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Abstract 

A hierarchical hormonal cascade along the hypothalamo-pituitary-adrenal axis orchestrates 

bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by 

parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the 

portal circulation at the median eminence, is known to prime downstream hormone release, the 

molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find 

a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing 

secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling 

identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on 

secretagogin’s Ca2+-sensor properties and protein-interactions with the vesicular traffic and 

exocytosis release machineries to liberate this key hypothalamic releasing hormone. 

Pharmacological tools combined with RNA interference demonstrate that secretagogin’s loss-of-

function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral 

corticosterone levels in response to acute stress. Cumulatively, these data define a novel 

secretagogin neuronal locus and molecular axis underpinning stress responsiveness. 

Key words: acute stress / Ca2+ sensor / HPA axis / vesicular release 

Introduction 

Stress is the body’s reaction to environmental conditions or noxious challenges. Fast adaptive 

responses to stress are reliant on a hierarchical hormonal cascade that adjusts and adapts to 

metabolic processes at the periphery (Selye et al, 1949; Baxter et al, 1972) to maximize energy 

expenditure in order to avoid adverse environments (Sapolsky et al, 1986; Swanson, 1991; 

Korte, 2001; de Kloet et al, 2005; McEwen, 2007). Stress hormone release is controlled by the 

hypothalamo-pituitary-adrenal (HPA) axis whose anatomical organization, allowing dynamic 

hormonal integration at the ligand and receptor levels and via extensive feedback and 

amplification loops, is well established (Kiss et al, 1984; Makino et al, 2002; Simmons et al, 

2009; Tasker et al, 2011). In contrast, the localization and molecular identity of many 

neurosecretory neurons in rodents (particularly mouse) and humans are less well characterized, 

partly due to the rapid, phase-locked nature of the synthesis and release of stress hormones, 

limiting their usefulness as cellular markers (Swanson et al, 1989; Meister et al, 1990). In this 

context, the neuronal sites producing corticotropin-releasing hormone (CRH) (Spiess et al, 

1981; Vale et al, 1981) in the paraventricular nucleus of the hypothalamus (PVN) (Swanson et 

al, 1986; Swanson et al, 1989; Herman et al, 1992; Sawchenko et al, 1993), as well as rate-

limiting steps of CRH release into the hypophyseal portal circulation at the median eminence, 

are of particular significance since CRH liberates adrenocorticotropic hormone (ACTH) as the 

initial step of the peripheral stress response (Rivier et al, 1983; Kovacs et al, 1996). 

Nevertheless, detailed molecular underpinnings of CRH release remain to be defined. 
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The release of arginine-vasopressin (AVP) and oxytocin from magnocellular neurosecretory 

cells (Gainer et al, 2002), and of combinations of releasing and inhibitory hormones and other 

neuropeptides from parvocellular neurons (Swanson and Sawchenko, 1983) requires Ca2+-

dependent quantal exocytosis of dense core vesicles in response to afferent stimulation or 

direct metabolic challenges, entraining bursts of neuronal excitation in the PVN (Dutton et al, 

1979; Cazalis et al, 1985; Carafoli et al, 2001; Petersen et al, 2005; Dayanithi et al, 2012). The 

priming of vesicular release is regulated by a multi-protein complex sequentially recruiting Ca2+ 

sensors, SNARE proteins and the docking machinery embedded in the presynaptic terminal 

(Sollner et al, 1993; Hata et al, 1993; Sutton et al, 1998; Pang et al, 2010). Ca2+ sensors are 

proteins that undergo conformational changes upon Ca2+ binding, sculpting inter-molecular 

interactions with downstream effectors to propagate action potential-dependent release events 

(Brose et al, 1992; Sudhof et al, 2009). As such, calbindin-D28k and calretinin were 

histochemically associated with magnocellular neurosecretory cells (Sanchez et al, 1992; Arai 

et al, 1993). In contrast, neuron-specific Ca2+ sensors were neither anatomically localized to nor 

functionally characterized in parvocellular hypothalamic neurons. 

Recent neuroanatomical mapping places secretagogin, an EF-hand Ca2+-binding protein 

(Wagner et al, 2000) into the PVN and adjacent pre-autonomic areas (Mulder et al, 2009; Maj et 

al, 2012). Despite the unexpected abundance of neurons expressing secretagogin mRNA and 

protein (secretagogin+ neurons) in the mammalian hypothalamus, their phenotype, cumulatively 

defined by their fast neurotransmitter, neuropeptide and/or hormone contents, remains 

unknown. Moreover, and even if the proximity of secretagogin+ neurons to the ventricular 

system along the longitudinal axis of the forebrain might indirectly infer a conserved role in 

secretory processes (Mulder et al, 2009), secretagogin’s role in the nervous system remains 

elusive. 

Here, we sought to address whether secretagogin marks a hitherto undescribed neurosecretory 

locus in the PVN. We have combined systems neuroanatomy, neurophysiology, single-cell 

transcriptomics and proteomics to unequivocally define secretagogin+ neurons as a cohort of 

CRH-expressing parvocellular cells, partly interspersed within magnocellular domains of the 

PVN, and to show that this protein is a Ca2+ sensor modulating CRH release. By exploiting a 

genetic approach, we show that secretagogin-mediated CRH secretion is indispensable to 

prime ACTH release into the general circulation upon acute noxious stress (Makara et al, 1981). 

Cumulatively, our results define a key molecular mechanism gating the HPA axis upon stress-

induced activation of CRH release from a molecularly distinct subtype of neuroendocrine 

parvocellular neurons in the hypothalamus. 
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Results 

Secretagogin+ neurons in the hypothalamic paraventricular nucleus 

Recent neuroanatomical studies have identified abundant secretagogin expression in the 

hypothalamus (Mulder et al, 2009; Maj et al, 2012). Yet neither the detailed topology of 

secretagogin+ neurons nor their functional significance in neuroendocrine control is known. 

Herein, we localized secretagogin+ neurons, in descending order and along the longitudinal axis 

of the adult mouse brain, to paraventricular (PVN) > arcuate >> periventricular, dorsomedial and 

ventromedial hypothalamic nuclei (Fig. 1A-A3,B). A dense secretagogin+ cell group was found in 

the dorsolateral PVN, adjacent to and partly interspersed with magnocellular oxytocin+ and 

AVP+ magnocellular neurons, whose axons primarily descend into the posterior pituitary for the 

transient storage and “on-demand” release of these hormones (Bargmann, 1969; Gainer et al, 

2002). Clearly, oxytocin, AVP and secretagogin segregated to non-overlapping cell cohorts (Fig. 

1B,B1). We extended this analysis to show that the supraoptic nucleus, an alternative site for 

oxytocin+ and AVP+ magnocellular neurons to reside (Swanson et al, 1983), lacked appreciable 

secretagogin expression (Fig. 1B2). These data suggest that secretagogin+ neurons belong to a 

discrete group of neurons interspersed with but not identical to oxytocin+ or AVP+ magnocellular 

neurons. 

Next, we employed quantitative morphometry of secretagogin+ neurons to cytoarchitecturally 

distinguish them from their oxytocin+ or AVP+ counterparts. Secretagogin+ somata were 

significantly (p < 0.05) smaller in diameter than (Fig. 1B3), but equality round (Fig. 1B4) as those 

of either oxytocin+ or AVP+ neurons, suggesting parvocellular identity (Swanson et al, 1983). 

Nevertheless, secretagogin+ axons occasionally terminated around blood vessels in the 

posterior pituitary and formed Herring body-like specializations that at points contained 

moderate levels of oxytocin (Fig. 1C-D3). Cumulatively, these data suggest that secretagogin is 

broadly expressed in the PVN in a molecularly distinct neuronal contingent. Here, we focused 

on deciphering the identity and function of small-diameter “parvocellular-like” PVN neurons. 

Secretagogin typifies a novel subclass of parvocellular neurons in the PVN 

Protein localization at the subcellular level is a reliable predictor of protein function. Our high-

resolution laser-scanning analysis (Fig. 1B,B1) suggested that secretagogin, a predicted 

cytosolic protein (Birkenkamp-Demtroder et al, 2005), might be distributed ubiquitously, 

including dendrites and axons. We confirmed this notion at the ultrastructural level by pre-

embedding immunoelectron microscopy (Fig. 2A-C). In the PVN, silver-intensified immunogold 

particles, revealing secretagogin’s localization, were detected in the cytoplasm (Fig. 2A), 

particularly in submembranous compartments or in likely contact with the plasmalemma (Fig. 

2A1), and along the endoplasmic reticulum (Fig. 2A2). Likewise, secretagogin was localized to 

dendrite shafts, often along their inner membrane surface (Fig. 2B). Moreover, we 

demonstrated secretagogin immunoreactivity in close proximity to the plasmalemma in nerve 

endings and possibly to dense core vesicles (Fig. 2C). Quantitative analysis of gold-intensified 
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silver particles in the PVN (somata, dendrtites) and the median eminence (axonal nerve 

endings) demonstrated that the majority of secretagogin associates to (endo-)membranes in 

neurons (that is, a given particle was <50 nm from the nearest membrane surface; Fig. 2D). 

Nevertheless, we found an opposite configuration in secretagogin distribution when comparing 

particle numbers on the plasmalemma and in the cytosol in neuronal somata and axons: in 

neuronal somata, the majority of secretagogin labeling appeared intracellular (Fig. 2D). In 

contrast, secretagogin localization along the plasma membrane outweighed cytosolic 

secretagogin content. These data suggest that secretagogin might play a role in controlling 

hormone or neuropeptide release. 

Next, we have taken a neurophysiological approach to gain insights in the biophysical 

properties of secretagogin+ neurons, and distinguish these from magnocellular, parvocellular or 

pre-autonomic PVN neurons using their properties to generate action potentials (APs), as well 

as 16 additional parameters (Table S1) as classification criteria (Luther et al, 2000; Luther et al, 

2002). In rat, magnocellular neurons are characterized by a delay in generating the first AP 

upon current stimulation after pre-hyperpolarization (type I) due to a relatively high amplitude of 

their A-type currents (Luther et al, 2000; Lee et al, 2012). In contrast, AP delay is atypical for 

parvocellular neurons (type II) (Luther et al, 2000; Lee et al, 2012). Pre-autonomic neurons 

generate low threshold spikes and bursts given the activity of voltage-gated T-type Ca2+ 

channels (Stern, 2001; Lee et al, 2008). In whole-cell patch clamp experiments using ex vivo 

hypothalamus slice preparations we have analyzed >75 neurons in the PVN and pre-autonomic 

areas of juvenile mice (postnatal days 21-28). Using unified current- and voltage-clamp 

protocols, we designed novel classification criteria for mouse PVN neurons (Fig. 3), 

distinguishing 3 primary neuron types, which could then be clustered into 6 subtypes (Fig. 3E). 

In particular, type I neurons were reminiscent of magnocellular neurons from rat, including 

delayed AP generation after pre-hyperpolarization and high-amplitude A-type-like currents (Fig. 

3A-A3,D). This neuron population could be divided into Ia and Ib subgroups, based on outward 

current properties in recording conditions inactivating A-type channels (Fig. S1). Ia neurons 

generated outward currents typical for slowly-activated delayed-rectifying K+ channels (Fig. 3D, 

Fig. S1). Meanwhile, Ib neurons exhibited transient, fast-activated currents upon depolarization 

(from -40 mV; Fig. S1). Post-hoc immunohistochemistry defined biocytin-filled magnocellular 

neurons as exclusively belonging to the Ia group. 

Neurons that had histochemically been identified as secretagogin-positive (Fig. 3B-B2) primarily 

belonged to type II mouse parvocellular neurons, and were equivalent in biophysical properties 

to those described in rat (Lee et al, 2012) or mouse (Wamsteeker Cusulin et al, 2013). Using 

the classification criteria introduced for type I neurons above, the type II cohort was subdivided 

as IIa and IIb neurons (Fig. S1). Nevertheless, we also identified some secretagogin+ neurons 

with AP signatures similar but not identical to magnocellular cells (Fig. 3D,E), reinforcing our 

hypothesis on immunohistochemically undetectable AVP and/or oxytocin levels and introducing 

a novel scale of molecular heterogeneity amongst magnocellular PVN neurons. 
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Lastly, type III neurons were secretagogin-negative(-), low-threshold, and produced spike bursts 

upon somatic current injections (Fig. S1). These pre-autonomic cells, likewise sub-clustered as 

IIIa and IIIb (Fig. 3E), therefore were excluded as being secretagogin+ neurons. Overall, these 

data suggest that the majority of secretagogin+ neurons in the cluster as parvocellular cells in 

the PVN. 

Secretagogin+ parvocellular neurons express CRH 

Parvocellular neurons in the PVN and other hypothalamic areas are diverse as to their 

neurochemical phenotypes (Swanson et al, 1983; Swanson et al, 1986; Everitt et al, 1986), with 

their majority producing releasing- or release-inhibiting hormones (Schally, 1978; Guillemin, 

1978) that regulate trophormone secretion in the anterior pituitary via the rete mirabile of the 

hypothalamo-hypophyseal portal system, a concept originally described by (Harris, 1972). 

Considering that somatic neuropeptide and hormone detection is exceedingly difficult and relies 

on the permanent blockade of the anterograde axonal transport machinery (Cortes et al, 1990), 

we applied unbiased clustering analysis to single-cell transcriptome data (Tsafrir et al, 2005; 

Islam et al, 2014) generated from 130 cells dissociated from the mouse PVN. Overall, oxytocin, 

AVP, somatostatin, GABA and glutamate neurons exhibited discrete mRNA profiles in the PVN 

(“hot spots” in Fig. 4A,A1; Table S3). In contrast, secretagogin+ neurons, as well as CRH+ and 

thyrotropin-releasing hormone (TRH)+ neurons did not form separate clusters. 

Next, we focused on which RNAs for hormones, neuropeptides and/or low-molecular weight 

neurotransmitters were present in secretagogin+ neurons. We demonstrated the transcriptome-

identity of these neurons by analyzing the absolute number of mRNA transcripts from 151 cells 

dispersed from the mouse PVN (Fig. 4A,A1). We first tested the abundance of AVP, oxytocin, 

CRH and TRH gene transcripts (Fig. 4A,A1), and show their broad variations, with particular 

reference to AVP and oxytocin mRNAs (that is, variations at 3-4 orders of magnitude; Fig. S2A). 

We defined a GABAergic hypothalamic contingent of ~30%, expressing Gad1 and/or Gad2 

encoding respective glutamic acid decarboxylase 65 and 67 kDa (GAD65/GAD67) isoforms, as 

well as the vesicular GABA transporter (Slc32A1; Fig. 4A). Tyrosine hydroxylase and vesicular 

glutamate transporter 2 mRNAs were present in ~15% and ~10 % of the threshold-adjusted 

sample, respectively. 

We then restricted our analysis of baseline mRNA expression values for each gene by ranking 

from minimum to maximum expression values (Fig. S2A) to increase homogeneity (Fig. 4A1). As 

such, this cell population comprised 7.3% oxytocin+ neurons (n = 11), 6.0% AVP+ neurons (n = 

9), 4.6% TRH+ neurons (n = 7) and 6.6% CRH+ neurons (n = 10). When dissecting the presence 

of gene transcripts of key pro-neuropeptides, our data from 151 cells revealed distinct 

somatostatin (n = 15 with high level), galanin (n = 11), cholecystokinin (n = 5), tachykinin 1 (n = 

9), cocaine-and-amphetamine regulated transcript (CART; n = 24), neurotensin S (n = 2), VGF 

nerve growth factor-inducible protein (n = 21), calcitonin gene-related peptide (n = 4), 

neuromedin B (n = 4), neuromedin S (n = 2), natriuretic peptide C (n = 2) and adenylate cyclase 
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activating polypeptide 1 (Adcyap1; n = 2). Of these, somatostatin, galanin, cholecystokinin, 

neurotensin S and CART were expressed at mRNA copy numbers exceeding 100 per cell, while 

other peptides were found expressed at low or moderate copy numbers. mRNA transcripts for 

neuropeptide Y, neuromedin U, neuropeptide B and pro-opiomelanocortin were infrequently 

present. The co-existence of fast neurotransmitters (GABA, dopamine, glutamate) with 

hormones and neuropeptides allowed for a refined molecular classification of the PVN and 

associated hypothalamic areas (Fig. 4A,A1). 

Lastly, we focused on secretagogin mRNA expression (Fig. 4A,A1; Table S3). From a total of 

151 cells, we identified 9 cells with secretagogin mRNA transcripts. Secretagogin+ cells in the 

sampling cohort lacked AVP, oxytocin, TRH, galanin, cholecystokinin, neurotensin S, calcitonin, 

neuromedin S, natriuretic peptide C and Adcyap1 mRNAs. In contrast, some secretagogin+ cells 

contained somatostatin, Tac1, CART, neuromedin B, neuromedin U, neuropeptide Y and/or 

neuropeptide B mRNA transcripts (Fig. 4A,B). Secretagogin+ cells abundantly carried CRH 

mRNA transcripts and those of the promiscuous glucocorticoid receptor NR3C1 (Fuxe et al, 

1985) (Pearson correlation coefficient = 0.399, p < 0.001), the latter being involved in the stress-

induced feedback regulation of CRH synthesis (Aguilera et al, 2007). 

mRNA may not be translated into appreciable amounts of protein. Therefore, it was imperative 

to histochemically verify the neurochemical identity of secretagogin+ neurons. First, we used a 

reporter mouse line expressing GFP under the control of the CRH promoter (Alon et al, 2009) to 

reveal the abundant presence of CRH+/secretagogin+ neurons in the PVN (Fig. 4C,C1). We then 

applied colchicine in vivo to provoke neuropeptide accumulation in somatic domains in 

parvocellular neurons (Fig. 4D-I2) (Cortes et al, 1990). Indeed, secretagogin was found chiefly 

co-expressed with CRH in PVN in both neuronal somata and local axon collaterals (Fig. 4D-E3) 

and, less frequently, with tyrosine hydroxylase (ventrolateral arcuate nucleus; Fig. 4F-F3), GABA 

(dorso-medial arcuate nucleus; Fig. 4G-G2), somatostatin (Fig. 4H-H3) and galanin (Fig. 4I-I2) 

with dual-labeled secretory terminals accumulating in the median eminence (Figs. 4H and 5A-

A2). These data define secretagogin+ neurons as a CRH-containing cell cohort. 

Secretagogin+ neurons are tightly packed in the dorsolateral PVN. Dendritic reconstructions 

clearly distinguish these cells from magnocellular neurons (Fig. 3C,C1). Nevertheless, we 

controlled our in vitro transcriptome profiling by plating dissociated PVN neurons from new-born 

mice and assessing their dendritic morphology. Secretagogin+ neurons had significantly smaller 

(p < 0.05; Fig. S2B-C) somatic diameter, more emanating (p < 0.05) and exceedingly arborizing 

(p < 0.05) processes than AVP+ neurons. In addition, the majority were secretagogin+/AVP- 

neurons. Yet a small secretagogin+ subpopulation co-expressed AVP, with their somatic 

diameters and dendrite complexities reminiscent of AVP+/secretagogin- neurons (Fig. S2B-C), 

lending further support to our in vivo findings (Fig. 1). Ca2+-imaging experiments after KCl 

stimulation showed that parvocellular-like secretagogin+ neurons clearly segregated from their 

AVP+ or AVP+/secretagogin+ counterparts (Fig. S2D). Moreover, secretagogin+ neurons 
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responded differentially to excitatory stimuli, including NMDA combined with glycine (p < 0.01), 

kainate (p < 0.001) and GABA (Haam et al, 2012) (p < 0.001; Fig. S3A-D1). These data not only 

demonstrate that secratagogin+ parvocellular neurons represent a molecularly and functionally 

distinct class of PVN neurons but also imply that secretagogin, a Ca2+-binding protein presumed 

associated with the SNARE machinery in vitro (Rogstam et al, 2007; Bauer et al, 2011), might 

sculpt their responsiveness and/or affect CRH release. However, direct in vivo evidence 

discerning Ca2+ “buffer” vs. “sensor” roles for this protein remained elusive. 

Secretagogin is a Ca2+sensor expressed in the median eminence 

Secretagogin+ neurons exhibited low amplitude Ca2+ responses to depolarizing stimuli (Fig. 

S2D), as compared to AVP+/secretagogin- neurons in vitro. Therefore, we first tested whether 

secretagogin acts as a Ca2+ buffer. Upon transfecting human SH-SY5Y neuroblastoma cells 

with a plasmid encoding human secretagogin we estimated their Ca2+ buffer capacity by 

population-wide (>100 cells/experiment) Ca2+ imaging experiments in combination with post-hoc 

assessment of neurochemical properties (Fig. S4A). The amplitude of Ca2+ responses in 

secretagogin+ neurons was not statistically different from control cells (Fig. 4SB). Next, the 

relative level of secretagogin, scaled as immunofluorescence intensity (Fig. S4C), did not 

correlate with either the basal intracellular Ca2+ level or peak amplitudes evoked by carbachol or 

KCl treatments. Similarly, Ca2+ response kinetics failed to significantly correlate with 

secretagogin immunoreactivity at the level of individual cells (data not shown). Cumulatively, 

these results support that secretagogin is unlikely to function either as slow or fast Ca2+ buffer, 

at least in vitro. 

In view of the negative data on Ca2+ buffering, we hypothesized that secretagogin is a Ca2+ 

sensor in vivo. This notion is supported by secretagogin’s concentration and co-localization with 

CRH in the median eminence (Fig. 5A-A2), the locus of the first capillary network of the 

hypothalamic artery that collects releasing hormones produced by neurosecretory cells, 

including CRH (Harris, 1972; Swanson et al, 1983). In particular, we employed pre-embedding 

silver-intensified immunogold labeling to show, at the ultrastructural level, that secretagogin is 

present in axon terminals with frequent association to the plasmalemma, and possibly also to 

the outer membrane of dense-core vesicles (Fig. 5B,B1; for quantitative data in axons see Fig. 

2D). The presence of silver precipitates along the inner membrane of the nerve terminal 

reinforces a potential role for secretagogin as a Ca2+ sensor. 

Next, we addressed if secretagogin is a Ca2+ sensor to influence neurotransmitter transport and 

vesicular release by defining its Ca2+-dependent interactome using unbiased matrix assisted 

laser desorption ionization-time of flight (MALDI-TOF) proteomics (Fig. 5C). We deployed a 

subtractive approach, whereby positive hits were defined as only recruited in the presence of 10 

µM Ca2+ in the isolation buffers but not recovered under Ca2+-free conditions or by non-specific 

rabbit IgGs. Our hits (97 proteins in Ca2+-dependent interactions and 15 proteins without Ca2+ 

dependence (Table S4); minimum number of peptide fragments ≥2, protein threshold: 99%, 
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peptide threshold: 99%) therefore were interpreted as recruited upon Ca2+ influx (Fig. 5C1, Table 

S4), and chiefly included proteins implicated in i) vesicle formation, fusion and traffic, ii) 

enzymatic reactions, iii) signaling, and iv) cytoskeletal dynamics and axonal transport (Fig. 5C1) 

(Sudhof, 2004; Schluter et al, 2006; Wickner et al, 2008). We also uncovered interactions with 

other Ca2+-binding proteins, glutamate decarboxylase and vesicular GABA transporter (Fig. 

5C1), reinforcing our transcriptome analysis. We validated the expression of mRNAs for many of 

these proteins in secretagogin+ neurons by targeted analysis of our single-cell transcriptome 

data (Fig. 5D). This approach revealed the expression of multiple genes of interest involved in 

vesicular traffic and fusion in secretagogin+ parvocellular neurons (Fig. 5D). Lastly, we 

performed immunohistochemistry in rat paraventricular neurons and median eminence with 

antibodies raised against Rab3 (all isoforms) to visualize secretagogin’s frequent co-existence 

with this family of proteins at the median eminence (Fig. 5E-E3). In sum, these findings suggest 

that secretagogin is a Ca2+ sensor, which can affect CRH release from parvocellular neurons. 

Secretagogin controls CRH release in vitro and in vivo 

We first determined whether secretagogin can affect CRH release by its RNAi-mediated knock-

down in native PVN neurons (Fig. 6A), followed by secretagogin histochemistry and the 

recovery of CRH in culture supernatants (Fig. 6A1). We found significantly decreased CRH 

content in the culture media of hypothalamic neurons exposed to secretagogin-directed RNAi 

(Fig. 6A1). Subsequently, we took the opposite approach and transiently overexpressed 

secretagogin in an immortalized CRH-containing embryonic mouse hypothalamic cell line 

(mHypoE-N44). Three days after transfection, mHypoE-N44 cells were stimulated with 15 µM 

ATP for 20 min, fixed, and immunostained for secretagogin (Fig. 6B,B1) with simultaneous 

intracellular CRH detection (Fig. 6B2). CRH levels negatively correlated with that of 

secretagogin (Pearson’s correlation coefficient = -0.189, p = 0.016) upon secretagogin 

overexpression. In contrast, no significant correlation between cytosolic secretagogin and 

extracellular CRH content was determined in non-stimulated samples (Pearson’s correlation 

coefficient = 0.0379, p = 0.56). We concluded that in mHypoE-N44 cells secretagogin can 

facilitate ATP-dependent CRH release without an effect on CRH synthesis per se. 

Next, we sought evidence that secretagogin knock-down affects CRH release in vivo by 

injecting siRNA (“Accell”) against secretagogin into the lateral ventricle and by performing 

quantitative double-label histochemistry in serial sections 3 days later. In the anterior PVN, 

which comprises CRH+ parvocellular neurons (Keegan et al, 1994), secretagogin knock-down 

occurred in 20-30% of CRH neurons (Fig. 6C,C1). Since CRH, like other neuropeptides, 

undergoes axonal transport and Ca2+-dependent release after synthesis (Alonso et al, 1986), 

we observed CRH retention in parvocellular neuronal somata in PVN in RNAi-exposed 

hypothalami (p < 0.05; Fig. 6C2,D,D1). We attributed the lack of change in secretagogin 

immunoreactivity, when measuring immunofluorescence intensity in individual cells, to the fact 

that our knock-down approach effectively arrested secretagogin expression in high CRH-

expressing neurons, as supported by the relative scarcity of dual-labeled neurons. We 
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considered our RNAi approach aimed to silencing secretagogin expression specific because 

neither magnocellular neurosecretory cells nor some neuropeptide systems localized to the 

PVN were affected upon experimental manipulations (Fig. S5A-D). Overall, our data suggest 

that secretagogin might modulate CRH release in the hypothalamus. 

Secretagogin gates the CRH-ACTH axis in response to acute stress 

Secretagogin’s involvement in modulating CRH release in vitro and in vivo suggests that this 

Ca2+-binding protein can be instrumental to modulate the stress-induced mobilization of the 

hypothalamo-pituitary-adrenal axis by priming the hierarchical CRH-ACTH cascade that 

underpins a peripheral corticosterone surge from the adrenal cortex (Swanson et al, 1980; 

Makara et al, 1981; Swanson et al, 1989). If so, secretagogin+ neurons are assumed to rapidly 

up-regulate their CRH content and function as “on-neurons” to activate hormonal responses to 

stress. We addressed this hypothesis by injecting formalin (4%) into one paw (Pacak et al, 

1995; Naveilhan et al, 2001) and detecting activation of the immediate early gene c-fos (Ohtori 

et al, 2000) in the PVN 6h later (Fig. 7A,B). Quantitative immunohistochemistry revealed that 62 

± 8% of c-fos+ neurons co-expressed secretagogin and CRH (Fig. 7B1). 

Since secretagogin is a Ca2+ sensor protein expressed in CRH+ cells recruited by acute stress, 

it is plausible to assume that its physiological role is the control of CRH release. To test this 

hypothesis, we performed secretagogin siRNA knock-down in vivo followed by determination of 

circulating ACTH and corticosterone levels 12 minutes after evoking formalin stress, coinciding 

with peak ACTH responses in blood (Cam et al, 1983). Formalin injection in control animals 

(that is, injected with non-target siRNA 4 days prior) produced significant increase in ACTH 

content in plasma (Fig. 7C). In contrast, infusion of secretagogin-specific siRNA into the lateral 

ventricle 4-days prior to formalin challenge blunted this ACTH response (p < 0.05; Fig. 7C). 

Likewise, the ensuing corticosterone response was significantly reduced (Fig. 7D) in mice 

treated with secretagogin siRNA. In sum, our data suggest that secretagogin is instrumental for 

CRH release and stress responsiveness. 

Discussion 

This study provides novel insights in the neurochemical organization of the mammalian 

hypothalamus. We report that secretagogin in many parvocellular neurons modulates CRH 

release. Unlike for small neurotransmitters, CRH, as many other hormones, is not reused or 

recycled at the locus of its release. Moreover, CRH is transported over considerable distances 

from its somatic site of synthesis in the PVN to the median eminence (Fig. S6). Thus, hormonal 

secretion into the bloodstream is reliant on the coordination of regulated checkpoints, which 

might either be indirectly (vesicle formation and axonal transport; Fig. S6A) or directly (vesicular 

exocytosis) affected by secretagogin. From a technical stand-point, our study uses an 

interactive design of single-cell transcriptome and proteome discovery, verified at the level of 

systems neurobiology. Yet we did not apply real-time imaging of CRH release upon genetic 
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manipulation of secretagogin expression. Therefore, we cannot entirely exclude that 

secretagogin, at least in part, primes the release machinery indirectly by recruitment of a 

multicomponent apparatus rather than directly interacting with its key components (Fig. S6B). 

Nevertheless, secretagogin was identified as a Ca2+ sensor protein whose proteome-wide 

interactions include α-SNAP, Rab family members, syntaxins, synaptophysin, TMED10 and 

CAPS1, many of which were implicated in vesicle formation, trafficking, exo- and endocytosis, 

and are integral components of synaptic vesicle membranes (Takamori et al, 2006; Tobin et al, 

2012a; Tobin et al, 2012b). These interactions are compatible with the predominant association 

of secretagogin with the plasmalemma and endomembranes in hypothalamic neurons and 

nerve endings in the median eminence. We hypothesize that differential distribution of 

secretagogin in axons is due to the fusion of somatic endomembranes into the axonal plasma 

membrane, thus providing a structural conduit for secretagogin trafficking towards exocytosis 

release sites. Besides, secretagogin’s Ca2+-dependent interactions include molecular motors 

(kinesin-1, myosin-10), with kinesin-1 known to affect axonal transport (Hirokawa et al, 2005), 

suggesting that secretagogin can intracelluarly modulate the timing and velocity of cargoes 

moved along the axon and readied for subsequent exocytosis. 

Although detailed neuroanatomy studies define at least 7 neurochemically-distinct sub-regions 

of the mammalian PVN (Simmons et al, 2009), the classical cytoarchitectonic concept is that 

dorso-laterally located magnocellular neurons are spatially segregated from the parvocellular 

cell groups. While parvocellular neurons concentrate between the 3rd ventricle and 

magnocellular neuron clusters, CRF neurons neighbor magnocellular neurosecretory cells along 

the ventro-lateral extremity of this hypothalamic area (Swanson et al, 1980; Swanson et al, 

1983; Pelletier, 1991). This cytoarchitectonic organization is derived from a string of exquisite 

neuroanatomical studies spanning the past ~40 years (Kiss et al, 1983; Palkovits, 1984; 

Swanson et al, 1986; Kita et al, 1986; Swanson et al, 1989; Swanson, 1991; Horvath et al, 

2005; Simmons et al, 2009; Maejima et al, 2009; Vogt et al, 2014) and utilizing 

hormones/neuropeptides to mark neurosecretory cell identity, as well as somatic size 

measurements as classification criteria (Kiss et al, 1991). These classical methods often relied 

on colchicine-treated or stressed rodents to provide unequivocal phenotypic information on, 

e.g., CRH neurons. Under these conditions, CRH cells co-express additional hormones and 

peptides, including vasopressin, neurotensin, angiotensin II and encephalin (Swanson et al, 

1986; Ceccatelli et al, 1989). With regard to fast neurotransmitters, CRH neurons in rat are 

mainly glutamatergic (Hrabovszky et al, 2005) even though a subgroup was shown to be 

GABAergic (Meister et al, 1988). Functionally, the action of amino acid neurotransmitters to 

modulate pituitary hormone-producing endocrine cells may occur via local axon collaterals 

within the PVN. Local amino acid transmitter synthesis in, and release from, nerve endings in 

the external layer of the median eminence may yet modulate the release of CRH (and other 

releasing/inhibitory factors) into portal vessels by engaging presynaptic auto- and/or 

heteroreceptors. 
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The advent of single-cell transcriptome analysis by RNA-sequencing (Shapiro et al, 2013) 

revolutionized insights in cell diversity in many developing (Tang et al, 2009) and adult tissues 

(Islam et al, 2011; Kodama et al, 2012; Lovatt et al, 2014). In the nervous system, transcriptome 

analysis is predicted to reveal that neuronal diversity is far more complex than initially thought, 

with many non-classical neuronal sub-types emerging (that is, modalities or combinations of the 

mRNA landscape overarching several known cell subsets). These might be of particular 

relevance to specific behavioral contexts, environmental challenges or disease phenotypes. 

More specifically, in the mammalian hypothalamus, a significant expansion of the phenotypic 

divergence of functionally distinct neuroendocrine subtypes, carrying mixed phenotypic codes 

including sub-threshold levels of hormones or neuropeptides, is expected upon unbiased 

clustering of cellular transcriptomes. This will identify neuroendocrine cell cohorts differentially 

responding to not one but multiple stimuli. As such, secretagogin+ neurons in mouse were found 

to express mRNA transcripts for Crh, Gad1, Gad2, Slc32a1, Tac1 and somatostatin. This 

mRNA transcript repertoire confers, as said, a parvocellular origin (Dierickx et al, 1979; Alonso 

et al, 1986; Ceccatelli et al, 1989); yet with a broader mRNA spectrum than for a single classical 

subtype of parvocellular neuroendocrine cells. These considerations cumulatively have the 

following inferences: parvocellular neurons express a chief hormone, a neuropeptide. 

Nevertheless, they maintain the ability to co-express other (secondary) releasable products, 

including small molecule transmitters such as GABA and glutamate playing auxiliary roles. This 

allows dynamically switching mode of action upon a range of metabolic stimuli, underpinning 

fast “on/off” responses. Here, this hypothesis is reflected by the moderate presence of 

secretagogin in magnocellular neurons and their axon terminals in the posterior pituitary. 

Moreover, our single-cell transcriptome analysis revealed the coincidence of Scgn, Crh and 

Nr3c1 mRNA expression. Nr3c1 encodes a glucocorticoid receptor (nuclear receptor subfamily 

3, group C member 1) (van Rossum et al, 2004). NR3C1 can both function as a transcription 

factor that binds to glucocorticoid response elements in the promoters of glucocorticoid 

responsive genes to activate their transcription or act as a regulator of other transcription 

factors. Nr3c1 mutations manifest as generalized glucocorticoid resistance (Donner et al, 2013), 

characterized by the insensitivity of target tissues to glucocorticoids, resulting in the 

compensatory activation of the HPA axis and CRH hypersecretion into the systemic circulation. 

Thus, secretagogin may be the first molecular hinge linking NRC31-mediated feedback to CRH 

release from parvocellular neurons. 

Since parvocellular neurons receive local-circuit, as well as long-range afferents (Kiss et al, 

1984; Palkovits, 1987; Kiss et al, 1996), the predominance of single gene products coincides 

with, and is driven by the type of excitatory or inhibitory inputs they receive. Considering that 

hypothalamic neuronal circuitries are prone to synaptic reorganization upon metabolic 

challenges (Pinto et al, 2004; Horvath et al, 2005), parvocellular neurons might function as “fast 

integrators” in hypothalamic neuronal circuitries, and can translate synaptic information into 

hormonal output with high fidelity. This arrangement is compatible with our electrophysiology 

classification showing that secretagogin+ neurons, although clearly parvocellular, belong to both 
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Ia and IIa PVN subclasses. In addition, an evolutionary advantage of the broad functional 

diversity of neuronal contingents in the hypothalamus may be the ability of sustained neural 

control of secondary metabolism at the periphery, essential for the survival of the organism, 

even under pathological conditions associated with neuronal loss. 

Action potentials represent the temporal code of electrical activity in neurons. Upon the arrival of 

a depolarization wave, a kaleidoscope of voltage-dependent ion channels regulates ion 

exchange along the plasma membrane. On the one hand, this influx of Ca2+ is to induce 

signaling events shaping the neurons’ transcriptional program to adapt to circuit requirements 

(Clapham, 2007). On the other hand, Ca2+ is the ubiquitous trigger for the quantal release of 

neurotransmitters and neuromodulators at axon terminals (Sudhof, 2004). In the hypothalamus, 

intracellular Ca2+ signaling regulates AVP and oxytocin release in magnocellular neurons 

(Dayanithi et al, 2012). Parvocellular neurons are equally dependent on Ca2+-dependent 

mechanisms (Hallbeck et al, 1996). In particular, a Ca2+/calmodulin-dependent signaling 

pathway was reported to modulate the transcription of CRH in neurons (Yamamori et al, 2004). 

Ca2+ waves are transduced into intelligible second messenger codes by Ca2+ sensor proteins 

with low affinity (> 1 µM) in protein-protein interactions. Alternatively, cytosolic Ca2+ buffers 

(Ca2+ affinity; < 1 µM) dissipate Ca2+ transients by reversibly binding 2-6 Ca2+ ions (Andressen 

et al, 1993). Although a clear separation of these two protein subfamilies is increasingly debated 

(Schwaller, 2009), a clear evidence for Ca2+ sensor function is the Ca2+-dependent recruitment 

of signaling proteins. Here, we used subtractive proteomics to define the Ca2+-dependent 

interactome of secretagogin in native hypothalamic preparations. Our data revealed that 

secretagogin interacts with protein subfamilies implicated in the formation, intracellular traffic, 

priming and docking of release vesicles. These findings are not entirely unexpected, since a 

pull-down analysis using purified secretagogin as bait reported similar results (Bauer et al, 

2011). However, this is the first confirmed report of secretagogin’s interactome in situ in an 

identified neuronal cohort, which defines cell type-specific protein interactions for this Ca2+ 

sensor. Critically, our single-cell transcriptome data confirmed the presence of mRNAs for the 

proteins identified by mass spectrometry, providing unbiased support for our functional assays. 

The above data together with secretagogin’s localization in giant axon terminals at the median 

eminence, and its association to the readily-releasable pool of vesicles, as well as 

plasmalemmal compartments in the vicinity of release sites, show that secretagogin is ideally 

poised to gate neuropeptide secretion. Considering that secretagogin- nerve endings also exist 

in the median eminence, our results also suggest that as yet unknown and additional Ca2+-

dependent or independent sensor proteins might exist to control the release of hormones 

distinct from CRH, galanin or somatostatin (Fig. 5). 

A primary drive of molecular neuroscience is the discovery of signaling events rate-limiting 

neural processes indispensable for the formation, maintenance and responsiveness of key 

neural axes. We demonstrated that acute noxious stress increases CRH expression in the PVN, 

particularly in secretagogin+ neurons. A causal relationship between secretagogin expression 
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and CRH release is cumulatively highlighted by gain-of-function and loss-of-function analysis 

employing the coincident detection of the intracellular candidate (secretagogin) and the 

physiological output (CRH in media). Based on our protein interactome profiling, cell biology 

and neuroanatomy analyses, we propose that genetic impairment of secretagogin expression 

disrupts the traffic of CRH-laden neurosecretory vesicles towards release sites, as shown by the 

somatic accumulation of CRH immunoreactivity upon siRNA-mediated secretagogin silencing in 

vivo. Most notably, genetic manipulation of secretagogin availability led to the fall-out of stress-

induced ACTH elevation in peripheral blood, which is normally driven by the activation of CRH 

receptors on secretory cells of the anterior pituitary (Wynn et al, 1983). Whilst ACTH expression 

is a multifactorial mechanism (Armario, 2006), we argue that the blunted ACTH response was 

due to the experimentally evoked attenuation of CRH release at the median eminence. 

Nevertheless, corticosterone release in stressed animals was only partially suppressed. This 

may be due to our coincident ACTH and corticosterone sampling protocol focused on the 

primary ACTH response, and only capturing a relatively early up-shoot in the plasma 

corticosterone concentration. 

Overall, we show that a spatially-segregated parvocellular neuron population produces CRH, 

and regulates its release via a novel Ca2+ sensor. Therapeutic implications of these findings are 

vast, since they offer novel biomarkers for some of the most common metabolic disorders, and 

druggable targets for ceasing CRH release particularly in chronic stress, depression and genetic 

or sporadic forms of generalized glucocorticoid resistance. 
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Experimental Procedures 

Animals for histo- and biochemistry 

Histochemical, biochemical and in vivo RNAi experiments were conducted in male C57BL/6N 

mice (n = 57, 12 weeks of age) and Sprague Dawley rats (n = 7; both from Scanbur). CRH-

EGFP reporter mice (all females, n = 3, 19 weeks of age) were generated using bacterial 

artificial chromosome technology (Alon et al, 2009). Hypothalamic cultures were prepared from 

mouse pups on postnatal day (P)2. Animals were housed conventionally (12/12h light cycle, 

25% humidity). Adult mice (n = 4) received stereotaxic injections of colchicine (5 µl; Sigma) into 

the left lateral ventricle under deep anaesthesia (5% isoflurane) and survived for an additional 

24h to facilitate somatic neuropeptide accumulation (Cortes et al, 1990). Experimental protocols 

were in accordance with the European Communities Council Directive (86/609/EEC) and 

approved by the regional ethical committee (Stockholms Norra Djurförsöksetiska Nämnd; 

N512/12). Particular effort was directed to minimize the number of animals and their suffering 

during the experiments. 

Tissue preparation, immunohistochemistry and imaging 

Wild-type animals were transcardially perfused with a fixative composed of 4% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (PB, pH7.4) that was preceded by a short 

prerinse with physiological saline (anesthesia: 5% isoflurane). CRH-EGFP mice were perfused 

with 0.1M phosphate-buffered saline (PBS; 37 oC, pH7.4) followed by 4% PFA in 0.1M PBS (37 
oC [20 ml] switched to ice-cold [50 ml]). After post-fixation in the same fixative overnight and 

cryoprotection in 30% sucrose for at least 48h, 30 or 50 µm-thick serial sections were cut on a 

cryostat microtome and processed for multiple immunofluorescence histochemistry according to 

published protocols (Mulder et al, 2009). Alternatively, perfused brains were cryoprotected in 

10% sucrose and sectioned onto SuperFrost+ glass slides at 20 µm thickness. 

Free-floating sections were rinsed in PB (pH 7.4) and pre-treated with 0.3% Triton X-100 (in PB) 

for 1h at 22-24 °C to enhance the penetration of antibodies. Non-specific immunoreactivity was 

suppressed by incubating our specimens in a cocktail of 5% normal donkey serum (NDS; 

Jackson), 1% bovine serum albumin (BSA; Sigma) and 0.3% Triton X-100 (Sigma) in PB for 1h 

at 22 - 24 °C. Sections were then exposed to select combinations of primary antibodies diluted 

in PB to which 0.1% NDS and 0.3% Triton X-100 had been added for 16 - 72h at 4 °C (Table 

S2). After extensive rinsing in PB, immunoreactivities were revealed by carbocyanine (Cy)2, 3 

or 5-tagged secondary antibodies raised in donkey (1:200; Jackson; 2h at 22 - 24 oC). Sections 

were mounted onto fluorescence-free glass slides and coverslipped with Entellan (in toluene; 

Merck). 

Double labelling of glass-mounted sections with the tyramide signal amplification Plus method 

(Shi et al, 2012) (TSA; Perkin-Elmer) combined with the use of Cy2-conjugated secondary 

antibodies was performed as described. Glass-mounted sections were coverslipped with 

Aquamount (Dako). Images were acquired on Zeiss 700LSM, 710LSM or 780LSM confocal 
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laser-scanning microscopes with maximal signal separation or spectral scanning. Composite 

figures were assembled in CorelDraw X5. 

Electron microscopy 

Male C57Bl6/J mice (n = 8) were anesthetized with pentobarbital (50 mg/kg) and transcardially 

perfused with physiological saline followed by 4% PFA and 0.25% glutaraldehyde in PB for 15 

min. After removal of the brain, a diencephalic block was trimmed and cut in 100-µm frontal 

sections on a VT1200S vibratome (Leica). Sections containing the anterior hypothalamus were 

collected and immersed in 4% PFA in PB for an additional 2h. Specimens were optionally 

stored in a mixture of 10% glycerol and 25% sucrose at -80 °C. For ultrastructural analysis, 

sections were thawed, rinsed in PB (3x) and then incubated in 0.1M Tris-NaCl buffer 

supplemented with 0.1% Tween-20 (TNT), 1% BSA and 1% glycine for 30 min. This was 

followed by exposure to anti-secretagogin antibodies (1:2,000 (L.W.), 1:800 (Sigma) in PB-TNT-

BSA; Table S2) at 4°C overnight. Sections were then rinsed in the above buffer and incubated 

with goat anti-rabbit F(ab’)2-coupled to 0.8 nm gold particles (1:100; Aurion) in PB-TNT-BSA for 

2 h at 22-24 °C. After fixation with 1% glutaraldehyde (10 min) and rinsing in water, gold 

particles were Ag-enhanced using the HQ Silver Enhancement Kit (Nanoprobes; 5 min at 22-24 

°C) prior to post-fixation in 1% OsO4 for 1h. Next, sections were flat-embedded (Epoxy resin) 

between two plastic coverslips. After polymerization, regions of interest were identified under a 

stereomicroscope, isolated with a razor blade and re-embedded in Epon. Ultra-thin sections (60 

nm) perpendicular to the thickness of the vibratome section were obtained and optionally 

contrasted by uranyl-acetate and lead citrate. Specimens were finally observed by using an 

H7650 Hitachi electron microscope. 

The number of silver-enhanced gold particles in neuronal profiles of three compartments (that 

is, soma, dendrites and axonal nerve endings) in the PVN and external median eminence were 

quantified. In every compartment, we determined the distribution of these particles in a 

membrane-related domain (either the plasma- or an endomembrane) and in a cytosolic domain 

where no obvious organelle could be detected underneath. For this purpose, we measured the 

distance between particles and membranes on photomicrographs from n = 5 mice, and 

considered a particle membrane bound if its distance was <50 nm from the closest membrane 

profile. The number of counted profiles was as follows: soma: plasma membrane = 25; 

endomembrane = 29; cytosol = 27; dendrite: plasma membrane = 24; endomembrane = 21; 

cytosol = 15; axon: plasma membrane = 28; endomembrane = 25; cytosol = 25. Data were 

expressed as the number of particles per neuronal profile ± s.e.m. 

Patch-clamp electrophysiology 

Male C57Bl6/N mice (n = 22; 21-28 days) were deeply anesthetized (5% isoflurane) and 

decapitated. Brain were rapidly removed and immersed in ice-cold pre-oxygenated (95% O2/5% 

CO2) cutting solution containing (in mM): 90 NaCl, 26 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 10 

Hepes-NaOH, 5 Na-ascorbate, 5 Na-pyruvate, 0.5 CaCl2, 8 MgSO4 and 20 glucose. 



Romanov, Alpar et al. EMBOJ-2014-88977, revised submission 
Date of submission: 07/10/2014 
 

17 
 

Subsequently, 300 μm-thick coronal slices were cut on a vibratome (VT1200S, Leica). Slices 

encompassing the PVN region were selected and equilibrated in artificial cerebrospinal fluid 

(ACSF) containing (in mM): 124 NaCl, 26 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 2 CaCl2 and 2 

MgSO4 at 22-24 oC for 1 - 5 h before recording. Whole-cell recordings in current-clamp or 

voltage-clamp mode were made by using a HEKA ECP-10USB amplifier and PatchMaster 

Software (HEKA, Germany). During measurements, slices were continuously perfused with 

ASCF. The internal pipette solution contained (in mM): 114 K-gluconate, 6 KCl, 10 HEPES, 5 

EGTA, 4 ATP-Mg, 0.3 GTP (pH was adjusted to 7.3 with KOH) and 0.5% biocytin (Sigma) for 

post-hoc cell identification. After recordings, brain slices were immersion fixed with 4% PFA at 

4°C overnight. Electrophysiological data were analyzed using Clampfit 10.0 (Molecular Devices) 

and SigmaPlot (Systat Software Inc.) for the parameters listed in Table S1. 

Single cell transcriptome analysis 

The PVN region of juvenile mice was isolated from 300 μm-thick coronal slices under 

microscopy guidance and dissociated using the Papain Dissociation System (Worthington). 

Isolated single cells were concentrated by centrifugation to a density of 300 - 500 cells/μl, and 

load into a C1-AutoPrep system (Fluidigm) for single cell capture, lysis, cDNA synthesis and 

amplification (Islam et al, 2014). Each capture site was imaged with 192 cells selected for RNA-

sequencing on an Illumina HiSeq2000 sequencer. Sequencing data at a depth of 500,000-

2,000,000 reads/cell were analyzed (Islam et al, 2014). Out of 151 confirmed single cells, 130 

cells provided data above a threshold of 10,000 transcript molecules/cell (excluding repeats and 

mitochondrial transcripts). Data on molecule counts were next subjected to clustering. In brief, 

~2,700 genes were selected based on their expression (average more than one molecule/cell 

and correlation > 0.5 with other 10 genes). Based on these criteria, the 1D order of cells and 

genes was performed using the SPIN Neighborhood algorithm (Tsafrir et al, 2005). 

Immunoprecipitation & unbiased proteomics 

Hypothalamic regions containing the PVN were isolated from P7 rats (3 animals), divided into 

left and right parts with one heimsphere incubated in ACSF (“control stimulation”), while another 

placed in ACSF in which 52.5 mM NaCl was replaced by KCl to depolarize neurons by inducing 

Ca2+ influx (“treatment condition”). After 10 minutes of incubation, samples were collected in 

lysis buffer containing 50 mM NaCl, 20 mM HEPES, 10 µM CaCl2, 1 mM EDTA, 0.2% Triton X-

100 and a cocktail of protease inhibitors (Roche; pH was adjusted to 7.4). Meanwhile, samples 

treated by depolarizing solution were transferred into the above lysis buffer supplemented with 

10 µM CaCl2 without EDTA. Tissues were homogenized, centrifuged at 14,000 rpm for 30 min 

and supernatants used in subsequent experiments. After pre-clearance, samples were 

incubated with rabbit anti-secretagogin primary antibody (1:2,000; provided by L.W.) overnight 

at 4 °C. An aliquot of each sample was exposed to rabbit IgG (Santa Cruz Biotechnology) to 

control non-specific binding. Subsequently, samples were incubated with GammaBind Plus 

Sepharose beads (GE Healthcare) for 90 min. After repeated rinses, proteins were eluted with 
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Laemmli buffer and separated on 10% SDS-PAGE under denaturing conditions. After silver in-

gel staining, proteins in each lane were identified by matrix-associated laser desorption 

ionization time of flight mass spectrometry (Proteomics Science Facility at Karolinska Institutet) 

(Linden et al, 2012). The MS/MS data file generated was analysed using the Mascot algorithm 

(Version 2.5, Matrix Science) against the NCBInr database selected for rat (Rattus norvegicus) 

taxonomy, trypsin as the cleavage enzyme, carbamidomethyl as a fixed modification of 

cysteines and methionine oxidation and then deamidation of glutamines and asparagines as 

variable modifications (Tortoriello et al, 2014). All of the three 'pool' mgf files within each 

treatment were merged before searching. Peptides were selected with a fragment tolerance of 

0.1 Da and parent tolerance of 0.05 Da, and with a confidence threshold of >99%. Proteins 

were unambiguously identified with 2 or more peptides and a protein threshold of >99%. 

Additional data analysis was performed using Scaffold (Version 4.3.4). 

Cell culture and secretagogin manipulation 

Human SH-SY5Y neuroblastoma cells and embryonic mouse hypothalamic cell line N44 

(mHypoE-N44; Cedarline®) were seeded at a density of 50,000 cells/well on poly-D-lysine 

(PDL)-coated 24-well plates and cultured in DMEM:Glutamax (Invitrogen) containing 10% fetal 

bovine serum overnight (without antibiotics). Lipofectamine 2000 (2 µl/well; Invitrogen) was 

used to transfect both cell lines with a pcDNA3.1 plasmid containing the human scgn gene (0.5 

µg/well). Forty eight h after transfection, the cells were used for Ca2+ imaging and post-hoc 

immunocytochemistry. mHypoE-N44 cells were routinely serum-starved for 1 day in 

DMEM:Glutamax also containing 25 µM forskolin. Subsequently, cells were stimulated by ATP 

(15 µM) for 20 min before immersion fixation in 4% PFA in PB. 

Hypothalami of mice were isolated on ice after decapitation on P2. After enzymatic dissociation, 

cells were plated at a density of 300,000 cells/well in PDL-coated 24-well plates, and grown for 

7-8 days in vitro (DIV). For Ca2+ imaging, 50,000 cells were plated in each well. Cultures were 

maintained in DMEM/F12 containing B27 supplement (2%), L-glutamine (2 mM), penicillin (100 

U/ml) and streptomycin (100 mg/ml; all from Invitrogen). For post-hoc immunocytochemistry, 

cells on coverslips were fixed in 4% PFA for 30 min on ice, and subsequently immunostained 

using select combinations of primary antibodies (Table S2). Parameters processed for 

quantitative morphometry of single and dual-labelled cells included: i) the somatic diameter, ii) 

number of neurites, ii) the maximum length of processes and iv) the number of neurite 

branching (“bifurcations”; Fig. S2C; for analysis procedures see: (Keimpema et al, 2010)). For 

secretagogin knock-down, primary hypothalamic neurons were grown for 4 days in vitro 

followed by exposure to 1 µM Accell secretagogin-specific siRNA (Thermo Fisher) for an 

additional 3 days. CRH release was determined after adding fresh medium containing 25 µM 

forskolin (Sigma) and incubation for 18h by ELISA detection (CusaBio). 
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Ca2+ imaging and quantitative immunocytochemistry 

Ca2+ responses were measured using Fura-2AM (Invitrogen) as intracellular Ca2+ indicator. 

Ratiometric imaging was performed on a CoolSnap HQ2 camera (Photometrics) and analyzed 

by MetaFluor software (Mollecular Devices). After recording, the cells on coverslips were 

immersed in ice-cold 4% PFA in PB, and processed for immunocytochemistry as above. For 

quantitative immunocytochemistry (fluorescence densitometry), orthogonal z-stacks were 

captured on an LSM700 laser-scanning microscopy (Zeiss). Fluorescent intensity of single cells 

was determined by using the ImarisPro software (Bitplane), and correlated with corresponding 

Ca2+ responses (Figs. S3 & S4). 

In vivo stress and siRNA-mediated secretagogin knock-down 

First, we tested whether formalin-stress induces c-fos accumulation in secretagogin + PVN 

neurons by subcutaneous injection of 4% PFA (50 µl). After 6h, mice (n = 2/time point) were 

transcardially perfused as above, and their PVN processed for multiple immunofluorescence 

detection of c-fos, secretagogin and CRH (Table S2). The number of c-fos+, secretagogin+ and 

c-fos+/secretagogin+ neurons were counted in 8,000-18,000 µm2 frames superimposed over the 

PVN (ZEN2010 software, Zeiss). C-fos+ nuclei were only counted if their fluorescent intensity 

exceeded tissue fluorescence by >4-fold. 

Second, the contribution of secretagogin in stress-induced hormone release in vivo was 

assessed in male mice (n = 24, 12 weeks of age). Animals (n = 12) received stereotaxic 

injections of either 250 µM SMARTpool Accell Scgn siRNA (1nmol; Thermo Fisher Scientific) or 

Accel non-targeting siRNA (n = 12) in the left lateral cerebral ventricle (4 µl). A recovery period 

of 96h was used before stress induction. Formalin stress was induced by injection of 4% PFA 

into the left paw. Blood (n = 24) was collected with a lag-time of 12 min at the expected peak of 

circulating ACTH. 

Third, the quantitative analysis of secretagogin knock-down efficacy was performed by 

analyzing the distribution and fluorescence intensity of CRH+ neurons in the PVN after in vivo 

knock-down as above with 2 µl of either 250 µM SMARTpool Accell Scgn siRNA (0.5 nmol; n = 

3) or Accel non-targeting siRNA (n = 3). After transcardial perfusion and immunohistochemistry, 

projection images of orthogonal z-stacks (interval depth: 2 µm, optical thickness: 2 µm) were 

analyzed using the maximal intensity projection function of the ZEN2010 software (Zeiss; Fig. 

6C,C1). 

ACTH concentrations were determined in unextracted plasma samples using a 

radioimmunoassay (RIA). Synthetic human ACTH1-39 was used as standard and for labeling 

with 125I (I-RB-4, Institute for Isotopes, Budapest, Hungary). An ACTH antibody (no. 8514), 

directed against the mid-portion of the human ACTH1-39 molecule, was raised in rabbit at the 

Institute of Experimental Medicine, Hungarian Academy of Sciences (Budapest, Hungary) 

(Barna et al, 1992). This antibody is highly specific, showing 0.2% cross-reaction with α-MSH, 
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and no significant cross-reaction with γ-MSH, CLIP, ACTH11-24, ACTH25-39, ACTH1-14, and 

ACTH1-19. The intra- and inter-assay coefficients of variation were 4.7 and 7%, respectively. 

Plasma corticosterone was measured from 10 μl of unextracted plasma with an RIA by use of a 

specific antiserum (Institute of Experimental Medicine, Hungarian Academy of Sciences) 

against corticosterone-3-carboxymethyloxim-BSA. An 125I-labeled carboxymethyloxim-tyrosine 

methyl ester derivative was used as tracer (I-RBO-36, Institute for Isotopes, Budapest, 

Hungary). The corticosterone antibody only cross-reacts with other naturally occurring adrenal 

steroids at <0.05%, except desoxycorticosterone (1.5%) and progesterone (2.3%). Final dilution 

of the antibody was 1:40,000. Incubation time was 24 h at 4°C, and a second antibody (anti-

rabbit from goat) and 6% polyethylene glycol were used for separation. A calibration curve was 

prepared from corticosterone (Calbiochem), ranging from 0.27 to 40 pmol/tube. The intra- and 

interassay coefficients were 12.3 and 15.33%, respectively. All hormone measurements were 

performed in duplicate. 

Statistical analysis 

Data were analyzed using Statistical Package for the Social Sciences (version 21.0, SPSS Inc.) 

and SigmaPlot (Systat Software Inc.). Data were expressed as means ± s.e.m. A p value of < 

0.05 was considered statistically significant, and calculated by Student’s t-test (on independent 

samples), Mann-Whitney rank sum test or one-way analysis of variance (ANOVA with Dunn's 

post-hoc test), as appropriate.  
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Legends to Figures 

Figure 1 Secretagogin locus in the paraventricular nucleus of the hypothalamus. 

(A-A3) Secretagogin+ neurons populate the paraventricular, dorsolateral, 

ventromedial, periventricular and arcuate nuclei of the mouse hypothalamus 

(Paxinos et al, 2001). Red circles denote the localization of neuronal perikarya and 

their relative densities. Abbreviations: AHP, anterior hypothalamus; Arc, arcuate 

nucleus; DM, dorsomedial nucleus of the hypothalamus; ME, median eminence; 

Pe, periventricular nucleus of the hypothalamus; PVN, paraventricular nucleus, 

PVNm, magnocellular part; SON, supraoptic nucleus; VM, ventromedial 

hypothalamic nucleus. 

(B-B2) Largely non-overlapping distribution of AVP-positive(+). oxytocin+ and 

secretagogin+ (sgcn+) neurons in the magnocellular PVN. The mouse supraoptic 

nucleus (SON) harbored vasopressin+ and oxytocin+ but not secretagogin+ 

neurons. Open arrowheads pinpoint single-labeled neurons. Solid arrowhead 

denotes AVP/secretagogin dual-labeling. Abbreviations: lv, lateral ventricle; PVNm, 

magnocellular part of the paraventricular nucleus of the hypothalamus; scgn, 

secretagogin. 

(B3) Secretagogin+ neurons had smaller somatic diameters than AVP+ or oxytocin+ 

neurons yet without a difference in their diameter quotient, a measure of ovoid 

profiles (B4). 

(C-D3) Terminal-like profiles in the posterior pituitary suggesting that secretagogin 

can co-exist, even if infrequently with AVP. Solanum tuberosum lectin (Sol. Tub) 

was used to identify blood vessels. Scale bars = 100 µm (B), 10 µm (B1,B2), 2 µm 

(C-D3). 

Figure 2 Ultrastructural analysis suggests the prevalence of membrane-bound 

secretagogoin. 

(A) Secretagogin (scgn) distribution at the ultrastructural level as revealed by pre-

embedding silver-enhanced immunogold labeling. Secretagogin (arrowheads) was 

localized to membranous organelles in the perikarya (A), particularly the 

plasmalemma (A1) and endoplasmic reticulum (ER) in neuronal somata (s; A2). 

Open rectangle in “A” denotes the location of insets. 

(B) Pre-embedding secretagogin labeling (arrowheads) was also seen in dendrite 

(d) segments. 

(C) In axo-dendritic terminals (ax), secretagogin was closely associated with 

synaptic vesicles along the plasmalemma (arrowheads). Semi-transparent shading 

was used to visually dissociate subcellular compartments. Scale bars = 1 µm (A), 

500 nm (B,C), 200 nm (A1,A2). 
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(D) Quantitative analysis of subcellular secretagogin distribution upon electron 

microscopy detection of silver-enhanced gold particles. Particles were considered 

as membrane bound when they were at <50 nm of a membrane (plasma 

membrane or endomembrane; i.e. secretory vesicle, Golgi or endoplasmic 

reticulum). In the soma of PVN neurons, significantly more particles were found in 

the cytosol as along the plasma membrane (p < 0.01). In contrast, membrane 

association predominated in axonal nerve endings in the median eminence (p < 

0.05). Note that a significant proportion of particles was found adjacent to 

endomembranes in all subcellular compartments studied. 

Figure 3 Electrophysiological classification of secretagogin+ parvocellular neurons. 

(A-A3) Biocytin-filled neuron immunonegative for secretagogin yet containing 

AVP/oxytocin (a mixture of magnocellular markers was used in triple-labelling 

experiments). 

(B-B2) Secretagogin+ biocytin-filled neuron lacking AVP/oxytocin immunosignal. 

(C,C1) Dendritic reconstruction of secretagogin- and secretagogin+ neurons at their 

actual location in the paraventricular nucleus of the hypothalamus. 

(D) Electrophysiological characteristics of magnocellular and parvocellular 

neurons. The waveform of repetitive action potential firing is shown on the left, 

while differential channel characteristics are depicted on the right. Examples of 

secretagogin+ neurons are shown in red. 

(E) Pie diagrams showing the grouping of PVN neurons in the PVN (upper row) 

and in adjacent pre-autonomic areas (lower row) cumulatively based on 

electrophysiological criteria listed in Table S1. Secretagogin+ neurons typically 

belonged to IIa and Ia subtypes. Scale bars = 50 µm (A), 8 µm (A3,B1). 

Abbreviations: lv, lateral ventricle; PVN, paraventricular nucleus. 

Figure 4 Molecular identity of secretagogin+ paraventricular neurons. 

Single-cell mRNA transcriptome profiling of dissociated cells from the mouse 

paraventricular nucleus. (A) Differential clustering based on secretagogin (Scgn), 

neuropeptide, hormone and hormone receptor mRNA expression. Secretagogin-

expressing(+) neurons (red arrows) typically contained corticotropin releasing 

hormone (Crh) and Nr3c1 mRNA transcripts. (A1) Clusters of gene transcripts from 

130 cells reveal the phenotypic segregation of PVN neurons. Increasing mRNA 

copy numbers were depicted by a color gradient from deep blue (not detected) to 

red (high numbers). (B) Venn diagrams depicting the (non-)overlapping 

relationships of select mRNA transcripts used to molecularly define PVN neurons. 

(B1) Cumulative ratio of phenotypic diversity amongst secretagogin+ neurons. Note 

that Crh and/or GABA (derived from Gad1, Gad2 and Slc32a1 mRNA expression) 
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co-existed with secretagogin in parvocellular neurons. A complete list of mRNAs 

found in secretagogin+ neurons was reported in Table S3. 

(C,C1) Secretagogin co-localization with GFP in the PVN (solid arrowheads) of 

adult CRH-GFP (BAC) reporter mice (Alon et al, 2009). Open arrowhead pinpoints 

a single-labeled neuron. 

(D-E3) We found secretagogin (scgn) co-expressed with CRH both in neuronal 

somata (solid arrowheads; D1-D3) and axon terminal-like specializations 

(arrowheads; E-E2) in the PVN. Likewise, secretagogin+ neurons harbored, yet 

infrequently, tyrosine hydroxylase (TH; solid arrowheads; F-F3), GABA (G-G2), 

somatostatin (Sst; H-H3) and galanin (I-I2). Open rectangles denote the general 

location of insets. Open arrowheads indicate the lack of co-localization. Scale bars 

= 40 µm (D,F,H), 25 µm (C1), 10 µm (D3,F3,G3,H3), 4 µm (E3,I3). 

Figure 5 Secretagogin is a Ca2+ sensor protein. 

(A-A2) Secretagogin co-existed in the majority of CRH+ nerve endings in the 

median eminence (ME). Open rectangle denotes the general location of “B,B1”. 

(B,B1) Large axon terminals in the median eminence were immunopositive for 

secretagogin with silver-intensified immunogold particles (open arrowheads) 

associated to axonal membrane and dense-core vesicles (see Fig. 1D for 

quantitative data). Solid arrowheads denote silver deposits particles proximal to the 

plasmalemma. 

(C) Immunoprecipitation using an anti-secretagogin antibody in Ca2+-free and Ca2+-

loaded conditions was subtractively used to decipher the Ca2+-dependent protein 

interactions. Silver-stained gel is shown. (C1) Ontology classification of the 99 

protein hits based on primary function assignments. Unbiased MALDI-TOF 

proteomics was used to identify interacting proteins. The most abundant hits (Table 

S4 is referred to for details on individual proteins) are proteins implicated in vesicle 

fusion, trafficking, transport and formation and the regulation of vesicle exocytosis. 

“Other” refers to a group of proteins without known function. 

(D) Single-cell transcriptomics was used to validate the above proteome data by 

clustering mRNA transcripts encoding proteins that underpin vesicular release 

processes (red color labels highest mRNA abundance whereas dark blue color 

indicates the lack of mRNA expression). 

(E-E3) Secretagogin+ somata and terminals labeled for Sec22b (arrowheads), 

implicated in vesicle trafficking (Hay et al, 1997), in both the PVN and median 

eminence. 

(F-F3) Rab3, a family of vesicular fusion and transport proteins (Schluter et al, 

2006), was found co-localized with secretagogin (arrowheads) in the median 

eminence. Neuronal somata in the PVN lacked appreciable co-localization. Note 
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that neither our MALDI-TOF analysis nor histochemical probing allowed the precise 

identification of individual Rab3C-E family members. Scale bars = 10 µm (A1,E3), 7 

µm (E), 500 nm (B), 150 nm (B1). 

Figure 6 Secretagogin regulates CRH release in vitro and in vivo. 

(A,A1) siRNA-mediated secretagogin (scgn) knock-down in cultured hypothalamic 

neurons, as indicated by reduced secretagogin immunoreactivity (A), decreased 

CRH content in the culture medium (A1). 

(B-B2) Transient overexpression of secretagogin in immortalized CRH-expressing 

mHypoE-44 hypothalamic cells significantly reduced CRH immunofluorescence 

intensity in secretagogin+ cell bodies, indirectly supporting enhanced CRH release. 

All experiments were performed in triplicate. 

(C,C1) siRNA-mediated in vivo silencing of secretagogin mRNA expression in the 

PVN provoked somatic CRH accumulation (arrowheads). (C2) Quantitative analysis 

demonstrating significantly increased somatic CRH contents. Note that somatic 

secretagogin levels remained unchanged, which we interpret as data on a neuronal 

contingent not affected by siRNA silencing. The lack of secretagogin/CRH co-

localization suggests that secretagogin expression fell below detection threshold in 

many CRH+ neurons. 

(D,D1) Individual data points show maximal CRH fluorescence intensity (grey scale 

arbitrary unit (a.u.) expression) in PVN neurons that have low or no secretagoogin 

expression after siRNA infusion. 

Data in (C2) were normalized to those in non-targeting siRNA controls. *p < 0.05 

vs. control. Scale bars = 150 µm (C,C1), 50 nm (B,B1). 

Figure 7 Secretagogin+ neurons gate the CRH-ACTH axis in response to acute stress.  

(A,A1) Paraventricular secretagogin-immunoreactive (scgn+) neurons weakly 

expressed CRH (open arrowheads) but not c-fos under control conditions. 

(B,B1) Stress induced by subcutaneous injection of formalin triggered co-

expression of c-fos and CRH in secretagogin+ paraventricular neurons 

(arrowheads). 

(C,D) In vivo siRNA-mediated silencing of secretagogin expression in the PVN 

occluded the stress-induced surge of serum ACTH levels, and significantly reduced 

the increase in plasma corticosterone (D). *p < 0.05 vs. control. Scale bars = 300 

µm (A,B), 25 µm (A1,B1). 
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