and use multivariate statistical analysis for assessment of enzyme
classification. We investigate the relationship between reaction mechanism
as described in the MACIE [98,106] database and top class of EC number.

We evaluate 260 well annotated chemical reaction mechanisms of en-
zymes using machine learning methods, placing them into the six top level
EC classes retrieved from MACIiE V 2.4. Moreover, we compare the classifi-
cation performances of three supervised learning techniques, Support Vector
Machine (SVM) [Vapnik, 1998], Random Forest (RF) [Breiman, 2001] and
K Nearest Neighbour (kNN), for the reaction mechanism classification task
using five different descriptor sets from MACIE data. In this chapter, we
discuss the machine learning algorithms that have been used to address

problems like this.

5.2 Introduction: Enzyme Function Prediction

Many informatics groups have attempted to predict EC number by using dif-
ferent biological information such as sequence, structure, or catalytic residue.
Sometimes these features are used independently and sometimes a combi-
nation of these featured are used in order to get a better understanding. In

this section, we discuss features that are used for predicting function.

5.2.1 Using Sequence

A well designed kNN model (with £ = 1) [23] was used for predicting en-
zyme function via InterPro [22] signatures. This is very local prediction
which basically means annotating function to the closest neighbour, but the
coverage of this model is global. This model successfully provided 97% ac-
curacy and this result suggests that this method can predict all EC classes
using sequence features. The success of this method is broadly based on
the homologous enzymes. However, there are many examples in biology
suggesting that homologous enzymes do not necessarily catalyse the same
reaction [165]. Hence, using sequence information alone to assign function

should be viewed with some scepticism [166].

5.2.2 Using Structure

A study by Dobson & Doig [85] used various structural properties, such

as secondary structure properties, amino acid propensity, surface properties
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and ligands, to predict enzymatic function using SVM model with 35% accu-
racy. Even though the structures are much more conserved than sequence,
these figures suggest the difficulty of predicting function using structure
properties. Another study [162], using a combination of sequence and struc-
ture, was able to predict 33% correct EC class prediction. Functional se-
quence properties are very valuable, but, when the 3D information is added

it makes the picture much clearer.

5.2.3 Using Overall Chemical Transformation

Using biochemical transformation patterns of a given reactant pair [164],
we can access features of enzymatic reaction such as substrate and product,
creating an ‘RDM pattern’, in order to annotate enzymatic function. Here,
‘RDM pattern’ represents the chemical transformation of enzyme catalysis,
more detail is present in [164]. In another study by [34], the bonds reacting
in the substrates of enzymatic reactions catalysed by the EC 3 hydrolase
enzyme family were used to create physicochemical descriptors, which were
found to correlate well with EC number. Representation of enzyme catalysis
can also be done using the MOLMAP descriptors [35], which defines types
of covalent bonds based on physicochemical and topological properties, and
correctly assigns with 95% accuracy at the EC class level. Also, the study in
[36] used reaction difference fingerprints (RDF) to map reactions to EC class,
giving 83% correct predictions. These figures support the use of reaction
descriptors for mapping activity onto enzymes. These studies suggest that

a good design of descriptor could lead to an accurate prediction of function.

5.3 Method

To investigate the relationship between an enzymatic reaction, as defined
in MACIE [98,106], and the EC top class we used state-of-the-art machine
learning algorithms such as Support Vector Machine (SVM), Random Forest
(RF) and kNN (k Nearest Neighbour). Studies by [33] and [20] inspired
our motive to investigate the extent to which prediction of EC number is
possible. By definition, quantitatively representing overall reaction from
starting material to the product would lead to an accurate assignment of
EC number. Here, we have encoded the enzymatic activity into descriptors

at two levels, first at overall reaction and second at granular steps of reaction.
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Figure 5.1 illustrates the complete work-flow starting from data pre-
processing till the evaluation of the final model. We have extended this
work-flow for regression analysis as well [3]2. Cheminformatics models have
been used for compound property prediction, particularly in pharmaceuti-
cal industries. In work by [3], apart from other machine learning methods
we incorporated Partial Least Square(PLS). Here, we are particularly inter-
ested in predicting solubility of drug-like molecules. Solubility of the drug
candidate is important as it reflects the bioavailability, especially with oral
drugs.

In the following section, we will describe each step in the work-flow
(Figure 5.1) starting from data culling till validating the data. We will
also explain briefly regarding classification and regression algorithms, and

respective results are in the last section.

5.3.1 Data Culling

For Enzyme Function Prediction: For this, we retrieved data from
MACIE, where enzymes are limited to 260 entries from the MACiE database
V 2.4 adding further 60 entries in V 3.0 [2]. Basically, the enzymatic activity
is encoded numerically into five sets of descriptors that illustrate at two levels
the enzymatic reaction; first the overall reaction and second, mechanistic

step types. These descriptors are discussed in Chapter 3.

For Predicting Solubility of Drug-Like molecules: For this analy-
sis [3], we retrieved data from work by Llinas et al., [167] where solubilities
of 122 compounds are reported from the CheqSol method. The Solubil-
ity Challenge dataset [168] was used as a benchmark dataset. We trained
our model with canonical training:test split of 94 being in training and 28
molecules in test set. The SMILES were culled from various resources such
as ChemSpider [169] and some data directly from database [168]. As a
benchmark, we present our method’s predictions of the solubility challenge
set based solely on chemoinformatics descriptors. The datasets are available

in the supporting information: see Appendix B for more detail.

*NOTE: my contribution to this paper is to execute work-flow (Figure 5.1) for the
descriptors quantified by James McDonagh
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5.3.2 Step 1: Data Preparation

It is important to pre-process the data to improve the performance of the
model. This step conditions the quality of the patterns discovered and as-
sists in clear interpretation. Also, to avoid over-fitting of the data one would
like to pre-process data before analysing it [170]. There are various ways
to pre-process the data and in our work we used two normalising methods.
First, commonly used standardised method of variable scaling or z-score nor-
malization Equation 5.1. This will equalise the priority of all the attributes.
Second, PCA scaling method [171], specifically for regression analysis in [3],
which is widely used in many studies to scale the data. This method trans-
forms the data into smaller subsets, which reduces the correlation of the
data. To compare the difference between two scaling methods we have also

performed our analysis on the raw dataset.

T—p
= 5.1
: o (5-1)

where: z is the dataset mentioned earlier [2] and [3]; p is the original
mean of the population; the mean is set to zero for normalization, ¢ is the
standard deviation of the population.

In study [2], only three out of five datasets were scaled; those are CBC,
OBC and HD descriptors. The other datasets, MS and OS similarity, are

not scaled as these descriptors are already scaled in range of 0-1.

5.3.3 Step 2: Internal and External N-Fold Cross-Validation

It is a common practice to evaluate the performance of different machine
learning methods by cross-validation methods such as bootstrapping, Leave-
One-Out-CV (LOOCV) and N-fold cross-validation [172]. Cross-validation
methods are validation techniques to generalise the model for various inde-
pendent datasets. For this, the dataset is split into a training and test set,
where the training set (seen dataset) is used to build model or tune parame-
ter (internal cross validation measure) and the test set (unseen dataset) is fit-
ted to the final model with constant parameters (external cross-validation).

The 10-fold cross-validation has been widely accepted as a reliable method
for calculating generalization accuracy, and experiments have shown that

cross-validation is relatively unbiased [172,173]. The design of 10-fold cross-
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Figure 5.1: This illustrates the work-flow for both classification and regres-
sion problem. The complete work-flow is divided into 3 major steps, which

is explained in the main text.
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validation is illustrated in Figure 5.2, where 10% of the dataset is considered
to be a test set which is kept aside to fit with the final model. The cross-
validation method runs 10 times where each test set is used exactly once to
fit the model. The final estimated result is averaged over 10 folds. At Step
2, in Figure 5.1, the 10-Fold Cross-validation is executed as an internal (red

dotted box) and external (blue dotted box) cross-validation.

Iteraionl O @ @ @ © @ @ @ @ @
Iteration2 @ O @ @ @ © @ @ @ @
Iteration3 @ @ O @ ©® © © @ @ @
. . .
° ° °
Iteration10 @ @ @ ©® @ @ @ @ @ O

@ Training set
O Test set

Figure 5.2: Cross validation: this figure illustrates an example of 10-fold
cross-validation where blue circle represents the training set and yellow test
set. In each iteration one 10% of the dataset is considered to be a test set
which is later used to validate the model fitting. In our analysis we have
used this validation measure twice an in internal validation and external
validation measure.

Internal 10-Fold Cross-Validation for parameter selection: In step
one, the data is split into test and training set (90% of the original dataset).
The training portion of 90% of the original data is further split into 10 new
folds of 9%, with nine (81% of the original data) being used to build each
model and one (9%) as an internal validation; this process of model building
and internal validation is repeated to predict each of the 10 possible internal
validation folds. This internal cross-validation step is repeated 20 times,
once for each possible value of the parameter being assessed. Next, based
on the ‘best’ scores (accuracy Equation 5.2 for [2] or RMSE Equation 5.3
for [3] ) in the internal validation folds, the optimum parameter is selected.
Finally, the model is fitted on the complete training set of 90% of the original

data using the selected parameter values.
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External 10-Fold Cross-Validation: The given 90%:10% split of the
data into training and test sets was used to fit the final model for each fold
of the main 10-fold cross-validation, once the optimum parameter values
have been selected. The average accuracy or RMSE values over the 10 folds
were considered in order to compare the usefulness of different descriptor
sets and to evaluate the performance of the fitted models.

The internal and external validation step was repeated over 10 times to

get coverage over standard deviation.

5.3.4 Machine Learning Methods

Enzyme Function Classification

Machine learning is the study of algorithms that enable computers to learn
and evolve the behaviours that allow them to interpret data. Machine learn-
ing is categorised into two main groups, based on the principle of the algo-
rithm to perform classification or regression problem. The two groups are:
first, supervised learning, where classification or regression is done based on
prior information, and second, unsupervised learning, where no prior infor-
mation is available to perform classification or regression, such as clustering
analysis which we already discussed in Chapter 4. Many machine learning
methods are available. We focus on the analysis and comparison of per-
formance of three commonly used supervised approaches, Support Vector
Machine (SVM), Random Forest (RF) and K Nearest Neighbour (kNN) for
classification problem and PLS model for regression problem.

The following section describes the basic concepts of various machine
learning algorithm used in this study [2,3]. We will introduce the basic

concepts with relevant detail reference.

Support Vector Machine (SVM): Support vector machines, is very
popularly used for classification and regression problems, which was devel-
oped by Vapnik [174]. This model has been successfully applied to var-
ious fields of study such as chemoinformatics, structure-function predic-
tion [2,3,68,175] or to classify protein function [163,176]. Due to very
sophisticated mathematical equations, SVM has mostly been described as
a black box. However, this algorithm can be explained basically by four
main concepts: 1. the kernel function, 2. the separating hyperplane, 3. the

maximum margin hyperplane, and 4. the soft margin [177,178].
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First, the data D = (21,91), ..., (T, yn) C R3, where z;(i = 1,...,n) is a
vector representing chemoinformatics descriptors. Whereas y; is prediction
labels (EC class representation and LogS for respective studies). The D is
mapped onto a higher dimension feature space defined by the kernel trick
function [k(xz;, ;) =< ¢(x;).¢(x;) >] (as illustrated in Figure 5.3), to allow
SVM to perform a two dimensional classification of a set of originally one
dimensional data [179,180]. Next, a clear separation between two classes is
evaluated by creating a hyperplane. To get a clear separation the hyperplane
is between the two classes by maximal distances from the given training set.
This is the idea behind maximum margin in SVM. In cases where the data
are not well separated or data points are on the ‘wrong’ side of the margin,
soft margins are allowed to consider those points. That means this provides
flexibility to push some data points through the margin of the separating
hyperplane without affecting the final results.

For support vector regression, the goal is to find a function f(x) =
wlx; + b, where w is a vector of weight and b is the coefficient, that captures
the deviation of f(x) from the actual target y; for all training sets (see
Figure 5.4) (for more details [181]). This deviation should be at most € in
magnitude, € is the loss function. This is the tolerance level for making
prediction.

Here, we have used two kernel functions: Polynomial Function k(z, ")
= (scale < z,7" > +of fset)¥97¢¢ and Gaussian Radial Basis Function
k(z,2') = exp(—o|r — 2/|?) . These kernel functions are suited to tackle
(non-)learner classification or regression problems. For more details, there
are excellent review papers on SVM [68,181]. SVM has many applications
for classification and regression problems in bioinformatics and chemoinfor-
matics [2,3,175,182-184].

Random Forest (RF): A Random Forest is an ensemble of decision trees
Ti(x), ..., T;(x), each tree is generated by stochastic recursive partitioning of
a bootstrap sample of the training set. Trees are constructed by the Classi-
fication And Regression Trees (CART) algorithm [185] without pruning. As
the instances progress through the tree, they are partitioned into increas-
ingly homogeneous groups, so that each terminal node of the decision tree

is associated with a group of instances with similar properties. Each split

3We will use this definition of data throughout this chapter
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Figure 5.3: SVM maps the data point to higher dimensions: In this figure
we show a simple example of two classes where the linear classification is
difficult. Using kernel trick the data is transferred to a higher dimension

that makes the hyperplane.

Support Vector Regression

Figure 5.4: This figure illustrates support vector regression. Here ¢ works

as a loss function to give flexibility for prediction.
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within a tree is created based on the best partitioning of the bootstrap sam-
ple, according to the GINI impurity ((GI) criterion see Figure 5.5), that is
possible using any of a randomly chosen subset of miry descriptors. This
random subset is freshly chosen for each node. If ntree, the number of trees
in the forest, is held constant then mtry is the only parameter that needs
to be optimised. For each tree, approximately one third of the training set
molecules do not appear in that tree’s bootstrap sample, and constitute the
so called out-of-bag data; conversely, every molecule is out-of-bag for about
a third of the trees.

Trees grown in this way can then be used to predict unseen data. By the
concept of consensus decision making, RF produces the results. Classifica-
tion of an unseen data point is done by putting the input data down each
tree in the forest. Based on the plurality of the votes by each tree, class
assignment is predicted. Whereas, in regression the output of each given
molecule is averaged to produce the final prediction for y value.

Advantages of RF include not having to split the data into separate
training and test sets (if out-of-bag validation is used), and especially RF’s
tolerance of unimportant descriptors. This means that it is not usually

necessary to carry out descriptor selection with RF [175,186-189).

Figure 5.5: In Random Forest, each tree (7;) is built and trained indepen-
dently. During testing, each test point v is simultaneously pushed through
all trees (starting at the root) until it reaches the corresponding leaves. This
figure illustrates an example of decision tree, where each split is based on
the question leading to a leaf node (green circle).

K Nearest Neighbour (kNN) (for classification only): kNN is one
of the simplest classifier models to understand. Underlying function of this

algorithm is very straightforward, queries are classified based on the nearest
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data point class [190]. The basic idea of this algorithm is illustrated in Figure
5.6. The algorithm can be defined in three simple steps: first, computing
distance, second assign k£ and third, votes.

In classification step, first, a given instance ¢ (the query) whose attribute
is referred to q.A; is classified into one of the classes. In kNN, the class of ¢

is found as follows:

Figure 5.6: If k = 3, then in this case query ‘7’ instance will be classified as
red since two of the nearest neighbours are red.

First: The distance is calculated between query ¢ and rest of the data points.
Various distance functions can be used to compute the distance [190],

such as Euclidean distance, which is a very popular distance metric.

Second: Find k instances in the data set that are closest to ¢. Example in

Figure 5.6, k is assigned to either k =3 or k= 7.

Third: Based on the maximum votes the g is assigned to the class. In example
Figure 5.6, the maximum votes go to red class, hence, the instance is

assigned as red.

In a case where k = 1, the class label for ¢ is therefore copied directly
from the nearest neighbour, as this strategy was used in [23] to annotate
protein function. The principle behind distance is that instances with the
same class label (in [2], EC class) are expected to have smaller separating

distance compared to instances that fall under different classes.
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Partial Least Squares (PLS for Regression only): PLS regression
is very commonly used to reveal the structure of chemoinformatics descrip-
tors [175,191-193]. The strength of PLS is to solve the multicollinearity
problem (a statistical phenomenon which suggests that two or more pre-
dictor variables are highly correlated leading to dubious conclusions) and
provide an additional benefit of noise filtering. In PLS, the input data set
D is decomposed into T', which is referred to as a latent variable, factor or
principal component, then factor T is regressed with the property of inter-
est Y (in study [3] LogS). The factor T' explains more information on the
predictor and is also correlated as much as possible with Y. This solves mul-
ticollinearity problem. The matrix representation of the PLS is illustrated
in Figure 5.7.

PLS can be explained in matrix form, where first scores for X matrix
are calculated by considering any one vector of Y; Let u; = any y. Next
a weight matrix W is calculated for X-blocks; w! = ul /uTu,, which is then
scaled to be in range of 0-1 using; w{ = wlT/wlTwll/ °. Further, for calculating
the weight of X-loadings; (L); t1 = Xw;. Then, X-scores are used to
calculate Y-loadings (Q); ¢I = 7 /iT1,. This is further used to calculate new
Y-scores (U); uinew = T9/¢Tq. These steps will continue to iterate until
converged to a stable solution. Further, calculation will deal with finding
‘inner’ relationship between loadings U and T that is simply calculated using
Y and X blocks.

Finally, latent variable for X is calculated as p] = ¢/ X/i7+,. For the
iteration to calculate next latent variables, the information linked to the
first variables are subtracted from the original data £ = X — t;p! and
F =Y —btiq]. Now, E and F are used as new X and Y at the start of the
computation. The overall process is repeated until the desired number of
latent variables are extracted. Hence, the desired number of latent variables

is the user-defined parameter.

Range of parameters to optimise:

o SVM: We have used two kernel functions in studies [2,3]. In Gaus-
sian RBF kernel, the number of free hyper-parameters are C' (cost
parameter) and kernel width . For Polynomial kernel, there are three
parameters to be regularized: C, scale and degree. The cost value C

is to control the complexity of the decision boundary.
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Partial Least Square Regression
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Figure 5.7: This figure illustrates the matrix calculation of PLS. Where first
scores (T and U) are computed in such a way that they possess maximum
information of respective matrix (X and Y) and are related in some respect.
Further used for calculating loadings (W and Q).
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o RF': we treat the subset size mtry as a hyper-parameter of the method,

where M is the number of descriptors.

o kNN: K (number of the nearest neighbour) is the parameter that needs

to be selected.

o PLS: the number of components (or latent variables) are optimised.

R packages used in this study [126]: We have used CARET [194,195]
package to design the overall work-flow (for regression and classification,
Figure 5.1). CARET package calls other packages to build model such as,
for RF, CARET calls package ‘randomForest’ [196]. For SVM, we used two
functions ‘svmpoly’ and ‘svmradial’ for polynomial kernel and radial kernel
respectively, the models were implemented using ‘kernlab’ [197] package.
The PLS, pls package [198] was called. Whereas, kNN was implemented in

caret package itself.

5.3.5 Step 3: Validation
Statistical Significance Test

Statistical Test Formulas

For classification, using accuracy measure Equation 5.2 to evaluate the per-
formance of the model is very common practice [199] and easy to interpret.
Once, the final model is fitted with an unseen dataset, accuracy is calcu-
lated [200]. This measure estimates the performance of the classifier, and is
easily explainable and widely used to quantify the proportion of correct pre-
dictions made. Nonetheless, this measure is not good when the distribution
of the data class is imbalanced. Here, we have used accuracy as the criteria
for selecting the parameter in internal validation phase, hence our training

model prediction might suggest small bias towards the large class.

Positive | Negative
Test positive TP FP
Test Negative FN TN

e TP : true positives, the number of objects that are correctly classified

to the decision class,
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e TN : true negatives, the number of objects that do not belong to the

decision class and were not classified to it

o FP : false positives, the number of objects that are incorrectly classified

to the decision class,

e« FN : false negatives, the number of objects that do belong to the

decision class but were incorrectly classified to the other class.

accuracy = P+TN (5.2)
Y“TP{TN+FP+FN ‘
1 n
RMSE = J — 2 (gt — ypredy? (5.3)
=1
n?_ < > (aPre! —3)(yPed — ) )2 (5.4)
Vet — 22 Syt — )2

Moreover, for regression analysis, we used Root Mean Square Error
(RMSE) (Equation 5.3) and R? (Equations 5.4 (R? here is the square of
the Pearson correlation coefficient, not the coefficient of determination))
for evaluating the performance of our method. And n is the number of

obs

molecules; y°% is the observed output and y?"*? is the predicted output.

Statistical Significance Test: The permutation test is a widely used
technique in various research areas such as in bioinformatics and chemoin-
formatics where the question is how well algorithm A performed compared
with algorithm B on a particular problem characterised by a data set D.
For this, we used the permutation test to calculate exact P-values (Equa-
tion 5.5) suggested in [201] for the commonly used 10-fold cross-validation

methods.

=]z
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where n is the number of permutations of the mean difference in the
performance of two regression models, which can be more extreme than
the observed mean difference, and N is the total number of possible reas-
signments of the paired differences given the results. In more detail, the

procedure consists of the following steps:

1. A given paired-difference (By) of accuracy/RMSE scores obtained by
different classification/regression models is given by By = (R4 —RE)+
(R4 —R%)+ -+ (RY — RY) where R} is the accuracy/RMSE scores
for test set predictions made by model A for each fold (1 ... 10) in

the 10-fold cross-validation.

2. For this statistical test, 1024 permutations are created via all 2'° com-
binations: B, = +(RY — RE) + (R4 — R%) +--- £ (R — RY) .

3. The rank of true difference in the performance (By) is used as an
indicator of the p-values among the 1024 permutations. The p-value
is computed as: P = n/1024 where n is the number of permutations
which have |B,| > |By|.

5.4 Results

In this section, we describe the results from two studies [3] and [2].

5.4.1 Classification: Enzyme Function Prediction

Our results for enzyme function prediction suggest descriptors representing
overall reactions gave more accurate prediction as compared with mechanis-
tic information. Thus out of 4 descriptors (as mentioned earlier in Chapter
3, section 3.1.3), OS and OBC have consistently given better predictive ac-
curacy than descriptors annotating mechanistic information. This implies
that EC function annotation can be predicted by overall reactions better
than mechanistic information can, and suggests that reaction mechanisms
cannot be used to assign EC class. EC classification system classifies en-
zymes based on overall transformation without incorporating mechanistic
information into consideration. In Figure 5.8, we graphically represent the
performance of various machine learning methods of different descriptors.

We represent detailed results in the following paragraphs:
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Results of MACIE enzyme descriptors Out of all five descriptors used
for classification prediction the best prediction was given by Human designed
descriptors. In summary, for all four machine learning methods the relative
performances of the descriptors are the same: Human Designed >Qver-
all Reaction Similarity > Ouverall Bond Change >Composite Bond Change
> Mechanistic Similarity.

Overall, we found that RF outperformed other classifier models used
here, when predicting function from all the descriptors. The two kernel
functions for support vector machine, Poly and RBF, performed similarly,
coming in second and third place respectively, leaving k Nearest Neighbours
ranked last. In detail, the classifiers’, performance for individual descriptors

are as follows:

e For us it is unsurprising that predicting enzyme function using Human
designed descriptor was best among all as they are designed to best
represent the features specific to enzyme reactions. The training set
performance showed 90% accuracy (results are shown in Figure 5.8),
while when tested with unseen dataset the performance was reduced
to 83% (results shown in Figure 5.8). The classifiers’, performance was
as; RF >SVM (poly) >SVM (RBF) >kNN.

e OBC( showed =~ 68% EC class prediction, as compared to CBC, which
showed 62% correct EC class prediction. For both descriptors the clas-
sifiers performed similarly: RF ~ SVM (RBF) >SVM (poly) >kNN.

o Similarly, OS descriptor performed better by correctly predicting 70%,
while MS gave 60% accuracy. The performance of the classifier for
both OS and MS was similar: SVM (RBF) ~ RF ~ SVM (poly)
>kNN.

Results for the EC top class: Among the EC class, Human designed
descriptors predict EC 1, oxidoreductase, and EC 5, isomerase, much bet-
ter than the rest of the descriptors, as these descriptors were engineered to
capture specific features from the respective EC classes. For example, in
EC 5, out of 30 MACIE enzymes 27 enzymes employ the simple stoichiom-
etry of one starting material being transformed into one isomeric product.

Interestingly the ranking of the descriptor performances matches with the
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Figure 5.8: Performance of different classifiers in cross-validation. The Fig-
ure shows the accuracy achieved by each of the four classifiers for each of
the five descriptor sets in the cross-validation.
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overall prediction performance (see Table 5.1). It was difficult to predict EC
2 when descriptors were encoded based on overall reaction as compared to
when mechanistic information was added. This is in contrast to EC 5, where
prediction performance was worst among all when descriptors represented
mechanistic information. This suggests that mechanistic information based
descriptors did not have enough information to be able to detect enzymes

catalysing isomerase activity.

Table 5.1: Performance of different classifiers in cross-validation for individ-
ual EC class.

Descriptors EC1 EC2 EC3 EC4 EC5 ECG6

HD 0.961 0816 0948 0.835 0.952 0.877
OBC 0.823 0394 0.849 0.605 0.500 0.731
OS 0.865 0.500 0.828 0.568 0.628 0.600
CBC 0.870 0.406 0.680 0.495 0.276 0.654
MS 0.817 0.363 0.722 0.334 0.333 0.315

5.4.2 Regression Analysis

From regression analysis in [3], we show the results (see Table 5.2) for pre-
dicting LogS on a benchmark dataset, solubility challenge dataset [167].
Our results showed that machine learning workflow prediction for regres-
sion analysis was much better than various commercially available learning
methods [202]. However, these results are not directly comparable because

of the nature of cross validation used in this study.

Table 5.2: Solubility Challenge dataset: average over ten repetitions of 10-
fold cross-validation of RMSE(standard deviation) for the log S calculation.

Machine learning Raw data variance scaling PCA Scaling

RF 0.9£0.01 093 £0.01 1.12 £ 0.01
SVM 1.17 £ 0.04 0.93 £ 0.02 0.95 £ 0.02
PLS 1.08 £ 0.04 1.03 £ 0.02 1.15 £ 0.01

The machine learning method was further used to test the predictions of
solution free energy using physics-based theory alone and quantitative struc-
ture — property relationship (QSPR) models, designed by James McDon-

agh [3]. While direct theoretical calculation does not give accurate results in

87



Chapter 5 5.5, Summary

this approach, machine learning is able to give predictions with a root mean
squared error (RMSE) of ~1.1 log S units in a 10-fold cross- validation for
our Drug-Like-Solubility-100 (DLS-100) dataset of 100 drug-like molecules.
We find that a model built using energy terms from our theoretical method-
ology as descriptors is marginally less predictive than one built on Chemistry
Development Kit (CDK) descriptors. Combining both sets of descriptors al-
lows a further but very modest improvement in the predictions. However,
in some cases, this is a statistically significant enhancement. These results
suggest that there is little complementarity between the chemical informa-
tion provided by these two sets of descriptors, despite their different sources
and methods of calculation. Our machine learning models are also able to
predict the well-known Solubility Challenge dataset with an RMSE value of
0.9—1.0 log S units.

Here, we used cheminformatics descriptors to predict the solubility of
drug-like molecules. As a benchmark, we also present our method’s predic-
tions of the solubility challenge set based solely on cheminformatics descrip-
tors (see Table 5.3). As suitable crystal structures are not available for all
molecules in the solubility challenge, we could not calculate the theoretical
energies.

Tables 5.2 and Table 5.3 demonstrate that our method can make pre-
dictions for the solubility challenge dataset within the coveted 1 log S unit
RMSE error and, in fact, makes predictions that are consistent with some
commercially available methods and deep-learning methods. A recent publi-
cation [202] reported RMSE scores of 0.95 log S units [202] for the commer-
cially available package MLR-SC62 and 0.90 log S units for a deep-learning
method [202]. However, these results are not directly comparable with ours,
for two reasons. First, our results have been calculated for a 10-fold cross-
validation and for the canonical training:test split (see Table 5.3). Second,
the deep-learning result (RMSE = 0.90) given by Lusci et al. [202] is con-

tingent on correcting eight putative errors in the CheqSol solubility data.

5.5 Summary

This chapter summarises two studies [3] and [2], where we used similar
work-flow for two different problems, regression and classification respec-

tively. Our results from enzyme classification strongly suggest that the use
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Table 5.3: RMSE for the Log S Calculation using the solubility challenge
dataset with its original training:test split

Machine learning Raw data variance scaling PCA Scaling

PLS 0.86 0.91 0.91
RF 0.93 1.03 1.02
SVR 1.08 1.07 1.08

of mechanistic information has a diminished EC prediction performance rel-
ative to overall transformation. For regression, chemoinformatics descriptors
suggest enough potential to predict solubility of drug-like molecules. More-
over, it is evident in both the studies that RF outperformed other machine

learning methods, with close competition from SVM.
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Enzyme Function Evolution:
Chemolution Study

6.1 Background

THe three-dimensional (3D) atomic structures of contemporary proteins
provide clues about how both structure and function unfolded in the
course of billions of years of evolution [203]. The phylogenomic analysis of
protein domain occurrence and abundance in modern proteomes [13, 204]
enables retrodictive views of protein evolution that are unanticipated [117,
205] and can be used to study structural change and the relationship between
protein structure and function [116]. Two recent studies of this kind showed
congruently that the «/f architecture is probably the oldest type of fold
design [13,204].

An interesting observation [13,206], regarding the Enzyme Commission
(EC) [5] definition of the overall function of enzymes, is that the oldest
fold structures were associated with the largest number of enzyme functions
[13,60,206,207].

Understanding how enzymes adapt their chemical mechanisms under
evolutionary pressure is still a challenging task in molecular biology. In
this chapter, we explore the chemical mechanisms used in biochemical reac-
tions catalysed by ancestral enzymes. We ask questions about the ways in

which enzyme structure and chemical mechanism have evolved together, and
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about the evolutionary origination of new enzyme structures and new cat-
alytic mechanisms. As mentioned in Chapter 3, the EC classification does
not explore the detailed chemical mechanism of the enzyme reaction [19,98].
MACIE [19,98] definitions of enzyme mechanisms and ages of domain struc-
tures (MANET) [103] derived from phylogenomic analyses of protein struc-
ture [13,117,208] dissected the evolutionary appearance of novel structures
and functions. It has been suggested that the difficulty of evolving novel
stepwise chemical reaction mechanisms could be the dominant factor limiting
the divergent evolution of new catalytic functions in related enzymes [208].
We put this concept to the test with phylogenomic analysis of protein domain
structure and careful annotations of reaction mechanisms. Our observations
have important implications for the origins of modern biochemistry and for

exploring structure-function relationships.

6.2 Method

As we mentioned in Chapter 3, the data is retrieved from MACIE V3.0. The
mechanistic step types were mapped onto the phylogenetic timeline from the
MANET database. These databases are discussed in detail in Chapter 3.
The calculation of the nd value is also mentioned in Chapter 3 with the

definition of components of MACIE used in this chapter.

6.2.1 Data Culling

Here, we emphasise on the mapping of mechanistic step types onto the cat-
alytic domain structure in MACiE. In many enzymes, not all domains were
actually involved in catalysis. We made sure that the data under investiga-
tion is the best representation of the information for function evaluation. We
considered 236 (Figure 6.1 illustrating the filtration of the data in MACiE)
unique CATH folds in this analysis, such that we could assign nd (fold age)
values to the respective enzymes. Second, domains that were not involved
in the reaction were discarded. There are many enzymes with more than
one domain, for example MACIiE entry M0124 (EC: 1.9.3.1, cytochrome-c
oxidase) was associated with 16 domains, of which only one domain (CATH:
1.20.210.10 - Cytochrome C Oxidase, chain A) was used as a catalytic do-
main to complete the reaction. A careful filtering was done by only selecting

domains that were participating in the reaction as a catalytic chain. The cat-
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alytic domain distribution of the remaining enzyme structures was as follows:
240 enzyme entries with a single catalytic domain, 63 enzymes having two
different catalytic domains, four enzymes with three catalytic domains and
only one enzyme entry in MACIiE (M0207, EC 2.7.9.1, pyruvate-phosphate
dikinase) with four domains (CATH 3.30.1490.20, nd = 0.0539; CATH
3.30.470.20, nd = 0.058; CATH 3.20.20.60, nd = 0.112; CATH 3.50.30.10,
nd = 0.377) that participate in catalysis; pyruvate-phosphate dikinase is a
key enzyme participating in gluconeogenesis and photosynthesis. Thus, a to-
tal of 308 MACIE enzymes were considered for further analysis. Only these
H-level structures were used further to explore the evolution of biocatalytic

mechanisms.

MACIE MAGIE enzymes
enzymes .
. (308 mechanisms)
(335 mechanisms)

Structure domain

236 catalytic domain
structure

Figure 6.1: This figure illustrates the filtration process to retrieve only en-
zymes possessing catalytic domains. Out of 335 MACIE enzymes only 308
MACIE enzymes have 236 catalytic domains, which participate in the cat-
alytic reaction, hence providing the mechanistic step type definitions.

6.2.2 Phylogenetic Analysis:

Using shared and derived characteristics of the protein such as fold-usage
Genomic Abundance (G), Gustavo Caetano-Anollés group [116] have quan-
tified the relative time or age of the fold (node distance : nd ). First, the
count of domains present in genomes was retrieved and normalized to com-
pensate for the difference between the genome sizes. Second, in order to
establish the evolutionary direction, the maximum states were specified as
being the ancestral. Third, maximum parsimony was used to reconstruct
the phylogenetic trees. This reconstruction of the phylogenetic trees is based
on two assumptions: first, protein structure is far more conserved than se-
quence, and second, the most ancestral folds are generally most popular and

abundant in nature. The relative age of individual protein folds is calculated
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by measuring a distance in nodes from the hypothetical ancestral fold on a
relative 0-1 scale, where 0 is the most ancestral fold and 1 is the youngest
fold. The nd depicts the number of cladogenic events along a lineage and
was used as an indicator of the ancestry of each metabolic enzyme for which
a protein structure is known or could be inferred.

Phylogenetic statements relate to definitions of structures that are mod-
ern and are constructed from a structural census in the proteomes of extant
organisms. Consequently, retrodictions are derived from modern structural
complexity and do not necessarily depict the actual structure of hypotheti-
cal ancestors, which will always remain unknown (molecules can be brought
back from the past experimentally by resurrection but cannot be confirmed
to be truly bona fide retrodictive constructs). However, if molecules be-
come structurally canalized in evolution, then modern retrodictive state-

ments truly approximate molecular history.

6.3 Findings

6.3.1 A General Approach Grounded in Protein Domain Struc-
ture

In order to test the hypothesis that the most ancestral protein domains
use the greatest number of biocatalytic mechanistic step types, we assume
that extant protein domain structure is the best historical archive that is
available to explore ancient enzyme functions. The assumption holds good
ground. At high levels of structural complexity, evolutionary change occurs
at an extraordinarily slow pace. A new fold superfamily may take hundreds
of thousands to millions of years to materialize in sequence space while new
sequences develop on Earth in less than microseconds [209]. In fact, a recent
comparative analysis of aligned structures and sequences showed that struc-
tures were 3-10 times more conserved than sequences [59]. Here we use the
ages of domain structures, derived from phylogenomic reconstruction and a
recent census of CATH domain structure in hundreds of genomes [117], to
study how chemical mechanisms developed in protein evolution. The use
of molecular structure and abundance in phylogenomic analysis offers nu-
merous advantages over traditional methods [210], eliminating phylogenetic
problems such as alignment, phylogenetic inapplicables and taxon sampling.

Their use does not violate character independence, a serious problem that
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has not been addressed in phylogenetic sequence analysis. To our knowledge,
this is the first study to explore the evolution of biocatalytic mechanisms us-
ing a timeline of CATH homologous superfamily (H-level) domain structures
and data analysis. However, there is another comprehensive database, Fun-
Tree [102], that brings together sequence, structure from CATH, chemical

and mechanistic information from MACiE, and phylogenetics.

6.3.2 Historical Trends Unfold a Natural History of Biocat-
alytic Mechanisms

In order to explore the use and reuse of biocatalytic mechanisms in evolu-
tion, we mapped the mechanistic definitions of enzymatic functions to their
respective CATH H-level structures, with structures ordered according to
fold age (Figures 6.2, 6.3, 6.4). For this purpose we first created a presence
and absence (PA) matrix, a heat map representing the distribution of the
presence (red) and absence (yellow) of the mechanistic step types (rows,
y-axis) in the fold (columns, x-axis) (Figure 6.2). The rows were ordered
vertically according to the first appearance of the mechanism over fold age
and were indexed with the numbers of: (I) MACIE enzyme entries (shades
of grey and black), (II) H-level structures (shades of grey and purple), and
(III) EC classes that appeared at each age.

Remarkably, the most popular enzyme mechanistic step types were as-
sociated with the oldest H-level structures (Figure 6.2). This evolutionary
trend suggests that the oldest enzymes already provided a sufficiently flexible
scaffold to support many diverse mechanistic step types in order to complete
their reactions. Within the early scaffolds, the mechanistic steps had more
time to be adapted by the domain structures and to be further recruited
in the course of evolution. The existence of late emerging structures with
many mechanistic steps supports the existence of widespread recruitment
processes in evolution. This trend seems to be explained in terms of the
“preferential attachment principle” that guides the growth of scale-free net-
work behaviour, and implies that the more prevalent functions are typically
the earliest, as previously shown in the exploratory analysis of the ancestral
fold structures [211].

We observed that ‘proton transfer’, ‘bimolecular nucleophilic addition’,
‘bimolecular nucleophilic substitution’, and ‘unimolecular elimination by (or

from) the conjugate base’ (definitions are represented in Figure 3.3) are the
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Figure 6.2: The heat map describes the distribution of presence (red) and
absence (yellow) of mechanism step types (y-axis) over fold age (x-axis).
Rows of the heat map (mechanisms) are ordered vertically according to the
first appearance of the step type in time, with the oldest at the top. The
row sidebars at the top of the heat map are used to describe the number of
MACIE entries and CATH H-level domain structures (annotated as number
of folds) appearing at each fold age, and presence of top-level EC classes
that are associated with these H-level structures (see colour key). The x-
axis scale reflects the different nd values found in our dataset, arranged
from the oldest on the left to the youngest on the right. Every unique
nd value forms a separate column. The non-linear scale is defined by the
number of unique nd values falling in each interval of nd. There are many
distinct nd values between 0.0 and 0.3 found in our dataset, so the scale is
expanded in this region. There are few distinct nd values between 0.7 and
1.0, so the scale is very condensed in that region. Geological time is taken
to be approximately linear with nd, where nd=0 represents the origin of the
protein world approximately 3.8 billion years ago and nd=1 corresponds to
the present.
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most common mechanistic step types, in accordance with their distribution
in MACIE enzyme reaction mechanisms (the prevalence of each step type
is also given in Appendix A.2) [19,106]. These types of mechanistic step
are recognisably fundamental building blocks of enzyme chemistry, which is
carried out in aqueous solution usually at approximately neutral pH. Sev-
eral of the canonical amino acids have pKa values close to neutral, with
Holliday et al. [19] having observed particularly strong propensities for His
and Glu to facilitate proton transfer. The chemistry of the amino acid side
chains also means that several are negatively charged at roughly neutral
pH, and hence it is no surprise that the enzyme far more often acts as a
nucleophile, favouring mechanisms labelled as nucleophilic, rather than as
an electrophile. Furthermore, it has been noted that enzyme active sites are
well suited to stabilising the charged intermediates common in addition and
elimination reactions, for instance by hydrogen bonding [212]. The ubiqg-
uity of aqueous environments in enzyme chemistry restricts the repertoire
of reactions available. Indeed, most enzyme reactions are composed of steps
that might seem unexciting to an organic chemist. The rare occurrence of
more complicated organic chemistry, ‘aldol addition’, ‘amadori rearrange-
ment’; ‘claisen condensation’, ‘claisen rearrangement’, ‘pericyclic reaction’
and ‘sigmatropic rearrangement’, constitutes the exception rather than the
rule, and enzymes sample the space of possible mechanisms notably differ-
ently from how an organic chemistry textbook would do so.

The rate of introducing new mechanistic step types at different fold ages
is shown in Figure 6.3, which represents a cumulative plot where fold age is
shown on the x-axis. The y-axis shows the proportion of the total number
of defined step type annotations (N = 51) that have been uncovered up
to that fold age on the x-axis. It is clear in this plot that the first four
H-level structures (the first two increments of fold age, 0 to 0.0098 ) are
responsible for introducing a third of the known mechanistic step types
(18/51), and the first six structures (the first four increments of fold age,
0 to 0.049) are responsible for over half of them (27/51). However, the
development of the other half was harder and required the unfolding of about
3/4 of the evolutionary timeline, up to nd = 0.73 and about 2.5 billion years
of evolution [205]. The detailed information regarding the introduction of
mechanistic step types is provided in Appendix A.2.

In order to look at the distribution of the mechanistic step types of an
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Figure 6.3: The graph shows the proportion of mechanistic step types that
are present at a particular time.

enzyme in evolutionary time, we counted the number of mechanistic step
types associated with H-level structures (Figure 6.4). Figure 6.4 is a heat
map representing the number of mechanism step types (y-axis) used by those
structures having each different discrete value of fold age (x-axis). Each cell
represents the number of H-level structures with a different colour code;
for example black represents 1 structure, yellow represents 2 structures and
brown represents 3 structures sharing the same count of mechanistic step
types. Moreover, each position indicates the number of H-level structures
associated with a number of functions. For instance, black colour at column
1 row 6 means that there is one structure that uses 6 different mechanistic
step types to complete its reaction. In a further section, we will discuss the

patterns in detail.

6.3.3 Ancient H-level Structures are Popular, Central and

Versatile

The most ancient H-level structure that appears in the MACIiE database
is CATH 3.40.50.300, the P-loop containing nucleotide triphosphate hydro-
lase. This fold has been consistently identified as the most ancestral fold
structure [13,117,204]. The P-loop hydrolase structure consists of the most
ancient and abundant topology, the Rossmann fold (CATH 3.40.50), which
has the 3-layer (afSa) sandwich (3.40) architecture. The CATH 3.40.50.300

superfamily contains enzymes with diverse molecular functions, including
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Figure 6.4: Heat map representing the number of mechanistic step types (y-
axis) used by H-level structures of each different fold age (x-axis). Different
colours indicate distinct structures which happen to share both the same
number of mechanistic step types and an identical fold age. For example, in
column 2 the black colouring of rows 4, 15 and 16 shows that four structures
respectively accommodate 4, 15 and 16 different mechanistic step types to
effect their reactions. The colour code for the row sidebar is similar to that
in Figure 6.2; the x-axis scale is also similar to that in Figure 6.2.
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signal transduction, hydrolase and transferase enzymatic activities [213].
Wang et al. previously observed [208] diverse overall functions for this struc-
ture. In the current analysis, there are only five MACIE enzyme entries that
share this structure; these are associated with six mechanistic step types,
‘proton transfer’, ‘electron transfer’, ‘bimolecular nucleophilic addition’, ‘bi-
molecular nucleophilic substitution’, ‘intramolecular nucleophilic addition’
and ‘unimolecular elimination by the conjugate base’ (Table Appendix A.2).
MACIE enzymes associated with this oldest structure are dethiobiotin syn-
thase (EC 6.3.3.3, M0074), estrone sulfotransferase (EC 2.8.2.4, M0154),
H+-transporting two-sector ATPase (EC 3.6.3.14, M0178), nitrogenase (EC
1.18.6.1, M0212, multi-domain) and adenylate kinase (EC 2.7.4.3, M0290).
Except for nitrogenase, the rest of these enzyme entries each have a single
catalytic domain, hence, it is straightforward to annotate the function with
this fold. Nitrogenase (M0212, PDB: 1n2c) [214] is a very important enzyme
of nitrogen metabolism that fixes atmospheric nitrogen (N3) gas into the re-
duced forms that are usually assimilated by plants [215]. The enzyme has a
complex 3D structure that is highly conserved across many different organ-
isms and contains domains from three different homologous superfamilies.
These H-level structures were discovered by evolution at different times. The
ancient CATH 3.40.50.300 nitrogenase catalytic core was later accesorized
with a domain from the CATH 3.40.50.1980 superfamily, which evolved at
nd = 0.401 after the oxygenation of Earth’s atmosphere [208,216,217], and a
non-catalytic domain CATH 1.20.89.10, which appears to have been accreted
last into the molecule (nd = 0.549). Residues from the ancient nitrogenase
core with the oldest domain of the molecule are involved in the first two
steps of the long 15-step reaction, which include the mechanistic step types
‘bimolecular nucleophilic substitution’, ‘electron transfer’ and ‘proton trans-
fer’. The remaining 13 steps are carried out by catalytic residues from the
CATH 3.40.50.1980 domain.

The second most ancient H-level structures include CATH 3.50.50.60,
the T-level topology is 3-layer B8« while the H-level structure, which has
no specific name assigned but corresponds to the FAD /NAD(P)-binding do-
main FunFams definition in CATH, is found in 7 MACIE entries, CATH
3.40.50.720 (NAD(P)-binding Rossmann-like domain, found in 12 MACIE
enzymes), and CATH 3.40.50.150 (Vaccinia Virus protein VP39, found in
two MACIE entries). All three H-level structures appear at nd = 0.0098.
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These structures have 16, 15, and 4 catalytic mechanistic step types (Figure
6.4), respectively, of which a total of 11 are non-overlapping with those of
the first P-loop hydrolase fold structure and were therefore newly introduced
at this time (see Table Appendix A.2). These newly discovered mechanistic
step types include three involving aromatic groups, as well as the first in-
volving radicals, and also ‘bimolecular electrophilic addition’, ‘bimolecular
elimination’, ‘redox’, ‘colligation’ and ‘assisted keto-enol tautomerisation’.
It was interesting to note that the ‘bimolecular elimination’ mechanism was
shared with all the three H-level structures of the same age. There are 9
different mechanisms shared by CATH 3.40.50.720 and CATH 3.50.50.60
(shown in Table Appendix A.2). It is also noteworthy that studies by the
Orengo group [218,219] suggest there may be distant homologies between
these structures based on their similarity in graph-based structure compari-
son and shared use of organic cofactors (NAD and FAD). The structures are
functionally diverse due to the conformational change of the ligands, organic
cofactors or structural plasticity of the proteins [220].

In MACIE, the ferredoxin - NADP+ reductase enzyme (M0142, EC:
1.18.1.2) combines the CATH 3.40.50.150 and CATH 3.50.50.720 H-level
structures to complete its biochemical reaction. This enzyme plays a very
important role in electron transfer from the flavoenzyme NADPH-adrenodoxin-
reductase (AdR) to two P450 cytochromes; this process is involved in the
production of steroid hormones. The two domains of this enzyme share the
following functions: ‘aromatic unimolecular elimination by the conjugate
base’, ‘aromatic bimolecular nucleophilic addition’, ‘redox’, ‘radical termi-
nation’, ‘radical formation’.

The third most ancient H-level structure (nd = 0.0147), CATH 3.40.50.620,
the H-level Hups o/ layered fold, is responsible for 13 MACIE entries and
introduces the novel ‘intramolecular elimination’ function. This structure
supports central catalytic functions of the cell, including the amino acy-
lation reactions of aminoacyl-tRNA synthetase (aaRSs) catalytic domains
that are crucially involved in the attachment of L-amino acids to cognate
tRNA molecules and are responsible for the specificity of the genetic code.
The structure includes the tyrosyl-tRNA ligase EC function (M0197; EC
6.1.1.1) of the tyrosyl-RS functional family, the oldest aaRSs delimiting the
process of translation [221]. The structure activates a specific amino acid by

condensation with ATP to form an aminoacyladenylate intermediate, which

100



Chapter 6 6.3. Findings

then esterifies the 2’ or 3’-hydroxyl group of the ribose at the 3’ end of
the acceptor arm of tRNA. The process, which is highly specific, involves

proofreading.

6.3.4 Some Structures Hold Exceptionally Diverse Mecha-
nistic Step Types

Some H-level structures by nature use many diverse mechanistic step types
to effect their catalytic activity. A member of the TIM barrel o/ struc-
ture that is highly popular in metabolism, the CATH 3.20.20.70 superfamily
(aldolase class I, nd = 0.0196), which immediately follows the aaRS fold in
the timeline, uses steps with 20 different mechanistic step types. Five of
these appeared for the first time with this fold (Table Appendix A.2). It is
not surprising that the fold has such diverse functions. Based on the Hierar-
chic Classification of Enzyme Catalytic Mechanisms (RLCP; where R: Basic
Reaction, L: Ligand group involved in catalysis, C: Catalysis type and R:
Residues/cofactors located on Proteins) classification [101] analysis of func-
tional subclasses, Nagao et al. [222] suggested that aldolase class I enzymes
have various functional classifications. An interesting conserved property is
that most of the ligands have at least one phosphate group. The mecha-
nistic step types of aldolase class I (see Table 6.1) are rare in the MACIiE
database. Out of 335 MACGIE enzyme entries, ‘aldol addition’, ‘aromatic
bimolecular elimination’, ‘assisted other tautomerisation’, ‘heterolysis’ and
‘other tautomerisation’, respectively, appeared in 9, 6, 20, 25 and 9 MACIE
enzyme entries in at least one stage of the reaction. This suggests that the
aldolase class I superfamily contains a group of enzymes that possess very
specific mechanistic step types.

Two additional H-level structures utilize 16 different mechanistic step
types each, CATH 3.50.50.60 (nd = 0.0098) (which we have already men-
tioned) and CATH 3.40.50.970 (nd = 0.049), the second largest number of
mechanistic step types associated with structures in the timeline. These
structures also belong to the most popular fold topology, the Rossmann
fold. Following their appearance (nd = 0.049), most of the basic and
common mechanistic step types had already been introduced. The CATH
3.40.50.970 structure introduces ‘homolysis’, represented in only one MA-
CiE entry (M0119 ; EC: 1.2.7.1; pyruvate: ferredoxin oxidoreducatse). We

observed that two mechanistic step types, ‘homolysis’ and ‘colligation’, were
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introduced at the same fold age but by different H-level structures. By def-
inition, the ‘homolysis’ mechanistic annotation is the converse of the ‘col-
ligation’ step that was introduced by CATH 3.50.50.60; ‘homolysis’ is the
cleavage of a covalent bond where each atom retains one of the two bonding
electrons, whereas ‘colligation’ is when the two free radicals combine to form

a covalent bond.

6.3.5 The Combinatorics of Mechanistic Steps Reveals Win-
ners

We were also interested to see what sets of mechanistic step types described
the combinations of steps used by various enzymes to effect their reactions.
To do so, we looked for the combination of the different mechanistic step
types, irrespective of order, and at the various H-level structures sharing
each combination of biochemical steps. Instances of re-utilisation of partic-
ular mechanistic step types may shed light on evolutionary recruitment of
common mechanistic steps by different structures. For this we first created
“mechanistic annotation patterns”. These patterns reflect all the different
combinations of the presence and absence of mechanistic step types. This
kind of analysis illustrates that different H-level structures share common
mechanistic annotation patterns. We found that there are 133 different
mechanistic annotation patterns used by the enzymes in our dataset. Pat-
tern 4 is most popular mechanism combination, involving ‘bimolecular nucle-
ophilic substitution” and ‘proton transfer’ (see Figure 6.5, H-level structures
are grouped together in the white box). In MACIE, there are 42 H-level
structures that use two mechanistic step types in order to complete their
reactions. Out of these 42 structures, 30 use pattern 4 in order to com-
plete their reactions. Patterns 4 and 15 suggest that there are few H-level
structures that accommodate similar mechanistic step type combinations.
Pattern 15 is the second most popular pattern and includes ‘bimolec-
ular nucleophilic addition’, ‘proton transfer’ and ‘unimolecular elimination
by the conjugate base’. In MACIE, there are 46 different catalytic H-level
structures that use three mechanistic step types in order to complete their
reactions, out of which 22 structures use pattern 15 to effect their reac-
tions. The enzymes of the CATH 3.20.20.70 (aldolase class I) structure use
the maximum number of 20 different mechanistic step types to effect their

overall reactions. These step types constitute pattern 133 (see Table 6.1),
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which is not shared by any other structure. These patterns suggest which
mechanistic step types are compatible with one another or are preferentially

combined together. There are 101 patterns unique to one structure.
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Figure 6.5: For this figure we have calculated the Jaccard similarity scores.
Here the x and y axes in the plot are ordered using a hierarchical clustering
algorithm in which the two most similar data points are linked together at
each iteration. The colours of the heat map represent the similarity scores
where yellow suggests low or no (when 0) similarity and white (1) means that
identical combinations of mechanistic steps are shared between two H-level
structures. The top left corner represents the colour key for the similarity
scores and the distribution of the similarity scores.

To visualise the combinatorial patterns, we have plotted a heat map
of similarity of the mechanistic step types between two H-level structures

(Figure 6.5). We calculated the Jaccard similarity scores:

AN B|
Jaccard = ——— 6.1
AU B (61)
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where A and B are two sets and the Jaccard coefficient of similarity is
defined as the size of the intersection divided by the size of the union be-
tween the two sets. To visualize computed similarity scores, we constructed
a presence and absence (PA) matrix where columns represent the mechanis-
tic annotation as an entity and rows represent the CATH H-level structures.
The score ranged from 0 to 1, with 0 signifying that no similar mechanis-
tic step types existed between two structures and 1 signifying that the two
structures shared an identical combination of mechanistic step types in or-
der to complete their reactions. The most popular mechanism combinations,
pattern 4 (‘bimolecular nucleophilic substitution’ and ‘proton transfer’) and
pattern 15 (‘bimolecular nucleophilic addition’, ‘proton transfer’ and ‘uni-
molecular elimination by the conjugate base’), are labelled in the heat map
of Figure 6.5 and are clearly distinguishable. As expected, these patterns
include the most common and ancient mechanistic step types introduced
with the CATH 3.40.50.300 structure.

Table 6.1: Pattern 133, the mechanistic step types associated with CATH
3.20.20.70, Aldolase class I Mechanistic

Mechanistic step types with CATH 3.20.20.70, Aldolase class 1

Unimolecular elimination by the conjugate base
Redox

Radical termination

Radical formation

Proton transfer

Other tautomerisation

Intramolecular nucleophilic addition
Intramolecular elimination

Hydride transfer

Heterolysis

Electron transfer

Bimolecular nucleophilic substitution
Bimolecular nucleophilic addition

Bimolecular elimination

Assisted other tautomerisation

Assisted keto-enol tautomerisation

Aromatic unimolecular elimination by the conjugate base
Aromatic bimolecular nucleophilc addition
Aromatic bimolecular elimination

Aldol addition
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The research goals of this work are not to explore mappings of mechanis-
tic step types along metabolic pathways, as this would require one to unfold
a complex network structure with graph theoretical approaches. However,
in order to make explicit the complex recruitment patterns that are ex-
pected we have mapped H-level structures in the nucleotide interconversion
pathway of purine metabolism [221], the oldest of all metabolic subnetworks
defined by the KEGG database [129]. Since nucleotide interconversion pre-
cedes purine biosynthesis in evolution [221], we compared mechanistic step
types associated with this pathway (Table 6.2 ). In MACIE, we found only 8
H-level structures involved in purine metabolism, ranging in nd value from
0 to 0.411. Remarkably, and despite the absence of MACIE entries for
the most ancient enzymes of energy interconversion (EC 2.6.1.3. and EC
3.6.4.1), the results reveal the very early rise of the highly abundant pattern
4 in evolution and complex patterns of recruitment of additional chemistries
which are ultimately associated with the combinatorics of mechanistic step

types of Figure 6.5.
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Table 6.2: MACIE Enzymes for Purine Metabolism.

MACIE Enzyme name EC Subnetwork PDB CATH H level Structure nd value Combinatorial pattern Mechanistic step types

9 4ordvy)

MO0234 GMP synthase (glutamine hydrolysing) 6.3.5.2 INT 1gpm 3.40.50.880 0.0980 Pattern 4(+42) Proton transfer

Unimolecular elimination by the conjugate base

Bimolecular nucleophilic substitution

Bimolecular nucleophilic substituion

Bimolecular elimination

Bimolecular nucleophilic substitution

Aromatic bimolecular nucleophilic substituion

Bimolecular nucleophilic substitution

stupur] 69
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6.4 Conclusion

Contemporary protein structures consist of independently folding and com-
pact domains that can be used as a fossil record of molecular evolution. We
have utilised the available resources of enzyme mechanisms and the rela-
tive ages of CATH H-level domain structures to get a better insight into
the natural history of biocatalytic mechanisms. Our analysis shows that
the most designable structures (e.g., the a/f barrel and Rossmann fold)
served as scaffolds to higher numbers of biochemical functions. The first
two structures were responsible for introducing 35% (18/51) of the known
catalytic step types described by the mechanistic step types. Over half of
these appeared in the evolutionary timeline of domains before structures
specific to Archaea, Bacteria and/or Eukarya [117], during a period of ar-
chitectural diversification (nd <0.39). The most common mechanistic step
types were also the most ancient and included fundamental building blocks
of enzyme chemistry, ‘proton transfer’, ‘bimolecular nucleophilic addition’,
‘bimolecular nucleophilic substitution’, and ‘unimolecular elimination by the
conjugate base’. Later on in evolution, these mechanistic steps participated
in a combinatorial interplay and were the highest represented in catalytic
functions. The combination of ‘bimolecular nucleophilic substitution’ and
‘proton transfer’ was the most popular of all patterns of mechanistic step
types. The other half of mechanistic step types appeared gradually after
organismal diversification (0.67 <nd <1) and during a period that spanned
~ a billion years of evolutionary history.

Our phylogenomic approach is based on a census of protein domain
structure in the proteomes of cellular organisms and the crucial axiom of
polarization that claims that structural abundance increases in the course
of evolution. This ‘process’ model of molecular accumulation in proteomes
is based on Weston’s generality criterion of homology and additive phyloge-
netic change [223] that in our case describes the slow and nested accumula-
tion of homologous domain structures in the branches (proteome lineages)
of the tree of life. A careful phylogenetic reconstruction analysis reveals that
while both gains and losses of domain structures are frequent events, gains
always overshadow losses in evolution [224]. They found that domain gains
occurred throughout the evolutionary timeline albeit at a non-uniform rate.

Noticeable, Nasir et al. [224] found that the gains-to-loss ratios increased
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with evolutionary time (fold agend) and were relatively higher in the late
evolutionary periods. The process has advantage to ensure that more do-
main gains availability to use combinatorial interplay that is responsible
for the generation of novel domain architecture and further novel functions.
This supports the general proportionality of domain abundance and evolu-

tionary time of phylogenetic argumentation and the principle of continuity.
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Figure 6.6: Early evolution of mechanistic step types in the most ancient
of all metabolic pathways. The diagram describes structural and functional
innovation and recruitment of enzymes participating in the nucleotide inter-
conversion (INT) pathway of the purine metabolism subnetwork of KEGG.
The diagram shows that pattern 4 of possible mechanistic step type com-
binations is the most popular choice among the enzymes of this ancient
pathway. Among the mechanistic step types in pattern 4, “Proton Trans-
fer” is used by almost all the enzymes in the subnetwork (see Table 6.2).
Annotated H-level structures associated with enzymatic activities are traced
in the pathways with a color code according to their nd value, which is also
given in table format together with CATH H-level code and mechanistic step
type patterns. The most ancient enzymes exhibit a number of additional
mechanistic step types that add to those of pattern 4. These additional
mechanistic step types are listed in parentheses (+x, where x represents the
number of additional types). For details of H-level structure and pattern
association, see Table 6.1

6.5 Summary

In this chapter, we looked into the patterns using the definition of mechanis-
tic step types from MACIE mapped onto the relative age of CATH H-level
structure. A significant portion of this chapter is reprinted with permission

from all co-authors in [4]. The analysis was performed by Neetika Nath,
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John BO Mitchell and Gustavo Caetano-Anollés.
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Conclusion and Discussion

THe aim of the research described in this thesis is to investigate general
trends in the diversity of biocatalytic mechanisms and their application
towards function prediction, and understanding the evolution of biocatalysis.
For this, we use chemoinformatics descriptors encoded by enzyme reactions.
The data was retrieved from the MACIiE database and was quantitatively
represented as chemoinformatics descriptors, as discussed in Chapter 3, Data
and Databases.

The final chapter of this thesis provides a discussion of the three major
contributions to this work, which are explained in Chapters 4, 5 and 6. First,
investigation of the functional properties of the enzyme mechanistic clusters
is discussed in Section 7.1. Second, how well the enzyme mechanism can be
used for function prediction is discussed in Section 7.2. Also, we discuss the
results from the regression analysis in Section 7.3. Finally, we consider the

adaptive nature of enzymatic reactions in Section 7.4.

7.1 Global Analysis of Enzyme Reaction Mecha-
nisms

Determining the number of clusters and validating the results of various

clustering algorithms are challenging tasks, especially when no prior infor-

mation is provided. As no prior classification strategy was available for the

enzyme mechanisms, we used different clustering methods to determine the

110



Chapter 7 7.1. Global Analysis of Enzyme Reaction Mechanisms

number of clusters. Getting no obvious output from our analysis, we used an
in-house algorithm: PFClust, designed by Mavridis, Nath and Mitchell [1]
(discussed in Chapter 4) for clustering analysis of enzyme reaction mecha-
nisms. To demonstrate the important functional attributes associated with
members within clusters, we text-mined some of the biological attributes,
such as mechanistic annotation from MACIE, metal cofactors from Metal
MACIE. We compared the results between OBC clusters and CBC clusters
to test for a strong association between the enzyme reactions and important
biological attributes.

The result of this work suggests that the CBC' descriptors cluster the
data into significantly fewer clusters than OBC' descriptors, suggesting that
different functions tend to share similar mechanisms. We observe that en-
zymes often use different mechanistic steps to perform similar functions.

In this section, first we discuss the comparison of results from PFClust
with six other state-of-the-art algorithms, and next we discuss the results of

PFClust to cluster enzymatic reactions.

7.1.1 PFClust: Results and Discussion

We show that PFClust is able to cluster the CATH datasets a little better,
on average, than any of the other algorithms, and furthermore is able to do
this without the need to specify any external parameters. It is shown that
PFClust can accurately group data according to their similarities without
the need for any parameter tuning. Our clustering results on the CATH
datasets show that PFClust provides structurally meaningful clusters. Also,
that it performs best when compared to six other well-known clustering
algorithms. Clustering protein domains using a density representation gives

excellent agreement with the CATH part-manually curated classification.

7.1.2 Results From Mechanistic Annotation

Our motivation, here, is to perform a global study of enzyme reaction mech-
anisms and seek biological properties enriching clusters. This may provide
important insights for better understanding of the diversity of chemical re-
actions of enzymes. We describe how the chemical mechanisms of enzyme
reactions cluster in a space defined by chemoinformatics descriptors, using

unsupervised global analysis.
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In order to determine the number of clusters we designed a workflow
(see Figure 4.7, Chapter 4) using OBC and CBC datasets. Ideally, one
would expect to get an agreement between the algorithms used, which is
supported by external or internal validation. Contrary to what is expected
we got equivocal results from various state-of-the-art clustering algorithms;
the results are shown in Figure 4.8. Thus, we decided to use the PFClust
algorithm to seek patterns in the enzymatic reaction dataset because PF-
Clust does not require any prior information as an input and its in-built
validation step is efficient to optimise the results.

We found that when the enzyme reactions were described by OBC' de-
scriptors they formed a larger number of clusters than when clustered by
CBC descriptors. For OBC, PFClust suggests 39 clusters and 57 singletons,
whereas, CBC groups into 13 clusters and 18 singletons. There were eight
MAGIE reactions found to be singletons when clustered using either overall
or composite enzymatic reaction.

Although the MACGIE reactions are grouped into different clusters de-
pending on the descriptor used, we found some biological features exclu-
sively associated with particular clusters. For example, cluster 2 of OBC
consists of enzymes belonging to the oxidoreducatase (EC 1) class of reac-
tions. Another example is cluster 13 of CBC, where the members of this
cluster use iron as a metal cofactor. The metal ion binding and heme bind-
ing GO molecular function occur in all the enzymes present in cluster 13 of
CBC. All the clusters and their features are discussed in Appendix A.1.

The relationships between enzyme mechanisms and biological features
within enzyme clusters help us to avoid the over-prediction of enzyme func-
tion, as well as guiding our decision-making in enzyme engineering. Also,
such studies can generate more hypotheses to improve our knowledge of
function annotation. This study can lead to very interesting questions, such
as which pathways are these enzymes involved in, and do they have similar

mechanistic steps or overall reactions?

7.2 Enzyme Function Prediction

Here we discuss the results from Chapter 5, based on the machine learning
prediction. Our results strongly suggest that different enzymes typically

bring about similar chemical transformations by dissimilar mechanisms. We
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conclude this because we find that the use of mechanistic information as
a set of descriptors diminishes the EC prediction performance compared to
descriptors encoding [31] information only on the overall transformation [33].

Almonacid et al. showed that, for convergently evolved pairs of enzymes
sharing an EC sub-subclass, OS was almost universally higher than MS
[33]. In this work, OBC descriptors can predict EC class with up to 68%
accuracy, compared to 62% for the mechanism dependent CBC' description
of the reaction. Overall reaction similarity gives 71% prediction accuracy,
mechanistic similarity only up to 60%. Thus, we find that the descriptor
definitions based on overall reaction tend to be better predictors than those
based on chemical mechanism, though CBC does well on the external test
set. Since EC numbers are defined on the basis of the overall chemical
transformation catalysed, the strong performance of overall reaction-based
measures is reassuring - albeit that some questions arise over the congruence
of the EC sub-subclass-based and descriptor-based definitions of a “similar
reaction”. In this work, we are necessarily looking at predicting the top
level EC class, since MACIE contains insufficiently many examples of each
category at the subclass or lower levels. Hence, the overall reactions sharing
the same label in this study are considerably less similar than those sharing
third or fourth level labels.

Overall we found that HD descriptors strongly outperformed all other
descriptors in predicting the classes EC 1, oxidoreductase, and EC 5, iso-
merase, as these descriptors were engineered to capture specific features from
the respective EC classes. For example, in EC 5, out of 30 MACIE entries,
27 enzymes catalyse the simple stoichiometry of one starting material being
transformed into one isomeric product. Interestingly the ranking of the de-
scriptors, performances matches with the overall prediction performance (see
Table 5.1). It was difficult to predict EC 2 when descriptors were encoded
based on overall reaction as compared to when mechanistic information was
added. This is in contrast to EC 5, where prediction performance was worst
among all when descriptors represented mechanistic information. This sug-
gested that mechanistic information based descriptors did not have enough
information to be able to detect enzymes catalysing isomerase activity.

Nonetheless, the superiority of the predictions made using descriptors
based on overall chemical transformation is entirely in accordance with the

conclusions from [33]; mechanisms of analogous reactions tend to be less
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similar than are the overall reactions.

EC class 1, the oxidoreductases, covers a diversity of chemistry - the
unifying feature being that all are redox reactions. Within the breadth of
biological redox reactions, there are some recognisable clusters: significant
proportions of these reactions involve interconversion of NAD and NADH, or
NADP and NADPH (ten and 14, respectively, out of the 84 oxidoreductases
in MACIE 3.0). Overall, the oxidation and reduction reactions of EC class 1
seem to leave recognisable chemical signatures in the descriptors; for instance
C-H cleavage, O-H formation and C-C bond order changes are all common,
and class 1 is generally well-recognised. Our chemical interpretations here,

and indeed for all six classes, are based on analysis of descriptor values.

EC class 2, transferases, encompasses any chemical reaction that trans-
fers a functional group from one molecule to another; quite commonly phos-
phate moieties, in the cases of kinases and phosphatases, or methyl groups
are transferred. The 63 MACIE 3.0 entries in EC class 2 are diverse re-
actions, seeming to lack clear chemical patterns. Unsurprisingly, they are

poorly predicted.

EC class 3, the hydrolases, is more tightly defined than many of the
other classes, since it consists of reactions where water is used to hydrolyse
a chemical bond. In fact, two of our 65 hydrolases are exceptions to this
rule: M0226 is annotated as the reverse reaction, while M0172 is presented
as utilising a hydroxide ion rather than neutral water. Almost half of the hy-
drolases in MACIE 3.0, 33 out of 73, catalyse the hydrolysis of biopolymers
such as peptides, proteins, DNA or RNA. Hydrolases are well-predicted by
all the descriptor sets, though less so for composite bond change descrip-
tors. Hydrolysis leads to simple repeated and recognisable patterns of bond
making and breaking. An example for the overall bond change is C-N sin-
gle bond cleavage, combined with C-O and N-H single bond formation, for
amide or peptide hydrolysis. These are recognisable from both overall re-
action and, to a slightly lesser extent, mechanistic data. In the mechanistic
case, the corresponding patterns also include bond changes which occur in

one step of the mechanism and are subsequently undone in a later step.
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EC class 4, lyases, includes those enzymes that catalyse the breaking
of a covalent bond, other than by redox or hydrolysis reactions. While a
typical textbook definition of a lyase may specify that there should be one
substrate and two products, only 28 of the 49 lyases in MACIE 3.0 obey
this rule. Six are presented as the reverse reaction, and as many as 15
present an assortment of stoichiometric or other complexities. Despite these
extra challenges, lyases are generally well-recognised as overall reactions,
primarily due to the prevalence of C-C single bond cleavage and C-H single

bond formation.

EC class 5, isomerases, comprises enzymes that catalyse a reaction in
which the product is an isomer of the starting material. Twenty seven of
the 30 examples in MACIE 3.0 have the simple stoichiometry of one starting
material being transformed into one isomeric product; 19 of the 30 enzymes
catalyse constitutional isomerisation, seven are epimerases or racemases, two
topoisomerases catalyse winding or unwinding of DNA, one enzyme is a cis
- trans isomerase and one a tautomerase. We find that isomerases are well
predicted by overall reaction descriptors, but are extremely hard for the
mechanistic descriptors to predict. We interpret the lack of a relationship
between membership of EC class 5 and mechanism as indicating that the
class comprises a diversity of reactions, united only by the feature that the
product is an isomer of the starting material. Thus, our results support
the hypothesis that isomerisation reactions can evolve from mechanistically
diverse starting points. The two overall reaction based descriptors do rather
better, possibly because the reactions often involve formation or cleavage of
O-H single bonds. Given knowledge of the definition of an isomerase as an
enzyme whose substrate and product are isomers, it is a simple matter for
a human to design a cheminformatics descriptor or descriptors to capture
isomerisation reactions. The human designed descriptors were deliberately
engineered to include the change in molecular mass between the largest
substrate and the largest product. This descriptor is zero for all but one of
the isomerases and allows this descriptor set to recognise isomerases with
high accuracy. The isomerase most often incorrectly predicted by the human
designed predictions is M0196, where the starting material and product are

a (trivial) protonation state away from being isomers.

115



Chapter 7 7.8.  Application of Machine Learning Method

EC class 6, ligases, is composed of enzymes that catalyse the joining
together of two molecules coupled with the conversion of ATP to AMP,
or ATP to ADP. The human designed descriptors are chosen so that they
specifically include a feature recognising ATP hydrolysis; this allows them to
recognise ligases accurately. Ligases are characterised by both the formation
and cleavage of P-O single bonds and we suggest this as the reason why both
the overall and composite bond change descriptors do well in recognising

ligases.

7.3 Application of Machine Learning Method

Here, we used cheminformatics descriptors to predict the solubility of drug-
like molecules. Overall, results suggests that RF or SVR can provide a
marginally better prediction of log S than the machine learning methods
when cheminformatics descriptors are the sole input. We noticed that fit-
ting the RF model on data that are scaled to a given mean and standard
deviation produces a statistically significant improvement in its prediction
with cheminformatics descriptors alone rather than theoretical energies (for
detail see [3]). This suggests that slightly more useful information about
the molecules’ log S values is conveyed by the cheminformatics descriptors
than by the theoretical descriptors alone. The joint results do present a
statistically significant improvement for PLS and RF, once scaled by the
mean,/ standard deviation, compared to those for the theoretical energies
alone. Additionally, we note that the RF method has produced promising
predictions in this work, with relatively low RMSE.

7.4 History of Biocatalytic Mechanisms

Phylogenomic analysis of the occurrence and abundance of protein domains
in proteomes has recently showed that the o/ architecture is probably the
oldest fold design. This holds important implications for the origins of bio-
chemistry. Here we explore structure-function relationships addressing the
use of chemical mechanisms by ancestral enzymes. We test the hypothesis
that the oldest folds used the most mechanisms. We start by tracing bio-
catalytic mechanisms operating in metabolic enzymes along a phylogenetic

timeline of the first appearance of homologous superfamilies of protein do-
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main structures from CATH. A total of 335 enzyme reactions were retrieved
from MACIE and were mapped over fold age. We define a mechanistic step
type as one of the 51 mechanistic annotations given in MACIE, and each
step of each of the 335 mechanisms was described using one or more of
these annotations. We find that the first two folds, the P-loop containing
nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like
homologous superfamilies, were o/ architectures responsible for introduc-
ing 35% (18/51) of the known mechanistic step types. We find that these
two oldest structures in the phylogenomic analysis of protein domains intro-
duced many mechanistic step types that were later combinatorially spread in
catalytic history. The most common mechanistic step types included funda-
mental building blocks of enzyme chemistry: ‘Proton transfer’, ‘Bimolecu-
lar nucleophilic addition’, ‘Bimolecular nucleophilic substitution’, and ‘Uni-
molecular elimination by the conjugate base’ (for definition see Figure 3.3
in Chapter 3). They were associated with the most ancestral fold structure
typical of P-loop containing nucleotide triphosphate hydrolases. Over half
of the mechanistic step types were introduced in the evolutionary timeline
before the appearance of structures specific to diversified organisms, during
a period of architectural diversification. The other half unfolded gradually
after organismal diversification and during a period that spanned ~2 billion
years of evolutionary history.

In these studies we trust the CATH classification scheme of domain
structure, assignments of known structures to sequences, and current un-
derstanding of metabolic networks and associated chemical reactions. We
note that it is highly likely that there is an ‘underground’ metabolism of
weak catalytic specificities that is not annotated and involves a multiplicity
of substrates and perhaps mechanistic step types. Our analysis is unable to
capture this aspect of enzymatic function at this time. Similarly, our anal-
ysis does not explore biases in the distribution of annotations of molecular
functions among structures and structures among functions nor the distribu-
tion of mechanisms across enzymatic reactions. Instead, it reveals patterns

of accumulation of mechanistic step types in evolution.
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7.5 Future Work

This thesis contains three main contributions are: a clustering algorithm, a
machine learning method to annotate enzyme function, and an exploration
of structure function relationship. Although the results presented in this
thesis have demonstrated the effectiveness however, there is always extension
of the method for new application in different domains. Here, we will discuss
future extensions of these methods to other domains and also the challenges
of their evaluation.

There is clearly much work to be done in the area of virtual screening.
Perhaps the most direct extension of this work is by the means of using a
more enzyme mechanistic knowledge analysed through clustering methods
and evolutionary studies to express the properties of the vessels which helps
the existing enzyme engineering methods. In following, I suggests the in-
dividually where I can extend my thesis work. And also I am suggesting
the overall extension of my work in the industry and enzyme engineering

studies.

o A clustering algorithm: a PFClust (Chapter 4) allows complete control
over simulation and could be extended to explore what factors affects
of the knowledge collected. In this work, we used mechanistic annota-
tions of enzymes from MACIE database and clustered the enzymatic
reactions. Such results have potential to create multiple hypothesis
which will further generate multiple interesting enzyme function rela-
tionship. Also, PFClust is not limited to enzymatic reactions dataset,
this algorithm can be used on any similarity matrix where the prior

knowledge about cluster number is not available.

e A machine learning algorithm: Regarding potential extensions of the
machine learning schema presented in Chapter 5, one can add ad-
ditional information such as features from structure or sequence to
improve the prediction pattern. Also, to make this method avail-
able publicly and easily available through web interface. Our machine
learning method can also be extended to learning all gene products
annotations, for example in the form of Gene Ontology terms and can
be used to study the relationship between EC top class and enzyme

function features from structure, sequence or GO terms.
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 Evolution study of structure-function relationship: In this work (Chap-
ter 6), we looked into the patterns using the definition of mechanistic
step types from MACIE mapped onto the relative age of CATH H-level
structure. Our analysis can be extended to understand patterns from
metal as co-factors from the database metal-MACIE, in order to study
the trend of metal as co-factor use in the enzymatic reaction before
the Great Oxidation Event (GOE) [225].

One of the major extension to our work would be using this knowledge
towards the improvement of enzyme engineering and incorporating such in-
formation into enzyme virtual screening and potential mapping of the lo-
cation. For example, we know which catalytic properties/ entities in the
reactions are common using clustering analysis also study of evolutionary
suggests which folds provide store house for which mechanistic steps. Such
information could be fruitful in shortlisting the potential candidates for mu-
tation based enzyme engineering and fasten the process of screening.

In industry, many advancements occur, and are being currently devel-
oped, that take advantage of new computer architecture, database infras-
tructure and high throughput screening data. Combinatorial libraries and
data mining are leading to new information being generated, often from old
data. This kind of development may lead to new empirical models capable

of fast, accurate predictions using existing applications.

7.6 Summary

Refinement of the methodologies of protein function can yield a massive
amount of important information for better protein function prediction. Our
knowledge and understanding of diversities in enzyme function will definitely
improve the precision of function annotation with fewer false positives. This
in turn will help to improve the computational methods for fast and accurate
prediction methods.

To summarise this chapter, we have discussed our main findings on en-
zyme function. First, we found that different enzymes typically bring about
similar chemical transformations by dissimilar mechanisms. Second, evi-
dence was presented to support the assumption made for enzymatic mech-
anistic step types, that the older functions are most likely to be the most

popular mechanistic steps.
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I would like to conclude with a summary of the applicability of the
methods developed in this thesis to other domains. The machine learning
method is potentially relevant to any structured curation process in any
domain. However, we designed our method specific to enzyme function
annotation to understand the relationship between enzyme function with
top level EC class. This method could also be of interest to other domains
having regression analysis, pools of readily available unlabelled instances,
identifying genes as a biomarker using RF method and where RF, SVN,
KNN is the algorithm of choice.



Data and Tables

A.1 Results from Quantitative Global Analysis of

Enzyme Reaction Mechanisms

Discussion on Clusters of OBC Descriptors

Here, we list the important features associated with each cluster output from
PFClust for OBC descriptors. To evaluate the attributes in each cluster,
we created a heatmap (see Figures 4.10 and 4.11) of ‘mechanistic profile’,
which is discussed in Chapter 4; section 4.5 Evaluation Clustering Solutions.
To understand the meaning in these clusters we used various biological re-
sources, such as GO, KEGG pathways etc. We found that every cluster
has special features that are distinct from the other clusters. Especially, we
found that in most of the cases, GO annotation agreed with the cluster’s
EC top class function.

In this section, we discuss each cluster and what we find to be interesting
features in each one. For OBC descriptor, PFClust produced 39 clusters
and 57 singletons. The observation of clustering functions between enzymes
that have been classified as structurally unrelated provides some of the most
striking consequences of the evolutionary mechanisms.

These examples suggest that finding related information by nonhomol-
ogous enzymes can have an important practical application. For example,

such information can be useful to identify off-targets for pharmaceuticals.
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Characteristics for the OBC Cluster 1: this group consists of 38
MAGIE enzymes that includes all entries of S-lactamase present in MA-
CiE. In this cluster, most enzymes prefer water (KEGG C00001) during the
reaction. This is an important feature of EC 3, hydrolases, thus most of
the enzymes belongs to the hydrolases class. The second dominating EC
class in this cluster are EC 2, transferases. In total, 38 MACIE enzymes
including S-lactamase (M0015, M0016, M0210, M0257, M0258) are present.
When investigated using GO annotations for molecular functions in this
group, we found that hydrolase activity (GO:0016787) was very popular
in this group. Mostly, they catalyse hydrolytic cleavage of carbon-oxygen
(C.0), carbon-nitrogen (C.N), and carbon-carbon (C.C). No clear feature of
metal-cofactor was registered, however, we found that 12 enzyme members
in this group prefer zinc as a metal-cofactor for reaction. In this group, most
popular mechanistic reactions found are bimolecular nucleophilic addition,
proton transfer and unimolecular elimination by the conjugate base, which
are among the top ten popular mechanistic step types in MACIE [4,212].
Cluster 2: this group possesses six MACIE enzymes which are all oxi-
doreductase enzymatic reactions, EC 1. According to the EC classification
system they share sub-subclass (1.1.1._), except M0100. This group’s func-
tion is in full agreement with the GO annotation biological process: oxi-
doreductase activity (GO:0016491). Following is the list of MACIiE enzyme

entries in this group.

o MO0007 EC 1.1.1.42 isocitrate dehydrogenase (NADP+)

o M0021 EC 1.1.1.38 malate dehydrogenase (oxaloacetate-decarboxylating)
e MO0092 EC 1.1.1.22 UDP-glucose 6-dehydrogenase

o M0100 EC 1.2.1.8 betaine-aldehyde dehydrogenase

o M0255 EC 1.1.1.1 alcohol dehydrogenase

« MO0256 EC 1.1.1.1 alcohol dehydrogenase

The outstanding feature noted in this group is the use of NADH (KEGG:
C00004) as a substrate in the reaction. The common overall steps catalysed
in this group are related to carbon, hydrogen, oxygen: C.C_2.1, C.H_0.1,
C.C_1.2,C.0_1.2, C.N_2.1. Also, the common mechanistic step types are



aromatic bimolecular nucleophilic addition , bimolecular elimination and
hydride transfer.

Cluster 3: this cluster consists of 40 MACIE enzymes that are dis-
tributed mostly between EC 2, transferase, and EC 3, hydrolase. We found
that this group is very diverse in terms of biological function; however,
lipid metabolic process (GO:0006629) is the most popular choice of bio-
logical function. Out of 40, 36 MACIE enzymes preferred magnesium as
a metal cofactor to affect the reaction. This is important regarding the
effect of magnesium upon lipid metabolism as it is suggested [226] that
acute deficiency of magnesium can effect the cholesterol levels. Most of the
reactions use balance between formation or breaking of oxygen - hydrogen
bonds and between oxygen - phosphate bonds, those are O.H_ 0.1, O.H_ 1.0,
P.O_1.0, P.O_0.1. Mostly enzymes possess either ATP (KEGG: C00002),
water (KEGG: C00001), DNA (KEGG: C00039) or RNA (KEGG: C00046)
as a substrate to effect the reaction.

Cluster 4: consists of five enzymes belonging to the family of trans-
ferases (EC 2) listed below:

e« M0022 EC 2.3.1.87 aralkylamine N-acetyltransferase: is an enzyme
that is involved in the day/night rhythmic production of melatonin,

by modification of serotonin.
e« M0023 EC 2.1.1.20 glycine N-methyltransferase
e« M0046 EC 2.1.1.72 site-specific DNA-methyltransferase
e« MO0048 EC 2.4.2.8 hypoxanthine phosphoribosyltransferase

e M0224 EC 2.3.1.48 histone

This group consists of enzymes with similar overall reactions that pre-
fer reaction elements like nitrogen, hydrogen, oxygen; N.-H_ 1.0 , C.N_ 0.1,
S.H_0.1 and C.S_1.0. No similar GO annotation molecular or biological
functions were found within this cluster.

Cluster 5: consists of 15 enzymes that are distributed between oxidore-
ductase reaction EC 1, hydrolase EC 3 and lyases EC 4 top class. In this
group, most common GO molecular function annotation is lyase activity
(GO:0016829), which is in concordance with 11 members of this cluster.



Cluster 6: possesses eight MACIE enzymes that are either oxidoreduc-
tase, EC 1 or lyases, EC 3. Only four out of eight enzymes have metal cofac-
tor to effect the reaction, which are magnesium, iron and calcium (M0136 -
acyl desaturase, M0184- pectate lyase, M0281 - electron transferring flavo-
protein dehydrogenases and M0311 - phosphopyruvate hydratase). Notably,
all of these enzymatic reactions use assisted keto enol tautomerisation mech-
anistic step type to complete the reaction.

Cluster T: possesses four MACIE enzymes belonging to isomerase, EC
5, apart from M0204 (uroporphyrinogen-III synthase) which is a lyase EC
4. The GO molecular function annotations are : G0O:0016866 intramolec-
ular transferase activity, GO:0016853 isomerase activity, and GO:0003824
catalytic activity. This set of enzymes uses colligation and homolysis mech-
anistic step types.

Cluster 8: contains four enzymes where two of them belong to trans-
ferase, EC 2, and the rest to lyases, EC 4. This group also possesses assisted
keto enol tautomerisation and aldol addition mechanistic steps. Enzymes
in this group are involved in glycolysis (KEGG ec00010). The fructose al-
dolase enzymes of EC class 4 (M0052, fructose bisphosphate aldolase (Class
IT) and M0222 EC 4, fructose-bisphosphate aldolase (Class I)) are grouped
with M0053 (malate synthase) and M0078 (citrate (Si)-synthase).

Cluster 9: consists of four enzymes, mostly transferase, EC 2, and hy-
drolases, EC 3. Members of the group of mechanistic step types claisen
condensation are present with other popular enzymatic mechanistic step
types: bimolecular nucleophilic addition and unimolecular elimination by
the conjugate base. No other biological features were found to be signifi-
cantly dominating in this group.

Cluster 10: group of five oxidoreductase, EC 1, reactions, which partici-
pates in different catalytic activity such as electron transport chain (GO:0022904),
tetrahydrofolate metabolic process (GO:0046653). These enzymes are an-
notated with more than ten mechanistic step types among which seven are
the mostly preferred step types such are electron transfer and aromatic bi-
molecular nucleophilic addition.

Cluster 11: consists of ten MACIE enzymes primarily involved in
oxidoreductase, EC 1. Two of the members belong to isomerase activ-
ity, EC 5 (M0051, phosphoenolpyruvate carboxykinase (ATP) and M0190,

isopentenyl-diphosphate delta-isomerase). According to GO molecular func-



tion annotation, two most popular annotations are oxidoreductase activity
(GO:0016491) and FMN binding (GO:0010181). It is interesting to find
that all the enzymes here catalyse on NAD (KEGG C00005) as a substrate.
Mostly the reactions in this group use hydride transfer and aromatic uni-
molecular elimination by the conjugate base reaction step types.

Cluster 12: consists of only three members but are very interesting, as
this is a collection of different overall reactions; M0082 (EC 2) glutamine-
fructose-6-phosphate transaminase, M0095 (EC 5) arabinose isomerase and
MO0146 (EC 1) pyrogallol hydroxytransferase. One common factor among
this group is that all enzymes are annotated with keto enol tautomerisation
mechanistic step types to effect the reaction.

Cluster 13: is a collection of three enzymes which perform transfrases,
EC 2, overall reaction. These enzymes participated in different biological
processes such as blood coagulation and tissue regeneration. The mecha-
nistic step types shared between these enzymes are the most popular mech-
anistic step types in the MACIE database such as proton transfer and bi-
molecular nucleophilic addition.

Cluster 14: is a set of three enzymes performing different overall reac-
tions, EC top class oxidoreductase EC 1, transferase EC 2 and lyases EC 3.
The reason why these enzymes are together is that all of them are partici-
pating in a reaction which requires for either breakage, formation or charge
change of bonds of sulfur and oxygen; S.O_1.0, S.O_0.1, S.O_1.2.

Cluster 15: consists of six different enzymes, three of them are oxi-
doreductase EC 1, one transferase EC 2, and two isomerase EC 5. Among
this, M0111 (glutamate synthase (ferredoxin)) and M0304 (glutamate syn-
thase (NADPH)) have common biological processes, and those are glutamine
metabolic and glutamate biosynthetic processes. Most common mechanistic
step type is are intramolecular elimination.

Cluster 16: consists of nine ligase EC 6 and one transferase EC 2. The
common factor in this group is that in their catalysis they use magnesium
as a metal cofactor. The popular molecular function among all is ATP bind-
ing (GO: 0005524) and this also suggests why this group contains common
substrate ATP (KEGG C00002). These enzymatic reaction types are aro-
matic bimolecular nucleophilic substitutions and bimolecular nucleophilic
substitution.

Cluster 17: consists of 12 MACIE enzymes, mostly belonging to hy-



drolases EC 3 with two entries of transferase, EC 2 and one of lyases
EC 4. This set of enzymes includes cyclomaltodextrin glucanotransferase,
phospholipase A2. According to the GO biological process, carbohydrate
metabolic and lipid catabolic are the most popular annotations. Such en-
zymes mostly catalyse reactions involving hydrogen, carbon and oxygen;
H.O_0.1, HO_1.0 or C.O_0.1 and C.O_1.0. All the enzymatic reaction
carries either proton transfer or unimolecular elimination by the conjugate
base mechanistic step types. It is not a surprise to see that water (KEGG:
C00001) is a common factor in this group as this cluster is dominated by
hydrolases EC 3.

Cluster 18: a group of a four members of lyases EC 4. All of these
enzymes perform different functions where the nucleotide sugar or fucose
metabolic process is involved. In this cluster, proton transfer and assisted
keto enol tautomerisation played vital roles for completing the reaction.

Cluster 19: all the four enzymes that are involved in peroxidase are
grouped together in this cluster. This group of enzymes is important for
understanding response to oxidative stress (GO: 0006979), according to GO
biological process. For molecular function GO, we found all the enzymes are
participated in peroxidase (GO: 0004601) and oxidoreductase activity (GO:
0016491). We found that six mechanistic step types were included in this set
including acidic bimolecular nucleophilic substitution, bond order change,
heterolysis, intermolecular nucleophilic substitution, redox and substitution
reaction. Also, over represented substrates in this group are chloride (KEGG
C00698) and hydrogen peroxidase (KEGG: C00027).

Cluster 20: consists of seven MACIiE enzymes that are distributed
among transferases EC 2 and lyases EC 4. In this group, magnesium is used
by all the enzymes for the reactions. This group of enzymes mostly per-
forms reactions on C-C or C-H bond formation. The mechanistic step types
annotated in this group are intramolecular reactions such as intramolecular
electrophilic addition/ substitution or elimination. In this group of enzymes
most of them act on 2- trans-6- trans- farnesyl diphosphate (KEGG: C00448)
substrate also supported by KEGG . It is interesting to note that the PF-
Clust was able to recognise them to be together.

Cluster 21: groups five enzymatic reactions where two enzymes belong

to oxidoreductase EC 1, two are isomerase EC 5 and one EC 4 lyases. In

"http:/ /www.genome.jp/dbget-bin /www,get?C00448



this group, “assisted keto enol tautomerisation” step types are the popular
choice for the enzymatic reaction.

Cluster 22: is a group of two MACIE enzymes, M0123 adenylyl sul-
fate reductase and M0279 phosphoadenylyl sulfate reductase (thioredoxin)
belonging to oxidoreductase reaction. Both of these enzymes are involved
in sulfur metabolism (KEGG ec00920)2. Where, M0123 participates in dis-
similatory sulfate reduction and oxidation pathway, whereas M0279 in as-
similarity sulfate reduction.

Cluster 23: all the eight members in this group belong to ligases fam-
ily EC 6, and use zinc or magnesium as a metal cofactor. According to
GO biological process, most of the enzymes in this group are involved in
tRNA aminoacylation for protein translation (GO: 0006418)and according
to molecular function it is ATP binding (GO:0005524). The most abundant
mechanistic step types are assisted other tautomerisation and bimolecular
nucleophilic substitution that are involved in bond breaking and formation
between P.O, O.H and C.0O. The most common substrate used within this
group is ATP (C00002).

Cluster 24: consists of two members which belong to oxidoreductase,
EC 1: M0130 (naphthalene 1,2-dioxygenase) and M0131 (4-hydroxybenzoate
3-monooxygenase). Both of the participants acquire same GO biological pro-
cess annotation: aromatic compound catabolic process (G0:0019439). Com-
mon mechanistic step types are aromatic bimolecular nucleophilic addition,
aromatic unimolecular elimination by the conjugate base and bimolecular
nucleophilic substitution.

Cluster 25: consists of two enzymes belonging to EC 1 oxidoreduc-
tase reaction: M0067 (alanine dehydrogenase) and M0139 (xanthine dehy-
drogenase). In this group, aromatic bimolecular addition and bimolecular
nucleophilic addition step types are annotated with both of the enzymes.

Cluster 26: this clusters two enzymes together, for both of which the
overall reaction is oxidoreductase reaction EC 1: M0104 (quinoprotein glu-
cose dehydrogenase) and M0208 (ubiquinol-cytochrome-c reductase), where
MO0104 uses calcium and M0208 uses iron as a metal cofactor to support the
chemical transformation. In this group, only proton transfer is common in
both the enzymatic reactions. These two enzymes share a substrate, namely
ubiquinone (KEGG: C00399), to complete the reaction.

2http://www.genome.jp/kegg-bin /show,athway?ec00920



Cluster 27: group of four enzymes which all belong to oxidoreduc-
tase reaction EC 1: M0003 (NAD(P)H dehydrogenase (quinone)), M0093
(hydroxymethylglutaryl-CoA reductase (NADPH)), M0109 (dihydroorotate
oxidase) and M0227 (GDP-L-fucose synthase). In this group hydride trans-
fer and proton transfer are common mechanistic step types used in the chem-
ical reaction.

Cluster 28: group of two enzymes of EC 1 oxidoreductase reaction,
MO0106 (pyruvate dehydrogenase (acetyl-transferring)) and M0280 (3-methyl
- 2 - oxobutanoate dehydrogenase (2- methylpropanoyl - transferring)). Both
of these enzymes use magnesium as a metal cofactor to complete the reac-
tion. From molecular function two distinct activities stand out, and these
are protein binding (GO: 0005515) and oxidoreductase activity, acting on
the aldehyde or oxo group of donors, disulfide as acceptor (GO:0016624).

Cluster 29: group of three enzymes belonging to transferases EC 2,
MO0148 (transaldolase) and M0289 (acetolactate synthase), and lyases EC
4, M0298 (tartronate - semialdehyde synthase). A common factor in this
cluster is that both (M0289 and MO0298) use magnesium as a metal co-
factor. The most commonly used mechanistic step types are bimolecular
nucleophilic addition and proton transfer.

Cluster 30: group of two different overall function enzymes, from trans-
ferase, M0031 (EC 2, thymidylate synthase) and isomerases, M0056 (EC 5,
tRNA-pseudouridine synthase I). Interestingly, we found no common fea-
tures that could be used to group these two enzymes together apart from
PFClust suggestion.

Cluster 31: group of two enzymes, one belongs to transferases: M0030
(EC 2, formate C-acetyltransferase) and oxidoreductase: MO0119 (EC 1,
pyruvate). Similar to enzyme members in Cluster 30, we could not find
any similar features in this cluster either.

Cluster 32: group of 19 enzymes mostly belonging to isomerase top
class (EC 5), oxidoreductase (EC 1), hydrolase (EC 3) and ligases (EC 6).
This group was also difficult to determine any common biological factors
shared between all of its 19 enzymes.

Cluster 33: is a group of two enzymes belonging to EC top class
1, oxidoreductase, M0125 (catechol oxidase) and MO0135 (peptidylglycine
monooxygenase). Both of these enzymes preferred copper as a metal co-

factor to complete the reaction. In this group, many common mechanistic



step types were found and these are bimolecular homolytic addition, which
is also a rare step in the MACIE database, radical formation, radical prop-
agation, radical termination.

Cluster 34: group of four enzymes from different overall transaction
oxidoreductase EC 1, hydrolase EC 3 and lyases EC 4. Out of four, three
enzymes use iron metal-cofactor and M0284 (EC 3) uses cobalt as a cofactor.

Cluster 35: group of two enzymes belonging to the transferase (EC 2)
class, M0008 (nicotinate-nucleotide diphosphorylase (carboxylating)) and
MO0147 (glycine hydroxymethyltransferase).

Cluster 36: group of two enzymes belongs to hydrolases EC 3 and
lyases EC 4 class: M0060 (glucosamine-6-phosphate deaminase) and M0185
(DNA-(apurinic or apyrimidinic site) lyase) respectively. Both enzymes are
annotated with similar mechanistic step types, and these are bimolecular
electrophilic addition and bimolecular elimination.

Cluster 37: is a group of four MACIiE enzymes; M0004 (nitrite re-
ductase (NO-forming)), M0124 (cytochrome-c oxidase), M0138 (superoxide
dismutase) and M0276 (nitrate reductase), all of which belong to EC 1, oxi-
doreductase reaction. The common metal-cofactors in this group are copper
and iron. The common mechanistic step types in this group are electron
transfer and proton transfer. In addition, these enzymes catalytic reactions
on protons (KEGG: C00080).

Cluster 38: group of two enzymes, M0006 (glutathione-disulfide reduc-
tase) and M0277 (mercury(II) reductase), belonging to oxidoreductase reac-
tion, EC 1. The specific biological process they both possess (GO:0045454)
is cell redox homeostasis: by definition, it means any process that main-
tains the redox environment of a cell or compartment within a cell. In this
cluster, we found two GO molecular functions terms common: flavin adnine
dinucleotide binding and NADP binding.

Cluster 39: group of four enzymes; M0155 (formyl-CoA transferase,
EC 2), M0198 (long-chain-fatty-acid-CoA ligase, EC 6), M0295 (methylated
- DNA — [protein] - cysteine S - methyltransferase, EC 2) and M0307 (Ubiq-
uitin transfer cascade (E1, E2, E3), EC 6).

Characteristics for the CBC When CBC descriptors were used for PF-
Clust 15 clusters were found. Using mechanistic profile we found there are

many strong signals suggesting association between the clusters and mech-



anistic annotation. For example, Cluster 13 have radial termination, radial
formation, electron transformation and bond order change to be highly ex-
pressed annotations between M0124 (EC 1) cytochrome - ¢ oxidase , M0239
(EC 1) peroxidase.

Here, we will discuss the important biological features found in the clus-
ters of CBC.

Cluster 1: consists of 105 MACIE enzymes which are widely distributed
among all six top classes of overall reaction. Most of the enzyme reactions
in this group use the following reaction types: O.H_1.0, O.H_0.1, N.-H_ 0.1,
Cc.0_12,C0_21,C.0_0.1,C.0 _1.0,C.N_1.0,P.O_1.0,P.0_0.1,C.Cl 1.0,
Mn.O_0.1, Mn.O_1.0. Some mechanistic step types such as bimolecular
nucleophilic addition, bimolecular nucleophilic substitution, proton trans-
fer and unimolecular elimination by the conjugate base also showed strong
expression in this group. This group consists of 76% of the hydrolases ac-
tivity (EC 3) from the MACIE database. Here, 34 MACIE enzymes possess
metal ion binding GO molecular function, our analysis suggests that enzyme
members in this group use magnesium and zinc as a metal co factor.

Cluster 2: group consists of 88 MACIE enzymes where mostly the
enzymes belong to oxidoreductase (EC 1). In this group, 46% of EC 1
overall reactions from MACIE database are present. This group consists
of aromatic bimolecular elimination and nucleophilic addition, mechanistic
step types. Out of 88 MACIE enzymes, here 34 use metal cofactors which
are magnesium, zinc and iron.

Cluster 3: consists of 29 enzymes mostly belonging to isomerase (EC
5). We found that, 40% of the isomerase EC 5 are present in this group.
Most of the reaction use metal cofactor such as magnesium.

Cluster 4: possesses 21 MACIE enzymes. In this set of enzymes 90%
of them perform proton transfer, bimolecular nucleophilic addition and uni-
molecular elimination by the conjugate base, whereas bimolecular nucle-
ophilic substitution is only used by 33% of the enzymes. Moreover, clasien
condenstation annotated in 4% of the enzymes in this cluster.

Cluster 5: consists of four enzymes in total, out of which three belong
to oxidoreductase reaction EC 1 M0125 (catechol oxidase), M0135 (peptidyl-
glycine monooxygenase), M0136 (acyl-[acyl-carrier-protein| desaturase), and
one acts as isomerase, EC 5 M0192 (prostaglandin-E synthase). In this

cluster, most distinct reaction steps involve oxygen with copper, iron and



sulfur, and those are Fe.O_1.0, Fe.O_0.1, O.0_2.1, O.0_1.0, Cu.O_1.0,
Cu.0O_0.1, S.O_1.0, S.O_0.1. This set of enzymes is important for plant
bioinformatics studies.

We found that, M0192 Prostaglandin E synthase (or PGE synthase) is
an enzyme involved in eicosanoid and glutathione metabolism, a member of
MAPEG family. The M0136 (acyl-[acyl-carrier-protein] desaturase) enzyme
belongs to the family of oxidoreductases, specifically those acting on paired
donors, with Os as oxidant and incorporation or reduction of oxygen. This
enzyme class plays a critical role in the biosynthesis of unsaturated fatty
acids in plants.

The M0125 (catechol oxidase), catechol is present in small quantities in
the vacuoles of cells of many plant tissues. Catechol oxidase is present in
the cell cytoplasm. If the plant tissues are damaged, the catechol is released
and the enzyme converts the catechol to ortho-quinone, which is a natural
antiseptic. Also, we found that M0125, M0135 and M0136 share similar
substrate i.e. oxygen (C00007).

Cluster 6: consists of six MACIE enzymes distributed among oxi-
doreductases EC 1 (M0122: protein-methionine-S-oxide reductase, M0143:
arsenate reductase and M0279: phosphoadenylyl-sulfate reductase (thiore-
doxin)), transferase EC 2 (M0153: thiosulfate sulfurtransferase and M0156:
coenzyme-B sulfoethylthiotransferase) and isomerases EC 5 (M0191: protein
disulfide-isomerase). Notably, these enzymes are annotated with bimolec-
ular and intramolecular nucleophilic substitution mechanistic step types in
order to execute the following reaction entities: S.H_0.1, S.H_ 1.0, S.S_ 0.1,
S.S_1.0,S.0_1.0,S.0_2.1,S.0_0.1, As.O_1.0,As.0O_2.1, As.S_0.1, As.S_ 1.0,
Ni.C_0.1, Ni.C__1.0.

Most of the enzymes in this group possess thioredoxin (KEGG C00342)
as a substrate to act on. Interestingly, all enzymes in this group work one
of the following substrates: thioredoxin, thiosulfate, methylthio or disulfide.
Apart from M0279 MACIE enzyme (appeared in OBC' Cluster 22), the rest
of the enzymes were found to be singletons when clustered using OBC.

Cluster 7: group of three MACIE enzymes including two with isomerase
activity (EC 5, M0062(methylmalonyl-CoA mutase), M0063 (methylaspar-
tate mutase)) and one transferase (EC 2, M0268 (methionine synthase)).
Each of these three enzymes uses cobalt as a metal co-factor in their reac-

tions. According to GO molecular function annotation, this cluster possesses



cobalamin binding and metal ion binding molecular function.

Cluster 8: is a group of 29 MACIE entries where most of the enzymes
act on phosphorus, oxygen, nitrogen and sulfur in order to effect the reac-
tion: P.O_1.0, P.O_0.1, P.O_1.2, P.O_2.1, P.N_0.1, P.N_1.0, C.P_0.1,
P.S_0.1, P.S_1.0. No oxidoreductase reaction was found in this class. The
metal cofactors assisting the biochemical transformation for reactions in this
group are either magnesium or zinc. Following are some important features,

such as KEGG pathways, that are annotated by each enzyme in this group.

e M0023 EC Number: 2.1.1.20 glycine N-methyltransferase: is a foliate
binding protein and it is found in abundant quantity in the liver [227].

This enzyme participates in glycine, serine and threonine metabolism.

e M0040 EC Number: 2.7.2.3 phosphoglycerate kinase: is an impor-
tant ATP generating step in glycolysis. This enzyme catalyzes the re-
versible transfer of a phosphate group from 1 ,3-bisphosphoglycerate
(1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP
[228].

e M0042 EC Number: 3.1.30.2 nuclease: catalyzes the hydrolytic cleav-
age of DNA and RNA in the presences of metal cofactors [229].

e MO0043 EC Number: 3.1.3.2 acid phosphatase : mostly present in lyso-
some [230].

e« M0046 EC Number: 2.1.1.72 site-specific DNA-methyltransferase: an
enzyme responsible for producing a species-characteristic methylation

pattern on adenine residues in a specific short base sequence in the
host cell DNA.

e MO0047 EC Number: 3.1.3.48 protein-tyrosine-phosphatase: are a group
of enzymes that remove phosphate groups from phosphorylated tyro-

sine residues on proteins [231].

o M0051 EC Number: 4.1.1.49 phosphoenolpyruvate carboxykinase (ATP):
is an enzyme in the lyase family used in the metabolic pathway of glu-

coneogenesis [232].

o MO0058 EC Number: 4.6.1.1 adenylate cyclase: All classes of AC cat-
alyze the conversion of ATP to 3’,5-cyclic AMP (cAMP) and py-
rophosphate [233].



MO0079 EC Number: 2.4.2.21 nicotinate - nucleotide - dimethylbenz-
imidazole phosphoribosyl transferase : it is one of the enzymes of the

anaerobic pathway of cobalamin biosynthesis [234].

MO0088 EC Number: 2.7.7.12 UDP -glucose-hexose-1-phosphate uridy-
lyl transferase: This enzyme belongs to the family of transferases,
specifically those transferring phosphorus-containing nucleotide groups
[235].

M0101 EC Number: 3.6.1.29 bis(5’-adenosyl)-triphosphatase: specif-
ically act on acid anhydrides in phosphorus-containing anhydrides
[236].

MO0150 EC Number: 2.7.4.6 nucleoside-diphosphate kinase: are en-
zymes that catalyze the exchange of phosphate groups between differ-
ent nucleoside diphosphates [237].

MO0152 EC Number: 2.7.8.7 holo-[acyl-carrier-protein] synthase: specif-
ically those transferring non-standard substituted phosphate groups
[238].

MO0157 EC Number: 3.1.2.6 hydroxyacylglutathione hydrolase: specif-
ically the class of thioester lyases [239].

MO0178 EC Number: 3.6.3.14 H-+-transporting two-sector ATPase: is
one of the most putative proteins and its function as oxidative phos-

phorylation using ATP cofactor [211].

MO0179 EC Number: 3.6.4.9 chaperonin ATPase: is an enzyme with
system name ATP phosphohydrolase (polypeptide-unfolding) which
assists in protein folding [240].

M0194 EC Number: 5.4.2.8 phosphomannomutase / phosphogluco-
mutase: This enzyme belongs to the family of isomerases, specifi-
cally the phosphotransferases (phosphomutases), which transfer phos-
phate groups within a molecule [241]. According to KEGG analysis,
it is suggested that this enzyme is involved in Fructose and mannose
metabolism (ec00051).



MO0198 EC Number: 6.2.1.3 long-chain-fatty-acid-CoA ligase: member
of the ligase family that activates the breakdown of complex fatty
acids [242].

M0202 EC Number: 6.5.1.1 DNA ligase (ATP): specific type of en-
zyme, a ligase, (EC 6.5.1.1) that facilitates the joining of DNA strands
together by catalyzing the formation of a phosphodiester bond [243].

MO0206 EC Number: 5.4.2.6 beta-phosphoglucomutase: to the family
of isomerases, specifically the phosphotransferases (phosphomutases),

which transfer phosphate groups within a molecule [244].

M0242 EC Number: 3.1.4.41 sphingomyelin phosphodiesterase D: hy-

drolase the ester linkage between Cer phosphate and choline.
M0246 EC Number: 2.7.10.1 receptor protein-tyrosine kinase

MO0271 EC Number: 5.4.2.9 phosphoenolpyruvate mutase: This en-
zyme belongs to the family of isomerases, which transfer phosphate

groups within a molecule [245].

M0287 EC Number: 2.7.7.4 sulfate adenylyltransferase: This enzyme
belongs to the family of transferases, specifically those transferring

phosphorus-containing nucleotide groups (nucleotidyltransferases) [246].

M0290 EC Number: 2.7.4.3 adenylate kinase: this enzyme is good for

study for extremophilic adaptive nature [247].

M0295 EC Number: 2.1.1.63 methylated-DNA—[protein]-cysteine S-
methyltransferase: This enzyme belongs to the family of transferases,

specifically those transferring one-carbon group methyltransferases [248].

M0296 EC Number: 2.7.7.39 glycerol-3-phosphate cytidylyltransferase:
This enzyme belongs to the family of transferases, specifically those

transferring phosphorus-containing nucleotide groups [249].

M0299 EC Number: 2.7.7.3 pantetheine-phosphate adenylyltransferase

: specifically those transferring phosphorus-containing nucleotide groups

MO0310 EC Number: 6.1.2.1 D-alanine-( R )-lactate ligase



Cluster 9: is a group of three enzymes belonging to oxidoreductase
family (EC 1), including two chloride peroxidase (M0248 , M0250) enzymes
and one alkanal monooxygenase M0132.

Cluster 10: includes five enzymes belonging to the oxidoreductase
(EC 1) family, enzymes M0034 (catechol 2,3-dioxygenase), M0129 (tau-
rine dioxygenase), M0133 (camphor 5-monooxygenase), M0134 (tyrosine 3-
monooxygenase), M0137 (deacetoxycephalosporin-C synthase). All of these
enzymes possess the following reaction steps: C.O_ 0.1, Fe.O_ 1.0, Fe.O_ 0.1,
0.0 21 0.0 1.0, Fe.O 1.2, Fe.O 2.1,S.0 2.1, Fe.S 1.0.

MO0034 EC 1 catechol 2,3-dioxygenase; This isolate exhibited important
characteristics such as broad range of pH, temperature and time course for
enzyme activity. M0129 EC 1 taurine dioxygenase. M0133 EC 1 camphor
5-monooxygenase. These enzymes possess iron as metal cofactors and more-
over, catalysis on oxygen (KEGG C00007) is present in all these enzymes.
When clustered with OBC, these enzymes were found to be singletons.

Cluster 11: is a group of three enzymes belonging to oxidoreductase re-
action (EC 1); M0121 (sulfite oxidase), M0144 (arsenite oxidase) and M0276
(nitrate reductase). All these enzymes use molybdenum metal co-factor for
completing the reactions. The common mechanistic step types in this group
of enzymes are electron and proton transfer.

Cluster 12: this group of oxidoreductase overall reaction EC 1 of four
MACIE enzymes; M0037 (prostaglandin-endoperoxide synthase), M0110 (D-
amino-acid oxidase), M0113 (sarcosine oxidase) and M0130(naphthalene 1,2-
dioxygenase).

Cluster 13: this group of two enzymes of oxidoreductase reaction (EC
1); M0124 (cytochrome-c oxidase) and M0239 (peroxidase). Both of these
enzymes use iron as a metal cofactor to support the reaction. Also, ac-
cording to GO annotation, metal ion binding and heme binding molecular
function was retrieved from the cluster. Both of the enzymes were annotated
with following mechanistic step types - bimolecular nucleophilic substitution,

electron transfer, proton transfer, radical formation and redox.



A.2 Table for Chapter 6: Enzyme Function Evo-
lution: Chemolution Study

Fold CATH Description Mechanisms Discovered
Age

Bimolecular nucleophilic
substitution

Proton transfer

Electron transfer

0.0098 3.40.50.720 NAD(P)-binding Bimolecular elimination

Rossmann-like Domain

Aromatic unimolecu-
lar elimination by the
conjugate base

Aromatic intramolecular

elimination

Radical formation

Redox

0.0098 3.50.50.60 FAD/NAD(P)-binding Bimolecular elimination

domain



Aromatic unimolecu-
lar elimination by the
conjugate base

Aromatic intramolecular

elimination

Radical formation

Colligation

0.0147 3.40.50.620 HUPs Intramolecular elimation

Aldol addition

Aromatic bimolecular

elimination

0.0490 3.40.50.970 Not Assigned (1-deoxy D- Homolysis
xylulose-5-phosphate syn-
thase -like domain 1/2/3)

0.0490 3.40.190.10 Periplasmic binding Aromatic bimolecular nu-

protein-like 11 cleophilic substitution

Intramolecular elec-

trophilic addition

0.0588 3.40.30.10 Glutaredoxin Intramolecular nucle-
ophilic substitution

0.0784 2.60.120.10 Jelly Rolls Radical propagation



0.1471 3.20.70.20 Anaerobic ribonucleotide- Bimolecular homolytic
triphosphate  reductase substitution

large chain

Unimolecular  homolytic

elimination

Intramolecular rearrange-
ment

0.2549 3.40.50.10090 Not Assigned (Urophor- Aromatic intramolecular
phyrinogen -111 synthase electrophilic substitution
- like domain 1/2)

0.4412 1.10.520.10 Not Assigned (Catalase- Bond order change
preoxidase- like domain

1/2)

Pericyclic reaction

0.5980 1.10.590.10 Chorismate Mutase sub- Claisen rearrangement
unit A

Bimolecular homolytic

elimination

0.7304 1.10.800.10 Phenylalanine Hydroxy- Aromatic bimolecular
lase electrophilic addition




Data and R Code

All results are reproducible and the complete R scripts and example dataset are
available as a supporting information for this thesis.

Folder in CD:

SI_ Chapter_ 3

o mechanistic_step_type_ proportion : This table contains information about
mechanistic step type definitions, and the numbers and proportions of MA-
CiE mechanisms that include each step type. The counts are from the com-
plete MACIE data set (335 reaction mechanisms).

e Metal macie : This table contains information about metal as a cofactor
participating in enzymatic reactions. The counts are from the complete Metal
MACIE data set (188 entries). The data is represented in Figure 3.5.

e Descriptors_ Classification
— Additional_File 1 : Details of the five sets of descriptors used in this
work are listed in this file.

— Additional_ File_ 2 human_ designed : The values of the Human De-

signed descriptors used in this work.

— Additional_File_3_overall _bond_ change : The values of the Overall
Bond Change descriptors used in this work.

— Additional_File_4 overall reaction_ similarity : The values of the

Overall Reaction Similarity descriptors used in this work.

— Additional_File_ 5 composite_bond_ change : The values of the Com-

posite Bond Change descriptors used in this work.

139



— Additional File 6 mechanistic_similarity : The values of the Mech-

anistic Stmilarity descriptors used in this work.
SI__Chapter_4

e Clustering Analysis_cbc_obc : This table consists of assignment of MACIE
enzymes to a cluster when using CBC or OBC, in addition to the detailed
information of MACIE entries, such as EC top class, Enzyme names, Species.

¢ PFClust algorithm: also available for download from the Mitchell group web

server!.

SI_ Chapter_5

e Informatics_ Solubilty datasets_and_ scripts: Full descriptors and algorithm

is also available for download from the Mitchell group web server?.

— Datasets

— R_scripts_and_ test_ SI

SI_ Chapter_ 6

e Dataset S1 : The complete data set used in our analysis in Chapter 6, where
the first column represents the fold age (nd values),the second column is
the H-level CATH code, and subsequent columns contain the CATH descrip-
tion, MACIE entry number, EC number, enzyme name. The MACIE entry
numbers highlighted in red are the enzymes possessing metal cofactors.

e Table S1 : Patterns of mechanistic step types present in at least one entry in
MACGIE.

e Table S2 : Association between the CATH H-level structures and patterns
of mechanistic step types. Patterns shared by more than one structure have
their pattern numbers highlighted in green; patterns that are unique to one

structure are not highlighted.

"http://chemistry.st-andrews.ac.uk/staff/jbom/group/PFClust.html
http://chemistry.st-andrews.ac.uk /staff/jbom/group/Informatics_ Solubility.html
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