
HYDRAZONE EXCHANGE IN NANOPARTICLE
MONOLAYERS: A DYNAMIC COVALENT APPROACH
FOR CONTROLLING NANOMATERIAL PROPERTIES

Flavio della Sala

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2015

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/6766

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/6766


 
 
 

Hydrazone Exchange in Nanoparticle 
Monolayers: a Dynamic Covalent 

Approach for Controlling Nanomaterial 
Properties 

 
 

by 
Flavio della Sala 

 

 
 

This Thesis is submitted in partial fulfilment 
 for the degree of  

Doctor of Philosophy  
at the  

School of Chemistry 
University of St Andrews 

 
 

April 2015 



 II 

1. Candidate’s declarations: 
 
I, Flavio della Sala, hereby certify that this thesis, which is approximately 52,000 words 
in length, has been written by me, and that it is the record of work carried out by me 
and that it has not been submitted in any previous application for a higher degree.  
 
I was admitted as a research student in January 2011 and as a candidate for the 
degree of PhD in January 2015; the higher study for which this is a record was carried 
out in the University of St Andrews between 2011 and 2015.  
 
 
Date 02/04/2015 signature of candidate ………  
 
2. Supervisor’s declaration: 
 
I hereby certify that the candidate has fulfilled the conditions of the Resolution and 
Regulations appropriate for the degree of PhD in the University of St Andrews and that 
the candidate is qualified to submit this thesis in application for that degree.  
 
 
Date 02/04/2015 signature of supervisor ……… 
 
3. Permission for publication: 
 
In submitting this thesis to the University of St Andrews I understand that I am giving 
permission for it to be made available for use in accordance with the regulations of the 
University Library for the time being in force, subject to any copyright vested in the 
work not being affected thereby.  I also understand that the title and the abstract will be 
published, and that a copy of the work may be made and supplied to any bona fide 
library or research worker, that my thesis will be electronically accessible for personal 
or research use unless exempt by award of an embargo as requested below, and that 
the library has the right to migrate my thesis into new electronic forms as required to 
ensure continued access to the thesis. I have obtained any third-party copyright 
permissions that may be required in order to allow such access and migration, or have 
requested the appropriate embargo below.  
 
The following is an agreed request by candidate and supervisor regarding the 
publication of this thesis: 
 
PRINTED COPY 
a) No embargo on print copy 
 
ELECTRONIC COPY 
a) No embargo on electronic copy 
 
 
Date 02/04/2015 signature of candidate ……  signature of supervisor ……… 
 

 

 

 

 



 III 

Table of contents 
0.1.1.1.1! Synopsis  VII!
0.1.1.1.2! Acknowledgements IX!
0.1.1.1.3! Abbreviations  X!

1.!CHAPTER 1: INTRODUCTION 1!
1.1! Nanoparticulate functional materials 1!
1.2! Noble metal nanoparticle synthesis 2!

1.2.1! Liquid-phase nanoparticle synthesis 3!
1.2.1.1! Electrostatic stabilisation: the Turkevich–Frens method 4!
1.2.1.2! Steric stabilisation: the Brust–Schiffrin method 7!
1.2.1.3! Steric stabilisation: the Stucky method 9!

1.3! Nanoparticle characterisation 11!
1.3.1! Transmission electron microscopy 11!
1.3.2! UV-Vis spectroscopy 13!
1.3.3! Dynamic light scattering 14!
1.3.4! Nuclear magnetic resonance spectroscopy 15!
1.3.5! Mass spectrometry 19!

1.4! Nanoparticle functionalisation and monolayer post-synthetic manipulation 20!
1.4.1! Functionalisation with DNA and manipulation driven by non-covalent interactions 21!
1.4.2! Irreversible covalent chemistry on monolayer-functionalised nanoparticles 24!

1.5! Dynamic covalent chemistry as a versatile approach for nanoparticle post-
synthetic manipulation 25!

1.5.1! The hydrazone dynamic covalent bond 26!
1.6! Outlook and aims 29!

2.!CHAPTER 2: SYNTHESIS AND CHARACTERISATION OF HYDRAZONE-
FUNCTIONALISED GOLD NANOPARTICLES 32!
2.1! Introduction 32!
2.2! Preparation of gold nanoparticles functionalised with N-acyl hydrazone ligands 33!

2.2.1! N-Acyl hydrazone ligand design and synthetic strategy 33!
2.2.2! Estimation of the nanoparticle concentration for ligand exchange experiments 35!
2.2.3! Gold nanoparticle functionalisation with N-acyl hydrazide 2 and simple 

alkanethiols 37!
2.2.4! Preparation of TOAB-stabilised gold colloid solutions in toluene 37!
2.2.5! Preparation of N-acyl hydrazone-functionalised gold nanoparticles by ligand 

exchange and purification 39!
2.2.6! Nanoparticle purification by size exclusion chromatography 42!

2.3! Direct synthesis of N-aroyl hydrazone-stabilised gold nanoparticles 48!
2.3.1! Ligand design and synthetic strategy 48!
2.3.2! Hydrazone stability under direct synthesis conditions 51!
2.3.3! Direct synthesis of AuNP-21 from disulfide 212, purification and characterisation 52!

2.3.3.1! Optimising the conditions for NP direct synthesis, size and dispersity 52!
2.3.3.2! Organic shell characterisation of AuNP-21 59!

2.3.4! Direct synthesis of AuNP-22 from disulfide 222, purification and characterisation 64!
2.4! Conclusions 70!



 IV 

3.!CHAPTER 3: DYNAMIC COVALENT CHEMISTRY IN THE NANOPARTICLE 
MONOLAYER 72!
3.1! Optimising experimental conditions for NP-bound hydrazone hydrolysis and 

exchange 72!
3.1.1! Colloidal stability of AuNP-21 under acidic conditions 74!

3.2! Dynamic covalent exchange in the nanoparticle monolayer: reversible hydrazone 
exchange between AuNP-21 and AuNP-22 75!

3.2.1! Synthesis of AuNP-22e via hydrazone exchange from AuNP-21 76!
3.2.2! Quantitative analysis of monolayer composition by 19F NMR 81!

3.3! Kinetics of hydrazone hydrolysis and exchange 84!
3.3.1! Kinetic model for hydrazone hydrolysis 85!
3.3.2! Hydrolysis of molecular compounds 23 and 24 86!
3.3.3! Hydrolysis in the nanoparticle-bound hydrazone monolayer 89!

3.3.3.1! Hydrolysis of AuNP-21 89!
3.3.3.2! Hydrolysis of AuNP-22e 91!

3.3.4! Reversible exchange between AuNP-21 and AuNP-22e 93!
3.4! Comparison of dynamic covalent hydrazone exchange with monolayer ligand 

exchange 99!
3.5! Conclusions 102!

4.!CHAPTER 4: EXPLOITING HYDRAZONE EXCHANGE FOR TUNING 
NANOPARTICLE PROPERTIES 104!
4.1! Solubility switching of hydrazone-functionalised gold nanoparticles 104!

4.1.1! Solubility switching between polar organic and apolar organic solvents 106!
4.1.2! Solubility switching between apolar organic and aqueous solvents 112!
4.1.3! Solubility switching between polar organic and aqueous solvents 117!
4.1.4! Non-covalent aggregation of AuNP-30 118!
4.1.5! Nanoparticle solubility switching: conclusions and perspectives 120!

4.2! Assembly of AuNP-21 via hydrazone exchange 121!
4.2.1! Nanoparticle assembly by dynamic hydrazone chemistry: perspectives 124!

5.!GENERAL CONCLUSION 127!
5.!CHAPTER 5: EXPERIMENTAL AND SYNTHETIC PROCEDURES 130!

5.1! General experimental procedures 130!
5.2! Synthesis of organic compounds 131!
5.3! Procedures for nanoparticle synthesis and functionalisation 149!

5.3.1! Preparation of TOAB-stabilised gold nanoparticles and functionalisation by ligand 
exchange 149!

5.3.1.1! Gold colloid solution (AuNP-TOAB) 149!
5.3.1.2! Preparation of AuNP-4 by the ligand exchange method 150!
5.3.1.3! Preparation of AuNP-5 by the ligand exchange method 151!

5.3.2! Preparation of functionalised gold nanoparticles by direct synthesis 151!
5.3.2.1! Hydrazone stability under the reducing conditions used for nanoparticle 

synthesis 151!
5.3.2.2! Preparation of AuNP-21 by direct synthesis method 153!
5.3.2.3! Preparation of AuNP-22d by direct synthesis method 154!

 



 V 

5.4! Synthesis of AuNP-22e via hydrazone exchange from AuNP-21: preparation, 
purification and characterisation 155!

5.4.1! Synthetic procedure 155!
5.4.2! Full sweep width 1H NMR spectra for dynamic covalent hydrazone exchange from 

AuNP-21 to AuNP-22e 156!
5.4.3! Full sweep width 19F NMR spectra for dynamic covalent hydrazone exchange from 

AuNP-21 to AuNP-22e 157!
5.4.4! LDI-MS of AuNP-22e prepared by dynamic covalent exchange from AuNP-21 157!

5.5! Reverse direction dynamic covalent exchange from AuNP-22e to AuNP-21 159!
5.5.1! Synthetic procedure 159!
5.5.2! Full sweep width 19F NMR spectra of the exchange from AuNP-22e to AuNP-21 160!
5.5.3! LDI-MS analysis: AuNP-210.74220.26 160!
5.5.4! Nanoparticulate structural characterisation: AuNP-210.74220.26 162!

5.6! Kinetic studies by 19F NMR spectroscopy 163!
5.6.1! Relaxation times 163!
5.6.2! Kinetic measurements and deconvolution data 163!

5.6.2.1! Hydrolysis of AuNP-21 163!
5.6.2.2! Hydrolysis of AuNP-22e 165!
5.6.2.3! Equimolar exchange from AuNP-21 to AuNP-22e 165!
5.6.2.4! Equimolar exchange from AuNP-22e to AuNP-21 167!

5.6.3! Fitting of the hydrolysis experiments by COPASI® 167!
5.6.3.1! Hydrolysis of hydrazone 23 168!
5.6.3.2! Hydrolysis of model hydrazone 24 169!
5.6.3.3! Hydrolysis of AuNP-21 170!
5.6.3.4! Hydrolysis of AuNP-22e 170!

5.6.4! Fitting of the exchange experiments 170!
5.6.4.1! Equimolar exchange with molecular hydrazones 23 and 24 172!
5.6.4.2! Equimolar exchange from AuNP-21 to AuNP-22e 172!
5.6.4.3! Equimolar exchange from AuNP-22e to AuNP-21 173!

5.7! Comparison of dynamic covalent hydrazone exchange with monolayer ligand 
exchange 173!

5.8! Solubility switching between AuNP-21, AuNP-30 and AuNP-31 175!
5.8.1! Solubility switching between AuNP-21 (polar organic) and AuNP-30 (apolar 

organic) 176!
5.8.1.1! LDI-MS analysis of AuNP-30 176!
5.8.1.2! Nanoparticulate structural characterisation: AuNP-30 178!
5.8.1.3! Reversibility of the exchange (apolar organic to polar organic) 178!

5.8.2! Solubility switching between AuNP-30 (apolar organic) and AuNP-31 (aqueous) 180!
5.8.2.1! Nanoparticulate structural characterisation: AuNP-31 181!
5.8.2.2! Reversibility of the exchange (aqueous to apolar organic) 181!

5.8.3! Solubility switching between AuNP-21 (polar organic) and AuNP-31 (aqueous) 182!
5.8.3.1! LDI-MS analysis of AuNP-31 184!
5.8.3.2! Nanoparticulate structural functionalisation: AuNP-31 from AuNP-21 184!
5.8.3.3! Reversibility of the exchange (aqueous to polar organic) 185!

5.9! Non-covalent aggregation of AuNP-30 187!
5.9.1! AuNP-30 in chloroform 187!
5.9.2! AuNP-30 in chloroform/tetrahydrofuran 1:1 188!

 

 

 

 



 VI 

5.10! Assembly of AuNP-21 via hydrazone exchange 188!
5.10.1! AuNP-21 before hydrazone exchange 188!
5.10.2! Assembly of AuNP-21 with terephthalaldehyde (0.5 equivalents) and trifluoroacetic 

acid (5 equivalents) 189!
5.10.3! Assembly of AuNP-21 with terephthalaldehyde (1 equivalent) and trifluoroacetic 

acid (5 equivalents) 189!
5.10.4! Assembly of AuNP-21 with terephthalaldehyde (5 equivalents) and trifluoroacetic 

acid (5 equivalents) 190!
5.10.5! Control experiment: AuNP-21 with terephthalaldehyde (0.5 equivalents) 191!
5.10.6! Control experiment: AuNP-21 with trifluoroacetic acid (5 equivalents) 191!

5.11! Tables 191!
6.!REFERENCES 195!
7.!APPENDIX:  PUBLICATION 208!

 

 



 VII 

0.1.1.1.1 Synopsis 
 

This Thesis reports the synthesis, purification and characterisation of gold 

nanoparticles (NPs) functionalised with a monolayer of hydrazone ligands in order to 

perform post-synthetic manipulations of the NP-bound monolayer exploiting dynamic 

covalent chemistry. NP post-synthetic manipulation based on reversible non-covalent 

interactions between oligonucleotides represents a promising approach to achieve 

functionalisation and self-assembly for potential applications in biology and medicine. 

However, the stability of these nanosystems is ensured only in a narrow window of 

environmental conditions. On the other hand, irreversible covalent strategies potentially 

allow the full range of synthetic chemistry to be exploited but they provide poor control 

over the manipulation of the NP-bound monolayer and can only produce kinetically 

controlled amorphous NP aggregates. Dynamic covalent chemistry represents an 

interesting and an attractive alternative approach because it would combine the 

reversibility of non-covalent interactions with the stability of covalent bonds. By this 

way, ligand-functionalised NPs could be manipulated in order to introduce a large 

variety of molecular functionalities on the NP surface not only to subtly tune the NP 

physicochemical properties but also to access an entire range of novel nanomaterials. 

 

Chapter 1 introduces the concept and background to ligand-stabilised inorganic NPs, 

with a particular focus on AuNPs. The leading synthetic routes to AuNPs are presented 

and strategies for introducing functionality to the stabilising surface molecular 

monolayer are discussed. The mechanisms involved in NP growth and stabilisation are 

also explained. 

A variety of analytical techniques is required in order to assess different features of 

ligand-functionalised AuNPs including successful NP synthesis and functionalisation, 

NP size reproducibility, structural integrity of the NP-bound organic ligand and sample 

purity. Among the many available characterisation approaches, the analytical 

techniques employed in this study are reviewed. 

Post-synthetic strategies for NP functionalisation are then introduced, including 

reversible non-covalent and irreversible covalent approaches. The advantages, 

disadvantages and applications of each approach are discussed. In order to combine 

the advantages of both strategies, dynamic covalent chemistry, and in particular 

dynamic hydrazone exchange, is presented as an alternative for the functionalisation 

and post-synthetic manipulation of ligand-functionalised AuNPs. 

 



 VIII 

Chapter 2 reports the design, synthesis and characterisation of two classes of 

hydrazone ligand for AuNPs: N-acyl and N-aroyl hydrazones. Synthesis of AuNPs 

functionalised with these ligands is explored via two alternative approaches (ligand 

exchange and direct synthesis) and optimised routes to achieve functionalised AuNPs 

with reproducible size and low dispersity are described. A rigorous characterisation 

protocol is then established in order to achieve both the ‘nanoparticulate’ 

characteristics and the structure of the NP-bound hydrazone monolayer. 

 

Chapter 3 reports the first examples of dynamic hydrazone exchange in a NP-bound 

monolayer. Investigations of the reactivity of the NP-bound hydrazone monolayer 

under hydrolysis and dynamic exchange conditions with an acid catalyst are illustrated. 

The reversibility of hydrazone exchange on NP-bound monolayer is assessed by a 

combination of several analytical techniques. Subsequently, the reactivity of the 

hydrazone monolayer under hydrolysis and hydrazone exchange conditions is 

quantitatively investigated and compared to the reactivity, under identical conditions, of 

analogous molecular hydrazone species. 

 

Chapter 4 reports the reversible switching of hydrazone-functionalised AuNPs between 

polar organic, apolar organic and aqueous solvents based on dynamic hydrazone 

exchange. A combination of optical, spectroscopic and spectrometric techniques 

provides evidence that changes in NP solvent compatibility result from dynamic 

hydrazone exchange within the NP-bound monolayer. 

Non-covalent self-assembly of hydrazone-functionalised AuNPs dependent on solvent 

polarity, and preliminary observations of covalent NP self-assembly with a bifunctional 

linker via dynamic hydrazone exchange under acidic conditions are also reported. 

 

Chapter 5 includes the experimental and synthetic procedures for the synthesis of all 

non-commercial chemical entities; methods for AuNP synthesis and functionalisation; 

and NP post-synthetic manipulation of the hydrazone monolayer. 

Additional data and analysis are also included to support: the kinetic studies on the 

reactivity of NP-bound and unbound hydrazone species, NP solubility switching and 

the non-covalent and dynamic covalent NP self-assembly. 

 

A preliminary communication reporting the preparation of hydrazone-functionalised 

gold nanoparticles, the characterisation of the nanoparticle-bound dynamic covalent 

hydrazone exchange process and its exploitation to control nanoparticle solubility 

properties has been published in Angewandte Chemie (a reprint can be found in the 

Appendix). 
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0.1.1.1.3 Abbreviations 
 
A  Absorbance 
Ac  Acetyl 
Ald  Aldehyde 
Ar  Aryl 
(Au)NP(s) (Gold) nanoparticle(s) 
Bu  Butyl 
calc.  Calculated 
c-Hex  Cyclohexane 
d  Diameter or doublet 
dd  Doublet of doublets 
D1  Delay time 
δ  Chemical shift 
DCC Dynamic covalent 

chemistry 
DLS  Dynamic light scattering 
DMF  N,N-Dimethylformamide 
DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 
ε  Molar extinction coefficient 
Eq  Equivalent 
ESI  Electrospray ionisation 
Et  Ethyl 
φ  Volume fraction 
h  Hour 
HexH  Hexane 
(HR)MS High resolution mass 

spectrometry 
Hy  Hydrazone 
J Coupling constant 
LDI Laser desorption ionisation 
lit.  Literature 
Me  Methyl 
(M)Hz  (Mega)hertz 
m  Multiplet 
min  Minute 
(m)M (Milli)molar 
µM Micromolar 
M.p. Melting point 
Ms Mesyl 
MS Mass spectrometry 
MW Microwave 
NMR Nuclear magnetic 

resonance 
Ph  Phenyl 
ppm Parts per million 
Q Reaction quotient 
Rf Retention factor 
RNA Ribonucleic acid 
rt Room temperature 
s Second or singlet 

 
s.d. Standard deviation 
SEC Size exclusion 

chromatography 
SPR Surface plasmon 

resonance 
t  Time or triplet 
T1 Spin-lattice relaxation time 
T2  Spin-spin relaxation time 
TBAB tert-Butylamine borane 

complex 
TEG Tetraethylene glycol 
TEM Transmission electron 

microscopy 
TFA Trifluoroacetic acid 
THF Tetrahydrofuran 
TLC Thin layer chromatography 
TOAB Tetraoctylammonium 

bromide 
Trt Trityl 
p-TSA p-Toluenesufonic acid 
UV-Vis Ultraviolet-visible 
W Watt 
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1. Chapter 1: 
Introduction 

 
This Chapter introduces the preparation, characterisation and manipulation of ligand-

functionalised gold nanoparticles (AuNPs). The most used liquid-phase methods for 

NP synthesis are presented, introducing the mechanistic understanding of the 

processes of NP growth and stabilisation. 

The characterisation of both ‘nanoparticulate’ properties (i.e. core size, optical and 

colloidal properties) and the NP-bound organic monolayer is then introduced and 

discussed. 

The NP functionalisation and post-synthetic manipulation is then introduced, including 

methods based on non-covalent interactions (e.g. oligonucleotide functionalisation) and 

methods based on irreversible covalent functionalisation, including a series of 

irreversible covalent reactions, which can be performed in the NP-bound monolayer. 

Finally, dynamic covalent chemistry (DCC), and in particular dynamic hydrazone 

exchange, is presented as a valid approach for the functionalisation and post-synthetic 

manipulation of hydrazone functionalised AuNPs. 

 

1.1 Nanoparticulate functional materials 
 

In the last two decades, metal NPs have attracted considerable interest because they 

have unique optical,[1–5] magnetic[6,7] and electronic[8–10] properties, which make them 

different from atoms and bulk materials. These properties are a result of NP size, size-

quantum effects and surface-dependant effects.[11] The investigation of these effects 

has dramatically increased as synthetic methods for the preparation of metal NPs 

became accessible.[12–14] 

In order to prevent irreversible aggregation and precipitation, metal NPs must be 

functionalised with a ligand shell. Such functionalisation, which can be achieved by 

using a large variety of ligands in terms of structure and properties, can in theory 

confer a wide range of potential physical and chemical properties to NPs and, thus, 

potential applications in many fields: electronics,[15,16] analytical chemistry,[17] 

heterogeneous catalysis,[18–21] biology,[22] drug delivery and medicine.[23,24] 

Unfortunately, the number of ligand that can be used for NP functionalisation is limited 
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by the ligand compatibility with the NP synthetic conditions. In addition, few strategies 

for the post-synthetic manipulation of NP-bound ligands are available[14,25–27] if 

compared to the numberless methods available for the transformation of molecular 

functionalities. 

By using ligand-functionalised metal NPs, an ideal further step would be the 

preparation of ordered materials by connecting NPs covalently to each other, where 

the organic ligands play a crucial role in a similar manner in which chemical bonds 

connect atoms to form molecules. However, the preparation of this type of 

nanomaterial is still extremely challenging because a full comprehension of the 

reactivity of the NP-bound organic monolayer is poorly understood.[28] Yet, the reactivity 

of the monolayer cannot be deeply investigated without first achieving high control over 

the functionalisation and purification processes. 

 

1.2 Noble metal nanoparticle synthesis 
 

NPs can be prepared from many materials including noble metals such as gold, silver 

and platinum; polymers, semi-conducting materials to give quantum dots, carbon and 

silica.[12,14,29] 

Colloidal solutions of various metal NPs are commercially available. However, there 

are a number of routinely employed methods, developed in recent years, which allow 

the preparation of NPs starting from their corresponding metal precursors. Synthetic 

methods can be divided into three main groups: grinding methods, gas-phase methods 

and liquid-phase methods.[1] 

Grinding methods are usually quite cheap but, on the other hand, provide highly 

polydisperse NPs and aggregates. In addition, it is common to obtain NPs 

contaminated with unreacted starting materials and only a small portion of them has a 

mean diameter less than 50 nm. However, considering the relatively low production 

costs, grinding methods are particularly used for industrial processes, for instance in 

the preparation of drugs.[30] 

Gas-phase methods usually consist of continuous processes providing high quality but 

non-functionalised NPs. Since the working temperatures are usually higher than  

500 °C, gas-phase methods are not suitable for routine preparations. As for grinding 

methods, gas-phase methods are particularly popular in industry, for example in the 

preparation of pigments for inks, coatings and plastics.[31] 

Liquid-phase methods are most widely used because they allow a good control of size 

distribution and shape. In addition, a careful control of the nucleation and growth 
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processes[32] to avoid aggregate formation can be achieved by functionalising NPs with 

organic ligands, which work as stabilisers and form a shell that prevents NPs from 

irreversibly aggregating and can be a handle for further manipulations. 

Noble metal NPs, and in particular gold NPs, have long been one of the most 

intensively investigated nanomaterials. The distinguish size-quantum and surface-

dependent effect shown by AuNPs inspired the development of many synthetic 

routes.[29] By this way, AuNPs can be obtained with relative ease for potential 

applications in analytical chemistry, heterogeneous catalysis and optics. In addition, 

gold is inert and stable under the conditions optimised for NP synthesis. It is also 

cheaper than other noble metals and, moreover, it is relatively non-toxic, making it a 

very good candidate for potential biological and medical applications.[29] 

 

1.2.1 Liquid-phase nanoparticle synthesis 
 

According to the model developed by LaMer and Dinegar,[32] two main processes are 

involved in NP formation: nucleation and growth. This model was developed in 1950 

and is still generally accepted. Nucleation is an endothermic process, since energy is 

required to break bonds of the initial metal precursor, to remove the solvate shells and 

to overcome the surface tension of the solvent. On the other hand, particle growth, 

independent from the nucleation process, is an exothermic process because the 

enthalpy of formation of the solid is released. Particle aggregation is also exothermic 

because it reduces the overall surface area. As a result of this balance of energetic 

contributions, any method chosen for the NP synthesis will afford an uncontrolled NP 

aggregation, hard to re-disperse in any solvent, if the growing NPs are not stabilised 

(Figure 1.1).[1] 
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Figure 1.1 General scheme for the growth and stabilisation of NPs. After nucleation, NPs tend to 

grow without control because the agglomeration is energetically favoured. The result is 
insoluble NP aggregates, which precipitate from the reaction solvent. NP growth can be 
controlled by a steric or an electrostatic stabilisation.[1] 

 

The growing particle surfaces must be saturated immediately to avoid irreversible NP 

aggregation. The stabilisation can be electrostatic, steric or a combination of the two. 

The NP size is determined by the amount of stabiliser used and by the rate of addition 

of the stabiliser to the reaction mixture. Electrostatic stabilisation can be achieved by 

adsorption of charged inorganic or organic species (e.g. H+, OH–, SO4
2–, NO3

–, RCOO–, 

RSO3
–, R4N+ etc.). Steric stabilisation is obtained by using long-chain organic 

molecules containing at one end phosphorus, nitrogen or sulfur atoms, which form 

strong interactions with the metal atoms.[14,29] 

 

1.2.1.1 Electrostatic stabilisation: the Turkevich–Frens method 
 

One of the first methods for the preparation of water-soluble AuNPs was developed by 

Turkevich and co-workers in 1951.[33] This procedure, generally known as the ‘citrate 

method’, was further optimised by Frens in 1973.[34] This method allows a broad size 

range of citrate-stabilised AuNPs, with reproducible mean diameters (15–150 nm) 
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although NPs > 20 nm are always polydisperse.[14,34] The original Turkevich method 

involves heating tetrachloroaurate solutions to boiling and subsequent addition of 

sodium citrate under vigorous mechanical stirring. After a few minutes, the solution 

turns a blue-purple colour, which is an indication of NP formation (see Section 1.3.2).[33] 

Temperature and citrate concentration affect the size and the dispersity of the forming 

AuNPs. The dispersity is generally quantified as one unit of standard deviation in 

relation with the average diameter. 

Turkevich provided a mechanism for the nucleation process, postulating that the citrate 

ions act as nucleating agent and gradually form a complex with the gold ions. When a 

sufficient number of gold ions is incorporated into this large ‘macromolecule’, a 

‘molecular rearrangement’ occurs to produce metallic AuNPs reduced by the citrate 

with concurrent production of oxidation products of the reducing agent.[33] The 

mechanism of NP formation and the role of the citrate as stabiliser is still under 

debate.[35] A generally accepted mechanism is shown in Scheme 1.1. The citrate is 

oxidised to dicarboxyacetone as the auric salt is reduced to aurous salt (a). Then, a 

disproportionation of the aurous species occurs forming gold(0) atoms (b).[36,37] 

 

 
Scheme 1.1 Proposed mechanism for the reduction of Au(III) species for the preparation of AuNPs 

using citrate as reducing agent. a): oxidation of the citrate to dicarboxyacetone. b): 
disproportionation of Au(I) to Au(0) and Au(III).[36,37] 

 

The disproportionation step requires three aurous chloride molecules (Scheme 1.1B) 

that are coordinated by the dicarboxyacetone molecules (Scheme 1.2). In this way, the 

citrate plays a double role as both reducing agent and stabiliser.[14] 

Although the ‘citrate method’ is used in the vast majority for both commercial and 

research water-soluble AuNP production, few improvements have been made in order 

to achieve better control over size and dispersity because the basis procedure remains 

the same. By this method, obtaining AuNPs < 5 nm in size remains challenging. On the 

other hand, for AuNPs > 50 nm the size dispersity increases and NPs tend to 

aggregate.[34] 



Chapter 1 – Introduction 

 6 

 
Scheme 1.2 Proposed formation of the complex of Au(I) with dicarboxyacetone during the synthesis 

of AuNPs via the citrate reduction. Au(I) is coordinated by a minimum of two 
dicarboxyacetone molecules. Au(I) undergoes disproportionation followed by AuNP 
growth.[14,36] 

 

In order to improve control over size and dispersity, citrate-stabilised AuNPs can be 

prepared employing a ‘seeded-growth’ approach. This method involves two steps. In 

the first step, small pre-synthesised AuNP ‘seeds’ are prepared. In the second step, 

the seeds are added to a solution containing tetrachloroauric acid and a reducing 

agent. By this way, bigger AuNPs are formed by gradual enlargement of the small NP 

seeds. Control over the NP final size is achieved by tuning the composition of the 

‘growth’ solution. In addition, better control over size dispersity is also obtained 

because Au(III) ions in solution are gradually reduced and adsorbed on the seeds 

avoiding secondary nucleation processes which are the main cause of size 

dispersity.[14] This method was pioneered by Natan and co-workers using citrate and 12 

nm AuNP seeds.[38] Murphy and co-workers reported instead the synthesis of 3.5 nm 

citrate-functionalised AuNP seeds by dropping an ice-cold aqueous solution of sodium 

borohydride into a solution containing tetrachloroauric acid and citrate.[39] Sodium 

borohydride is a stronger reducing agent than citrate and allows the preparation of 

smaller AuNPs (size range 1–5 nm) as a result of the faster nucleation process 

induced by this reducing agent.[40] 
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1.2.1.2 Steric stabilisation: the Brust–Schiffrin method 
 

While the citrate method is widely used to prepare water-soluble AuNPs, an alternative 

method developed by Brust and Schiffrin in 1994 has had a tremendous impact for the 

synthesis of smaller AuNPs in organic solvents.[40] By this method, AuNPs could be 

functionalised with more complicated functionalities and at a higher concentration than 

could be achieved with the ‘citrate method’. 

The Brust–Schiffrin method was the first phase transfer approach for preparing thiol-

stabilised AuNPs using tetrachloroauric acid and 1-dodecanethiol in an equimolar ratio. 

The procedure consists of two steps. In the first step, gold(III) ions in aqueous solution 

are extracted into toluene using tetraoctylammonium bromide (TOAB), which acts as 

both transferring and stabilising agent. In the second step, 1-dodecanethiol is added to 

the organic phase, before reduction of the metal is achieved by addition of sodium 

borohydride. The overall reaction is summarised by Equations 1.1 and 1.2. 

 

 
Equation 1.1 

 
Equation 1.2 

 

By this method, the NP growth and the formation of the stabilising monolayer are 

simultaneous. The amount of thiol ligand plays a crucial role in determining the final NP 

size. In fact, the thiol ligands are progressively adsorbed on the metal surface providing 

a steric stabilisation of the growing NP. The result is a more efficient control over the 

NP size with better dispersity when compared to those exhibited in the citrate method 

(Section 1.2.1.1). By using the original Brust–Schiffrin procedure, AuNPs with 

diameters in the range 1–3 nm were obtained. 

The Brust–Schiffrin method became extremely popular because it provided numerous 

advantages in comparison to all previous NP synthetic methods: facile synthesis in 

ambient conditions, thermal and air stability, small AuNP size with narrow dispersity, 

relative ease of post-functionalisation and modification by ligand exchange (Section 

1.4). However, there remains little knowledge about the mechanism involved in the NP 

formation and the nature of the intermediate species involved was unknown. A 

generally accepted hypothesis was developed by Murray,[41] who postulated the 

formation of a Au(I)-thiol polymer complex in the organic phase before the addition of 

the reducing agent (Scheme 1.3). 
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Scheme 1.3 General mechanism for the synthesis of AuNPs functionalised with 1-dodecanethiol via 

the Brust–Schiffrin method, as postulated by Murray.[41] The key precursor in Murray’s 
hypothesis is the presence of a polymer complex in the organic phase between Au(I) 
and the thiol before NaBH4 addition. 

 

A deeper investigation carried out independently by Lennox[42] and Tong[43] has put the 

Murray postulate in doubt since the presence of the Au(I)-thiol polymer complex was 

not experimentally observed. By Raman spectroscopy, Tong and co-workers observed 

the presence of a stretching vibration corresponding to a [Au(I)–Br2]– species (Scheme 

1.4).[43] The presence of the reduced Au(I) ions, instead of Au(III), was rationalised by 

the concurrent oxidation of the thiol to its corresponding disulfide, as also reported 

elsewhere in the literature.[44] The absence of any stretching vibration corresponding to 

the Au–S bond, further confirmed their hypothesis. In addition, Tong and co-workers 

observed, by 1H NMR spectroscopy, a large downfield shift of the water peak. For all 

these reasons they proposed the formation of a [TOA]+[Au(I)Br2]– complex in the form 

of inverse micelles, where TOAB molecules in the organic phase encapsulate both 

Au(I) species and water. The subsequent addition of sodium borohydride reduces Au(I) 

species to Au(0) and the formation of small ‘naked’ AuNPs follows. Then, the ligands 

(both disulfides and unreacted thiols) diffuse through the TOAB shell and the Au–S 

bond is formed at the water/toluene interface, with the final formation of dodecanethiol-

functionalised AuNPs. 
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Scheme 1.4 General mechanism for the synthesis of AuNPs functionalised with 1-dodecanethiol via 

the Brust–Schiffrin method, as postulated by Tong. The presence of the 
[TOA]+[Au(I)Br2]– complex (inverse micelle) is suggested by Raman and 1H NMR 
spectroscopy.[43] 

 

1.2.1.3 Steric stabilisation: the Stucky method 
 

Many of the methods available for AuNP synthesis employ a biphasic solvent mixture 

with Au(III) as gold source, which can be reduced to Au(0) in different ways (e.g. by 

using lithium aluminium hydride, sodium borohydride, hydrazine etc. as reducing 

agents) but all of them are based on the original Brust–Schiffrin procedure.[12] 

Stucky and co-workers have developed a reproducible method for the preparation of 

silver, palladium and gold NPs, which presents some distinctive differences from the 

previous procedures.[45] For the preparation of functionalised AuNPs, this single-phase 

method consists of the use of triphenylphosphine gold chloride as gold source. The 

gold and thiol ligand are mixed together in an organic solvent (e.g. benzene, toluene or 



Chapter 1 – Introduction 

 10 

chloroform) and heated to 55 °C. The reduction of gold is achieved with tert-butylamine 

borane complex (TBAB), a milder reducing agent compared to sodium borohydride, 

which allows a slower NP growth with a better control over the NP size dispersity. The 

Stucky method was further optimised by Lee and co-workers, who investigated the 

effect of solvent and gold/thiol/TBAB ratio.[46] A growth mechanism was also 

hypothesized (Scheme 1.5). In the first stage, NP nuclei begin to grow when the gold is 

gradually reduced by the TBAB. At this stage, triphenylphosphine weakly stabilises 

such small aggregates. In a second stage, the surface-bound triphenylphosphine is 

gradually displaced from the gold surface and replaced by thiol ligands by formation of 

the more stable Au–S bond. 

 

 
Scheme 1.5 Proposed mechanism for the synthesis of AuNPs functionalised with 1-dodecanethiol 

using AuPPh3Cl as gold source and TBAB as reducing agent.[46] 

 

A large variety of slightly different methods for preparing AuNPs are available in the 

literature.[12] The above mentioned methods are the most used because they can 

provide AuNPs with reproducible size and relatively small dispersity. The desired final 

NP size is one of the main aspects that have to be considered in order to choose the 

right method. If larger AuNPs are needed (> 10 nm), the Turkevich–Frens method is 

more appropriate than the Brust–Schiffrin or the Stucky methods, which are more 

suitable for obtaining smaller NPs (2–8 nm). Size dispersity is also important to choose 

the appropriate method. If a low NP size dispersity is desired (< 10% for instance), the 

Stucky procedure is probably the best available method. The solubility properties of the 

final ligand-functionalised AuNPs are also important for the choice of the synthetic 
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method. The Turkevich–Frens strategy allows the preparation of charged and water-

soluble AuNPs. On the other hand, the Brust–Schiffrin and the Stucky methods 

provide, normally, neutral ligand-functionalised AuNPs soluble in organic solvents. 

Finally, the compatibility of the organic ligand with the reducing conditions has to be 

taken also in account. If reducible moieties are present in the ligand structure, sodium 

borohydride could not be indicated and, however, the ligand compatibility with citrate or 

TBAB has to be assessed in advance. 

 

1.3 Nanoparticle characterisation 
 

When a batch of functionalised metal NPs is prepared, a series of analyses must be 

carried out in order to characterise, where possible, both their physical (e.g. NP 

diameter, shape, colloidal stability etc.) and chemical properties of the ligand shell (e.g. 

structural characterisation).  

Although different techniques were developed for the NP characterisation, a survey of 

the literature revealed that many studies involving NPs lack a comprehensive and 

consistent suite of characterisation data. In order to develop sophisticated synthetic 

strategies for manipulating NPs and to understand the mechanisms involved in NP 

functionalisation and assembly, a detailed NP characterisation is instead necessary. 

For instance, achieving and assessing NP sample purity is a basic requirement. In 

addition, achieving characterisation of NP-bound molecular structure is more 

challenging than characterising the ‘nanoparticulate’ properties, in particular for the 

investigation of molecular reactivity and inter-molecular interactions within the 

monolayer. 

Although many analytical techniques are available for this purpose, the aim of this 

Section is to present in detail only those that have been extensively used throughout 

the remainder of this Thesis. 

 

1.3.1 Transmission electron microscopy 
 

One of the basic analyses carried out on the vast majority of NP samples is the 

determination of their size. Among the optical methods, TEM is still widely used for this 

purpose.[47] 

In a common transmission electron microscope (Figure 1.2), an electron beam is 

generated by a tungsten filament. The beam hits the sample, which is supported on a 

copper grid covered by a thin layer of carbon. When the electrons pass through the 
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sample, scattering occurs because different atoms interact and absorb the electrons 

differently. Once scattered, the electrons are focused and magnified by, respectively, 

objective and projective lenses. The image is formed when the scattered electrons, 

focussed and magnified, interact with a digital camera.  

 

 
Figure 1.2 Schematic illustration of a transmission electron microscope. Simplified from ref.[47] 

 

In a common bright field imaging mode, regions of the sample which contain heavy 

atoms (e.g. metal NPs) will appear dark in contrast with those regions, containing 

lighter atoms (e.g. the carbon support), where the electrons are less scattered and thus 

will appear bright. The result is a two-dimensional image where NPs can be observed 

almost at the atomic level and counted. It is well established that metal NPs are not 

exactly spherical but they can exhibit a variety of polyhedral shapes (e.g. octahedral, 

icosahedral etc.).[48,49] However to a first approximation, NPs can be considered as 

spheres and, by means of imaging software programs, it is possible to estimate the NP 

diameter and the diameter dispersity, expressed as one unit of size standard deviation. 

Even if TEM allows direct visualisation of NPs, some disadvantages have however to 

be considered. TEM analysis is relatively time-consuming and requires extensive 

practical experience of the microscope. TEM provides size information of the NP core 

only while the NP-bound ligands are usually not visible with this technique. TEM 

analysis can be carried out only on a small portion of the whole sample. For this 

reason, the calculated mean diameter and size distribution are the result of a statistical 

estimation from tens to hundreds counted NPs, which represents a tiny pool of the total 

NP sample. In addition, NPs analysed by TEM cannot be reused for further 

characterisation because they are irreversibly deposited on the TEM grid. Finally, the 

TEM picture is a result of a dried sample and, thus, it is not representative of NPs in a 

solution state.[50] 
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1.3.2 UV-Vis spectroscopy 
 

UV-Vis spectroscopy is widely used for the characterisation of functionalised metal 

NPs. The NP optical properties are largely different from the bulk material counterparts. 

Optical properties of noble metal NPs are an explanatory example. Generally, a 

dispersion of AuNPs shows a characteristic deep-red colour while dispersions of silver 

NPs (AgNPs) are yellow. When analysed by UV-Vis spectroscopy, AuNPs and AgNPs 

show characteristic absorption bands around 520 and 400 nm, respectively, as a result 

of an optical property known as surface plasmon resonance (SPR). 

The SPR band originates from collective oscillations of the electrons at the surface of 

NPs (essentially 6s electrons of the conduction band for AuNPs). This oscillation is 

induced by the electromagnetic field of the incoming light when photon frequency is 

resonant with this collective oscillation (Figure 1.3).[5]  

 

 
Figure 1.3 Schematic diagram illustrating a localised surface plasmon. Figure taken from ref.[51] 

 

The SPR band was explained for the first time by Mie in 1908.[2] Mie attributed the 

plasmon band of spherical particles to the dipole oscillation of the free electrons in the 

conduction band occupying the energy states immediately above the Fermi energy 

level. 

For AuNPs in the range 2–20 nm, the surface plasmon resonance causes an 

absorption of the visible light around 520 nm. The SPR band position and linewidth are 

size-dependent. For monodisperse NP samples, when the size of the NP core 

decreases, a blue-shift and a decrease of the SPR band intensity are observed 

together with a broadening of the SPR band width.[29] This is a consequence of the 

onset of quantum size effects, which become important for NP with core size < 3 nm. 

For this reason, NPs with a mean size of 2 nm or less do not show the SPR band in the 

UV-Vis spectrum. The SPR band is also influenced by NP shape, core charge, solvent 

dielectric constant and temperature.[52] In addition, the presence of an organic shell 
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around the NP core slightly modifies the refractive index of the surrounding medium 

leading to a further influence on the position and shape of the SPR band.  

UV-Vis analysis of functionalised metal NPs is very popular because it is simple and 

rapid and does not require any particular knowledge of the instrument. Information 

about the NP colloidal properties can be obtained by monitoring the λmax shift of the 

SPR band. In addition, approximate estimations of the NP ‘concentration’ can be 

obtained by observing the variations in the λmax absorbance value. 

 

1.3.3 Dynamic light scattering 
 

DLS is a complementary technique to TEM for determining the mean NP size of a 

dispersion.[53] Compared to TEM, DLS analysis provides important advantages: the 

sample preparation is quick and easy and this technique does not require a deep 

experience for using the instrument as TEM does. DLS is a conservative analysis since 

samples can be recovered and used for further investigations. DLS allows NP analysis 

as colloidal dispersions. For this reason, information about the colloidal stability and 

real time changes of the colloidal dispersion (e.g. aggregation processes) can be 

detected by DLS. 

During the DLS analysis (Figure 1.4), the NP sample is crossed by a light beam from a 

laser source. The path and the intensity of the beam are modified by the suspended 

NPs by scattering. The angle and the intensity of the scattered beam are related to the 

NP size and their random motion in the dispersion.  

 

 
Figure 1.4 Schematic representation of a typical dynamic light scattering setup. Figure taken from 

ref.[53] 

Information about the random motion of suspended particles can be obtained and used 

to calculate the diffusion coefficient of the NPs. If the NP shape is spherical, the 

dynamic radius of the NP (RH) can be calculated from its diffusion coefficient from the 
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Stokes–Einstein relationship (Equation 1.3), where kB is the Boltzmann constant, T is 

the temperature of the suspension, and η is the viscosity of the solvent. 

 

 
Equation 1.3 

 

It has to be noted that the solvodynamic size of the NPs, which is larger than the NP 

size, is estimated by DLS. The dynamic size is the result of the NP core size, the 

surrounding ligands around it and the associated solvation shell (Figure 1.5). 

DLS analysis is very sensitive to NP shape and dispersity. For these reasons, if NPs 

are not spherical and the size distribution is large, DLS analysis is not able to provide 

reliable solvodynamic NP size. 

 

 
Figure 1.5 Schematic illustration of ligand-functionalised metal NPs. The ligand shell and the 

solvation shell contribute to the dimension of the solvodynamic radius. 

 

1.3.4 Nuclear magnetic resonance spectroscopy 
 

Solution-state NMR spectroscopy is a powerful tool for the characterisation of the NP-

bound organic monolayers.[54] In particular, NMR spectroscopy allows the in situ and 

non-destructive analysis of NP colloidal dispersions. With appropriate experimental 

design, NMR spectroscopy also discriminates organic species adsorbed on the NP 

core from those freely dissolved in solution and can be used for monitoring exchange 

processes on the NP surface. 

Even if the preparation of monolayer-stabilised NPs is rather common and carried out 

with a very large variety of organic ligands, a survey of the available literature revealed, 
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surprisingly, that the characterisation of the NP-bound organic shell is often 

incomplete, absent or even misleading. 

The NMR analysis of the molecules adsorbed on the NP surface is not as 

straightforward as that of freely dissolved organic species. For a start, in typical NP 

colloidal dispersions, the concentration of NP-bound detectable ligand is very low. After 

the development of the Brust–Schiffrin procedure,[40] AuNPs functionalised with simple 

alkanethiols became accessible with sufficient concentration so that the organic ligands 

could be detected by NMR. Early 13C NMR investigations with octanethiol (Figure 1.6), 

dodecanethiol or hexadecanethiol adsorbed on the NP surface were carried out and 

compared with corresponding solid-state NMR analyses.[55–57] A general and consistent 

broadening of the methylene resonances was observed, whose extent was 

proportional to the methylene proximity to the gold surface. 13C NMR analyses are not 

widely adopted because they are very time-consuming (more than 15 hours, for 

instance, were necessary to record the 13C spectrum shown in Figure 1.6). Significant 

line broadening is also a consistent feature of 1H NMR spectra[55–57] where also signals 

corresponding, for instance, to amide protons were detectable (Figure 1.7).[58] 

 

 
Figure 1.6 13C NMR (CDCl3, 125 MHz) of 1-octanethiol (a) and octanethiol-functionalised AuNPs. 

Figure adapted from ref.[56] 
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Figure 1.7 1H NMR (D2O, 500 MHz) of tiopronin (a) and tiopronin-functionalised AuNPs. Figure 

adapted from ref.[58] 

 

Murray and co-workers were the first to analyse the source of broadening.[58,59] Several 

factors, including structure of the monolayer, spin-spin relaxation times and sample 

dispersity, were postulated to contribute to the signal broadening. In AuNPs 

functionalised with alkanethiols, methylene groups closest to the gold surface are 

densely packed and solid-like while the degree of free motion of the farthest 

methylenes is higher. As a consequence of this, nuclei experience increased dipolar 

interactions, for increasing proximity to the NP surface, and hence increased line 

broadening as a result of the resulting dipolar coupling effects. Fast spin-spin 

relaxation (measured by the T2 time) is an additional source of broadening. Relaxation 

times depend of the degree of tumbling of species in solution and they are significantly 

shorter for big species (proteins, polymers) when compared to smaller molecules. 

Functionalised NPs behave similarly to proteins and polymers, showing small rotation 

and low tumbling. For this reason, the T2 times of alkanethiolates adsorbed on the NP 

surface are shorter than their corresponding free monomers in solution, causing the 

linewidth broadening.  

Sample dispersion is probably the main cause for linewidth broadening in most NP 

samples. A distribution of chemical shifts is observed because different Au–S binding 

sites are present on the NP surface. In addition, different populations of NPs in the 

same sample can produce the same effect. Since NPs are not exactly spherical, the 
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Au–S binding site can be positioned on terraces, edges and vertices of the NP. This 

results in a range of the chemical shifts for nuclei which otherwise belong to the same 

molecular environment. 

After the basic NMR investigations carried out by Murray and co-workers, NMR 

spectroscopy was employed for simple and rudimentary characterisation of the NP-

bound monolayer. Only in recent years, 1D and 2D NMR experiments were used to 

obtain more information from ligand-functionalised NPs. Diffusion-ordered (DOSY) 

NMR spectroscopy can be employed for the determination of the NP size.[55,58,60] By 

DOSY NMR, Kubiak and co-workers calculated the diffusion constants of AuNPs 

functionalised with 1-dodecanethiol and 1-octanethiol in several solvents. NP size 

values were derived by using the Stokes–Einstein relationship (Equation 1.3), in very 

good accordance with those calculated by TEM analysis.[60] This is rather surprising 

because, by DOSY NMR, the diameter values should be referred to the solvodynamic 

size of NPs (Figure 1.5), which is larger than the core size estimated by TEM analysis. 

In addition, no information about the size distribution is provided by this method. 

As mentioned above, ligand-functionalised AuNPs exhibit short transverse relaxation 

times (T2) compared to those of small molecules freely dissolved in solution. Specific 

T2-filters can be applied in order to generate NMR spectra in which only the 

resonances corresponding to unbound species[58,61] can be separately observed in 

complex NP samples. Alternatively, filtered NMR spectra can be generated to 

selectively show NP-bound species by applying a DOSY-type sequence, which allows 

differentiation of species based on their diffusion coefficient.[62,63] These NMR-filter 

experiments are probably the most useful to assess, in combination with traditional 1H 

NMR experiments, the purity of ligand-functionalised NP samples from unbound 

species but, surprisingly, such experiments are not yet widely employed. 

Only recently, NMR spectroscopy has been employed to investigate the composition 

and the position on the NP surface of structurally different ligands. Mancin and co-

workers exploited, for instance, the paramagnetic relaxation enhancement,[64] induced 

by gadolinium ions, and the pseudo-contact NMR shift,[65] generated by ytterbium or 

terbium ions. These intermolecular effects, generated by the ion probes, provided 

direct information about the organisation of the ligands within a mixed monolayer (e.g. 

stripes, small patches or random composition). Alternatively, Stellacci and co-workers 

exploited the nuclear overhauser (NOE) effect.[66] By 1H NMR, they observed that the 

dependence of the aromatic hydrogens peak position over the monolayer composition 

can be linear, reciprocal, or sigmoidal for, respectively, randomly mixed ligand shells, 

Janus particles and patchy particles. In addition for randomly mixed monolayers and 

patchy particles the presence of a cross-peak was observed in the 2D NOESY spectra. 
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1.3.5 Mass spectrometry 
 

Mass spectrometry (MS) analysis can be used in combination with other techniques 

(e.g. NMR spectroscopy) for the characterisation of ligand-functionalised metal NPs 

and has also been successfully employed in the characterisation of self-assembled 

monolayers on metal surfaces.[67,68] The analysis is quick (around 5 min, including 

sample preparation, ionisation and fragment detection) and, although the sample 

cannot be recovered, MS analysis does not require a large amount of material.[69] In 

addition, the information obtained by MS is a statistical average of the whole analysed 

sample. 

Electrospray and laser desorption ionisation (ESI and LDI, respectively) are particularly 

widespread for the analysis of functionalised NPs. Early investigations on three-

dimensional structures involved the analysis of polydisperse NP samples functionalised 

with simple ligands. The choice of the ionisation source and the NP size are critical for 

obtaining specific information from MS analysis. For small NPs, information of the 

whole NP mass, including the adsorbed ligands, can obtained either using ESI[70,71] or 

LDI[44,48,69,72] as ionisation source. 

For bigger NPs, MS analysis can show fragments corresponding to gold–thiolate ions 

as a result of the fragmentation of the metal core.[69,73–75] By employing LDI-MS 

analysis, strategies for the characterisation of the organic shell have recently been 

reported based on the selective desorption of the ligands by appropriate tune of the 

intensity of the laser.[76] 

MS analysis can provide useful information also for characterising NP-bound mixed 

monolayers.[74–76] Matrix-assisted LDI-MS was employed by Cliffel and co-workers for 

the determination of AuNPs functionalised with a mixed monolayer of tiopronin and 

glutathione. A selective gas-phase separation technique was employed to separate 

specific gold-thiolate species and to provide structural information about the 

composition of the NP-bound mixed monolayer.[74,75] Rotello and co-workers developed 

a semi-quantitative method for the selective desorption of ligands, containing a 

tetraethylene glycol residue, from the NP surface. Results obtained for binary ligand 

mixtures by LDI-MS analysis were in very good accordance from those obtained by 

corresponding NMR analysis.[76] Although very promising for assessing the composition 

of NP-bound mixed monolayers, these strategies are still not generally applicable 

because the ligands must possess similar ionisation efficiency in order to obtain 

reliable results. 

LDI-MS analysis is a powerful tool in order to investigate the structure of the desorbed 

ligands. However, such analysis could detect possible NP-unbound contaminants and 
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so generate misleading results. For these reasons, LDI-MS is a powerful tool in order 

to investigate the structure of the desorbed ligands but it has to be used always in 

combination with other analyses (e.g. NMR spectroscopy) to provide a more complete 

information about the ligand structure of ligand-functionalised NPs. 

 

1.4 Nanoparticle functionalisation and monolayer post-
synthetic manipulation  

 

In the NP functionalisation, ligands are used to introduce a variety of chemical 

functionalities designed to bring properties in addition to the basic role of stabilising the 

NPs. Ligands are commonly introduced in one of two ways: concurrently during the NP 

formation or in a subsequent step by exchange with NPs stabilised with a temporary 

ligand (Figure 1.8).[14] 

In the direct synthesis approach, ligand compatibility with the NP synthetic conditions 

must be assessed. In the ligand exchange approach, a large excess of ligand is added 

to a pre-formed solution of AuNPs functionalised with a temporary ligand which can be 

either weakly bound (e.g. citrate,[33,34] TOAB,[40] etc.) or covalently adsorbed (e.g. 

thiolates) on the metal surface. The incoming ligand gradually displaces the temporary 

ligand from the gold surface. The exchange is complete usually within a few hours and 

the rate of completion depends on the excess of incoming ligand employed in 

combination with the relative affinities of the incoming and outgoing ligands for the NP 

surface. 

To achieve a reasonable displacement of the temporary ligand, exchange on the NP 

surface requires a large excess of incoming ligands. By this way, purification issues 

might arise in order to remove both the excess of NP-unbound incoming ligand and of 

displaced ligand. In addition, ligand exchange does not ensure a full displacement of 

the temporary ligand with the consequence to possibly obtain NP-bound mixed 

monolayers whose composition can be difficult to assess. On the other hand, not all 

organic ligands are compatible with the reducing conditions required for a direct NP 

preparation. Finally, a direct synthesis strategy (e.g. Stucky[45]) provides NPs with 

reproducible size which is, however, dependent on solvent, temperature and nature of 

the ligand.[46] For this reason, a ligand exchange approach is more appropriate when 

NPs functionalised with structurally different ligands are required to possess the same 

size.  

If a ligand exchange approach is necessary, starting from NPs functionalised with 

weakly adsorbed stabilisers (e.g. citrate or TOAB) or with strongly bound ligands (e.g. 
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alkanethiolates) also influences the relative ease with which ligand exchange is 

achieved. Weakly bound ligands provide less stable NPs but are easily exchangeable. 

On the other hand, strongly bound ligands improve NP stability but, at the same time, 

do not ensure their full displacement from the surface and so they are more difficult to 

exchange. 

In order to overcome the limitations emerging for the NP functionalisation by direct 

synthesis or ligand exchange, a promising alternative is given by non-covalent (Section 

1.4.1) or covalent (Section 1.4.2) NP post-synthetic strategies. 

 

 
Figure 1.8 General scheme illustrating the two main approaches for the preparation of 

functionalised AuNPs (dimensions are arbitrary). Direct synthesis (left): the gold salt, the 
reducing agents and the ligand are mixed together in one step. Ligand exchange (right): 
the ligand is mixed together a pre-formed batch of AuNPs functionalised with a weakly-
bound temporary ligand, which is gradually displaced from the gold surface by ligand 
exchange. 

 

1.4.1 Functionalisation with DNA and manipulation driven by non-covalent 
interactions 

  

One of the most well established NP functionalisation approaches involves the use of 

DNA oligonucleotides. Starting from water-soluble AuNPs stabilised with citrate or 

phosphine ligands, Mirkin[77] and Alivisatos[78] independently reported AuNP 

functionalisation with DNA oligomers. These pioneering works both reported NP 

passivation with oligonucleotides functionalised with a thiol group, for NP binding, at 

the 3' end. The formation of the stronger Au–S bond ensured displacement of the 

weakly NP-bound citrate or phosphine during the ligand exchange process. Mirkin and 

co-workers functionalised 13 nm AuNPs with non-complementary single stranded 
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oligonucleotides. Aggregates were subsequently obtained by adding a DNA linker 

bearing, at both ends, complementary oligonucleotides with those adsorbed on the NP 

surface (Figure 1.9A).[77] The process was confirmed to be temperature-reversible 

exploiting the denaturation and regeneration of the DNA double helix, showing a 

sharper melting transition due to multivalent interconnections between DNA-

functionalised NPs when compared to analogous oligonucleotides hybridised in 

solution in the absence of NPs.[4] On the other hand, Alivisatos and co-workers 

assembled inorganic nanocrystals into dimers and trimers by base pairing of several 

oligo-functionalised NPs to a single DNA template strand (Figure 1.9B).[78] 

 

 
Figure 1.9 Gold nanoparticle assembly driven by DNA oligomer hybridisation. a): DNA-

functionalised AuNPs which are not complementary to each other assemble by using a 
bifunctional complementary DNA linker (Mirkin).[77] b): DNA-functionalised AuNPs 
assemble in dimers or trimers by base pairing with a single-strand oligonucleotide as 
template (Alivisatos).[78] 

 

The development of oligonucleotide-functionalised AuNPs had a tremendous impact in 

biology and medicine.[23] The combination of the AuNP optical properties and the 

binding properties of the NP-bound oligonucleotides has provided, for example, 

fluorescence-based strategies for the detection of intracellular species such as 

messenger RNA[79] and adenosine triphosphate,[80] gene regulation methods in the 

context of RNA interference[81] and colorimetric strategies for the detection of cancer 
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cells.[82] In addition, DNA hybridisation on NP-adsorbed oligonucleotides was studied 

for achieving NP programmable crystallisation. Mirkin,[83–85] and independently 

Gang,[86,87] exploited DNA base pairing to achieve long-range organised NP 

superstructures with a very high degree of control and prediction. Mirkin and co-

workers, obtained the formation of different crystal structures exploiting the balance 

between the entropic and the enthalpic contributions involved in the assembly process 

at different temperatures relative to the melting temperature of DNA (Figure 1.10).[83] 

Using these strategies, an impressive degree of control over the NP assembly process 

by appropriate specific design of the oligonucleotide ligand and choice of the NP size 

was achieved obtaining different crystal structures in a predictable fashion.[84,85] 

Gang and co-workers observed that AuNPs functionalised with oligonucleotides can 

either assemble into amorphous aggregates or, on the contrary, adopt a long-range 

ordered crystalline superstructure depending both on the length of the oligonucleotide 

ligand adsorbed on the gold surface.[86] In addition, DNA-guided heterogeneous 

assembly was achieved also with different types of nanosystems, like AuNPs and 

quantum dots.[87] 

 

 
Figure 1.10 AuNPs functionalised with DNA can assemble in different ways by changing the 

sequence and/or the length of the DNA linker. Figure taken from ref.[83] 

 

NP post-synthetic manipulation assembly using oligonucleotides had a tremendous 

impact for the achievement of functionalised nanomaterials as a result of the stability, 

specificity and selectivity of DNA hybridisation.[25]  

Other non-covalent strategies reported in the literature include non-biomolecular NP 

post-synthetic manipulation and assembly exploiting hydrogen[88] and halogen[89] 

bonding, host-guest interactions (e.g. with cucurbiturils[90,91] or cyclodextrins[92] as host 

molecules), electrostatic[93–95] and dipole-dipole[96] interactions. NP post-synthetic 

manipulation using these interactions was, in some cases, demonstrated to be 

reversible[93–96] showing however poor control over the assembly process if compared 

to that achieved by exploiting oligonucleotide hybridisation.  
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1.4.2 Irreversible covalent chemistry on monolayer-functionalised 
nanoparticles 

 

Post-synthetic covalent modification of the NP monolayers can be considered as an 

alternative to non-covalent functionalisation (Scheme 1.6).  

Many strategies have been investigated especially for NP bioconjugation,[26] but, in 

many cases, covalent bond formation has been inferred rather than directly confirmed 

by a rigorous structural characterisation on the NP-bound monolayer. 
 

 
Scheme 1.6 Example of irreversible covalent bond forming reactions that have been exploited for 

post-synthetic modification of ligand-functionalised nanoparticles. 

 

Early investigations were carried out by Brust and Schiffrin with AuNPs functionalised 

with 4-hydroxy or 4-amino phenylthiol.[97,98] Using an excess of propionic anhydride in 

an aqueous sodium acetate solution, they observed partial esterification in the NP-

bound monolayer from infrared spectroscopic investigations. Although not deeply 

investigated, steric hindrance from the close packed ligands around the NP core was 

speculated to explain an incomplete esterification suggested by H/D exchange, which 

revealed the unreacted hydroxyl groups. 

A more detailed investigation of nucleophilic substitution reactions on AuNP-bound  

ω-bromoalkanethiolates with primary amines was carried out by Murray and co-

workers.[57] This study remains one of the few examples in which the reactivity of the 

monolayer is investigated and compared to the reaction of freely dissolved molecular 

species. By 1H NMR spectroscopy, the extent of nucleophilic substitution was 

measured by using a series of primary amines. Results indicated that the substitution 

extent gradually decreases with bulkier amines. Furthermore, it was observed that the 

reactivity of ω-bromoalkanethiolate-functionalised NPs was more similar to their 

corresponding monomers in solution rather than their analogues adsorbed on flat 

surfaces, suggesting that the curved surface of NPs makes the adsorbed ligands less 
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packed when compared to flat surfaces. Thus, the reactive site is less hindered and so 

more reactive. 

The use of covalent chemistry on ligand-functionalised NPs has since widened to many 

other types of irreversible reactions. Amide coupling is particularly widespread for 

biological/medical applications. This type of reaction allowed the preparation of short 

oligopeptides starting from carboxylate-functionalised AuNPs[99] or the conjugation of 

macromolecules on the NP surface for delivery or sensing.[100,101] All these examples 

report incomplete conversion of the NP-bound acid ligand to its corresponding amide 

even by employing mixed monolayer with an excess of non-reactive ligand. Copper-

catalysed couplings of azide-functionalised NPs with alkynes are also often used for 

biocompatible NP ligations with small molecules[102,103] or biomolecules.[104,105] However, 

long reaction times are usually required and achieving quantitative conversion of the 

NP-bound azide ligands is challenging. 

To conclude, post-synthetic covalent manipulation of NP-bound monolayers can be a 

valid alternative to non-covalent strategies (Section 1.4.1). However, such an approach 

does not guarantee a good control over the NP-bound ligand functionalisation, leading 

to statistical mixtures of the NP monolayer and it only offers one-shot opportunities for 

functionalisation. 

1.5 Dynamic covalent chemistry as a versatile 
approach for nanoparticle post-synthetic 
manipulation 

 

Post-synthetic manipulation of NP-bound monolayers exploiting non-covalent 

interactions (Section 1.4.1) can operate only under a limited range of experimental 

conditions. For example, the high stability of DNA-functionalised NPs is ensured only in 

a narrow window of temperature and salt concentration in order to preserve both the 

double-helix integrity and the colloidal stability. 

Dynamic covalent chemistry (DCC) has the potential to combine the reversibility of 

non-covalent interactions with the intrinsic stability of covalent bonds. In addition, a 

wider range of synthetic chemistry is available for DCC, not limited by the stability 

conditions required by biomolecules.[106] As shown in Figure 1.11, kinetically-controlled 

reactions are necessarily irreversible so that, when the bond is formed, it is not 

possible to break it again and go back to the starting reactants (under the same 

conditions). For this reason, compound A goes to C rather than to B because the 

transition state of the former pathway has a lower energy than the latter  

(ΔGAC
‡ < ΔGAB

‡). To modify such reactions, features can be introduced in order to 
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stabilise transition states. On the other hand, for reactions occurring under 

thermodynamic control, when equilibration between reactants and products is 

sufficiently fast, the relative stabilities of the products determines if one product is 

favoured over the other(s). Under such conditions, compound A goes to B rather than 

to C because product B is thermodynamically more stable than C (ΔGC < ΔGB). 

 

 
Figure 1.11 Free energy profile for reactions under thermodynamic (A �  B) or kinetic control  

(A � C).[106] 

 

DCC exploits thermodynamically controlled processes in order to self-assemble 

complex structures. The ratio between different products can be controlled and 

modified either by thermodynamically stabilising the desired product, by driving the 

reaction equilibrium towards the desired products with an excess of reactants or by 

removing products. Another intrinsic feature of DCC is the ability to eliminate 

thermodynamically less favourable products, often described as ‘error-checking’ and 

the ‘proof-reading’. 

The unique features of DCC have allowed key discoveries in polymer chemistry and for 

the preparation of mechanically interlocked molecules and molecular capsules.[106,107] In 

addition, the development of dynamic combinatorial chemistry has shown useful 

applications in drug discovery, molecular recognition, catalysis and system 

chemistry.[108,109] 

 

1.5.1 The hydrazone dynamic covalent bond 
 

Although many equilibrium reactions are known (Scheme 1.7), not all of them are 

suitable for every application. For many reactions, only a proof-of-principle 

demonstration of reversibility has been demonstrated, while a large number of DCC 
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applications are based on imine-type exchange, boronic ester exchange and disulfide 

exchange.[106] 

 

 
Scheme 1.7 A selection of reversible covalent reactions. Scheme adapted from ref.[106] 

 

Imine and hydrazone compounds, known also as Schiff bases, share the same 

mechanism but with different reactivity for their reversible formation/hydrolysis 

compounds (Scheme 1.8).[110–113] 

In the formation of a Schiff base, two steps determine the rate of the reaction. The first 

step is a nucleophilic attack of an amine on the carbonyl group of an aldehyde or 

ketone and subsequent formation of a zwitterionic addition product. After a rapid proton 

transfer, the neutral carbinolamine intermediate undergoes dehydration with 

subsequent formation of the C=N double bond. Both amine attack to the carbonyl 

group and carbinolamine dehydration rates are pH-dependant. For imines, the rate of 

formation is fastest at about pH 4–6. At acidic pH (< 4), the rate-determining step is the 

amine attack, since the amine is in equilibrium with its corresponding conjugate acid. 
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On the other hand, carbinolamine dehydration is acid-catalysed and fast but becomes 

the rate-determining step at neutral or slightly acidic pH (> 6).  

 

 
Scheme 1.8 General mechanism for the formation/hydrolysis of imines. 

 

Hydrazone compounds, structurally similar to imines, share comparable pH-rate 

profiles with small variations depending on the pKa values of the amine and the 

carbinolamine intermediate for, respectively, the nucleophilic attack to the carbonyl 

compound and the dehydration of the carbinolamine intermediate.[114,115] 

Hydrazones are more stable than imines in the presence of water (Scheme 1.9). The 

hydrolytic stability is the result of increased electron delocalisation involving the lone 

pair on the α nitrogen atom, which places an increased negative charge on the carbon 

atom in the C=N bond (resonance forms II and IV).[116] As a consequence of this, both 

hydrazone hydrolysis and exchange are usually slower than the corresponding imine 

reactions. In addition, the hydrazone bond is thermodynamically stable even at acidic 

pH, while imines are predominantly dissociated in the same pH range in aqueous 

environments. 

 

 
Scheme 1.9 Resonance forms of an alkyl hydrazone (I, II) and an acyl hydrazone (III, IV, and V). 

Scheme adapted from ref.[116] 

 

The intrinsic stability of hydrazones allows their preparation under a wide range of 

conditions. As mentioned above, usually hydrazone synthesis is achieved with an acid 

catalyst while its formation at neutral pH is slow. In some cases, the acid-catalysed 

condensation is discouraged or inappropriate (e.g. in biological systems). Early studies 



Chapter 1 – Introduction 

 29 

carried out by Jencks revealed that acid catalysts for hydrazone formation and 

exchange can be replaced by nucleophilic catalysts.[112] This observation inspired more 

recent investigations on aniline-type catalysts[117–121] and, more recently, variously 

substituted anthranilic acids as a valid alternative to acid catalysts.[122,123] 

The chemoselective formation of the hydrazone bond has been used in polymer 

chemistry[124,125] and bioconjugation.[26,118] Applications of hydrazone-based sugar and 

protein ligation,[126,127] gene transferring[128] and dendrimer-based drug delivery[129] are 

reported.[130] In particular for NPs, several studies involved the preparation of NP 

conjugates for measuring enzymatic activity or for bioimaging.[131,132] NP delivery 

systems have been also prepared for the selective release of anticancer drugs like 

doxorubicin[133–136] and cisplatin.[137]  

The examples provided exploit hydrazone formation (e.g. for bioconjugation) or 

hydrolysis (e.g. for drug release) only in an irreversible fashion and, moreover, the 

dynamic properties of the hydrazone bond and the reactivity of the NP-bound 

hydrazone monolayer are not investigated. Finally, a lacking or incomplete 

characterisation of the hydrazone-functionalised AuNPs emerged from these 

examples. The hydrazone bond formation (or hydrolysis in the case of drug delivery 

systems) is only inferred without appropriate characterisation of the structure of the 

NP-bound monolayer. Even when the characterisation is reasonable,[135,136] a careful 

analysis of the NMR spectra revealed the presence of NP-unbound impurities  

(Section 1.3.4). 

 

1.6 Outlook and aims 
 

Many methods are available for the preparation of ligand-functionalised NPs starting 

from a large variety of materials to form the NP core (e.g. noble metals, semi-

conductive materials, carbon, silica etc.). Solution-phase synthetic methods are 

particularly popular for metal NP synthesis because they can provide functionalised 

NPs with smaller size and better dispersity than those obtained by grinding or gas-

phase methods. The general procedure is based on the reduction of a metal precursor 

by means of a reducing agent followed by electrostatic or steric stabilisation of the 

metal core with an organic ligand. In this way, irreversible NP aggregation and/or 

precipitation during the synthesis are avoided, a degree of control over the nucleation 

and growth processes is achieved, and functionalised NPs with reproducible mean size 

and low dispersity are obtained. 
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The current available approaches for functionality insertion on the NP surface are 

currently based on direct incorporation or ligand exchange. In addition, several 

examples have been reported for the post-synthetic manipulation of the NP-bound 

monolayer based either on non-covalent or covalent strategies. However, these 

strategies are not yet generalizable and can be successfully performed only in a 

narrow window of experimental conditions. 

For all these reasons, the development of a generalizable approach for the design of 

NP building blocks is highly desirable in order to provide a robust and reliable post-

synthetic optimisation of NP chemical and physical properties and to allow the 

construction of nanodevices and materials comprising one or more types of NP 

building blocks that are capable of linking with each other, of being integrated with 

molecular components, or being attached to surfaces. The combination of 

thermodynamic control with the intrinsic stability of covalent bonds is a unique feature 

exploited in DCC applications. Performing DCC in a NP-bound monolayer could 

ultimately lead to the same level of control as currently achieved for the transformation 

of functional groups in molecular systems and would be an attractive approach to 

develop flexible and scalable methods for the bottom-up construction of materials 

containing both metal NPs and molecular components. However, just as rational 

molecular synthesis depends on mechanistic understanding and structure–reactivity 

relationships, understanding the reactivity of NP building blocks both at the molecular 

level requires a full suite of characterisation data. 

The aim of this Thesis is to discuss the synthesis, purification and characterisation of 

hydrazone-functionalised AuNPs that can undergo post-synthetic manipulations as a 

first example of DCC in a NP-bound environment. 

The hydrazone ligands, for NP functionalisation, must contain a suitable functionality 

for binding the metal surface (e.g. a sulfur atom) and an appropriate design that will 

ensure a balance between favourable van der Waals interactions and flexibility to 

encourage the formation of well-ordered monolayers and sufficient access to the 

reactive site (i.e. the hydrazone). Functionalised NPs may be obtained by ligand 

exchange or by direct synthesis. The choice of one of the two approaches will depend 

on the compatibility of the hydrazone ligand with the NP synthetic conditions, on the 

desired final monolayer composition, and on the ease of purification from by-products. 

In addition, a method that provides hydrazone-functionalised AuNPs with reproducible 

size and low dispersity from batch to batch will be sought. 

In order to perform DCC investigations on hydrazone-functionalised AuNPs, a rigorous 

protocol has to be developed for the characterisation of both the ‘nanoparticulate’ 

properties (e.g. size and colloidal stability) and the organic structure of the NP-bound 
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ligand. This will allow the demonstration that the structural integrity of the NP-bound 

hydrazones is preserved during the NP functionalisation and, moreover, that the 

sample is not contaminated by unbound species that can confound further 

investigations. 

Dynamic covalent reactivity of hydrazone-functionalised AuNPs will be then 

investigated. Firstly, NP stability under exchange conditions will be assessed and 

discussed. Then, preliminary studies will demonstrate the occurrence of the hydrazone 

exchange within the NP-bound monolayer. Subsequently, the monolayer reactivity, 

towards both hydrolysis and exchange, will be quantitatively studied and compared 

with the reactivity of structurally similar molecular analogues. 

Finally, strategies will be sought and developed in order to exploit the dynamic 

exchange occurring within the monolayer as a tool to tune the NP physicochemical 

properties (e.g. NP colloidal stability in several solvents) and to achieve NP self-

assembly under dynamic conditions. 
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2. Chapter 2: 
Synthesis and characterisation 

of hydrazone-functionalised 
gold nanoparticles 

 

This chapter reports the preparation of gold nanoparticles functionalised with a 

monolayer of organic molecules bearing a hydrazone moiety. The design, synthesis 

and characterisation of two classes of ligands are reported: N-acyl and N-aroyl 

hydrazones. The preparation of N-acyl hydrazone-functionalised gold nanoparticles 

(AuNPs) is performed by exploiting an established ligand exchange approach. 

Alternatively, N-aroyl hydrazones are used directly with a gold source to achieve 

functionalised NPs by direct synthesis. Regardless of the synthetic method used, a 

rigorous purification protocol is developed in order to achieve pure hydrazone-

functionalised AuNPs. A variety of analytical techniques is used to characterise such 

monolayer-stabilised AuNPs. The ‘nanoparticulate’ characterisation is carried out by 

transmission electron microscopy (TEM), UV-Vis spectroscopy and dynamic light 

scattering (DLS) in order to assess the reproducibility of the nanoparticle size and 

dispersity. Colloidal solutions of functionalised NPs are then analysed by solution 

nuclear magnetic resonance spectroscopy (NMR) and by laser desorption ionisation 

mass spectrometry (LDI-MS) in order to characterise the structure of the NP-bound 

hydrazone monolayer. By this way, hydrazone-functionalised AuNPs are characterised 

at the molecular level and, moreover, are assessed to be pure and free from any 

unbound species, which could make further analyses difficult or impossible. 

 

2.1 Introduction 
 

In order to demonstrate that dynamic covalent reactions can be exploited for the post-

synthetic manipulation of NP-bound monolayers, the organic ligands must interact 

strongly with the metal surface. By this way, ligand desorption and unwanted reactions 

are avoided. At the same time, a group capable of undergoing reversible covalent 

chemistry must be exposed on the surface of the NP-bound ligand-shell. The ideal 

ligand would have a sulfur atom which strongly binds the gold surface as a thiolate.[138] 

The gold binding unit should be well separated from the hydrazone moiety by a spacer, 
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whose role is to allow the ligands to be appropriately packed around the NP core 

maximising van der Waals interactions between neighbouring chains.[139] 

The design and the structure of the organic ligand will also affect the final NP physical 

properties. For example, the compatibility of the hydrazone moiety with NP synthetic 

strategies must be assessed in order to ensure that the reactive functionality is 

retained in the final functionalised NP product. In addition, the NP synthetic conditions 

have to be optimised to obtain reproducible NPs in terms of size and dispersity. Finally, 

a rigorous purification protocol is highly desirable. By this way, ligand-functionalised 

NPs can be characterised at the molecular level. This is an essential requirement in 

order to investigate dynamic covalent processes subsequently performed within the 

NP-bound monolayer. 

 

2.2 Preparation of gold nanoparticles functionalised 
with N-acyl hydrazone ligands 

 

 
 

The general structure of N-acyl hydrazone ligands includes an alkyl chain which 

separates the sulfur atom from the hydrazone moiety. 

 

2.2.1 N-Acyl hydrazone ligand design and synthetic strategy 
 

Initial experiments focussed on simple ω-thioalkylhydrazide ligands and their 

corresponding hydrazone analogues. From commercially available  

11-mercaptoundecanoic acid, the corresponding hydrazide 2 was obtained in very 

good yield by means of literature procedures,[140–142] in which an activated carbonyl 

group (ester 1) undergoes nucleophilic substitution in the presence of hydrazine 

monohydrate (Scheme 2.1). 
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Scheme 2.1 Synthesis of hydrazide 2. a): H2SO4, MeOH, 3 h, reflux, 99%. b): N2H4•H2O, MeOH, 3 h, 

reflux, 80%. 

 

Subsequently, a range of corresponding hydrazones was prepared by treating 

hydrazide 2 with a series of commercially available p-substituted benzaldehydes 

(Scheme 2.2). Aldehyde 3 was instead prepared in four steps from commercially 

available 4-cyanobenzaldehyde (Scheme 2.3).[143,144] All desired hydrazones (4H–7H) 

were obtained in very good yields within 3–17 h at room temperature. 

 

 
Scheme 2.2 Synthesis of hydrazones 4H–7H. a): 0.1 Eq AcOH, EtOH, 3–17 h, rt, 90–97%. 

 

 
Scheme 2.3 Synthesis of aldehyde 3. a): Ethylene glycol, p-TSA, toluene, 5 h, reflux, 53%. b): LiAlH4, 

Et2O, 19 h, rt, 85%. c): MeI, Bu3N, DMF, 20 h, rt, 63%. d): AcOH, H2O, 23 h, rt, 86%. 

 

Ligands can be introduced on the NP surface in two ways: during the NP nucleation 

and growth or by ligand exchange using pre-synthetized AuNPs stabilised with a 

temporary ligand (Section 1.4). A ligand exchange approach was preferred for NP 

functionalisation with hydrazones 4H–7H in order to prevent, by this way, any possible 

reduction of the hydrazone moiety under the NP synthetic conditions (Section 1.2.1). A 
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large variety of alkylthiolate ligands are commonly adsorbed on the NP surface by 

performing ligand exchange with citrate-stabilised or TOAB-stabilised AuNPs.[14,145,146] 

 

2.2.2 Estimation of the nanoparticle concentration for ligand exchange 
experiments 

 

Working with colloidal gold solutions requires certain assumptions to be made in order 

to work quantitatively with standardised and reproducible procedures. The first 

important question is how much ligand has to be used in order to achieve monolayers 

that completely cover the entire AuNP surface.  

In order to calculate the amount of thiol ligands needed to coat the NPs, an estimation 

of the concentration of NPs in solution is necessary. Commonly, the concentration of 

colloidal nanomaterials in solution is estimated using UV-Vis absorbance (A) 

measurements in conjunction with the Beer–Lambert law (Equation 2.1). This, 

however, requires knowledge of the NP extinction coefficient, which depends strongly 

on the NP size, the nature of the material and the NP shape. While relationships are 

well established for nanomaterials with a high degree of monodispersity, like 

semiconductor quantum dots,[147] the strength of the surface plasmon resonance (SPR) 

absorption in AuNPs is sensitive to a number of variables, including the non-negligible 

degree of polydispersity of commonly prepared AuNPs and the effect of ligands on the 

dielectric environment depending on the nature of the surface monolayer. 

Nevertheless, several methods have been described in the literature to estimate the 

colloidal concentration by means of UV-Vis measurements exploiting the strong 

absorption of the SPR band.[148–150]  

Khlobystov and co-workers developed an empirical relationship between size of 

dodecanethiol-functionalised AuNPs and molar extinction coefficient (ε) exploiting the 

SPR band (around 520 nm) of AuNPs.[150] They systematically measured molar 

extinction coefficients in relationship with the mean diameter of NPs, determining the 

relationship expressed in Equation 2.2. The molar extinction coefficient is expressed in 

M–1cm–1, mean diameter (d) in nm and path length (l) in cm. By this way, the NP 

concentration was accessible from Equation 2.1. The method, as acknowledged by 

Khlobystov, is limited to the size of the NPs prepared (between 2 and 4 nm). 
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A = ε�l�[NP] 

Equation 2.1 

εSPR = 26200�d3.83 

Equation 2.2 

 

These relationships quantify the increase of molar extinction coefficient with increasing 

NP size, which may be determined by TEM analysis. 

An alternative analysis carried out by Huo and co-workers involved more types of 

AuNPs (functionalised with decanethiol, citrate or oleylamine, with NP core range going 

from 4–40 nm) in toluene, tetrahydrofuran and water.[149] They found a linear 

relationship from the double logarithm plot of extinction coefficient against the NP size 

(Equation 2.3). Molar extinction coefficient (ε) is expressed in M–1cm–1, D (expressed in 

nm) is the core diameter of the NPs. The dimensionless fitting parameters k and a 

were determined experimentally to be, 3.32 and 10.8, respectively. 

 

ln ε = k ln D + a 
Equation 2.3 

 

Huo underlined the general applicability of Equation 2.3 since it appears independent 

of the nature of the ligand surrounding the NP core. The above mentioned relationships 

(Equations 2.2 and 2.3) were developed on relatively simple models, thus it is not 

ensured that the same relationships can be adapted to NPs bearing monolayers with a 

higher degree of complexity.  

Bearing in mind the above considerations, it was however decided to use the Huo 

method to provide an estimation of the amount of ligands required to completely cover 

the NP surface in a given sample. After the estimation of the nanoparticle 

concentration, it is then possible to estimate the number of AuNPs in solution and their 

total surface area, assuming that all NPs are spheres. It has been calculated that a 

simple thiol occupies around 0.241 nm2 when adsorbed on flat gold surfaces.[151] 

Assuming that the thiol would occupy the same surface area on a sphere, it is then 

possible to achieve an estimation of the molar amount of ligand needed to cover the 

whole surface of AuNPs (see Section 5.11). It has to be noted that this procedure 

involves a number of quite significant assumptions thus the results can only be treated 

as a rough estimate. 
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2.2.3 Gold nanoparticle functionalisation with N-acyl hydrazide 2 and simple 
alkanethiols 

 

Preliminary ligand exchange experiments were performed using commercially available 

aqueous gold colloid solutions, stabilised with citrate anions.[152] The concentration of 

such solutions was estimated by exploiting the method discussed above (see Section 

5.11 for explanatory calculations). 

In order to optimise the conditions for ligand exchange from the weakly bound citrate 

ions to strongly bound thiolates, several biphasic experiments were carried out using 

hydrazide 2 and commercially available 1-decanethiol. The ligands were dissolved in a 

water-immiscible organic solvent, while citrate-capped AuNPs were dispersed in water. 

The exchange was investigated in the presence or absence of TOAB, employed as 

both stabiliser and phase transfer agent, and with AuNPs of different sizes in the 

aqueous phase. All the experiments, performed under a variety of conditions, are 

summarised in Table 5.5. In an ideal successful experiment, a colour transfer from the 

aqueous to the organic phase should be observed, indicating successful attachment of 

the hydrophobic organic molecules to the NP surface. 

Unfortunately, ligand exchange did not occur under the experimental conditions used. 

In fact, the organic phase remained colourless or, in some case, NP precipitation 

occurred at the interface. 

 

2.2.4 Preparation of TOAB-stabilised gold colloid solutions in toluene 
 

As discussed in Chapter 1, the most popular method available to prepare AuNPs 

soluble in organic solvents was developed by Brust and Schiffrin.[40] The original two-

phase procedure involves sodium borohydride as reducing agent for the gold, TOAB as 

phase transfer agent and stabiliser, and 1-decanethiol as passivating agent (Section 

1.2.1.2). The simultaneous presence of the reducing agent and the ligand during the 

NP synthesis not always is ideal because some functionalities are not chemically 

compatible with sodium borohydride. For this reason, the original Brust–Schiffrin 

procedure has been modified and optimised in order to physically separate the 

reducing agent from the organic ligand.[153] In this way, a large variety of different 

organic functional groups including ketones,[154] azo groups,[155–157] imines[158] and other 

reducible moieties[159] have been successfully adsorbed on the NP surface without 

degradation. 

Grzybowski and co-workers have developed a slightly modified procedure of the Brust–

Schiffrin method in which it is possible to produce TOAB-stabilised AuNPs as a stock 
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solution, colloidally stable over a long period of time.[160] Initially the optimised 

procedure developed by Grzybowski was adopted. An aqueous solution of gold 

tetrachloroaurate is vigorously mixed with a toluene solution of TOAB for 15 min. Then, 

an aqueous solution of sodium borohydride is added dropwise and the mixture is 

further stirred at rt for 1 h. In this way, the AuNPs are stabilised by the TOAB without 

addition of any other ligands and the reducing agent remains in the aqueous phase, 

which can be discarded before adding the sensitive ligands. By this method, AuNPs 

with a mean diameter of 4.58 ± 1.23 nm were obtained by Grzybowski. 

In order to confirm the reproducibility of this method, the procedure was repeated 

several times (Figure 2.1). The ratios of the gold salt, TOAB and sodium borohydride 

were kept constant. The overall concentration of the reaction mixture (with respect to 

the molar amount of the gold salt) was kept constant as well (30 mM). The original 

procedure[160] was repeated (Figure 2.1, experiment A) and, subsequently, a scale up 

of the NP synthesis (Figure 2.1, experiments B–G) was performed in order to obtain 

enough material (AuNP-TOAB) to perform further experiments from the same stock 

solution. Analytical data, determined by TEM and UV-Vis analyses, are summarised in 

Table 5.6.  

 

 
Figure 2.1 Plot illustrating the large size dispersity (around 30%) and the unpredictable diameter of 

TOAB-stabilised AuNPs (AuNP-TOAB) prepared according to the method developed by 
Grzybowski.[160] Experimental conditions (A–G): Au/TOAB/NaBH4 = 1:5:10,  
[Au] = 30 mM. Error bars: ± s.d. 

 

In every experiment the formation of some insoluble black aggregates, not described in 

the original procedure,[160] was always observed but their removal was relatively easy 

when the aqueous phase was removed from the organic phase by means of a 

separating funnel. AuNP mean diameter was estimated from TEM images,[161] 

obtaining values in a range between 2.7 and 5.0 nm (Figure 2.1), with dispersity range 
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of 30–35%. UV-Vis analyses were also carried out revealing SPR λmax values in a 

range between 517 and 538 nm (Table 5.6).  

This method therefore produces AuNPs with relatively large dispersity and somewhat 

unpredictable mean diameter. 

 

2.2.5 Preparation of N-acyl hydrazone-functionalised gold nanoparticles by 
ligand exchange and purification 

 

Ligand exchange experiments were firstly carried out by treating the TOAB-stabilised 

AuNPs (see Section 2.2.4) with an excess of hydrazide 2. Over several repetitions, 

irreversible and insoluble aggregates were consistently obtained. The most probable 

hypothesis is that hydrazide 2 is capable of multiple interactions involving both thiol 

and amino group adsorption on the gold surface,[162,163] resulting in a strong connection 

of AuNPs to each other. 

In order to mask the strongly nucleophilic hydrazide functionality, subsequent ligand 

exchange experiments were performed using pre-formed hydrazones 4H (Scheme 2.4) 

and 5H (Scheme 2.6). 

 

 
Scheme 2.4 Preparation of AuNP-4 by ligand exchange with an excess of hydrazone 4H.  

a): Toluene, 1 h, rt. 

 

A 30-fold excess of hydrazone 4H, with respect to the estimated number of binding 

sites on the gold surface, was dissolved in toluene to which gold colloid solution was 

added and stirred for 1 h at room temperature. Black solids (AuNP-4) were obtained 

after precipitation with ethanol. Before any analysis, the excess of ligand was removed 

by re-dispersion of the precipitates in toluene by sonication then precipitation by 

addition of ethanol, followed by centrifugation. The supernatant was discarded and the 

whole procedure repeated at least three times (Figure 2.2). The sample showed 

identical solubility properties of hydrazone 4H, suggesting a successful ligand 

adsorption on the NP surface. 

The sample was re-dissolved in toluene and analysed by TEM and UV-Vis 

spectroscopy. For AuNP-4, a mean diameter of 3.90 ± 1.42 nm (36% dispersity) was 

determined with a SPR λmax at 520 nm. The starting gold colloid solution AuNP-TOAB, 
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showed NPs with mean diameter of 2.74 ± 0.85 nm (31% dispersity) with a  

SPR λmax at 529 nm. These values indicate that the mean NP size does not change 

when the ligand exchange is performed under mild conditions, as already observed in 

the literature.[164,165] 

 

 
Figure 2.2 TEM micrographs of AuNP-TOAB before and after ligand exchange with hydrazone 4H. 

a): TEM (top, scale bar 20 nm) and size distribution (bottom) of AuNP-TOAB: mean 
diameter 2.74 ± 0.85 nm (31% dispersity). b): TEM (top, scale bar 50 nm) and size 
distribution (bottom) of AuNP-4: mean diameter 3.90 ± 1.42 nm (36% dispersity). 

 

Over several experiments the mass of the recovered material was significantly higher 

than the estimated upper limit, suggesting the presence of a large amount of unbound 

species in the sample (see Section 5.11 for an explanatory example). 

The presence of residual TOAB was excluded by 1H NMR spectroscopy where no 

signals corresponding to TOAB were detected. However, it was noted that the signals 

which appeared to correspond to NP-bound hydrazone 4 were as sharp as signals in 

the spectrum of the molecular species. 

Investigation by thin layer chromatography (TLC) of a NP dispersion revealed an 

unbound contaminant. A black spot, corresponding to NPs which do not travel on silica, 
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remained on the baseline but a UV-active spot was visible although with a different Rf 

compared to the Rf of hydrazone 4H. 

The most probable hypothesis was that hydrazone 4H had oxidised to the 

corresponding disulfide 42 during the ligand exchange process. For this reason, an 

authentic example of disulfide 42 was prepared (Scheme 2.5). Then, 1H NMR spectra 

of hydrazone 4H, disulfide 42 and impure AuNP sample were compared (Figure 2.3). 

The signal corresponding to the methylene in α position to the sulfur (H-2) shows a 

comparable chemical shift for both disulfide 42 (spectrum b) and the AuNP sample 

(spectrum c). For this reason it can be concluded that the purification process did not 

manage to fully purify the NP samples. During the ligand exchange, thiol 4H (spectrum 

a) was oxidised to its disulfide, as further confirmed by the complete disappearance of 

the diagnostic peak of 4H (H-2, compare spectra a and c). The authentic sample of 

disulfide 42 exhibited rather poor solubility in the ethanol/toluene mixture, explaining the 

failure of the purification strategy once oxidation had taken place. 

 

 
Scheme 2.5 Synthesis of disulfide 42 from thiol 4H. a): Iodine (2 Eq), CH2Cl2, rt, 30 min, 88%. 

 

 
Figure 2.3 Partial 1H NMR spectra (CDCl3, 300.1 MHz, 295 K) of hydrazone 4H (a), disulfide 42 (b) 

and sample after ligand exchange with AuNP-TOAB (c). *: Solvent residual peak of 
CD3OD (2 drops) used to completely dissolve disulfide 42 in CDCl3.  
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In an attempt to optimise the purification protocol, a more extensive investigation of the 

solubility properties of disulfide 42 was performed. Disulfide 42 was mixed with common 

organic solvents to give a final concentration of 1 mg mL–1. The mixture was then 

sonicated for 10 min, heated and left to cool to room temperature. It was found that 

disulfide 42 was only partially soluble in most common solvents (toluene, ethyl acetate, 

tetrahydrofuran, dichloromethane, acetone, ethanol and methanol) but not enough to 

achieve a full removal from the NP dispersion. 

Further purification attempts were carried out, either increasing the number of washing 

cycles or reducing the ligand excess for the ligand exchange. Unfortunately, none of 

the chosen conditions led to pure ligand-functionalised AuNPs. 

 

2.2.6 Nanoparticle purification by size exclusion chromatography 
 

Considering the extremely low solubility of the disulfide formed by oxidation during the 

ligand exchange process, it was decided to exploit size exclusion chromatography 

(SEC) as an alternative option for NP purification. 

SEC is a widely used separation technique for purifying macromolecular species (e.g. 

proteins, synthetic polymers, dendrimers).[166–168] It is routinely applied for the 

purification of nanomaterials dispersed in aqueous systems,[169–171] but application to 

organic-dispersible NPs has only rarely been employed.[172–175] 

The basic principle of chromatography is that a mobile phase containing the mixture to 

be separated is passed through a stationary phase, previously swollen in an 

appropriate solvent. SEC stationary phases contain large pores in which small 

molecules can enter but larger species are excluded. Such size selection results in 

longer retention times for smaller entities. On the contrary, large molecules cannot 

enter in the pores because of their size and pass through the support with shorter 

retention times and separation of large from small species is achieved. 

An organic-compatible porous support[176] was swollen overnight in tetrahydrofuran. 

The ligand exchange was carried out as before, using a thiol excess of 10 equivalents. 

The mixture was stirred for 2 hours and then precipitated by addition of methanol. To 

remove the bulk of the excess of ligand, the crude black solid was washed with an 

excess of methanol and sonicated for 15 minutes. The supernatant was decanted and 

then discarded. The black precipitate was finally dried under reduced pressure. The 

solid was then dissolved in tetrahydrofuran. The SEC purification was carried out like a 

traditional chromatographic separation, dividing the eluant in fractions and monitoring 

for the presence of unbound disulfide by TLC. The red-coloured fractions containing 



Chapter 2 – Synthesis and characterisation of hydrazone-functionalised gold nanoparticles 

 43 

NPs and free of unbound disulfide were then collected, dried and analysed by NMR 

spectroscopy. 
1H and 19F NMR analysis (Figure 2.4B and D) showed weak and broad signals, typical 

of that expected for NP-bound organic monolayers. No sharp peaks corresponding to 

TOAB or unbound species were detected. Despite the degree of uncertainty in 

integrating such broad signals, values obtained for H-13, H-14 and H-15 were in good 

accordance to those expected for NP-bound hydrazone 4H. In terms of chemical shifts, 

a slight upfield shift of the signals corresponding to the aromatic protons  

(Δδ = –0.20 ppm and Δδ = –0.27 ppm for H-14 and H-15 respectively, Figure 2.4A–B), 

consistent with the presence of weak edge-to-face π-π interactions. On the contrary, 

the imine signal (H-13) was shifted downfield (Δδ = 0.59 ppm). The NH resonance is 

barely visible around 12 ppm. Assignment of signals in the aliphatic region was more 

difficult because of the overlapping of the methylene peaks from about 0.5 to 1.5 ppm. 

This results from the relative proximity of the methylene protons to the gold core. 

Ligands strongly adsorbed on the gold surface are densely packed, in a solid-like 

environment, resulting in faster spin-spin relaxation from dipolar interactions when 

compared to those of freely dissolved species. In addition and perhaps more 

significantly, a distribution of chemical shifts also originates from the diversity of ligand 

binding site to the NP (faces, edges, vertices)[59] and furthermore from the range of NP 

sizes and shapes in each sample. The combination of such phenomena causes the 

broadening of the peak linewidths (see Section 1.3.4). 
19F NMR spectroscopy has the potential to be a powerful technique for the 

characterisation of ligand-functionalised NPs. The 19F nucleus is 100% abundant in 

nature and has spin ½. 19F and 1H nuclei have comparable gyromagnetic ratios  

(40.052 and 42.576 MHz T–1, respectively). Thus 19F NMR exhibits high sensitivity, 

comparable to 1H NMR. In addition, proton-decoupled 19F NMR spectroscopy provides 

less complicated spectra than 1H NMR with also a wide range of potential resonances 

(usually from 0 to –275 ppm), allowing the analysis of complex molecules, bearing a 

selected number of fluorine atoms at specific points. Surprisingly, 19F NMR analysis of 

monolayer-functionalised NPs has not been widely exploited. Only a few reports about 

the use of solid state 19F NMR spectroscopy for NP characterisation are available in the 

literature.[177–179] For solution-state NMR, applications of 19F NMR spectroscopy are 

reported by Murray and Pasquato.[180–183] 

The 19F NMR spectrum of AuNP-4 (Figure 2.4D) shows the presence of only one broad 

peak at –110.56 ppm, just slightly upfield shifted to that of the free thiol (–111.63 ppm), 

confirming the presence of the fluorinated species strongly adsorbed on the gold 
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surface. The absence of any sharp fluorine peaks also confirmed that the sample was 

free from any unbound fluorinated species (hydrazone 4H or disulfide 42).  

 

 
Figure 2.4 Partial 1H NMR (CD2Cl2, 500.1 MHz, 295 K) and 19F NMR spectra (CD2Cl2, 470.3 MHz, 

295 K) of hydrazone 4H (spectra a and c) and corresponding AuNP-4 (spectra b and d). 

 

TEM analysis allowed the mean diameter estimation of 3.71 ± 0.86 nm  

(23% dispersity), with no significant size change from the starting TOAB-stabilised 

colloidal gold solution (3.76 ± 1.14 nm, 30% dispersity). A monomodal size distribution 

was also observed (Figure 2.5).  
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Figure 2.5 TEM micrographs of AuNP-TOAB before and after ligand exchange with hydrazone 4H, 

after SEC purification. a): TEM (top, scale bar 20 nm) and size distribution (bottom) of 
AuNP-TOAB: mean diameter 3.76 ± 1.14 nm (30% dispersity). b): TEM (top, scale bar 
20 nm) and size distribution (bottom) of AuNP-4: mean diameter 3.71 ± 0.86 nm  
(23% dispersity). 

 

Following this promising result, the preparation of AuNPs coated with  

4-methoxybenzylidene hydrazone 5H was performed (Scheme 2.6). A 10 equivalent 

excess of hydrazone 5H was used to carry out a ligand exchange with a colloidal gold 

solution followed by SEC purification as before to give AuNP-5. 

 

 
Scheme 2.6 Preparation of AuNP-5 by ligand exchange with an excess of hydrazone 5H.  

a): Toluene, 2 h, rt. 

 

As shown in Figure 2.6, broad peaks were again observed in the 1H NMR of AuNP-5 

(spectrum b). The peak integration was in good accordance with that expected for 

hydrazone 5H. Similar to the 1H NMR of AuNP-4 (Figure 2.4), the aromatic peaks were 
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better resolved than the aliphatic ones. Comparing the chemical shifts of free 

hydrazone 5H, the aromatic proton signals shifted upfield (H-14 Δδ = –0.54 ppm, H-15 

Δδ = –0.42 ppm), consistent with the presence of weak edge-to-face π-π interactions. 

The imine peak (H-13) is also shifted upfield (Δδ = –0.17 ppm). Interestingly, even the 

NH peak (H-12) showed an upfield shift (Δδ = –0.46 ppm). The peak corresponding to 

the methoxy group (H-16) was very well visible in a relatively free region of the 

spectrum, with an upfield shift compared to the molecular species  

(Δδ = –0.13 ppm). This peak also appears to be split into a number of components, 

consistent with chemical shift dispersity representing a major source of peak 

broadening for NP-bound signals. Finally, the methylene protons of the alkane chain 

gave rise to a very broad peak between 0.75 and 1.75 ppm, as previously observed for 

AuNP-4.[59]  

 

 
Figure 2.6 Partial 1H NMR spectra (CD2Cl2, 400.1 MHz, 295 K) of hydrazone 5H (a) and 

corresponding AuNP-5 (b). 

 

TEM analysis (Figure 2.7) revealed a monomodal size distribution with a mean 

diameter of 2.86 ± 0.65 nm (23% dispersity) comparable to the starting colloidal gold 

solution (3.07 ± 0.79 nm, 26% dispersity).  

According to TEM analysis for both AuNP-4 and AuNP-5 obtained pure after SEC 

purification, no change in NP size was observed after ligand exchange, within the 

experimental error. This observation is in accordance with the majority of ligand 

exchange examples reported in the literature.[165] 
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Figure 2.7 TEM micrographs of AuNP-TOAB before and after ligand exchange with hydrazone 5H, 

after SEC purification. a): TEM (top, scale bar 20 nm) and size distribution (bottom) of 
AuNP-TOAB: mean diameter 3.07 ± 0.79 nm (26% dispersity). b): TEM (top, scale bar 
20 nm) and size distribution (bottom) of AuNP-5: mean diameter 2.86 ± 0.65 nm  
(23% dispersity). 

 

Despite these positive results, reproducibility of the SEC purification protocol was 

found to be challenging. A successful purification was achieved only when NPs were 

contaminated by a small excess of unbound ligand. Higher amounts of thiol and/or 

disulfide as contaminants frequently resulted in a failed purification. 1H NMR spectra of 

AuNP-4 after purification by SEC showed additional sharp peaks not corresponding to 

thiol 4H or disulfide 42. Further investigations concluded that those peaks correspond 

to material released from the SEC support itself which required removal by further NP 

washes with diethyl ether. 

Using this method, it was therefore not possible to prepare hydrazone-functionalised 

AuNP material of sufficient quantity for subsequent investigations of NP-bound 

dynamic covalent exchange reactions. 
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2.3 Direct synthesis of N-aroyl hydrazone-stabilised 
gold nanoparticles 

 

 
 

In order to overcome the issues encountered during the preparation of AuNPs 

functionalised with hydrazones 4H and 5H, the ligand design was modified to facilitate 

the by-product removal after the NP synthesis by solid-solvent extraction. 

A tetraethyleneglycol (TEG) unit was included between the alkyl chain and the 

hydrazone moiety in order to improve solubility of the ligands, and their corresponding 

disulfides, in polar solvents (e.g. methanol) and to provide further conformational 

flexibility at the dynamic covalent reactive site.[184,185] Such solvents are also used to 

achieve AuNP precipitation from the reaction mixture. In this way, it was proposed that 

the solid ligand-coated AuNPs could be purified from the ligand excess by a series of 

washing cycles, avoiding the purification step by SEC. 

 

2.3.1 Ligand design and synthetic strategy 
 

To introduce the TEG unit, a procedure already reported in the literature by Rotello was 

adopted (Scheme 2.7).[186] To commercially available 11-bromoundecan-1-ol, 

triphenylmethanethiol was added under basic conditions to afford compound 11. The 

hydroxy group was then substituted by conversion to the mesylate 12 followed by 

alkylation of TEG used in large excess to give the monoalkylated product 13 in 77% 

yield. The desired trityl-protected precursor 14 was finally obtained by means of a 

second mesylation step with an overall 28% yield in 4 steps. 
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Scheme 2.7 Preparation of trityl protected precursor 14. a): NaOH, H2O, 1:1 EtOH/toluene, 3.5 h, rt, 

93%. b) MsCl, Et3N, CH2Cl2, 4.5 h, 0 °C to rt, 98%. c): TEG, NaOH, H2O, 23 h, 90 °C, 
77%. d): MsCl, Et3N, CH2Cl2, 4 h, 0 °C to rt, 56%. 

 

The hydrazone moiety was added by means of a further alkylation reaction (Scheme 

2.8). In order to avoid any possible side reaction from the free amino group of 

commercially available 4-hydroxyphenylhydrazine, it was decided to first prepare 

hydrazones 17 and 18, before deprotonating the resulting phenols and treating with a 

DMF solution of precursor 14 under reflux, to the desired products 19 or 20. Finally, the 

thiol group was deprotected and oxidised in situ with iodine. The desired disulfides 

were so obtained in 7 steps with 20% overall yield, for 212, and 11% overall yield, for 

222. 
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Scheme 2.8 Preparation of ligands 212 and 222. a): R=F, 4-fluorobenzaldehyde 15 (1 Eq), 6% AcOH, 

MeOH, 19 h, rt, 95%; or b): R=CF3, 4-(trifluoromethyl)benzaldehyde 16 (2 Eq), 6% 
AcOH, MeOH, 24 h, rt, 95%. c): R=F, K2CO3 (3 Eq), DMF, 90 °C, 14 h, 52%; or d): 
R=CF3, K2CO3 (3 Eq), KI (0.5 Eq), DMF, 90 °C, 2 days, 55%. e) R=F, iodine (2 Eq), 
MeOH, rt, 1 h, 99%; or f): R=CF3, iodine (2 Eq), MeOH, rt, 30 min, 52%. 

 

As discussed in Sections 2.2.2–4, the two-step variant of the Brust–Schiffrin protocol 

can be used to obtain ligand-coated AuNPs by ligand exchange from TOAB-stabilised 

colloidal gold stock solutions.[160] Although a monomodal size distribution could be 

achieved by this method, the size dispersity was consistently rather large and 

unsatisfactory. 

One of the advantages of preparing functionalised AuNPs by direct synthesis is that 

the NP growth and the ligand coating occur simultaneously (Chapter 1). In this way, a 

better control over size reproducibility is achieved together with lower size dispersity as 

the stabilising species bind strongly to the NP surface. However, the reducing agent is 

not physically separated from the organic ligand. Thus, an investigation of the chemical 

stability of the hydrazone ligands under reducing conditions was necessary. 

The method developed by Stucky and co-workers was adopted.[45] For the preparation 

of functionalised AuNPs, triphenylphosphine gold chloride is employed as gold source, 

easily prepared from commercially available tetrachloroauric acid and 
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triphenylphosphine.[187,188] The original procedure consists of the solubilisation of the 

ligand in a suitable organic solvent with AuPPh3Cl. t-Butylamine borane complex 

(TBAB) is the reducing agent, which is added as a powder in one portion, under 

vigorous stirring, to ensure a rapid reduction of Au(I) to Au(0) together with a 

progressive ligand coverage of the gold surface. The reaction is then quenched by 

addition of diethyl ether as non-solvent in order to induce NP precipitation. Several 

washing cycles follow to remove the ligand excess, the TBAB and the by-products of 

the gold source (Scheme 2.9). 

Although this method was previously optimised only for the preparation of AuNPs in the 

presence of simple alkane thiols (dodecanethiol, hexanethiol, octanethiol and 

decanethiol),[45,46] it was proposed that disulfides 212 and 222 would behave in a similar 

fashion. 

 

 
Scheme 2.9 General preparation of AuNP-21 and AuNP-22 by direct synthesis with TBAB as 

reducing agent. Reaction conditions are summarised in Tables 2.3, 2.5 and 2.6. 

 

2.3.2 Hydrazone stability under direct synthesis conditions 
 

Before attempting the AuNP functionalisation by direct synthesis, stability of the 

hydrazone moiety under reducing conditions was investigated using two model 

compounds (Scheme 2.10). The hydroxy groups of hydrazones 17 or 18 were 
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alkylated, under basic conditions, with commercially available 2-chloroethyl methyl 

ether to afford the desired model compounds 23 and 24. 

 

 
Scheme 2.10 Preparation of the model compounds 23 and 24. a): R=F, 2-chloroethyl methyl ether  

(1.2 Eq), K2CO3 (3 Eq), DMF, 2 days, 90 °C, 57%; or b): R=CF3, 2-chloroethyl methyl 
ether (5 Eq), K2CO3 (3 Eq), KI (0.5 Eq), DMF, MW 200 W, 30 min, 120 °C, 29%. 

 

Compounds 23 and 24 were, separately, dissolved in an appropriate deuterated 

solvent mixture and mixed with AuPPh3Cl and TBAB at room temperature. The 

experiments were monitored by 19F NMR spectroscopy, observing any possible 

variation of the concentration of compounds 23 and 24, estimated by means of an 

internal standard (see Section 5.3.2.1). 

Results showed that compound 23 was stable under these conditions for a period of at 

least 24 h; the hydrazone concentration did not decrease over that time and no 

additional 19F peaks were detected. On the contrary, compound 24 was found to be 

stable for a shorter time (not more than 7 h). This is probably a consequence of the 

presence of the trifluoromethyl group in the para position on the aromatic ring, which 

makes the C=N bond more electron-poor and so more susceptible to reduction. 

 

2.3.3 Direct synthesis of AuNP-21 from disulfide 212, purification and 
characterisation 

 

The premature precipitation of growing functionalised NPs during synthesis (e.g. as 

observed for AuNP-TOAB, Section 2.2.4) might be correlated with an increased size 

dispersity. For this reason, a preliminary investigation to find the best solvent to 

maintain all species in solution during the synthesis was performed.  

 

2.3.3.1 Optimising the conditions for NP direct synthesis, size and dispersity 
 

A series of small-scale experiments was carried out to find a suitable solvent system 

able to maintain the solubility of both disulfide 212 and the growing NPs during the 

synthesis (Table 2.1). The concentration of gold was kept constant while the 

gold/sulfur/TBAB ratio, the temperature and the mixing time were varied. After NP 
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precipitation with diethyl ether and purification with a methanol/diethyl ether mixture, 

each sample was characterised by 1H and 19F NMR spectroscopy, UV-Vis and TEM 

analyses. 

 
Table 2.1 Summary of the preliminary conditions used for the preparation of ligand-coated AuNPs 

with disulfide 212 by direct synthesis with TBAB as reducing agent (d: mean diameter; 
SPR: surface plasmon resonance). 

Entry Au/S/TBAB  
ratio Solvent T / °C Timea /  

h 
[Au] /  
mM 

db / nm 
(dispersity) 

λmax (SPR) /  
nm 

a 1 : 2 : 10 THF rt 3 20.0 1.96 ± 0.56  
(28%) Nonec 

b 1 : 0.5 : 8.5 MeOH 55,  
rt 

1,  
20 20.8 1.99 ± 0.98  

(49%) Nonec 

c 1 : 0.5 : 10 H2O/THF  
1:9 

55,  
rt 

1,  
20 20.6 2.19 ± 0.75  

(34%) Nonec 

d 1 : 0.5 : 6 THF/MeCN  
1:1 rt 2.5 20.7 2.99 ± 0.61  

(20%) 489 
a: The time indicates when Et2O is added to stop the reaction irrespective of when NP precipitation 
occurred. 
b: Determined by TEM analysis for a minimum of 100 particle measurements. 
c: The SPR band is not observed, suggesting a large population of nanoparticles with d < 2 nm. 
 

In a preliminary set of experiments tetrahydrofuran (entry a) and methanol (entry b) 

were used. Subsequently, the polarity of the mixture was also varied by adding to 

tetrahydrofuran either water (entry c) or acetonitrile (entry d). For entries a, b and d a 

black precipitate was visible after few minutes from the TBAB addition, indicating that 

the forming NPs quickly became insoluble. By TEM analysis, the mean diameter of the 

recovered NPs was estimated to be around 2 nm for entries a, b and c. The large 

number of NPs with diameter < 2 nm is the reason of the high size dispersity observed 

for these samples and also explains the lack of observable SPR band.[5] 

The presence of small NPs for entry a, b and c is a direct consequence of premature 

NP precipitation during the synthesis, which did not allow the NP growing process to go 

to completion. For entry d, despite NP precipitation during the synthesis, NPs were 

obtained a significant larger diameter (around 3 nm) with dispersity around 20%. 

After NP precipitation with diethyl ether, the black solid could be easily purified by 

dispersion of the solid in methanol, followed by sonication and centrifugation, repeating 

the cycle at least three times, always checking for the presence of UV-active species 

by TLC. The same operation was then repeated with diethyl ether. After purification by 

washing, functionalised NPs were analysed by 1H and 19F NMR spectroscopy (Figure 

2.8). The adopted purification protocol provided functionalised AuNP-21 free from any 

unbound excess disulfide 212 and by-products from TBAB or AuPPh3Cl. Analysis of 
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both 1H and 19F NMR spectra, provided first evidence of a successful purification 

because on broad peaks corresponding to NP-bound species were observed. 

All 19F NMR spectra show a characteristic broad peak at –111.49 ppm, which is 

comparable to that for the unbound disulfide 212. The absence of any sharp peaks 

confirmed that the corresponding fluorinated species are strongly bound to the gold 

surface. 

In an ideal situation, only a single fluorine peak would be expected. On the contrary, a 

second broad peak at –116.50 ppm was also observed with varying intensity across 

the three experiments (1.2:1 for entry b, 2.4:1 for entry c, 16:1 for entry d). The first 

obvious hypothesis for the presence of the secondary peak was that a partial reduction 

of the hydrazone moiety occurred during the NP synthesis. 

 

 
Figure 2.8 Partial 19F NMR spectra ([D7]DMF, 376.4 MHz, 298 K) of AuNP-21 prepared accordingly 

to the synthetic conditions summarised in Table 2.3 (spectra b, c and d correspond to 
entries b, c and d, respectively) compared with disulfide 212 (a). 512 scans were 
recorded for spectra b, c and d. All spectra are referenced to CFCl3 (0.00 ppm). 

 

In order to confirm this hypothesis, model compound 23 was treated with sodium 

cyanoborohydride (Scheme 2.11) to selectively reduce the hydrazone moiety. 

Compound 25 shows one 19F peak (in [D7]DMF) at –116.23 ppm with chemical shift 

comparable with those observed in Figure 2.8B–C. 
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Considering that the hydrazone moiety is stable during test reactions carried out at 

room temperature as described in Section 2.3.2, it was concluded that heating at 55 °C 

was crucial to observe hydrazone reduction under the NP synthesis conditions. 

 

 
Scheme 2.11 Preparation of model compound 25. a): NaCNBH3, HCl/MeOH 4:96, 1 h, 0 °C, 57%. 

 

In order to avoid NP precipitation during the synthesis, the colloidal stability of 

functionalised AuNPs obtained in 1:1 tetrahydrofuran/acetonitrile (Table 2.1, entry d) 

was investigated. The NPs were found to be soluble only in polar aprotic solvents:  

N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Colloidal stability was 

also observed in H2O/DMF mixtures up to 10% v/v. A summary of the solubility 

properties is presented in Table 2.2. 

 
Table 2.2 Solubility properties of AuNP-21 in several solvents. Each test was performed by 

sonicating 1 mg of AuNP-21 in 1 mL of solvent or mixture. 

Solvent  Solvent  

HexH NO MeCN/THF 1:1 NO 

Toluene NO MeOH/DMF 1:9 YES 

Et2O NO MeOH/DMF 1:1 Poor 

DCM NO Water/DMF 1:1 NO 

THF NO MeCN/MeOH 1:1 NO 

EtOAc NO MeCN/Water 1:1 NO 

Dioxane NO 1% Water, DMF YES 

Acetone NO 5% Water, DMF YES 

MeOH NO 10% Water, DMF YES 

EtOH NO 20% Water, DMF NO 

MeCN NO DMSO YES 

DMF YES Water NO 
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Since AuNP-21 showed very good solubility in DMF, further investigations were 

performed by adding DMF (10% v/v) to tetrahydrofuran and working at room 

temperature in order to avoid partial reduction of the hydrazone moiety. 

Keeping the concentration of gold salt constant (16 mM), a series of small-scale 

experiments was carried out (Table 2.3, entries a–f). The gold/sulfur/TBAB ratio was 

varied while the reaction time was kept constant (6 h). A gradual scale up of the 

synthesis was then performed (entries g–i). No NP precipitation was observed for all 

the experiments, confirming that 10% DMF was able to keep the growing NPs in 

solution as desired. For each experiment, after diethyl ether addition, a quick work-up 

was carried out. This involved dispersing the resulting black solid in methanol by 

sonication, then re-collecting the solid by centrifugation before discarding the 

colourless supernatant. The same operation was repeated using fresh diethyl ether. 

After drying under vacuum, each sample was characterised by TEM and UV-Vis 

analyses.  

 
Table 2.3 Optimisation of the Au/S/TBAB ratio and scale up for the preparation of AuNP-21 by 

direct synthesis. General conditions: [Au] 16 mM, DMF/THF 1:9, rt, 6 h. 

Entry Au / 
µmol 

Au/S/TBAB  
ratio 

da / nm 
(dispersity) 

λmax (SPR)b /  
nm 

a 16 1 : 0.5 : 5 2.22 ± 0.34  
(15%) None 

b 16 1 : 1 : 5 2.41 ± 0.42 
(17%) None 

c 16 1 : 2 : 5 2.32 ± 0.52 
(22%) None 

d 16 1 : 0.5 : 10 3.01 ± 0.51 
(17%) 509 

e 16 1 : 1 : 10 3.06 ± 0.58 
(19%) 542 

f 16 1 : 1 : 20 2.86 ± 0.76 
(27%) 543 

g 65 1 : 1 : 10 3.39 ± 0.61 
(18%) 509 

h 100 1 : 1 : 10 2.79 ± 0.62 
(22%) 508 

i 192 1 : 1 : 10 2.75 ± 0.54 
(20%) 506 

a: Size distribution are expressed as mean ± s.d. 
b: UV-Vis analysis was performed in DMF. 
 

Some correlations of the NP mean diameter with the experimental conditions were 

observed. In the first series (entries a–c), the amount of TBAB was kept constant  

(5 equivalents with respect to gold) while the amount of ligand was gradually increased 
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from 0.5 to 2 equivalents. The mean diameter was found to be comparable, within the 

experimental error, for all the experiments (around 2.3 nm). By TEM analysis, a large 

number of small NPs (with diameter around 1 nm) was observed, as also confirmed by 

UV-Vis analysis, where no SPR band was observed for those samples. In addition, a 

small increase of the size dispersity was observed (from 15% to 22%, see Section 

5.3.2.2 for size distribution histograms). It has to be noted that the dispersity 

percentages are however lower than those obtained for the preliminary experiments 

(Table 2.1, entries a–c), suggesting that adding DMF, which keeps the growing NPs in 

solution, was crucial to obtaining samples with better homogeneity. 

Functionalised NPs larger than 2 nm and with a visible SPR band were desirable. For 

this reason, in a second series of experiments (entries b, e, and f) the amount of ligand 

was kept constant (equimolar to the amount of the gold). The excess of TBAB instead 

was increased (5, 10 and 20 equivalents respectively). It was observed that the 

increase of TBAB from 5 equivalents (entry b) to 10 equivalents (entry e) led effectively 

to larger NPs (mean diameter around 3 nm) with no change of the dispersity. On the 

contrary, a dispersity increase was observed when 20 equivalents of TBAB were used.  

It can be concluded that the NP size, specifically when disulfide 212 is used, is not 

affected by the amount of ligand with respect to the amount of gold. On the contrary, 

the mean NP diameter is affected to some extent by the amount of TBAB. The 

optimum conditions, for this specific ligand and solvent combination, were obtained 

when the gold/sulfur/TBAB ratio is 1:1:10. 

In order to assess the reproducibility of the NP size, a scale up of the synthesis was 

performed (Table 2.3, entries g–i). Despite a small increase in dispersity (to around 

20%), functionalised NPs could be obtained in a reproducible and scalable way with a 

mean diameter in the range 2.8–3.4 nm. 

Each repetition of the synthetic procedure yielded identical molecular characterisation 

data (see Section 2.3.3.2). The inherently heterogeneous nature of NP samples, 

however, means that each batch exhibits small differences in nanoparticulate 

characteristics. This can be exaggerated by low-sampling methods such as TEM 

analysis. Nonetheless, the TEM analysis and the UV-Vis spectra of independent 

batches (Figure 2.9) demonstrate excellent batch-to-batch consistency for mean NP 

diameter, size distribution and dispersity from three representative samples of  

AuNP-21. 
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Figure 2.9 Representative TEM micrographs (scale bar 20 nm), size distribution (as determined 

from several images of each sample) and UV-Vis spectra (solvent: DMF) of AuNP-21. 
a): 3.39 ± 0.61 nm, 18% dispersity, SPR λmax = 509 nm. b): 2.79 ± 0.62 nm, 22% 
dispersity, SPR λmax = 508 nm. b): diameter 3.01 ± 0.51 nm, 17% dispersity,  
SPR λmax = 509 nm. 

 

The TEM micrographs show that AuNP-21 tends to be organised in small aggregates 

on the TEM grid. This was most likely a drying effect from DMF, whose its high boiling 

point is sub-optimal for preparing TEM samples. 

To verify the colloidal nature of the NP dispersion, an investigation by dynamic light 

scattering (DLS) was performed (Figure 2.10). DLS is used to measure the colloid size 

in a suspension and it is also able to detect the presence of aggregates.[189] If AuNP-21 

existed as aggregates in solution similar to those shown in Figure 2.9, DLS would show 

a peak around 100 nm, corresponding to the solvodynamic diameter of these 

aggregates. On the contrary, the DLS analysis reveals a monomodal size distribution 
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with an average solvodynamic diameter of 13.9 nm. This value is in good accordance 

with the theoretical solvodynamic diameter (10.3 nm, without considering the size of 

the solvation shell, Section 1.3.3) estimated for AuNP-21 with a mean diameter of  

2.72 nm and functionalised with ligand 21 (3.78 nm[190]). A tilt angle (θ) of 30° for ligand 

21 was assumed. The tilt angle is defined as the angle between the ligand and the Z-

axis as observed in 2D self-assembled monolayers.[191] Thus, DLS analysis confirmed 

that the ‘aggregates’ visible in the TEM pictures are formed during the sample 

preparation and not during the synthesis. 

 

 
Figure 2.10 Dynamic light scattering analysis of AuNP-21. Mean solvodynamic diameter:  

13.91 ± 2.73 nm (20% dispersity). Estimated solvodynamic diameter (excluding the 
solvation shell): 10.28 nm. θ: Tilt angle (30°).[191] 

 

2.3.3.2 Organic shell characterisation of AuNP-21 
 

As described in Sections 2.3.3.1, using the optimised synthetic procedures AuNP-21 

could be obtained with reproducible size, low dispersity and apparently free from 

unbound disulfide 212. Obtaining a pure sample of hydrazone-functionalised AuNPs is 

essential for following the relatively subtle changes within the monolayer under 

dynamic covalent exchange conditions. Similarly to AuNP-4, AuNP-21 was then 

characterised by 1H and 19F NMR spectroscopy (Figure 2.11). The 1H NMR of AuNP-21 
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(spectrum b) shows the characteristic appearance of broad peaks corresponding to 

ligands adsorbed on the gold surface. The resonances of the aromatic region are very 

well resolved and a slight upfield shift of all the aromatic signals was observed when 

compared to the 1H NMR of disulfide 212 (spectrum a). The resonance corresponding 

to H-21 is believed to be hidden by the solvent peak of the residual DMF. 19F NMR 

shows only one broad peak at –111.50 ppm (Figure 2.11D), slightly upfield shifted  

(Δδ = –0.16 ppm) when compared to the signal for disulfide 212 (Figure 2.11C), 

confirming that the hydrazone moiety is not reduced by TBAB at room temperature. 

 

 
Figure 2.11 Characterisation of AuNP-21 by NMR spectroscopy. 1H ([D7]DMF, 500.1 MHz, 295 K): 

a): disulfide 212. b): AuNP-21. 19F ([D7]DMF, 500.1 MHz, 295 K): c): disulfide 212. d): 
AuNP-21. (19F NMR is referenced with CFCl3 at 0.00 ppm). 
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The absence of sharp peaks suggests that AuNP-21 is free from unbound species. A 

more rigorous confirmation of purity is provided by the T2-filtered NMR analysis of 

AuNP-21 (Figure 2.12). By exploiting the short transverse relaxation times (T2) for NP-

bound nuclei, spin-echo pulse sequences can be used to detect only molecular species 

which have T2 times longer than a particular delay time. The CPMG-z pulse sequence 

has been specifically developed to achieve T2 filtering while avoiding signal distortion 

due to spin-spin coupling for assessing purity in samples containing NPs.[61] With an 

appropriate spin echo wait time D21 = 0.1 s, the resulting T2-filtered 1H NMR should 

show only resonances corresponding to molecular species, while all the resonances of 

the NP-bound species are filtered out. As evidenced by the T2-filtered 1H NMR 

spectrum of AuNP-21 (Figure 2.12D), only signals originating from the non-deuterated 

DMF and water are observed, confirming the absence of any unbound contaminants. 

When the same pulse experiment is applied to a 5 mM solution of disulfide 212 (Figure 

2.12A), the resulting spectrum (Figure 2.12B) is essentially identical to a traditional  
1H NMR experiment. 

 

 
Figure 2.12 1H NMR (CD2Cl2, 500.1 MHz, 295 K) of disulfide 212 at 5 mM (a) and its corresponding 

CPMG-z filter experiment (b) compared with 1H NMR ([D7]DMF, 500.1 MHz, 295 K) of 
AuNP-21 at 5 mM (c) and its corresponding CPMG-z filter experiment (d). 
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The organic ligands bound to the NP core could be also characterised by laser 

desorption ionisation (LDI) mass spectrometry. AuNPs are able to absorb the excitation 

energy of the UV laser (355 nm) and for this reason the addition of an external matrix is 

not required. Such absorption leads to selective desorption and ionisation of the 

surface-bound molecules which can be detected by a time-of-flight detector. In Figure 

2.13, a LDI mass spectrum of AuNP-21 is presented together with a proposed 

fragmentation mechanism. 

All the major peaks were assigned. Molecular ions for disulfide 212 (peak A) and thiol 

21H (peak D) were observed. Disulfide 212 undergoes progressive loss of one and two 

sulfur atoms (peaks B and C respectively). Thiol 21H undergoes loss of H2S (peak E). 

Peaks with m/z 581.30, 567.31, 553.31 and 539.30 correspond to progressive loss of 

methylene units from fragment E. Similar behaviour has been reported by Rotello and 

co-workers for AuNPs stabilised by structurally related monolayers,[76] and matrix-

assisted LDI-MS analysis of molecular disulfide 212 produced an identical 

fragmentation pattern. 
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Figure 2.13 LDI mass spectrum and fragmentation pattern for AuNP-21. The fragment 

corresponding to the disulfide 212 (peak A, [212+Na]+: m/z 1261.61) undergoes a 
progressive loss of two sulfur atoms (peak B, [212–S+Na]+: m/z 1229.65; peak C,  
[212–2S+Na]+: m/z 1197.68). The fragment corresponding to the thiol (peak D, 
[21H+Na]+: m/z 643.32) loses a H2S (peak E, [21H–H2S+Na]+: m/z 609.34). 
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2.3.4 Direct synthesis of AuNP-22 from disulfide 222, purification and 
characterisation 

 

Considering the excellent results obtained for the preparation of AuNP-21 by direct 

synthesis, the same approach was used to prepare AuNP-22 starting from  

disulfide 222.  

As previously discussed in Section 2.3.2, model compound 24 was tested under 

reducing conditions with TBAB and it was concluded that although evidence of 

reduction was observed, the hydrazone was sufficiently stable at short reaction times 

up to about 7 h. As for the direct synthesis of AuNP-21, preliminary investigations were 

focussed on finding solvent mixtures able to keep the growing NPs in solution 

throughout the NP growth process. 

In Table 2.4, a series of small-scale experiments is summarised. The concentration of 

gold salt was kept constant (16 mM) in equimolar ratio with the amount of ligand. On 

the contrary, the amount of TBAB was varied from 6 to 15 equivalents. The choice of 

the solvent mixture was limited to tetrahydrofuran/acetonitrile 1:1 and 10% v/v DMF in 

tetrahydrofuran because NP precipitation did not occur by using these solvent 

mixtures. The work-up was carried out with diethyl ether to stop the reaction, followed 

by several washing cycles of 1:6 methanol/diethyl ether mixture to purify NPs from any 

unbound species. Characterisation was carried out by TEM and NMR spectroscopy 

(Figure 2.15). 
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Table 2.4 Summary of the conditions used for the preparation of AuNP-22a–d by direct synthesis 
with AuPPh3Cl and TBAB as reducing agent. (SPR: surface plasmon resonance). 

Entry Aua/S/TBAB  
ratio Solvent T / 

°C 
Timeb / 

h 
dc / nm 

(dispersity) 
λmax (SPR)e / 

nm 

a 1:1:6 THF/MeCN 
1:1 30 19 5.24 ± 1.56  

–d 528 

b 1:1:6 THF/MeCN 
1:1 rt 6 4.69 ± 1.00 

(21%) 516 

c 1:1:15 THF/MeCN 
1:1 rt 8 4.39 ± 0.98  

–d 521 

d 1:1:10 DMF/THF  
1:9 rt 6 5.37 ± 0.86 

(16%) 533 
a: [Au] = 16 mM. 
b: The time indicates when Et2O is added to stop the reaction. 
c: Determined by TEM analysis for a minimum of 100 particle measurements. 
d: Indicative value. A bimodal distribution of the NP sizes was observed. 
e: UV-Vis analysis was performed in DMF. 
 

 
Figure 2.14 Size distribution (as determined from several TEM images of each sample) AuNP-22a–d 

prepared by direct synthesis according to the conditions summarised in Table 2.6 
(entries a–d). a) Mean diameter 5.24 ± 1.56 nm (bimodal distribution, polydisperse). b): 
Mean diameter 4.69 ± 1.00 nm (21% dispersity). c): Mean diameter 4.39 ± 0.98 nm 
(bimodal distribution, polydisperse). d): Mean diameter 5.37 ± 0.86 nm (16% dispersity). 

 

Analysis by TEM showed that AuNP-22, independent of the conditions employed, were 

consistently larger than AuNP-21 (mean diameter between 4.4 and 5.4 nm, entries  

a–d). In addition, only when DMF was used in the mixture (entry d), the size dispersity 
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was excellent (16%) and a monomodal distribution achieved. On the contrary, the NP 

synthesis in a tetrahydrofuran/acetonitrile mixture always led to a bimodal size 

distribution, suggesting that the growth process was not complete when the reaction 

was stopped. 

Moreover, analysis by 19F NMR spectroscopy (Figure 2.15) suggested that disulfide 222 

underwent chemical modification during the NP synthesis even at room temperature 

and at relatively short reaction times. A broad unsymmetrical peak corresponding to 

ligand 22 on the gold surface was observed in the region between –61.4 and –62 ppm 

(spectra a–d), slightly upfield shifted (Δδ = –0.09 ppm) when compared to the 

corresponding peak of disulfide 222 (–61.37 ppm, spectrum e). A second peak around 

–61 ppm was detected in spectra a, b and c. In line with what was observed for  

AuNP-21 (see Section 2.3.3.1), a partial reduction of the hydrazone moiety appears to 

have occurred during the NP synthesis. This seems to have been minimal in 

experiment b and essentially eliminated in experiment d. 

 

 
Figure 2.15 Partial 19F NMR spectra ([D7]DMF, 470.5 MHz, 295 K) for preparation of AuNP-22 by 

direct synthesis under different synthetic conditions (S/Au 1:1). a): THF/MeCN 1:1,  
30 °C, 19 h (6 Eq TBAB). b): THF/MeCN 1:1, rt, 6 h (6 Eq TBAB). c): THF/MeCN 1:1, rt, 
8h (15 Eq TBAB). d): DMF/THF 1:9, rt, 6 h (10 Eq TBAB). e): disulfide 222. f): model 
compound 26. For details, see Table 2.6 (entries a–d). *: Residual model compound 24 
(< 5%). 
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In order to confirm this hypothesis, model compound 24 was reduced with sodium 

cyanoborohydride (Scheme 2.12) and analysed by 19F NMR spectroscopy (Figure 2.15, 

spectrum f). The reduced model compound 26 has a chemical shift (–61.05 ppm) 

perfectly comparable with that observed from the NP-bound ligands, confirming that a 

partial reduction of the hydrazone occurred during the synthesis. 

 

 
Scheme 2.12 Preparation of model compound 26. a): NaCNBH3, HCl/MeOH 4:96, 1 h, 0 °C, 37%. 

 

It would appear that maintaining reaction temperature at room temperature and 

performing the reaction in 10% DMF/THF (experiment d) essentially eliminates the 

hydrazone reduction side reaction. AuNP-22 prepared by this method was further 

characterised by LDI-MS spectrometry (Figure 2.16) and 1H NMR spectroscopy (Figure 

2.17). 

The LDI mass spectrum confirmed the presence of ligand 22 adsorbed on the gold 

surface. Similarly to AuNP-21, the main fragments could be assigned as the result of 

ligand desorption of the disulfide 222 (peaks A, B and C) and the thiol 22H (peaks D 

and E). The proposed fragmentation mechanism was comparable with that for  

AuNP-21 and previously reported in the literature.[76] No fragments that could be 

assigned as originating from the reduced ligand were observed, in line with the 

absence of a signal around –61 ppm in the 19F NMR spectrum (Figure 2.15). However, 

signals at m/z 709.29, 764.34 and 782.28 could not be assigned as originating from 

ligand 22. 
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Figure 2.16 LDI mass spectrum and fragmentation pattern for AuNP-22 prepared by direct synthesis 

with TBAB (see Table 2.6, entry d). The fragment corresponding to the disulfide 222 
(peak A, [222+Na]+: m/z 1361.64) undergoes a progressive loss of two sulfur atoms 
(peak B, [222–S+Na]+: m/z 1329.66; peak C, [222–2S+Na]+: m/z 1297.68). The fragment 
corresponding to the thiol (peak D, [22H+Na]+: m/z 693.30) loses a H2S (peak E,  
[22H–H2S+Na]+: m/z 659.31). 

 

Unfortunately, the 1H NMR spectrum suggested the presence of more than one NP-

bound species. Figure 2.17 shows the 1H NMR spectrum of AuNP-22 prepared under 

conditions described in Table 2.4 (entry b). Broad resonances corresponding to the 
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methylene peaks of the alkyl and the TEG chain were observed. In particular, H-18 and 

H-19 are well resolved. Resonances corresponding to H-22 (NH) and H-23 (CH=) were 

also visible. On the other hand, many more resonances than expected are observed 

(particularly between 6 and 8.5 ppm, circled box). An unambiguous assignment of 

these peaks has not yet been possible, and the presence of a heterogeneous 

monolayer composed by ligand 22 and other NP-bound unknown species (Figure 

2.15D) was confirmed. This 1H NMR spectrum can be compared to that obtained for 

AuNP-22e, prepared by hydrazone exchange from AuNP-21 (see Section 3.2.1). In this 

case, a homogeneous monolayer of ligand 22 was instead achieved with an excellent 

correspondence of the broad resonances with molecular disulfide 222. 

 

 
Figure 2.17 1H NMR ([D7]DMF, 500.1 MHz, 295K). a): disulfide 222. b) AuNP-22b prepared under 

conditions described in Table 2.6 (entry b). 

 

By combination of NMR spectroscopy and TEM analysis, a connection between the 

presence of reduced NP-bound ligands 22 (Figure 2.15E) and the bimodal distribution 

of the final NP size (Figures 2.14A and C and 2.15A and C) is suggested. From the 

available data, it seems that the population of small NPs (2–4 nm) obtained under 

these conditions (Table 2.4, entries a and c) appears to correlate with the greater 
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proportion of reduced hydrazone observed in the NP samples recovered from these 

experiments. 

In order to assess whether this hypothesis is correct, the preparation of NPs 

functionalised with a homogeneous monolayer of ligand 27 is currently under 

development (AuNP-27, Scheme 2.13). 

 

 
Scheme 2.13 Synthesis of AuNP-27. The hydrazone moiety can be reduced with NaCNBH3 before 

incorporation on the NP surface by direct synthesis (see Schemes 2.11–12). 

 

2.4 Conclusions 
 

Two groups of hydrazone ligands have been designed, synthesised and characterised.  

AuNPs have been functionalised with hydrazones 4H and 5H by ligand exchange. The 

purification of NP samples after the ligand exchange was challenging. For example, 

disulfide 42 formed during the ligand exchange process showed low solubility in a large 

variety of organic solvents. This made the purification by solid-solvent extraction 

impossible to achieve. Eventually, AuNP-4 and AuNP-5 were successfully purified by 

SEC but only when NPs were contaminated by a small excess of unbound ligand. 
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These practical issues, together with an unsatisfactory polydispersity of the NP 

samples, were the reason for a change in the ligand design in order to adopt an 

alternative NP synthetic method. The direct synthesis approach provided much better 

results in terms of size reproducibility and dispersity, together with an easier and more 

efficient purification by solid-solvent extraction. Hydrazone 212 has more complex 

structure if compared to those of ligands commonly used in direct synthesis processes, 

but a reproducible method for the preparation of AuNP-21 was optimised, leading to 

good size reproducibility and excellent dispersity. NMR spectroscopy was successfully 

used to characterise the organic ligands adsorbed on the gold surface. Broad peaks in 

the NMR spectra confirmed that the ligands were strongly bound to the gold surface 

and all the resonances could be unambiguously assigned and compared with those of 

disulfide 212. The purity of AuNP-21 was demonstrated by TLC, 1H and 19F NMR 

spectroscopy. It was then possible to optimise the synthetic conditions in order to 

preserve the integrity of the hydrazone moiety under reducing conditions. LDI mass 

spectrometry further confirmed the chemical structure of the ligand after the NP 

synthesis. 

AuNP-22 was prepared by direct synthesis similarly to AuNP-21. In this case, it was 

found that disulfide 222 was more easily reduced by TBAB than disulfide 212. In 

addition, 1H NMR spectroscopy suggested that other unknown NP-bound species 

could be also present, resulting in a complex mixed monolayer which also influences 

the final NP size, as suggested by TEM analysis. The identification of these NP-bound 

species requires further investigations in order to assess whether ligand 22 undergoes 

a structural change during the NP synthesis or have a different binding mode on the 

NP surface. 

The presence of a fluorine atom in AuNP-4, AuNP-21 and AuNP-22 also allowed 

characterisation by 19F NMR spectroscopy. The simplicity of the 19F NMR spectra could 

be used as a powerful tool to detect any possible transformation of the fluorinated 

ligand during the NP synthesis. In addition, 19F NMR spectroscopy shows a great 

potentiality for monitoring and tracking structural modification of NP-bound fluorinated 

hydrazone under dynamic covalent exchange conditions. 
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3. Chapter 3: 
Dynamic covalent chemistry in 

the nanoparticle monolayer 
 

This chapter demonstrates for the first time that dynamic covalent exchange can take 

place on the surface of gold nanoparticles (AuNPs) functionalised with a monolayer of 

hydrazone ligands. 

The experimental conditions for the exchange are optimised for the N-aroyl hydrazone-

functionalised AuNPs prepared in Chapter 2. The hydrazone monolayer on the NP 

surface is subjected to dynamic covalent exchange with an excess of a fluorinated 

benzaldehyde under acidic conditions. In a first stage, the occurrence and the 

reversibility of the exchange is monitored by 19F nuclear magnetic resonance (NMR) 

spectroscopy and confirmed by laser desorption ionisation (LDI) mass spectrometry. 

Subsequently, the reactivity of the monolayer is quantitatively investigated. A series of 

kinetic profiles is generated under hydrolysis and equimolar exchange conditions and 

compared with the kinetics for corresponding molecular model compounds treated 

under identical conditions. 

Finally, a comparison between NP-bound dynamic hydrazone exchange and ligand 

exchange at the NP surface is also reported in order to demonstrate the advantages of 

the former over the latter. 

 

3.1 Optimising experimental conditions for NP-bound 
hydrazone hydrolysis and exchange 

 

Dynamic covalent chemistry (DCC) has been successfully applied in supramolecular 

chemistry, in polymer chemistry and for the preparation of dynamic covalent 

libraries.[107,109] Examples of dynamic covalent exchange have recently been reported 

for monolayers confined on two-dimensional flat surfaces,[192–194] and at the surface of 

self-assembled phospholipid bilayers.[195,196] On the other hand, such an approach on 

three-dimensional organic-molecule-functionalised NPs has not previously been 

explored. 

In Chapter 2, the synthesis, purification and characterisation of N-aroyl hydrazone 

functionalised AuNP-21 was discussed (Figure 3.1). The organic ligand was designed 
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to have the sulfur atom, for adsorption on the NP surface by formation of a strong  

Au–S bond, separated from the hydrazone moiety by a long flexible chain. This chain is 

composed of an alkyl portion, to ensure appropriate ligand packing on the NP core, as 

a result of the maximisation of the van der Waals interactions between neighbouring 

chains.[139] An additional tetraethylene glycol part provides solubility of AuNP-21 in 

polar organic solvents. 

 

 
Figure 3.1 N-Aroyl hydrazone functionalised gold nanoparticles (AuNP-21) employed for performing 

post-synthetic dynamic covalent chemistry. 

 

As discussed in Chapter 1, hydrazone exchange can occur at acidic pH via hydrolysis 

and re-condensation,[113,116,197] or at neutral pH by using nucleophilic catalysts (e.g. 

aniline) via transimination.[112,118–121] In order to perform any exchange on AuNPs 

functionalised with ligand 21 (Figure 3.1), 4-fluorobenzaldehyde 15 has to be displaced 

from the NP surface before achieving exchange with another electrophile exchange 

unit. Exchange via transimination requires aniline-type catalysts to be used in large 

excess (up to 100 equivalents) and would react with any aldehyde species present in 

the reaction mixture. This would result in a pool of NP-bound and unbound hydrazone 

and imine species challenging to analytically monitor. In addition, nucleophilic catalysts 

might interact with the gold surface causing an undesired and uncontrolled ligand 

displacement. For all these reasons, investigation of the hydrazone NP-bound 

monolayer reactivity under hydrolysis and exchange conditions was carried out with an 

acid catalyst. 
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3.1.1 Colloidal stability of AuNP-21 under acidic conditions 
 

In order to carry out hydrazone exchange in the NP-bound monolayer, the stability of 

the NP dispersion must be maintained. Considering the limited solvent compatibility of 

AuNP-21, the choice of the solvent was limited to N,N-dimethylformamide (DMF) and 

dimethyl sulfoxide (DMSO) (Chapter 2). Water attack is also crucial for the formation of 

the carbinolamine intermediate in the hydrazone hydrolysis/exchange mechanism 

(Chapter 1).[111] AuNP-21 was colloidally stable in 10% H2O/DMF (Table 2.2). On the 

contrary, NP precipitation was observed for higher percentages of water. 

Trifluoroacetic acid (CF3CO2H) was chosen as proton source because it has commonly 

been used in hydrazone exchange reactions.[107,140] In addition, CF3CO2H could be 

monitored by 19F NMR spectroscopy and conveniently measured as a liquid. 

The colloidal stability of AuNP-21 in 10% H2O/DMF with CF3CO2H was monitored by 

UV-Vis spectroscopy (Figure 3.2). By monitoring the surface plasmon resonance 

(SPR) band, any decrease in the absorbance value or shift in the λmax position would 

be, respectively, evidence of NP precipitation or aggregation in solution. 

The amount of ligand 21 in a dispersion of AuNP-21 in 10% H2O/DMSO or  

10% H2O/DMF was estimated by 19F NMR spectroscopy using an internal standard. 

After dilution to reach suitable UV-Vis concentrations (around 2 mM in terms of 21), 

CF3CO2H was added (1 or 5 equivalents, with respect to 21, to the DMSO and DMF 

mixtures, respectively). As shown in Figure 3.2A–B, a decrease in the absorbance 

values was observed for the DMSO mixture suggesting NP precipitation from the 

reaction mixture within 3 hours. The poor stability of AuNP-21 in the DMSO mixture 

was also visible by eye as a black NP precipitate formed at the bottom of the cuvette. 

On the other hand, AuNP-21 stability in the DMF mixture was satisfactory. UV-Vis 

spectra recorded over 45 h after CF3CO2H addition showed no significant change in 

absorbance intensity or SPR band shape and position (Figure 3.2C–D). The dispersion 

was colloidally stable even after incubation at 50 °C for 24 h. Furthermore, 

transmission electron microscopy analysis (TEM) revealed no significant change in NP 

mean diameter and size distribution under these conditions and no change to the 

colloidal dispersion was evident by eye. 
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Figure 3.2 Tests of colloidal stability of AuNP-21. a): UV-Vis spectra in H2O/DMSO 1:9 before and 

after CF3CO2H addition at rt (monitored for 3 h). b): Plot of the absorbance values 
recorded at λmax (SPR) = 508 nm. c): UV-Vis spectra of AuNP-21 in H2O/DMF 1:9 before 
and after CF3CO2H addition at rt (monitored for 48 h) and then 50 °C (monitored for a 
further 24 h). d): Plot of the absorbance values recorded at λmax (SPR) = 518 nm. 

 

3.2 Dynamic covalent exchange in the nanoparticle 
monolayer: reversible hydrazone exchange 
between AuNP-21 and AuNP-22 

 

Since AuNP-21 was stable in 10% H2O/DMF with 5 equivalents of CF3CO2H, the 

subsequent investigation involved hydrazone exchange with an excess of  

4-(trifluoromethyl)benzaldehyde 16 under these conditions. This aldehyde was chosen 

because the corresponding NP-bound or unbound hydrazones (i.e. disulfide 222 and 

AuNP-22, see Chapter 2) showed 19F NMR resonances around –62 ppm, well removed 

from the 4-fluorobenzylidene ligands (around –110 ppm). In addition, the hydrazone 

formed after exchange would have different mass, allowing differentiation by mass 

spectrometry. 
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3.2.1 Synthesis of AuNP-22e via hydrazone exchange from AuNP-21 
 

A stable colloidal dispersion of AuNP-21 in 10% D2O/[D7]DMF was treated with an 

excess of aldehyde 16 (20 equivalents with respect to ligand 21) and CF3CO2H  

(5 equivalents) at 50 °C. The progress of the exchange was monitored by 19F NMR 

spectroscopy, revealing a gradual decrease of the peak corresponding to NP-bound 

ligand 21 and a concurrent increase of two new peaks assigned to NP-bound ligand 22 

and displaced 4-fluorobenzaldehyde 15. After 16 h the equilibrium was reached. 

Hydrazone-functionalised AuNPs were recovered by precipitation with diethyl ether, 

obtaining a black precipitate which was washed several times with a mixture of 

methanol and diethyl ether. In this way, unbound molecular species were successfully 

removed and functionalised NPs were obtained (AuNP-210.1220.9) with a 1:9 ratio 

between ligands 21 and 22, apparent by integration of their respective signals in the  
19F NMR spectrum (Figure 3.3). The sample was then treated again under identical 

conditions to before and, after purification, a homogeneous monolayer of ligand 22 

adsorbed on the NP surface was obtained (AuNP-22e) as confirmed by both 19F NMR 

and LDI-MS analysis of the purified sample (Figure 3.3B, middle). Fragments 

corresponding to desorbed disulfide 222 and thiol 22H were detected. Furthermore, the 

fragmentation mechanism was found to be identical to that observed for AuNP-21 

(Chapter 2).[76] The absence of fragments corresponding to 212 or 21H provided 

corroboration that the exchange had gone completion (see Section 5.4.4 for full  

LDI-MS spectrum). 
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Figure 3.3 Hydrazone exchange between AuNP-21 and AuNP-22e. Conditions: CF3CO2H, 

D2O/[D7]DMF 1:9, 50 °C. a) Partial 19F NMR spectra ([D7]DMF, 470.5 MHz, 295 K), from 
top to bottom: AuNP-21, AuNP-210.1220.9, AuNP-22e, AuNP-210.5220.5,  
AuNP-210.74220.26. b): Partial LDI-MS spectra of AuNP-21 (top), AuNP-22e (middle) and 
AuNP-210.74220.26 (bottom). AuNP-21: [212+Na]+ m/z 1261.61, [212–S+Na]+ m/z 1229.65, 
[212–2S+Na]+ m/z 1197.68. AuNP-22e: [222+Na]+ m/z 1361.61, [222–S+Na]+ m/z 
1329.64, [222–2S+Na]+ m/z 1297.66. AuNP-210.74220.26: [21•22+Na]+ m/z 1311.54, 
[21•22–S+Na]+ m/z 1279.54, [21•22–2S+Na]+ m/z 1247.60. 
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The 1H NMR spectrum of fully exchanged AuNP-22e (Figure 3.4B) shows a pattern of 

broad peaks, indicating that the hydrazone ligands are strongly adsorbed on the NP 

surface. The absence of sharp peaks and the T2-filtered 1H NMR,[61] which shows only 

the peaks corresponding to the non-deuterated solvent and water (Figure 3.4C), 

confirmed that the sample was free from any unbound molecular species. 

The 1H NMR of AuNP-22e (Figure 3.4B) shows the aromatic peaks with comparable 

chemical shifts to those of AuNP-21 (see Section 5.4.2 for the stacked spectra). In 

addition, the aromatic peaks are less in number than those of AuNP-22b prepared by 

direct synthesis (see Figure 2.17). The combination of 1H and 19F NMR analysis 

suggests therefore the presence of a homogeneous NP-bound hydrazone monolayer. 

All aromatic chemical shifts related to NP-bound species were slightly upfield shifted 

when compared to disulfide 222 (Figure 3.4A). Resonances corresponding to H-20  

(Δδ = –0.05 ppm) and H-25 (Δδ = –0.10 ppm) could be unambiguously assigned while 

resonances corresponding to H-21 and H-24 were found to be obscured by the solvent 

peak of the residual non-deuterated DMF (8.03 ppm) for both 222 and AuNP-22e. 

Resonances corresponding to H-22 (Δδ = –0.03 ppm) and H-23 (Δδ = –0.01 ppm) were 

also assigned. Analysis of the 19F NMR spectrum (Figure 3.4E) shows only one peak at 

–61.46 ppm, slightly upfield shifted if compared to that of disulfide 222  

(Δδ = –0.09 ppm). No 19F peak corresponding to AuNP-21 was detected (see Section 

5.4.3 for full sweep width spectrum), confirming that the hydrazone exchange had gone 

to completion. It should also be noted that the 19F peak is broad and symmetrical and 

both 1H and 19F NMR spectra are much better than those obtained when a direct 

synthesis of AuNP-22 was attempted.  

One of the advantages of DCC is also herein demonstrated. AuNPs with a monolayer 

of ligand 22 could be successfully obtained as a homogeneous sample by hydrazone 

exchange from AuNP-21, without ligand degradation or reduction. In this way, issues 

encountered during the direct NP synthesis starting from disulfide 222 (Chapter 2) were 

circumvented. 

Over several repetitions, the analysis of the size histograms before and after 

hydrazone exchange indicated no statistical change for both NP size and dispersity 

(Figure 3.5). 
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Figure 3.4 Characterisation of AuNP-22e by NMR spectroscopy. 1H NMR ([D7]DMF, 500.1 MHz, 

295 K): a): disulfide 222. b): AuNP-22e. c): T2-filtered NMR of AuNP-22e. Partial  
19F NMR ([D7]DMF, 470.5 MHz, 295 K): d): disulfide 222. e): AuNP-22e. 
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Figure 3.5 TEM micrographs before and after hydrazone exchange. Conditions:  

4-(trifluoromethyl)benzaldehyde 16 (20 Eq), CF3CO2H (5 Eq), D2O/[D7]DMF 1:9, 50 °C, 
× 2. (a): TEM (top, scale bare 20 nm) and size distribution (bottom) of AuNP-21: mean 
diameter 2.71 ± 0.68 nm (25% dispersity). (b): TEM (top, scale bar 20 nm) and size 
distribution (bottom) of AuNP-22e: mean diameter 3.42 ± 0.92 nm (27% dispersity). 

 

After characterisation of fully exchanged AuNP-22e, the reversibility of the hydrazone 

exchange was investigated. AuNP-22e was treated with an excess of  

4-fluorobenzaldehyde 15 (20 equivalents with respect to ligand 22) and CF3CO2H  

(5 equivalents) in 10% D2O/[D7]DMF. After purification, a clean NP sample  

(AuNP-210.5220.5) was obtained with a 1:1 ratio between ligands 21 and 22, respectively 

(Figure 3.3A). The sample was subjected to a further exchange under identical 

conditions to before and, after purification, a clean NP sample was obtained where the 

proportion of ligand 21 in the monolayer had increased to 74% (AuNP-210.74220.26).  

The lower extent of exchange in the reverse process (under otherwise identical 

conditions) is in line with the greater stability for 4-(trifluoromethyl)benzylidene 

hydrazones (like 222 and 24) when compared to the 4-fluorobenzylidene moiety.[197] 

The trifluoromethyl group is more electron-withdrawing than the fluorine. This results in 

a lower electron density on the nitrogen atom which undergoes protonation during 
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hydrazone hydrolysis and thus in a greater hydrolytic stability of the  

4-(trifluoromethyl)benzylidene moiety. 

LDI-MS analysis confirmed the observation made by 19F NMR spectroscopy (Section 

5.5.3). The mass spectrum of AuNP-210.74220.26 showed peaks corresponding 

homodimers 212 and 222. In addition, fragments corresponding to heterodisulfide 21•22 

were also observed, suggesting an intimate mixing hydrazones on the NP surface.[76] A 

more detailed analysis of the relative abundance of fragments corresponding to 

homodimers 212 and 222 expressed as a ratio 55:45, which is conserved across all 

pairs of fragments. However, this ratio does not correspond to that suggested by  
19F NMR analysis (74% and 26%, respectively). This is not surprising and can be 

explained by a different ionisation efficiency for ligand 21 and 22 which otherwise 

undergo, identical fragmentation processes.[76] 

 

3.2.2 Quantitative analysis of monolayer composition by 19F NMR 
 

The utility of 19F NMR spectroscopy for tracking structure modification in the NP-bound 

monolayer under exchange conditions can be extended for quantitatively monitoring 

the monolayer reactivity. 

However, the ability of 19F NMR spectroscopy to accurately measure the amount of 

NP-bound fluorinated ligands had to be assessed. For this purpose, AuNP-210.74220.26 

was treated with iodine, resulting in ligand displacement by oxidation (Figure 3.6). By 

this way, the desorbed ligands can be analysed as molecular species in solution. 

A 19F NMR spectrum was recorded 30 minutes after iodine addition. The resulting 

spectrum (Figure 3.6B) showed a pattern of sharp peaks, indicating that the organic 

species were no longer bound to the NP surface. Peaks corresponding to 212 and 222 

were observed together with those corresponding to hydrolysed aldehydes 15 and 16. 

4-Fluorobenzoic acid, formed by oxidation of 15, was also observed. Integrating the 

combined 4-fluoro and 4-(trifluoromethyl) regions indicated the same ratio (74:26) as 

determined by direct integration of the NP-bound signals. 
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Figure 3.6 Quantification of the relative amount of ligands 21 and 22 by 19F NMR spectroscopy 

([D7]DMF, 470.5 MHz, 295 K). a): Spectrum of AuNP-210.74220.26. b): Spectrum of the 
same sample recorded 30 min after iodine addition. 

 

Similar experiments were also performed using pure samples of AuNP-21 (Figure 3.7) 

and AuNP-22e (Figure 3.8). The amount of ligand was estimated by integration of the 

broad NP-bound peak with respect to an internal standard. After iodine addition, 

several 19F NMR spectra were recorded to monitor the completion of the ligand strip 

and concurrent hydrolysis and oxidation processes. For both samples AuNP-21 and 

AuNP-22e, the total concentration of fluorinated species, displaced or not from the NP 

surface, remained constant over time and was always equal to the amount of ligand 

estimated before iodine addition. 

By this series of experiments, it was therefore demonstrated that 19F NMR 

spectroscopy provides accurate assessment of both relative and absolute 

concentrations for NP-bound ligands. 
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Figure 3.7 19F NMR ([D7]DMF, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of AuNP-21 recorded before 

(d) and after iodine addition at rt (e–g). a) Disulfide 212. b): 4-Fluorobenzaldehyde 15. c): 
4-Fluorobenzoic acid. The concentration of 4-fluorobenzoic acid is taken into account 
together with 4-fluorobenzaldehyde. IS: Internal standard (1-fluoro-3-nitrobenzene,  
4.95 mM). *: The concentration of 4-fluorobenzoic acid is taken into account together 
with [15]. 

 



Chapter 3 – Dynamic covalent chemistry in the nanoparticle monolayer 

 84 

 
Figure 3.8 19F NMR ([D7]DMF, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of AuNP-22e recorded 

before (b) and after iodine addition at rt (c–e). a): Disulfide 222. IS: Internal standard  
(1-fluoro-3-nitrobenzene, 4.95 mM). 

 

3.3 Kinetics of hydrazone hydrolysis and exchange 
 

In order to gain insight into the effects on reactivity of being bound to the NP surface, 

AuNP-21 and AuNP-22e were investigated under hydrolysis and equimolar exchange 

conditions using an excess of CF3CO2H in 10% D2O/[D7]DMF at room temperature, 

comparing the reactivity of the monolayer with that shown by analogous molecular 

compounds under the same conditions. 

Longitudinal relaxation times (T1) for 19F signals were determined in order to set 

appropriate pulse delay times (≥ 5×T1) for quantitative NMR experiments. T1 was 

measured for all the fluorinated species involved in the hydrolysis/exchange process 

(Section 5.6.1), finding that T1 times for NP-bound ligands were slightly shorter than 

their corresponding free molecular counterparts (0.68 s for AuNP-21 against 0.92 s for 

compound 19 and 0.96 s for AuNP-22e against 1.18 s for ligand 20).  

4-Fluorobenzaldehyde 15 exhibited the longest T1 time (3.47 s). Based on the T1 times 

measured for every species involved in the hydrolysis/exchange reactions (Table 5.1), 

a balance between the delay time (22 s) and number of scans (16), ensured 

quantitative measurements, sufficient signal-to-noise ratio for the kinetic analyses and 

a reasonably short overall acquisition time of about 7 minutes. In comparison to the 
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timescale of the reactions in question, this acquisition time was short enough that the 

concentrations of reacting species may be considered constant. In addition, the 

acquisition time becomes less significant when the experiment is performed at room 

temperature as a result of a slower reaction progress. 

 

3.3.1 Kinetic model for hydrazone hydrolysis 
 

Hydrazone exchange under acidic conditions, in the absence of an excess of 

nucleophile, occurs via preliminary hydrolysis of the hydrazone (Scheme 3.1).[115,116] In 

the presence of an acid catalyst, the nitrogen atom in the α position to the sp2 carbon 

undergoes protonation, affording a highly electrophilic species. Then, water attack at 

the sp2 carbon occurs, forming a carbinolamine intermediate. After a fast proton 

transfer, breaking of the C–N bond follows resulting in formation of hydrazide and 

charged aldehyde, which is immediately deprotonated. 

 

 
Scheme 3.1 Simplified mechanism for hydrazone hydrolysis and formation.[116] 

 

In order to favour the hydrolysed products (i.e. hydrazide and aldehyde), a high 

concentration of water is desirable. However, the colloidal stability of AuNP-21 

restricted the maximum amount of water to 10% v/v. 

To a first approximation, the reaction can be modelled as a simple reversible process 

defined by two bimolecular rate constants (k1 and k2) as described by Equations 3.1 

and 3.2. The COPASI® software package[198] was used to determine the appropriate 

set of differential equations to which the experimental data can be fit in order to obtain 

estimates of the rate constants k1 and k2. 
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Equation 3.1 

 
Equation 3.2 

 

Hydrolysis experiments were performed using AuNP-21 and AuNP-22e in 

D2O/[D7]DMF at rt, using 5 equivalents of CF3CO2H (with respect to ligand 21 or 22), 

comparing the experimental data with corresponding model compounds 23 and 24, 

treated under identical conditions. 

The reaction progress was monitored by deconvolution of the 19F peaks corresponding 

to both the NP-bound hydrazone 21 or 22 and released aldehydes 15 or 16 in order to 

obtain concentration values with respect to an internal standard. 

 

3.3.2 Hydrolysis of molecular compounds 23 and 24 
 

Preliminary investigations on the hydrazone reactivity were carried out with model 

compounds 23 and 24 (Table 3.1). From three repeated hydrolysis experiments of 23, 

a mean k1 of 2.75 × 10–9 mM–1s–1 (s.d. = 30%) and mean k2 of 2.63 × 10–4 mM–1s–1  

(s.d. = 28%) were calculated. From three repeated hydrolysis experiments of 24, a 

mean k1 of 7.48 × 10–10 mM–1s–1 (s.d. = 13%) and mean k2 of 4.43 × 10–4 mM–1s–1  

(s.d. = 39%) were calculated (Table 3.1). 

 

 

 

 

 

 

 



Chapter 3 – Dynamic covalent chemistry in the nanoparticle monolayer 

 87 

Table 3.1 Hydrolysis of compounds 23 (entries a–c) and 24 (entries e–g). Conditions: CF3CO2H, 
D2O/DMF, rt. 

 

Entry R [Hy]a /  
mM 

[TFA]b /  
mM k1 / mM–1s–1 k2 / mM–1s–1 Keq

c,d Keq(NMR)c,e 

a F 3.54 19.1 3.89 × 10–9 
(± 4%)f 

3.50 × 10–4 
(± 6%)f 

1.11 × 10–5 
(± 7%)g 

1.10 × 10–5 
(± 2%)h 

b F 3.75 16.5 2.33 × 10–9 
(± 3%)f 

1.70 × 10–4 
(± 5%)f 

1.37 × 10–5 
(± 6%)g 

1.91 × 10–5 
(± 7%)h 

ci F 3.07 18.1 2.02 × 10–9 
(± 5%)f 

2.68 × 10–4 
(± 7%)f 

7.52 × 10–6 
(± 9%)g 

7.31 × 10–6 
(± 8%)h 

dj   Global 
fit 

2.50 × 10–9 
(± 5%)f 

2.40 × 10–4 
(± 8%)f 

1.04 × 10–5 
(± 10%)f 

1.25 × 10–5 
(± 11%)h 

e CF3 3.64 19.3 7.99 × 10–10 
(± 23%)f 

2.13 × 10–4 
(± 8%)f 

3.75 × 10–6 
(± 24%)g 

3.58 × 10–6 
(± 19%)h 

fi CF3 2.73 19.9 6.38 × 10–10 
(± 18%)f 

6.80 × 10–4 
(± 9%)f 

9.39 × 10–7 
(± 20%)g 

1.03 × 10–6 
(± 9%)h 

g CF3 5.23 25.6 8.08 × 10–10 
(± 12%)f 

4.37 × 10–4 
(± 3%)f 

1.85 × 10–6 
(± 12%)g 

1.81 × 10–6 
(± 11%)h 

hj   Global 
fit 

7.59 × 10–10 
(± 30%)f 

3.85 × 10–4 
(± 10%)f 

1.97 × 10–6 
(± 31%)g 

2.14 × 10–6 
(± 24%)h 

a: Concentration in terms of hydrazone 23 or 24, estimated by 19F NMR with an internal standard. 
b: Concentration of CF3CO2H measured by 19F NMR with an internal standard. 
c: Dimensionless values. 
d: Keq = k1 / k2. 
e: Determined from Equation 3.2 using the average of the concentration values of the last three data 
points. 
f: Coefficient of variation. 
g: Error propagation calculated from coefficient of variation values of k1 and k2. 
h: ± 1 s.d. 
i: Hydrolysis performed in 20% D2O/DMF. 
j: Global fit of the three data sets for 23 (entries a–c) or 24 (entries e–g) as determined by COPASI®. 
 

The observed spread of the rate constant values can originate from experimental 

variation. In fact, deconvolution of NMR peaks has an intrinsic accuracy limitation and 

the concentration of all the species depends on precise knowledge of the concentration 

of internal standard.  

Another possible reason for the spread of rate constant is that the adopted model 

(Equation 3.1) does not take into account the concentration of acid. This would not be 

a problem if the concentrations of hydrazone and acid were reproduced across the 

repetitions but this was practically challenging to achieve. 



Chapter 3 – Dynamic covalent chemistry in the nanoparticle monolayer 

 88 

According to the reaction mechanism described in Scheme 3.1, the acid can affect the 

reaction in two ways. The hydrazide formed after hydrolysis can be protonated 

resulting in a reduction of its concentration for the back reaction. On the other hand, 

the acid can also protonate both the hydrazone and the carbinolamine intermediate in 

the forward reaction and either the aldehyde or the carbinolamine intermediate in the 

back reaction, resulting in an increase of the concentration of these protonated 

intermediates if the concentration of acid, acting as a catalyst, increases. 

To investigate if variation in the amount of protonated hydrazide was a significant factor 

in the spread of rate constant values, the kinetic model was modified by adding the 

protonation equilibrium for the product hydrazide (Equation 3.3). Using representative 

Ka values for hydrazide protonation,[199,200] this modified model did not improve the 

spread of k1 and k2 values for the replicate hydrolysis experiments of 23 and 24. 

 

 
Equation 3.3 

 

To investigate variability between replicate runs as a result of the catalytic action of the 

acid, the simplest way is to divide k1 and k2 by the concentration of CF3CO2H, 

assuming a full dissociation of the acid and equal pKa values of the key protonated 

species in both directions. This only gave a small improvement in spread for k1 and k2 

values for the hydrolysis of 23 (s.d. of 26% and 34%, respectively) and virtually no 

change in spread of the rate constant values for the hydrolysis of 24 (s.d. of 12% and 

40%, respectively). 

For all these reasons, the basic model was considered acceptable (Equation 3.1). To 

extract accurate fitted parameters from the three repetitions in each case, a global fit to 

all three data sets at once was carried out (Table 3.1, entries d and h). For 23, this 

gave excellent results with low coefficients of variation. On the contrary, the global fit 

for 24 although good by eye, yielded higher errors of coefficient of variation for k1 but 

still acceptable. The greater variability in the kinetic parameters determined in this case 

can perhaps be explained by the extremely low extent of hydrolysis, which proceeds 

only to 4–8% for 24 so that very small changes in concentration of hydrazone and 

aldehyde are being measured throughout. 
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3.3.3 Hydrolysis in the nanoparticle-bound hydrazone monolayer 
 

The kinetic and thermodynamic parameters for the hydrolysis of AuNP-21 and  

AuNP-22e are presented in Tables 3.2 and 3.3. Practical challenges in preparing 

hydrazone-functionalised AuNPs in large scale, the necessity to prepare AuNP-22e 

from AuNP-21 (Section 3.2.1) and the requirement to work with a sufficient 

concentration of NP-bound ligand to attain a reasonable balance of NMR signal-to-

noise and acquisition time, made it challenging to perform replicate kinetic experiments 

from the same batch. Combining the results from different NP batches was considered 

inappropriate because of the intrinsic variability from batch to batch (e.g. NP size and 

shape and distribution). Results of replicate runs were therefore considered side-by-

side independently and the derived kinetic parameters were not combined. 

 

3.3.3.1 Hydrolysis of AuNP-21 
 

The 19F NMR spectra for the hydrolysis of AuNP-21 (Section 5.6.2.1) showed a gradual 

decrease of the signal corresponding to NP-bound ligand 21 and a concurrent increase 

of the signal for displaced aldehyde 15. Except for signals corresponding to CF3CO2H 

and the internal standard, no other 19F peaks (broad or sharp) were detected, 

confirming that the hydrazone monolayer undergoes hydrolysis without any ligand 

degradation or displacement.  

Concentration values calculated by peak deconvolution for NP-bound ligand 21 and 

aldehyde 15 were plotted (Figure 3.9) and compared with a simulated hydrolysis 

experiment with identical starting concentration using the rate constants determined for 

the hydrolysis of 23 (Table 3.2, entry d). Slower kinetics were observed for both 

replicate hydrolysis experiments of AuNP-21, while the equilibrium endpoints for NP-

bound and unbound reactions were comparable, within the experimental error. 
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Figure 3.9 Kinetic profiles for replicate hydrazone hydrolysis experiments on independent batches 

of AuNP-21. Conditions: CF3CO2H a): 5 Eq; b) 3.2 Eq, with respect to 21; D2O/[D7]DMF 
1:9, rt. � : NP-bound-21. � : 4-Fluorobenzaldehyde 15. Dashed lines: time course 
simulation for hydrolysis of 23 under identical conditions (k1 = 2.50 × 10–9 mM–1s–1;  
k2 = 2.40 × 10–4 mM–1s–1). 

 

Despite an intrinsic difficulty in deconvoluting the broad peaks corresponding to the 

NP-bound species, the fitting plot was judged satisfactory (see Section 5.6.3.3). Table 

3.2 summarises the rate constants determined for the hydrolysis of AuNP-21 (entries a 

and b). 

The analysis of the hydrolysis for two independent samples of AuNP-21 showed a 

small but significant retardation of the hydrolysis in both rate constants when compared 

to those obtained for 23. For each experiment, Keq and Keq(NMR) are in close 

agreement, suggesting that the adopted kinetic model is reliable even for NP-bound 

experiments. However, the absolute values show some variation between the two 

replicate experiments lying to either side of the equilibrium position for the hydrolysis of 

23, suggesting that the difference in this value may simply arise from experimental 

variability. Different binding sites may result in different reactivities and so batch-to-

batch variability in the distribution of NP size and shape, and therefore in the relative 

proportions of different binding sites, could produce variation in ensemble properties 

such as equilibrium position. Determining the subtle relationships between such 

intrinsically polydisperse features of NP samples and ensemble reactivity is one of the 

major challenges facing the development of a rational understanding of NP-bound 

reactivity. 
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Table 3.2 Hydrolysis of AuNP-21. Conditions: CF3CO2H, D2O/[D7]DMF 1:9, rt. 

 

Entry [Hy]a /  
mM 

[TFA]b /  
mM k1 / mM–1s–1 k2 / mM–1s–1 Keq

c,d Keq(NMR)c,e 

a 4.08 17.1 1.14 × 10–9 
(± 2%)f 

5.22 × 10–5 
(± 3%)f 

2.18 × 10–5 
(± 4%)g 

2.48 × 10–5 
(± 2%)h 

b 4.27 13.7 7.17 × 10–10 
(± 4%)f 

1.19 × 10–4 
(± 5%)f 

6.03 × 10–6 
(± 6%)g 

6.27 × 10–6 
(± 10%)h 

a: Concentration in terms of ligand 21, estimated by 19F NMR with an internal standard. 
b: Concentration of CF3CO2H measured by 19F NMR with an internal standard. 
c: Dimensionless values. 
d: Keq = k1 / k2. 
e: Determined from Equation 3.2 using the average of the concentration values of the last three data 
points. 
f: Coefficient of variation. 
g: Error propagation calculated from coefficient of variation values of k1 and k2. 
h: ± 1 s.d. 
 

3.3.3.2 Hydrolysis of AuNP-22e 
 

In a similar manner to AuNP-21, AuNP-22e was dissolved in 10% D2O/[D7]DMF and 

the concentration of NP-bound ligand 22 was estimated with an internal standard. After 

CF3CO2H addition, the hydrolysis was monitored by 19F NMR spectroscopy until 

equilibrium was achieved. The 19F NMR spectra (Section 5.6.2.2) show a slight 

decrease in the peak intensity corresponding to NP-bound ligand 22 and a 

corresponding gradual increase of the intensity for the peak corresponding to 

hydrolysed aldehyde 16. Except for peaks related to CF3CO2H and the internal 

standard, no additional (broad or sharp) peaks were observed, confirming no ligand 

degradation or displacement as already seen for AuNP-21. Concentration values 

calculated by peak deconvolution for NP-bound ligand 22 and aldehyde 16 are plotted 

and compared with compound 24 in Figure 3.10. As observed for AuNP-21, a slower 
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progress to equilibrium is suggested for NP-bound 22 when compared to freely 

dissolved 24. 

 

 
Figure 3.10 Kinetic profiles for replicate hydrazone hydrolysis experiments on independent batches 

of AuNP-22e. Conditions: CF3CO2H a): 4.8 Eq; b): 6.0 Eq with respect to 22, 
D2O/[D7]DMF 1:9, rt. �: NP-bound-22. �: 4-(Trifluoromethyl)benzaldehyde 16. Dashed 
lines: time course simulation for hydrolysis of 24 under identical conditions  
(k1 = 7.59 × 10–10 mM–1s–1; k2 = 3.85 × 10–4 mM–1s–1). 

 

The fitted kinetic constant k1 (Table 3.3, entries a and b) is consistently slightly smaller 

than the global k1 value determined for molecular model compound 24 (Table 3.1, entry 

h). On the other hand, the k2 value for the on-NP reaction appears to be similar or even 

larger than the molecular model system. It must be noted however, that there is a 

significant variability in the absolute rate constant values determined for these two 

experiments, giving us only a rough estimate of these values. A possible reason could 

be found in the limited extent of hydrolysis observed for NP-bound ligand 22, which 

means that all the kinetic data comes from measurements of small absolute changes in 

the species concentrations. As for AuNP-21, variability in the equilibrium positions was 

again observed. It was concluded that even for AuNP-22e there is no difference of 

equilibrium position when compared to 24. 
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Table 3.3 Hydrolysis of AuNP-22e. Conditions: CF3CO2H, D2O/[D7]DMF 1:9, rt. 

 

Entry [Hy]a /  
mM 

[TFA]b /  
mM k1 / mM–1s–1 k2 / mM–1s–1 Keq

c,d Keq(NMR)c,e 

a 2.12 10.2 3.18 × 10–10 
(± 5%)f 

8.77 × 10–4 
(± 7%)f 

3.63 × 10–7 
(± 9%)g 

3.57 × 10–7 
(± 11%)h 

b 3.41 20.5 2.18 × 10–10 
(± 3%)f 

6.25 × 10–5 
(± 8%)f 

3.48 × 10–6 
(± 9%)g 

2.30 × 10–6 
(± 13%)h 

a: Concentration in terms of ligand 22, estimated by 19F NMR with an internal standard. 
b: Concentration of CF3CO2H measured by 19F NMR with an internal standard. 
c: Dimensionless values. 
d: Keq = k1 / k2. 
e: Determined from Equation 3.2 using the average of the concentration values of the last three data 
points. 
f: Coefficient of variation. 
g: Error propagation calculated from coefficient of variation values of k1 and k2. 
h: ± 1 s.d. 
 

3.3.4 Reversible exchange between AuNP-21 and AuNP-22e 
 

The reactivity of the NP-bound hydrazone monolayer was subsequently investigated 

under exchange conditions. Equimolar conditions were chosen in order to accurately 

assess changes in concentration for all exchanging components. 

The reaction was triggered by CF3CO2H and monitored by 19F NMR spectroscopy until 

equilibrium was achieved. 

To a first approximation, the reaction can be modelled as a reversible process 

characterised by two bimolecular rate constants, k1(1→2) and k2(2→1) (Equation 3.4).  

 

 
Equation 3.4 
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It should be noted that this simple model assumes all intermediates to be present only 

at low ‘steady state’ concentrations (including the free hydrazide, which can be 

confirmed from the NMR data), while the excess of water and acid catalyst are 

constant and consistent across all reactions. Furthermore, any difference in pKa values 

for the key protonated intermediates between the different reactions is not considered 

by this simple model. Finally, the concentration of all four fluorinated species 

(hydrazone starting material and product and aldehydes 15 and 16) can be used to run 

the fitting. 

Kinetic constants, determined for molecular compounds 23 and 24 treated under 

equimolar exchange conditions, showed very good reproducibility across three 

repetitions (Table 3.4, entries a–c), regardless of whether the exchange was started 

with 100% 23 (entry a), 100% 24 (entry c) or 23/24 1:9 (entry b). However, a slight 

increase of the reaction quotient (Q = k1 / k2) was observed as the amount of 24 at the 

start is increased (obtaining Q values of 7.85, 10.3 and 11.1 when starting with 23/24 

1:0, 1:9 and 0:1, respectively). By inspecting the 19F NMR spectra at long time points, 

no additional peaks, which would have suggested decomposition of one of the 

exchanging species, was observed. The reaction quotient Q calculated from the fitted 

rate constant is in close agreement with the reaction quotient estimated from the last 

three data points of the 19F NMR spectra at the equilibrium, Q(NMR) for each 

experiment. However, species decomposition cannot be excluded completely because 

some diagnostic peaks could be obscured by those corresponding to hydrazone 24 or 

aldehyde 16 since the 4-(trifluoromethyl)benzylidene region tends not to be as well-

resolved as the 4-fluorobenzylidene one. 
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Table 3.4 Equimolar hydrazone exchange with molecular compounds 23 and 24. Conditions: 
aldehyde 15 or 16, CF3CO2H, D2O/[D7]DMF 1:9, rt. 

 

Entry [Hy]a,b /  
mM 

[Ald]a /  
mM 

[TFA]a /  
mM k1 / mM–1s–1 k2 / mM–1s–1 k1 / k2

c Q(NMR)c,d 

a 3.61e 3.35 22.7 7.07 × 10–6 
(± 2%)f 

9.01 × 10–7 
(± 5%)f 

7.85 
(± 5%)g 

7.30 
(± 2%)h 

b 3.76i 3.96 19.2 8.02 × 10–6 
(± 6%)f 

7.80 × 10–7 
(± 4%)f 

10.3 
(± 7%)g 

9.05 
(± 5%)h 

c 3.42j 3.93 19.2 8.29 × 10–6 
(± 4%)f 

7.45 × 10–7 
(± 3%)f 

11.1 
(± 5%)g 

10.1 
(± 10%)h 

dk   Global 
fit 

6.94 × 10–6 
(± 1%)f 

7.82 × 10–7 
(± 2%)f 

8.88 
(± 3%)g 

8.82 
(± 11%)h 

a: Initial concentration measured with respect to an internal standard. 
b: [Hy] = [23] + [24]. 
c: Dimensionless values. 
d Determined using the average of the concentration values of the last three data points using the Equation 
Q(NMR) = ([24][15]) / ([23][16]). 
e: [Hy] = 23 (100%). 
f: Coefficient of variation. 
g: Error propagation calculated from coefficient of variation values of k1 and k2. 
h: ± 1 s.d. 
i: [Hy] = 23 (10%) + 24 (90%). 
j: [Hy] = 24 (100%). 
k: Global fit of the three data set (entries a–c) as determined by COPASI®. 
 

In a similar manner to the hydrolysis reactions (Sections 3.3.3.1–2), hydrazone 

exchange of AuNP-21 and AuNP-22e in the presence of an equimolar amount of, 16 

and 15 respectively, was carried out. The exchange reactions were monitored until no 

further changes in component concentration were observed. 

For both AuNP-21 and AuNP-22e, 19F NMR spectra (Sections 5.6.2.3–4) showed a 

gradual decrease in the intensity of the peaks corresponding to the NP-bound 

hydrazone starting material and the exchanging aldehyde. At the same time, a gradual 

increase in the intensity of the peaks corresponding to the displaced benzaldehyde and 

the NP-bound hydrazone product was observed.  

A clear kinetic inhibition is apparent for the NP-bound hydrazone exchange starting 

with AuNP-21 (Figure 3.11) when compared to 23 treated under identical conditions. 

Furthermore, a difference in reaction quotient is also now clearly observed, with the 
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NP-bound equilibrium favouring the 4-fluorobenzylidene hydrazone more than 

corresponding molecular system. However, such conclusions must be taken in the 

context of the variability observed for the equilibrium endpoint in the molecular control 

experiments. 

 

 
Figure 3.11 Kinetic profiles for equimolar hydrazone exchange from AuNP-21 to AuNP-22e. 

Conditions: 4-(trifluoromethyl)benzaldehyde 16 (1.0 Eq with respect to 21), CF3CO2H 
(5.0 Eq with respect to 21), D2O/[D7]DMF 1:9, rt. �: NP-bound-21. �: NP-bound-22. 
Concentration of aldehydes 15 and 16 were also measured but are omitted here for 
clarity. Dashed lines: time course simulation by COPASI® for equimolar exchange with 
molecular compounds 23 and 24 under identical conditions (Table 3.4, entry d:  
k1 = 6.94 × 10–6 mM–1s–1; k2 = 7.82 × 10–7 mM–1s–1). 

 

Rate constants for two independent equimolar exchange experiments, starting with 

AuNP-21, were fitted using the kinetic mechanism in Equation 3.4 using COPASI® 

(Table 3.5, entries a and b) and compared with those estimated from the global fitting 

of the experiments carried out with molecular compounds (Table 3.4, entry d). Both 

rate constants were found to be smaller than those corresponding to molecular 

compounds, confirming slower kinetics for NP-bound hydrazone ligands as already 

observed for the hydrolysis experiments. In order to verify the retardation observed for 

NP-bound 21, the inhibition factor (IF), defined as the ratio between the kinetic 

constant determined for NP-bound 21 (k(NP)) and that calculated for the molecular 

model (k(MOL)), can be calculated. Interestingly, the inhibitory effect is stronger in the 

forward reaction (IF1→2 = k1(NP) / k1(MOL) = 0.28 and 0.13 for entries a and b, respectively) 

than the back reaction (IF2→1 = k2(NP) / k2(MOL) = 0.91 and 0.47 for entries a and b, 

respectively).  
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Table 3.5 Equimolar hydrazone exchange from AuNP-21 to AuNP-22e. Conditions: aldehyde 16, 
CF3CO2H, D2O/[D7]DMF 1:9, rt. 

 

Entry [Hy]a /  
mM 

[Ald]a /  
mM 

[TFA]a /  
mM k1 / mM–1s–1 k2 / mM–1s–1 k1 / k2

b Q(NMR)b,c 

a 3.83 3.84 18.4 1.93 × 10–6 
(± 2%)d 

7.13 × 10–7 
(± 4%)d 

2.70 
(± 4%)e 

3.34 
(± 4%)f 

b 6.91 4.47 20.7 9.24 × 10–7 
(± 1%)d 

3.71 × 10–7 
(± 3%)d 

2.49 
(± 3%)e 

2.45 
(± 5%)f 

a: Initial concentration measured with respect to an internal standard. 
b: Dimensionless values. 
c: Determined using the average of the concentration values of the last three data points using the 
Equation Q(NMR) = ([AuNP-22][15]) / ([AuNP-21][16]). 
d: Coefficient of variation. 
e: Error propagation calculated from coefficient of variation values of k1 and k2. 
f: ± 1 s.d. 
 

Equimolar hydrazone exchange was investigated starting also from AuNP-22e. Due to 

the fact that AuNP-22e could only be prepared by hydrazone exchange from AuNP-21, 

material could only be obtained in relatively small quantities. However, two preliminary 

experiments were run from two independent batches (see Section 5.6.2.4 for stacked 
19F NMR spectra). Preliminary results (Figure 3.12) indicated a very slight suppression 

of the kinetics for NP-bound 22 (Table 3.6, entries a and b) compared to molecular 

experiments. 

A reaction endpoint that favoured NP-bound 22 more strongly than the corresponding 

molecular system was also observed. Differences in equilibrium endpoint are currently 

more difficult to rationalise as they appear to be confounded by significant run-to-run 

variability. There does however appear to be a suggestion that some proportion of 

starting hydrazones is not available to exchange. The source of variability in 

equilibrium endpoint for the molecular system must first be determined to fully 

understand this effect. Starting with AuNP-22e, it seems that equilibrium is not 

achieved under equimolar conditions. This was already observed for the molecular 

compounds (Table 3.4, entries a–c), showing that the reaction quotient increases as 

the amount of 4-(trifluoromethyl)benzylidene hydrazone 24 increases from 0% to 

100%. Interestingly, this effect is exacerbated on the NP surface (Table 3.6). As a 

result of this, the hydrazone exchange on the NP surface favours the  

4-fluorobenzylidene moiety more than the molecular experiment. These observations 

seem to be related to the specific experimental conditions used (equimolar exchange 
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at room temperature). In fact, results discussed in Section 3.2.1 indicate that under 

more forcing conditions (e.g. 40 equivalents of 15 at 50 °C) exchange of the NP-bound 

hydrazone 22 does proceed to higher extent. This suggests that either the population 

of ‘unexchangeable’ hydrazones is not irreversible or that the kinetic trap is a slow side 

reaction, not observed at higher temperatures. 

 
Table 3.6 Equimolar hydrazone exchange from AuNP-22e to AuNP-21. Conditions: aldehyde 15, 

CF3CO2H, D2O/[D7]DMF 1:9, rt. 

 

Entry [Hy]a /  
mM 

[Ald]a /  
mM 

[TFA]a /  
mM k1 / mM–1s–1 k2 / mM–1s–1 k1 / k2

b Keq(NMR)b,c 

a 1.97 1.89 8.47 1.88 × 10–5 
(± 5%)d 

6.44 × 10–7 
(± 3%)d 

29.2 
(± 6%)e 

16.2 
(± 3%)f 

b 3.18 3.83 19.7 6.78 × 10–6 
(± 4%)d 

4.41 × 10–7 
(± 2%)d 

15.4 
(± 4%)e 

14.7 
(± 6%)f 

a: Initial concentration measured with respect to an internal standard. 
b: Dimensionless values. 
c: Determined using the average of the concentration values of the last three data points using the 
Equation Q(NMR) = ([AuNP-22][15]) / ([AuNP-21][16]). 
d: Coefficient of variation. 
e: Error propagation calculated from coefficient of variation values of k1 and k2. 
f: ± 1 s.d. 
 

 
Figure 3.12 Kinetic profiles for equimolar hydrazone exchange from AuNP-22e to AuNP-21. 

Conditions: 4-(trifluoromethyl)benzaldehyde 15 (1.0 Eq with respect to 22), CF3CO2H 
(5.0 Eq with respect to 22), D2O/[D7]DMF 1:9, rt. �: NP-bound-21. �: NP-bound-22. 
Concentration of aldehydes 15 and 16 were also measured but are omitted here for 
clarity. Dashed lines: time course simulation by COPASI® for equimolar exchange with 
molecular compounds 23 and 24 under identical conditions (Table 3.4, entry d:  
k1 = 6.94 × 10–6 mM–1s–1; k2 = 7.82 × 10–7 mM–1s–1). 

Slower kinetics for the NP-bound reaction might be expected on the basis of simple 

steric arguments, yet presumably the relatively high surface curvature of the small NPs 
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employed here, together with the conformationally flexible tetraethylene glycol spacer, 

play a role in minimizing any intra-monolayer effects on reactivity so that the effects 

observed are relatively small. Indeed, even for potentially much more crowded 2D 

monolayers, dynamic covalent reactions have been shown to behave in a similar 

manner to their solution-based analogues,[194] while the kinetic inhibition for dynamic 

covalent thioester exchange on the surface of liposomes displayed similarly moderate 

inhibition.[195] It therefore appears that dynamic covalent hydrazone exchange may be 

transferred onto NP-bound monolayers without qualitatively affecting the behaviour of 

the equilibration process, yet there are significant quantitative differences. The 

potential for differential inhibition for exchange in each direction is interesting, and it is 

unclear whether intra-monolayer interactions or local concentration effects can 

influence the inhibition. The suggestion of subtle surface-bound effects raises intriguing 

questions as to how changes in nanoscale features and intra-monolayer interactions 

will affect the kinetics and thermodynamics for these processes. Deeper insight into 

such questions as how the NP-bound environment affects each step in hydrazone 

hydrolysis and re-formation, or the pKa values for key protonated intermediates in the 

NP-bound monolayer, will require detailed study of these processes and their 

constituent hydrazone hydrolysis/formation ‘half-reactions’. 

 

3.4 Comparison of dynamic covalent hydrazone 
exchange with monolayer ligand exchange 

 

Replacing the NP-stabilising surface species in a ‘ligand exchange’ process has long 

been established as a viable method for modifying the as-synthesised surface 

functionality of AuNPs (Chapter 1).[165,201] This process might also be considered as a 

dynamic covalent exchange of the Au–S bond that anchors the organic monolayer to 

the NP surface. 

To compare the dynamic covalent exchange process with an analogous ligand 

exchange process, AuNP-21 was treated with disulfide 222. Whereas the hydrazone 

exchange reaction occurs readily at room temperature in the presence of only one 

equivalent of aldehyde exchange unit (Figure 3.11), < 3% exchange was observed for 

the ligand exchange process under analogous conditions, even after an extended 

reaction time of 48 hours. Under heating, the ligand exchange process eventually 

proceeded to about 19% after 5 days. 

The two processes were then compared in the presence of 20 equivalents exchange 

species at 50 °C. A much slower rate and lower efficiency for the ligand exchange 
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process was again observed (Figure 3.13). The slow rate of ligand exchange and 

inability to approach complete exchange is in agreement with literature reports on 

similar systems.[165,202] 

 

 
Figure 3.13 Kinetic profiles for hydrazone exchange and disulfide exchange of AuNP-21. a) 

Hydrazone exchange: aldehyde 16 (20 Eq with respect to 21), CF3CO2H (5 Eq with 
respect to 21), D2O/DMF 1:9, 50 °C. �: NP-bound-21. �: displaced aldehyde 15. �: 
aldehyde 16. Concentration of NP-bound-22 was also quantified, but is omitted here for 
clarity. b) Disulfide exchange: disulfide 222 (10 Eq with respect to 21), D2O/DMF 1:9,  
50 °C. �: NP-bound-21. ▲: displaced ligand 21 (as thiol/disulfide). Concentrations of 
disulfide 222 and NP-bound-22 could not be independently measured because their 
corresponding 19F peaks show the same chemical shift in D2O/DMF 1:9. The combined 
peak showed constant concentration over time, as would be expected. Lines correspond 
to hydrazone exchange (see Figure 3.13A) under analogous experimental conditions. 

 

The two exchange processes occur via quite different mechanisms, making 

quantitative comparison of kinetics challenging. In addition, the mechanism of the 

ligand exchange is still under debate, and most probably corresponds to a complex 

and system dependent process that can not satisfactorily be described by simple 

kinetic models.[165] A crude but practically revealing comparison between the two 

processes is provided by the reaction half-life (Table 3.7), which is defined as the time 

taken to progress half-way to the equilibrium position. It should be noted that for a 

bimolecular process, this only allows comparison between reactions at the same 

starting concentration. With a starting concentration of 2.3 mM (in terms of ligand 21, 

Figure 3.13B), at 50 °C in the presence of 20 equivalents of disulfide 222 (in terms of 
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sulfur), ligand exchange proceeds to 63% exchange with a half-life of 17.9 h, compared 

to hydrazone exchange, which proceeds to 86% exchange with a half-life of 4.1 h in 

the presence of 20 equivalents aldehyde 16 (Figure 3.13A). 

 
Table 3.7 Comparison of rate and efficiency of hydrazone exchange and ligand exchange 

processes for AuNP-21. 

 Extent of exchange  
from AuNP-21 t½a / h 

Hydrazone exchange 
AuNP-21 + 16 86% 4.1 

Ligand exchange 
AuNP-21 + 222 

63% 17.9 

a: Estimated from 19F NMR by determination of reaction endpoint then interpolation between points closest 
to 50% of final conversion. All reaction carried out at starting concentration of AuNP-21 = 2.3 mM in 
D2O/DMF 1:9 at 50 °C. 
 

By exchanging simple molecular units at the periphery of the NP-stabilising monolayer 

using well-established reversible covalent reactions, DCC represents a mild and 

flexible approach to reversibly manipulating NP-bound functionality, with several 

advantages over replacing the entire ligand at the NP surface: 

 

• Dynamic covalent exchange can take place at significantly higher rates and 

under milder conditions (e.g. lower temperatures and/or lower equivalents of 

exchange units) than ligand exchange. In addition, dynamic covalent exchange 

exploits simple and readily accessible exchange units (e.g. simple aromatic 

aldehydes), whereas ligand exchange requires the multi-step synthesis of 

relatively complex surface-active ligands for each new exchange process. 

• Introducing large excesses of thiol exchange units leads to complex mixtures of 

high molecular weight thiols and disulfides, which must be purified away from 

ligand exchanged NPs. This is often a challenging and time-consuming 

process, as discussed in Chapter 2. 

• As demonstrated in Figure 3.3, the dynamic covalent exchange process may be 

readily and predictably employed to achieve mixed monolayers of a given 

composition. By comparison, the control of monolayer composition under ligand 

exchange is poorly understood.[165] Such a control may be system dependent or 

may involve kinetically trapped states. The rate and extent of the ligand 

exchange process can even depend on the NP batch age.[203] 
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• DCC does not involve disruption of the monolayer–NP linkage, preserving the 

NP colloidal stability during the exchange and reducing the risks of surface 

etching, reconstruction or NP decompositions.[165,204] 

• Typically, ligand exchange protocols take advantage of a designed increase in 

monolayer stability (e.g. by replacing weakly bound tetraalkyl ammonium 

bromide ligands or phosphine ligands by thiols,[184,205] or by replacing short-

chain alkyl thiols with longer chain alkyl thiols[206]). In such cases, the exchange 

process becomes effectively irreversible or a reduction in exchange efficiency 

may occur.[139] DCC is inherently reversible and can be used to switch surface 

functionality many times over (Figure 3.3). 

• As the dynamic covalent bonds are independent of the NP–molecule bonds, the 

dynamic covalent approach should be generalizable to virtually any monolayer-

stabilized NP system, including those for which ligand exchange has not been 

demonstrated or has been shown to lead to degradation of NP properties. 

 

3.5 Conclusions 
 

A post-synthetic approach for manipulating hydrazone-functionalised AuNPs exploiting 

dynamic covalent exchange has been demonstrated for the first time. 

The occurrence of hydrazone exchange in the NP-bound monolayer was monitored by 
19F NMR spectroscopy and confirmed by LDI-MS analysis. A pure sample of AuNP-21 

could undergo hydrazone exchange with an excess of aldehyde 16 under acidic 

conditions, obtaining a homogeneous monolayer of ligand 22 adsorbed on the NP 

surface, without any observed ligand displacement. The exchange was demonstrated 

to be reversible, since NP-bound 22 could undergo reverse exchange by using an 

excess of aldehyde 15 under identical exchange conditions. One of the potential 

applications of dynamic covalent chemistry performed in the NP-bound monolayer was 

here demonstrated. AuNP-22e could be obtained pure and with a homogeneous 

monolayer by hydrazone exchange, avoiding the partial reduction occurred when 

preparing AuNP-22a–d by a direct synthesis approach (see Chapter 2). 

Despite the broad resonances associated with NP-bound species, it was possible to 

quantitatively measure the concentration of NP-bound fluorinated ligands and to track 

in real time modification of the NP monolayer composition under hydrolysis and 

exchange conditions using 19F NMR spectroscopy. Observed data were compared with 

freely dissolved molecular analogues. Slower kinetics, for both hydrolysis and 

exchange experiments, were observed for NP-bound hydrazones. Under hydrolysis 
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conditions, the endpoint for reaction of NP-bound and unbound hydrazones is 

comparable within the accuracy of the current methods. On the contrary, small 

differences in equilibrium endpoint have been observed for the exchange reactions, 

suggesting that the 4-fluorobenzylidene moiety is favoured at the equilibrium on the NP 

surface more than analogous molecular experiments.  

By a direct comparison of dynamic covalent hydrazone exchange and Au–S ligand 

exchange, under analogous conditions, it was demonstrated that the former process is 

quicker and more efficient than the latter. 

Dynamic covalent exchange shows great promise for performing post-synthetic 

manipulations on ligand-functionalised NPs and furthermore provides insight about the 

molecular reactivity when confined to a NP-bound monolayer. By reversible 

modification of the functionality of NP-bound small molecules, DCC could become a 

powerful method for tuning a wide range of NP properties by modifying the properties 

of the NP-bound organic ligands and could also offer a promising approach for the 

covalent assembly of ligand-functionalised NPs. 
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4. Chapter 4: 
Exploiting hydrazone exchange 

for tuning nanoparticle 
properties 

 

This Chapter reports a simple but powerful strategy for the post-synthetic manipulation 

of gold nanoparticle (AuNP) properties by dynamic hydrazone exchange. A reversible 

switching of NP solvophilicity was achieved allowing colloidal stability in different 

solvents by simply choosing an appropriate aldehyde exchange unit. After exchange 

and purification, hydrazone-functionalised AuNPs are characterised by nuclear 

magnetic resonance (NMR) spectroscopy, laser desorption ionisation mass 

spectrometry (LDI-MS), UV-Vis and transmission electron microscopy (TEM).  

In addition, a solvent-dependent aggregation process, driven by non-covalent 

interactions, is monitored by dynamic light scattering (DLS) analysis by observing 

variations in the solvodynamic diameter. 

Hydrazone-functionalised AuNPs were also assembled with each other by means of a 

bifunctional aldehyde linker. Early stage experiments analysed by TEM displayed 

interesting NP superstructures with a dendritic-like organisation. 

Finally, further studies required for investigating the potential use of NP reversible 

solvophilicity switching and dynamic covalent assembly of hydrazone-functionalised 

AuNPs is reported. 

 

4.1 Solubility switching of hydrazone-functionalised 
gold nanoparticles 

 

Tuning NP solvent compatibility is often required in order to match a specific NP 

synthetic route with a specific end application.[207] For example, preparation of ligand-

functionalised metal NPs has seen a dramatic increase in recent years for applications 

in biology and medicine.[23] However, the currently available synthetic methods for the 

preparation of water-soluble NPs[33,34] often do not guarantee good reproducibility in 

terms of size and dispersity when compared to alternative methods for NP preparation 

in organic solvents.[40,45,46] Thus, developing strategies to change the NP solubility from 

organic to aqueous solvents, or vice versa, is an important challenge. 



Chapter 4 – Exploiting hydrazone exchange for tuning nanoparticle properties 

 105 

Both non-covalent and covalent approaches have been adopted in numerous 

strategies for achieving NP solubility switching. Non-covalent methods include host-

guest interactions (e.g. by using cyclodextrins[208–210] or calixarenes[211]) and strategies 

based on NP encapsulation with polymers[212,213] or dendrimers.[214–217] Alternatively, 

approaches based on electrostatic interactions, which allow modification of the charge 

density on the NP surface and result in phase transfer, are also available.[218–221] 

Covalent strategies for NP solubility switching are based on ligand exchange[222–224] or 

covalent post-synthetic modifications of the NP-bound organic monolayer, including 

amide coupling[225,226] or ester hydrolysis.[227] 

However, all the above mentioned examples reported NP phase transfer only in an 

irreversible fashion and, in many cases, require large and complex species (e.g. 

cyclodextrins, polymers, dendrimers etc.) to achieve the solubility change. One of the 

few examples of reversible transfer between aqueous and organic solvents exploits 

counterion exchange on ruthenium complexes adsorbed on the NP surface.[228] Other 

reversible strategies include NP functionalisation with a spiropyran polymer which 

undergoes reversible switching between hydrophobic and hydrophilic states upon UV-

Vis irradiation[229] or NPs functionalised with mercaptocarboranes, which exhibit redox-

dependent solubility properties.[230] 

From the cited examples it can be concluded that NP solubility switching may be 

achieved by modifying the solvophilicity properties of the NP-bound organic ligands, 

independently from the nature of the metal core. For this reason, post-synthetic 

modification of the NP-bound monolayer based on dynamic hydrazone exchange, as 

investigated in Chapter 3, could be a new and powerful approach for tuning NP 

solubility and indeed NP physicochemical properties more generally. 

As discussed in Chapter 2, solvent compatibility of AuNP-21 was limited to polar protic 

solvents like N,N-dimethylformamide (DMF, Scheme 4.2, top) and dimethyl sulfoxide 

(DMSO), or mixtures of these solvents with water up to a maximum of 10% v/v (Table 

2.4). To demonstrate the potential of dynamic covalent exchange for reversible 

solubility control under mild conditions, alkyl aldehyde 28 (Scheme 4.1) was designed 

in order to achieve improved NP solubility in hydrophobic solvents, while commercially 

available 2-formylbenzenesulfonic acid sodium salt 29 was employed to achieve 

solubility in polar solvents. 

By using these components, the reversible switching of NP solubility properties 

between three distinct states could therefore be explored (Scheme 4.2) 
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Scheme 4.1 Synthesis of aldehyde 28. a): K2CO3, KI, MeCN, 19 h, reflux, 84%. 

 

 
Scheme 4.2 Reversible switching of AuNP solvophilicity via hydrazone exchange. AuNP-21 to  

AuNP-30: 28, CF3CO2H, D2O/[D7]DMF 1:9, 1.5 h, 50 °C. AuNP-30 to AuNP-21: 15, 
CF3CO2H, D2O/[D7]DMF 1:99, 16 h, 50 °C, repeat × 1. AuNP-30 to AuNP-31: 29, 
CF3CO2H, D2O/[D8]THF 5:95, 1 h, 50 °C. AuNP-31 to AuNP-30: 28, CF3CO2H, 
D2O/[D8]THF 1:9, 1 h, 50 °C. AuNP-21 to AuNP-31: 29, CF3CO2H, D2O/[D7]DMF 1:9,  
16 h, 50 °C. AuNP-31 to AuNP-21: 15, CF3CO2H, D2O/[D7]DMF 1:9, 16 h, 50 °C. 
Solvents in the inset pictures: A = hexane, B = chloroform, C = tetrahydrofuran,  
D = methanol, E = DMF, F = water. 

 

4.1.1 Solubility switching between polar organic and apolar organic solvents 
 

AuNP-21, whose ligand concentration was estimated by 19F NMR spectroscopy with 

respect to an internal standard, was treated with an excess of aldehyde 28  

(20 equivalents) and CF3CO2H (5 equivalents) in 10% D2O/[D7]DMF at 50 °C (Scheme 

4.3). After one hour, all NPs had precipitated from the reaction mixture (Figure 4.1B). 

Under identical conditions, but in the absence of CF3CO2H, AuNP-21 proved to be 
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entirely stable, suggesting that NP precipitation was the result of dynamic hydrazone 

exchange with aldehyde 28. 

 

 
Scheme 4.3 Reversible switching between AuNP-21 and AuNP-30 via hydrazone exchange under 

acidic conditions. For details see Scheme 4.2. 

 
19F NMR analysis of the heterogeneous sample (Figure 4.1B) revealed that the broad 

peak corresponding to NP-bound ligand 21 had completely disappeared, as expected 

after NP precipitation. In addition, a peak corresponding to displaced  

4-fluorobenzaldehyde 15 was observed. Excluding peaks corresponding to CF3CO2H 

and the internal standard, no additional peaks were detected. The extent of reaction 

could be estimated by measuring the quantity of released 15 and was consistently 

determined to be ≥ 95%. 

 

 
Figure 4.1 19F NMR (D2O/[D7]DMF 1:9, 470.5 MHz, 295 K, D1: 22 s) of AuNP-21. a): Before 

addition of aldehyde 15 and CF3CO2H for the hydrazone exchange. b): 19F NMR of the 
supernatant solution after NP precipitation showing the presence of the exchanged  
4-fluorobenzaldehyde 15. The extent of the exchange was estimated to be ≥ 95%.  
IS: 1-Fluoro-3-nitrobenzene (4.95 mM). 
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Subsequently, the supernatant solution was discarded and the black solid recovered 

and purified by re-dispersing in methanol, followed by precipitation with hexane, 

sonication and centrifugation. This operation was repeated at least three times, 

monitoring the presence of unbound aldehydes 15 and 28 by thin layer 

chromatography (TLC) until the black solid was assessed to be free of molecular 

contaminants. 

The sample (AuNP-30) showed markedly different solubility properties to AuNP-21, 

exhibiting colloidal stability in organic solvents of intermediate polarity, such as 

chloroform and tetrahydrofuran (Figure 4.2A). 

 

 
Figure 4.2 Solvent compatibility from AuNP-30 to AuNP-21 via hydrazone. From a) to b) and from 

b) to c): 15 (20 Eq), CF3CO2H (5 Eq), D2O/[D7]DMF 1:99, overnight, 50 °C. Solvents in 
the inset pictures: A = hexane, B = chloroform, C = tetrahydrofuran, D = methanol,  
E = DMF, F = water. 

 

The 1H NMR spectrum of AuNP-30 showed a pattern of broad peaks, suggesting that 

all the organic species detected were strongly adsorbed on the NP surface (Figure 

4.3A). This was further confirmed by T2-filtered NMR (see Chapter 2 for details) in 

which only the peak of the non-deuterated solvent was detected.[61] Resonances 

corresponding to H-1 (NH) and H-2 (CH=) could be unambiguously assigned. 

A small amount of NP-bound ligand 21 was detected by 19F NMR spectroscopy (Figure 

4.3, inset). LDI-MS analysis (Figure 4.4) confirmed that NP-bound 30 had formed by 

hydrazone exchange by observation of the peaks corresponding to disulfide 302 and 

thiol 30H. In addition, LDI-MS analysis confirmed the presence of non-exchanged NP-

bound 21 because of the presence of small fragments related to thiol 21H and 

heterodisulfide 21!30.[76] 
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Figure 4.3 Characterisation of AuNP-30 by NMR spectroscopy. 1H (CDCl3, 500.1 MHz, 295 K). a): 

AuNP-30. b): T2-filtered spectrum (D21: 0.1 s). Inset: 19F NMR (CDCl3, 470.5 MHz,  
295 K) showing the presence of NP-bound 21 not exchanged (≤ 5%). 

 

 
Figure 4.4 LDI mass spectrum of AuNP-30. The ion corresponding to the disulfide of ligand 30 

(peak A, [302+Na]+: m/z 1566.30) undergoes a progressive loss of two sulfur atoms 
(peak B, [302–S+Na]+: m/z 1534.32; peak C, [302–2S+Na]+: m/z 1502.33). The ion 
corresponding to thiol 30H (peak D, [30H+Na]+: m/z 795.60) loses H2S (peak E,  
[30H–H2S+Na]+: m/z 761.60), followed by progressive loss of CH2 units. F): [21H+Na]+: 
m/z 643.32. G): [21H–H2S+Na]+: m/z 609.35. H): [21!30+Na]+: m/z 1413.73. I):  
[21!30–S+Na]+: m/z 1381.76. J): [21!30–2S+Na]+: m/z 1349.86. 

 

In order to demonstrate the reversibility of the process, AuNP-21 was also obtained via 

hydrazone exchange from AuNP-30. As a result of the increased hydrophobicity of 

AuNP-30, the proportion of water in the reaction solvent was reduced from 10% to  

1% v/v. This was necessary in order to provide sufficient colloidal stability to AuNP-30, 

which had precipitated in 10% D2O/[D7]DMF and, at the same time, ensure the 
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presence of water, which is crucial for the occurrence of the hydrazone exchange 

under acidic conditions (see Section 3.3.1). Due to the lack of a fluorine tag and the 

absence of suitably well-resolved signals in the 1H NMR spectrum of AuNP-30, a 

quantitative recovery of AuNP-30 prepared from AuNP-21 was assumed in estimating 

the hydrazone concentration in the sample. 

An excess of aldehyde 15 (20 equivalents) and CF3CO2H (5 equivalents) was therefore 

added and the mixture was heated at 50 °C overnight. Under these conditions, no NP 

precipitation was observed. Before purification, analysis by 19F NMR spectroscopy 

(Figure 4.5) revealed successful hydrazone exchange, as the resonance of NP-bound 

21 at around –110 ppm had increased in intensity (Figure 4.5B). Assuming the 

concentration of CF3CO2H to be constant throughout the exchange, integration of the 
19F peaks indicated a 4.47% decrease of the peak area corresponding to 15. No 

aldehyde oxidation occurred, as observed by integrating the peak corresponding to  

4-fluorobenzoic acid before and after the exchange. Approximately, 90% exchange 

was calculated under these conditions. 

 

 
Figure 4.5 19F NMR (D2O/[D7]DMF 1:99, 470.5 MHz, 295 K) for the hydrazone exchange from 

AuNP-30 to AuNP-21. a): AuNP-30 under hydrazone exchange after 1 h from the 
beginning of the experiment. b): AuNP-30 exchanged to AuNP-21 after 22 h from the 
beginning of the exchange before purification. *: 4-Fluorobenzoic acid. 

 

The sample prepared as described above (AuNP-210.9300.1) was no longer colloidally 

stable in chloroform but maintained stability in tetrahydrofuran (Figure 4.2B). These 

intermediate solubility properties between a homogeneous NP-bound monolayer of 21 

and 30 suggested therefore the presence of a mixed monolayer composed by both 

ligands 21 and 30. LDI-MS analysis confirmed the hypothesis, revealing the presence 



Chapter 4 – Exploiting hydrazone exchange for tuning nanoparticle properties 

 111 

of fragments corresponding to ligands 21 and 30 (Figure 4.6). It should be noted that 

the exchange from AuNP-30 to AuNP-21 had gone almost to completion (about 90%). 

However, it seems that even small amounts of ligand 30 in the NP-bound monolayer  

(≤ 10%) are able to determine NP solubility in solvents less polar than DMF. 

 

 
Figure 4.6 LDI-MS of the intermediate exchange product from AuNP-30 to AuNP-21. A): [212+Na]+: 

m/z 1261.60. B): [212–S+Na]+: m/z 1229.62. C): [212–2S+Na]+: m/z 1197.65. D): 
[21H+Na]+: m/z 643.29. E): [21H–H2S+Na]+: m/z 609.30. F): [302+Na]+: m/z 1565.96. G): 
[302–S+Na]+: m/z 1533.97. H): [302–2S+Na]+: m/z 1502.00. I): [30H+Na]+: m/z 795.47. 
J): [30H–H2S+Na]+: m/z 761.48. K): [21!30+Na]+: m/z 1413.17. L): [21!30–S+Na]+: m/z 
1381.80. M): [21!30–2S+Na]+: m/z 1349.83. A further round of exchange with aldehyde 
15 produced a spectrum identical to Figure 2.12 (see Section 5.8.1.3 for related NMR 
spectra). 

 

AuNP-210.9300.1 was then recovered, purified and subjected to a second cycle of 

hydrazone exchange under identical conditions. After precipitation and purification as 

before, the sample showed this time identical solubility properties (Figure 4.2C) to 

those shown by a sample of AuNP-21 prepared as discussed in Section 2.2.3. Analysis 

by 19F and 1H NMR spectroscopy (Section 5.8.1.3) was consistent with a homogenous 

NP-bound monolayer of ligand 21 and indistinguishable from NMR spectra 

corresponding to AuNP-21 prepared by direct synthesis (Section 2.3.3.2). 

Dynamic hydrazone exchange in the NP-bound monolayer therefore not only allows 

NP solubility switching between solvents of markedly different polarity, but can also be 

used to prepare AuNPs with mixed hydrazone monolayers, which correspondingly 

display solubility properties that are intermediate between the two extremes.  
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4.1.2 Solubility switching between apolar organic and aqueous solvents 
 

Initial attempts to prepare water-soluble NPs by treating AuNP-30 with water soluble 

aldehyde 29 were carried out using a biphasic water/chloroform system (1:9) to 

achieve both colloidal stability of hydrophobic AuNP-30 and complete solubilisation of 

hydrophilic aldehyde 29 (Scheme 4.4). 

 

 
Scheme 4.4 Reversible preparation and AuNP-30 and AuNP-31 via hydrazone exchange under 

acidic conditions. For details see Scheme 4.2. 

 

As before, the amount of NP-bound ligand 30 was approximated assuming a 

quantitative recovery from the exchange starting from AuNP-21 (Section 4.1.1). 

Aldehyde 29 (20 equivalents) and CF3CO2H (5 equivalents) were dissolved in water, 

added to AuNP-30 in chloroform, and the biphasic mixture was heated at 50 °C under 

vigorous stirring. Within ten minutes, full NP precipitation was observed (AuNP-30x31y). 

The black solid exhibited poor solubility in water and insufficient dissolved sample was 

obtained for NMR analysis in water or in other solvents. However, TEM analysis 

confirmed the presence of AuNPs in the aqueous phase (Figure 4.7). Interestingly, the 

AuNPs looked to be organised in small aggregates, with a mean diameter of  

14.7 ± 2.86 nm (19% dispersity). This could be the result of hydrophobic interactions 

between ligands 30 in order to minimise contact with water. Unfortunately, it was not 

possible to push the exchange to a higher extent under these conditions, probably 

because only partial hydrazone exchange occurred when NPs precipitated from the 

reaction mixture. 
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Figure 4.7 TEM micrographs (scale bars from left to right: 100, 20 and 10 nm) of AuNP-30x31y 

(incomplete exchange). Conditions: aldehyde 29 (20 Eq), CF3CO2H (5 Eq), H2O/CHCl3 
1:9, 50 °C. 

 

In order to improve control over the exchange process, a solvent mixture was sought 

that could balance the solubility of the hydrophobic AuNP-30 starting material with the 

poor solubility of aldehyde 29 in solvents other than water, while also maintaining the 

colloidal stability of the NPs as they become increasingly hydrophilic. A good 

compromise was found to be 5% water/tetrahydrofuran. By using this solvent system, 

hydrazone exchange from AuNP-30 was attempted again as before (20 equivalents of 

29 and 5 equivalents of CF3CO2H at 50 °C). NP precipitation occurred also under these 

conditions. However, NPs remained soluble for a longer period of time achieving, 

presumably, a higher extent of exchange. Before purification, 1H NMR analysis of the 

supernatant confirmed the presence of displaced hydrophobic aldehyde 28. The 

supernatant was then discarded, and the black solid was washed with 1% 

water/tetrahydrofuran to remove any NP-unbound species, obtaining AuNP-31 as a 

pure sample. AuNP-31 maintained solvent compatibility with DMF but it was no longer 

soluble in chloroform and tetrahydrofuran and showed full colloidal stability in water 

(Scheme 4.2). 

By comparing 1H NMR spectra of AuNP-30 (Figure 4.3A) and AuNP-31 (Figure 4.8A), 

it is possible to assess that the exchange is almost complete. The broad peaks 

corresponding to the m-alkoxy substituent of NP-bound 30 are barely visible after the 

exchange. In addition, AuNP-31 is free from any unbound species as confirmed by the 

T2-filter experiment (Figure 4.8B) where only the peak corresponding to the residual 

non-deuterated solvent is detected.[61] 
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Figure 4.8 1H NMR (D2O, 500.1 MHz, 295 K) analysis of AuNP-31. a): AuNP-31. b): T2-filtered 

spectrum (D21: 0.1 s). *: Residual non-deuterated THF. 

 

LDI-MS analysis further confirmed the hydrazone exchange. Mass spectra were 

obtained in both positive and negative ionisation mode (Figures 4.9–10). In positive 

mode, diagnostic peaks corresponding to thiol 31H and related fragment resulting from 

loss of H2S were detected. In addition, fragments corresponding to ligand 30 confirmed 

that the exchange was not complete although the NMR evidence (vide supra) suggests 

only a small proportion of NP-bound 30 remains. The negative ion mode spectrum 

(Figure 4.10) further confirmed the successful preparation of AuNP-31 by hydrazone 

exchange. Signals corresponding to the thiolate (peak A), or fragments formed by  

β-elimination from the disulfide (peak C) were observed together their corresponding 

loses of H2S (peaks B and D, respectively). This characteristic pattern in negative 

mode matrix assisted LDI analysis was previously reported for small disulfide 

molecules.[231] 
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Figure 4.9 LDI mass spectrum and fragmentation pattern for AuNP-31 (positive mode). The ion 

corresponding to thiol 31H (peak A, [31H+Na]+: m/z 727.27) loses H2S (peak B,  
[31H–H2S+Na]+: m/z 693.28). C): [30H+Na]+: m/z 795.49. D): [30H–H2S+Na]+: m/z 
761.50. 
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Figure 4.10 LDI mass spectrum and fragmentation pattern for AuNP-31 (negative mode). The ion 

corresponding to the thiolate (peak A, [31]–: m/z 703.28) loses H2S via α-elimination 
(peak B, [31–S]–: m/z 671.30). The disulfide of ligand 31 undergoes a rearrangement via 
β-elimination forming two fragments: peak C, [31–H2S]–: m/z 669.29, peak D, [31–H2]–: 
m/z 701.26.[231] *: Progressive loss of CH2 units from fragment with m/z 669.29 (peak C). 

 

The reversibility of the hydrazone exchange was confirmed by treating AuNP-31 with 

aldehyde 28 (20 equivalents) and CF3CO2H (5 equivalents) in 10% D2O/[D8]THF at  

50 °C. After 20 minutes, partial NP precipitation was observed. The sample was kept at 
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50 °C for an additional 40 minutes after which all NP material had precipitated. The 

crude black material showed identical solubility properties and LDI-MS fragmentation 

pattern to AuNP-30 prepared from AuNP-21 (see Section 4.1.1). 

 

4.1.3 Solubility switching between polar organic and aqueous solvents 
 

Reversible hydrazone exchange between AuNP-21 and AuNP-31 (Scheme 4.5) was 

also investigated to demonstrate that each NP system (AuNP-21, AuNP-30 and  

AuNP-31) could be obtained independently from either one of the other two NP 

systems (Scheme 4.2). 

 

 
Scheme 4.5 Reversible preparation of AuNP-21 and AuNP-31 via hydrazone exchange under acidic 

conditions. For details see Scheme 4.2. 

 

An excess of aldehyde 29 (20 equivalents) and CF3CO2H (5 equivalents) was added to 

AuNP-21 dissolved in 10% D2O/DMF. On heating to 50 °C, no NP precipitation was 

observed even after 2 days under these conditions. 1H NMR analysis of the crude 

reaction mixture revealed the presence of displaced aldehyde 15 and, by integration of 

the 19F peaks corresponding to 15 and NP-bound 21, the extent of hydrolysis was 

estimated (as previously shown for AuNP-30, Figure 4.1) and found to be 76% after  

18 h from CF3CO2H addition. No further aldehyde 15 was released after 42 h, thus 

equilibrium achievement was confirmed. NP precipitation was induced by addition of 

diethyl ether and the recovered black material was then purified. 

Despite presumably the presence of up to 24% ligand 21 within the monolayer, the 

resulting NPs showed identical solvent compatibility to AuNP-31 prepared starting from 

AuNP-30. 19F NMR analysis confirmed the presence of non-exchanged NP-bound 

ligand 21 (Figure 5.30, inset), as did LDI-MS, which detected fragments related to both 

ligands 21H and 31H together with heterodisulfide 21!31 (Figure 5.31). 
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The reversibility of the exchange was assessed by treating AuNP-210.24310.76 with an 

excess of aldehyde 15 (20 equivalents) and CF3CO2H (5 equivalents) in 10% 

D2O/[D7]DMF at 50 °C overnight. Analysis by 19F NMR spectroscopy before any 

purification confirmed an increase in intensity of the broad peak corresponding to NP-

bound ligand 21. After NP precipitation by diethyl ether addition and purification with a 

mixture of DMF and diethyl ether, the recovered black material was no longer soluble 

in water and was only soluble in DMF. Although LDI-MS analysis (Figure 5.35) 

indicated the presence of some residual NP-bound ligand 31 alongside ligand 21, the 

recovered material was no longer soluble in water and was only soluble in DMF, 

identical to the initial sample of AuNP-21. 

 

4.1.4 Non-covalent aggregation of AuNP-30 
 

Of all the samples prepared by hydrazone exchange with simple aldehydes 15, 28 and 

29, AuNP-30 showed colloidal stability in the widest range of solvents (including 

chloroform, tetrahydrofuran and DMF). It was also observed that by varying the 

composition of the NP-bound monolayer starting from 100% NP-bound ligand 30, 

AuNPs with intermediate solubility properties could be obtained (Figure 4.2B). 

Furthermore, the observation of small aggregates on TEM analysis of AuNPs 

functionalised with a mixed monolayer composed of ligands 30 and 31 (Figure 4.7) is 

suggestive of a non-covalent NP assembly process driven by hydrophobic effects. In 

order to further explore the balance of solubilising and aggregative forces for NPs 

bearing hydrophobic ligands, colloidal dispersions of pure AuNP-30 in a variety of 

solvents were analysed by DLS by which variations of the solvodynamic diameter 

could be indicative of NP aggregation processes.[53] 

AuNP-30, prepared via hydrazone exchange starting from AuNP-21 (Section 4.1.1), 

was re-dissolved in chloroform. The dispersion was sonicated and gently centrifuged to 

physically remove any non-dissolved NP aggregates. In order to exclude from the 

dispersion any irreversibly formed aggregates larger than 100 nm, the solution was 

passed through a 100 nm filter and divided into several aliquots. Samples for DLS 

analysis were then prepared by evaporating the solvent under vacuum, followed by re-

dispersion of the residue to a final concentration of about 0.3 mg mL–1 in 100% 

chloroform, 100% tetrahydrofuran and in several mixtures of the two solvents  

(Figure 4.11A). In a separate experiment, the extent of aggregation was also 

investigated in tetrahydrofuran mixtures with increasing amounts of water (Figure 

4.11B). 
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Figure 4.11 Variation of the solvodynamic diameter of AuNP-30 monitored by dynamic light 

scattering. a): AuNP-30 dissolved in CHCl3/THF mixtures. b): AuNP-30 dissolved in THF 
with increasing amount of water. Error bars: ± 1 s.d. of the mean diameter estimated 
from at least six independent measurements. 

 

As evidenced in Figure 4.11A, the measured solvodynamic diameter in 100% 

chloroform (7.52 ± 1.09 nm), corresponding approximately to the diameter of one NP, 

was largely smaller if compared to that measured in 100% tetrahydrofuran  

(56.9 ± 4.62 nm). For increasing volume fractions of tetrahydrofuran (φTHF), two 

discontinuous increases of the solvodynamic diameter were observed, the first for φTHF 

from 0 to 0.15 and the second for φTHF from 0.4 to 0.5. A maximum diameter was 

observed for φTHF = 0.5 (70.2 ± 3.31 nm). The increase of the solvodynamic diameter 

suggested NP aggregation as the polarity of the mixture increases. For φTHF from 0.5 to 

0.6, DLS analysis indicated a small decrease of the solvodynamic diameter. For  

0.6 ≤ φTHF ≤ 1.0, no further changes were observed, within the experimental error. 

The maximum at φTHF = 0.5 may be indicative of the presence of solvent molecules 

included in the NP aggregates. As the polarity of the solvent increases (φTHF > 0.5), the 

m-alkoxy chains of NP-bound 30 are induced to minimise their interaction with the 

solvent. The result is a solvent displacement from the NP aggregates and subsequent 

slight decrease of the measured solvodynamic diameter of the NP aggregate, as a 

result the contraction of the average interparticle distance within the assembly. 

TEM analysis (Figure 4.12) further confirmed a different degree of NP aggregation 

depending on the solvent mixture. In order to minimise the effect of a slow solvent 

evaporation during the preparation of TEM samples, the TEM grid was directly dipped 

into the NP dispersion and immediately dried under high vacuum. When the TEM 

sample was prepared from a 100% chloroform dispersion, NPs looked to be quite well 

distributed on the grid (Figure 4.12, left). On the other hand, when the sample was 
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prepared from 1:1 chloroform/tetrahydrofuran mixture, TEM pictures showed that NPs 

were organised in large aggregates with diameter ≥ 50 nm (Figure 4.12, right). 

 
Figure 4.12 Representative TEM micrographs of AuNP-30 (scale bar 100 nm). Samples were 

prepared by dipping the TEM grid in the NP dispersion followed by solvent evaporation 
under high vacuum. Solvent systems: CHCl3 (left), CHCl3/THF 1:1 (right). For additional 
TEM micrographs, see Section 5.9. 

 

In tetrahydrofuran/water mixtures (Figure 4.11B), no further aggregation of AuNP-30 

occurred from 0% to 7% water v/v. On the contrary, a sharp increase of the 

solvodynamic diameter (up to about 90 nm) was observed for higher amounts of water 

(10% and 13% v/v). For higher percentages of water, AuNP-30 was not colloidally 

stable and NP precipitation occurred. 

The preliminary results, which have to be however repeated with a more homogeneous 

sample of AuNP-30, interestingly show that the aggregation process appears to be 

self-limiting within the range of solvents employed, producing NP aggregates of well 

defined size, within the boundaries of the experimental error. 

 

4.1.5 Nanoparticle solubility switching: conclusions and perspectives 
 

Reversible AuNP solubility switching based on dynamic hydrazone exchange within the 

NP-bound monolayer has been successfully achieved, providing undoubted 

advantages of this strategy over other approaches. 



Chapter 4 – Exploiting hydrazone exchange for tuning nanoparticle properties 

 121 

The conditions employed for the hydrazone exchange are mild and the NP switching 

was achieved by using very simple exchange units. In addition, NP solubility switching 

driven by hydrazone exchange within the NP-bound monolayer allows the nanoscale 

features such as NP size to be maintained unlike, for example, other approaches (e.g. 

polymer encapsulation). NP solubility switching can be successfully achieved between 

three distinct states where ligand-functionalised NPs are indefinitely stable over time. 

Clearly, in some cases hydrazone exchange did not reach completion before NP 

precipitation quenched the reaction. Although further optimisation of the reaction 

solvent composition, or subjecting part-exchanged material to a further round of 

exchange, could be used to attain complete exchange in these cases, this was not 

necessary to achieve a radical change in AuNP solvent compatibility. On the other 

hand, the results obtained on exchanging from AuNP-30 to AuNP-21 indicate that, at 

appropriate proportions, mixed monolayers can give access to AuNP samples with 

solubility properties that are intermediate between the extremes defined by the two 

homoligand samples. The ability to reversibly and repeatedly switch between distinct 

states, and more subtly tune monolayer composition across a continuum of 

compositions, suggests a powerful and flexible approach for controlling a variety of NP 

properties that are governed by the surface monolayer molecular structure. 

Further investigation will be required to establish the precise relationship between the 

composition of the NP-bound monolayer and any given property such as solubility, and 

the appropriate conditions for achieving a given composition by design. By this way, it 

could be investigated whether the solvent switching occurs gradually or sharply by 

achievement of a ‘critical composition’ of the mixed monolayer.  

 

4.2 Assembly of AuNP-21 via hydrazone exchange 
 

Reversible AuNP self-assembly driven by non-covalent oligonucleotide hybridisation 

has been successfully developed for preparing highly ordered functionalised 

nanomaterials.[25,85] As discussed in Chapter 3 and further confirmed in Section 4.1, 

post-synthetic covalent modification of ligand-functionalised AuNPs via hydrazone 

exchange has been successfully demonstrated. It was then reasonable to exploit 

dynamic hydrazone covalent exchange for assembling NPs with each other, exploiting 

the reversibility and the stability of hydrazone covalent bonds. Covalent NP assembly 

via hydrazone exchange has also the potentiality to be performed in a wider range of 

experimental conditions when compared to oligonucleotide-based NP assembly, which 
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is efficient only in aqueous solutions within small window of temperature and salt 

concentration. 

Preliminary investigations using AuNP-21 and commercially available bifunctional 

terephthalaldehyde (Figure 4.13) were carried out. AuNP-21 was dissolved in 10% 

D2O/DMF and the ligand concentration was measured by 19F NMR spectroscopy with 

respect to an internal standard. The dispersion was further diluted reaching a final 

concentration of about 20 µM in terms of ligand 21. The so obtained sample was 

analysed by TEM (Figure 4.14A), observing that NPs were uniformly distributed on the 

grid. This starting NP dispersion was divided into aliquots to which different amounts of 

bifunctional aldehyde (0.1, 1 and 5 equivalents with respect to 21) and CF3CO2H  

(5 equivalents) were added, working at room temperature. In addition, two control 

experiments were performed. In the first, AuNP-21 was treated with terephthalaldehyde 

(0.1 equivalents) without adding CF3CO2H while, in the second, only CF3CO2H  

(5 equivalents) was added to AuNP-21. After one day, a small amount of precipitate 

was observed only in the vials where both CF3CO2H and aldehyde were present. After 

21 days, complete precipitation was observed in the vial containing 5 equivalents of 

terephthalaldehyde (Figure 4.13C), while in the vials with fewer equivalents of the 

linker (Figure 4.13A–B) NP precipitation was not complete and the dispersion was still 

deeply red-coloured. On the contrary, no NP precipitation was observed in the two vials 

where only aldehyde or CF3CO2H were added (Figure 4.13D–E).  
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Figure 4.13 Pictures of aggregation experiments of AuNP-21 with terephthalaldehyde taken after  

21 days. Conditions: CF3CO2H (5 Eq with respect to 21), H2O/DMF 1:9, rt. Aldehyde: a) 
0.5 Eq, b) 1 Eq, c) 5 Eq (with respect to 21). d): same conditions of a) without CF3CO2H. 
e): same conditions of a), b) and c) without aldehyde. 

 

Analysis by TEM was then carried out (Figure 4.14B–D). For vials where NP 

precipitation was not complete, the TEM sample was prepared by simply dipping the 

TEM grid into the dispersion followed by quick evaporation under high vacuum to avoid 

misleading observations due to the water/DMF slow evaporation process. On the 

contrary the vial shown in Figure 4.13C was extensively sonicated in order to re-

disperse the insoluble black material and the preparation of the TEM grid was done in 

the same way. As shown in Figure 4.14 (additional TEM pictures are included in 

Section 5.10), for the samples where only partial precipitation occurred, even the 

supernatant showed presence of aggregates after 21 days (Figure 4.14B–C). In both 

experiments where 0.1 or 1 equivalents of aldehyde were employed, NPs are 

organised in relatively small aggregates (< 100 nm) with a good colloidal stability in 

H2O/DMF 1:9. TEM analysis of the dispersion after full NP precipitation (Figure 4.14D) 

shows an interesting NP organisation in dendritic-like superstructures, which is 

consistent over the whole TEM grid (see Section 5.10 for additional TEM images). A 

further characterisation of these insoluble NP aggregates was performed by using 

scanning tunnelling microscopy, which is able to provide information about the sample 

surface (Figure 4.14E),[232] and suggests a porous architecture. TEM analysis of the 
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two control experiments (Section 5.10) gave further confirmation that the so described 

NP superstructures were formed as a result of hydrazone exchange. In the absence of 

bifunctional aldehyde or CF3CO2H, TEM analysis reveals that the NPs remain well-

separated and evenly distributed on the TEM grid, similarly to those shown in Figure 

4.14A. A very few small amorphous aggregates were also observed as, very likely, the 

result of solvent slow evaporation processes during the preparation of the TEM grid. 

 

 
Figure 4.14 Aggregation of AuNP-21 with terephthalaldehyde via hydrazone exchange. Conditions: 

CF3CO2H (5 Eq in terms of ligand 21), H2O/DMF 1:9. TEM micrographs before (a) and 
after CF3CO2H addition (21 days, b, c, d) a): AuNP-21 before hydrazone exchange 
(scale bar 20 nm). b): AuNP-21 with 0.5 Eq of aldehyde (scale bar 100 nm). c): AuNP-21 
with 1.0 Eq of aldehyde (scale bar 100 nm). d): AuNP-21 with 5.0 Eq of aldehyde (scale 
bar 100 nm). e): Scanning tunnelling microscopy analysis of the insoluble NP 
aggregates (scale bar 100 nm), suggesting a porous architecture. For additional images, 
see Section 5.10. 

 

4.2.1 Nanoparticle assembly by dynamic hydrazone chemistry: perspectives 
 

The above described observations provide preliminary evidence that NP self-assembly 

may be achieved by dynamic covalent hydrazone exchange under acidic conditions. 

For this purpose, the assembly process should be more closely monitored by UV-Vis 
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spectroscopy and DLS analysis. These techniques should be able to detect 

modifications of the NP dispersion, as the exchange proceeds, by observing shifts in 

the position of the surface plasmon resonance band or decrease in its intensity on NP 

precipitation (for UV-Vis, see Section 1.2.2) or an increase of the solvodynamic 

diameter over time (for DLS, see Sections 1.2.3 and 4.1.4). In addition, it would be 

interesting to investigate possible modifications of the NP superstructure by modifying 

experimental conditions such as solvent and temperature in order to keep the growing 

aggregates stable in solution for a longer time and to assess whether greater order in 

the superstructure can be achieved. Alternatively, the number of NP-bound active 

ligands that undergo hydrazone exchange could be reduced. This may be studied by 

preparing heterogeneously-functionalised NPs with an inert ligand (e.g.  

1-dodecanethiol). 

A logical and unexplored route for connecting NPs to each other via hydrazone 

exchange would be to employ ligand functionalised AuNPs which are complementary 

to each other (Figure 4.15) in order to obtain ‘colloidal molecules’ where NPs can be 

considered like atoms connected by the organic ligands which work as bonds. 

 

 
Figure 4.15 Aggregation of complementary ligand-functionalised AuNPs via hydrazone exchange. 

 

As discussed in Chapters 3 and 4, the NP-bound monolayer can be efficiently and 

reversibly modified employing small aldehyde units via hydrazone exchange. Ideally, 

the same concept could be used by using aldehyde-functionalised NPs (e.g. NP-32) 

where the aldehyde group is now at the end of the thiol ligand adsorbed on the NP 
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surface. The aldehyde group is sensitive to reduction, so its insertion on the NP-bound 

ligand might be problematic in terms of compatibility with the available methods for 

preparing metal NPs under reducing conditions.[40,45,46] In addition, even in the case of 

a successful preparation of aldehyde-functionalised AuNPs, their stability over time 

must be assessed because the aldehyde group could undergo oxidation. Ensuring 

aldehyde stability is known to represent a particular challenge in the presence of 

AuNPs which can act as efficient redox catalysts for aerobic oxidations.[233–236] One 

solution could be the synthesis of a ligand where the aldehyde is protected as 

hydrazone. This would overcome the possible issues mentioned before and provide a 

new class of hydrazone-functionalised NPs (see Figure 4.15, dashed box). Early 

investigations on this new class of hydrazone ligands have revealed that such 

hydrazone moieties are stable under reducing conditions suggesting they can be 

effectively used in direct NP synthesis methods (see Sections 1.2.1.3 and 2.3.3).[45,46] 

Once this new class of hydrazone-functionalised AuNPs becomes available, it will be 

possible not only to attempt the preparation of aggregates with complementary NPs 

(Figure 4.15) but also to widen the knowledge on the hydrazone exchange performed 

within the NP-bound monolayer. In fact, such ligand-functionalised AuNPs would 

undergo hydrazone exchange with small hydrazide exchange units, allowing the study 

of the exchange mechanism not only in acidic conditions but also at neutral pH by 

using nucleophilic catalysts (see Section 1.5.1).[117–123] 
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5. General conclusion 
 

This Thesis reports, for the first time, investigations on the dynamic covalent reactivity 

of organic ligands immobilised as a monolayer adsorbed on the surface of gold 

nanoparticles (AuNPs). 

Two classes of ligands have been prepared for NP functionalisation: N-acyl and  

N-aroyl hydrazones. The choice of the strategy for NP functionalisation (i.e. ligand 

exchange or direct synthesis) is strictly connected to the relative stability of the 

hydrazone moiety under the NP synthetic conditions. N-Acyl hydrazone ligands were 

adsorbed on pre-synthetized AuNPs stabilised with a weakly bound temporary ligand. 

On the other hand, a synthetic method has been developed and optimised for the 

preparation of N-aroyl hydrazone-functionalised AuNPs with reproducible size and 

dispersity by direct synthesis. In addition, the direct synthesis approach, compared to 

ligand exchange, provided undoubtedly advantages in terms of NP purification from by-

products. 

A range of analytical techniques, including 1H and 19F nuclear magnetic resonance 

(NMR) spectroscopy, transmission electron microscopy (TEM) and laser desorption 

mass spectrometry, has been employed to confirm that N-aroyl hydrazone-

functionalised AuNPs can be prepared with a high degree of purity from any unbound 

species with reproducible size and low dispersity. This is an essential requirement in 

order to establish full characterisation of the NP-bound molecular structure, in a similar 

manner to molecular systems, and to assess that the integrity of the hydrazone ligand 

is preserved during the NP synthesis. Further investigations by TEM revealed that the 

mean size of functionalised AuNPs prepared by direct synthesis is affected by the 

nature of the ligand and even subtle changes in the ligand structure can result in non-

negligible variations of the NP size distribution. 

Using N-aroyl hydrazone-functionalized AuNPs, dynamic covalent exchange of the 

surface-bound hydrazones has been demonstrated and characterised. The exchange 

has been achieved by employing small aldehydes as exchange species under mild 

acid-catalysed conditions. This novel strategy for the manipulation of ligand-

functionalised NPs uniquely combines the reversibility of a thermodynamically 

controlled process with the stability of covalent bonds. A variety of analytical 

techniques confirmed that the exchange involves transformation of the NP-bound 

monolayer while the integrity of the metal core is preserved. By employing 19F NMR 

spectroscopy, the reactivity of the NP-bound hydrazone has been quantitatively probed 
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and the variations in the concentration of the NP-bound and unbound species involved 

in the hydrolysis and exchange processes were tracked in real time. This allowed the 

kinetic study of the monolayer reactivity which could be fitted to simple models for 

hydrazone hydrolysis and exchange. A comparison with structurally similar molecular 

compounds under analogous conditions revealed slower kinetics when hydrazone 

molecules are immobilised in a monolayer for both hydrazone hydrolysis and 

exchange. Further investigations confirmed that the optimised dynamic exchange 

approach is simple to perform and is more efficient than analogous strategies involving 

manipulations of the NP-bound monolayer based on ligand exchange. 

The investigation on the reactivity of the hydrazone monolayer can be extended in the 

future to explore the occurrence of the dynamic exchange under neutral conditions (i.e. 

by means of a nucleophilic catalyst). In addition, the investigation protocols developed 

in this Thesis can be opportunely modified in order to study the reactivity of other 

dynamic bonds (e.g. boronic esters and acetals) when incorporated in a NP-bound 

monolayer and, potentially, further extended to other types of functionalised NPs. 

By reversible modification of the functionality of NP-bound small molecules, DCC could 

become a powerful strategy for tuning those NP properties that are dependent on the 

way in which the NP-bound monolayer interacts with the surrounding environment. 

Early stage qualitative studies involved the colloidal stability of N-aroyl hydrazone-

functionalised AuNPs in several solvents. By choosing an appropriate aldehyde as 

exchange unit, it has been demonstrated that the solvophilicity of the monolayer, and 

hence of the functionalised NPs, can be modified as the result of dynamic hydrazone 

exchange under mild conditions. The exchange process was confirmed to be reversible 

and NP solubility switching could be successfully achieved between three distinct 

states where hydrazone-functionalised NPs are indefinitely stable over time. More 

subtle changes in NP colloidal behaviour on dynamic covalent exchange were also 

observed, such as the formation of colloidally stable solvent-sensitive aggregates, 

which were detected by dynamic light scattering analysis. 

Further investigations revealed that hydrazone exchange can be used to provide NPs 

functionalised with a mixed monolayer, which results in intermediate solubility 

properties between the extremes produced by homogeneous monolayers of the two 

components. The ideal goal would be the possibility to predict the NP solubility 

properties depending on the composition of the NP-bound monolayer. This dynamic, 

reversible approach could be a promising strategy in order to develop powerful and 

scalable methods for controlling a variety of NP properties that are governed by the 

surface monolayer molecular structure. Investigations to establish the precise 
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relationship between the monolayer composition and the NP solubility properties are 

currently in progress. 

Finally, it has been shown that dynamic hydrazone exchange is a very promising 

candidate for achieving NP assemblies under thermodynamic control. Preliminary 

investigations revealed that hydrazone-functionalised NPs aggregate over time to form 

‘dendritic-like’ structures in the presence of a bifunctional aldehyde linker under acidic 

conditions. Control experiments suggest that these structures are the result of 

hydrazone exchange between the ligand-functionalised NPs and the linker. However, 

further investigations are certainly required in order to achieve NP assemblies in a 

controlled and predictable fashion. Yet, understanding the factors governing these 

assemblies in order to potentially exhibit reversibility and adaptability are intriguing 

challenges to be addressed. 

Performing dynamic covalent chemistry within the NP-bound monolayer and, 

moreover, monitoring in real-time the monolayer reactivity is indeed a promising new 

strategy which can, potentially, start to fill the gap for a detailed comprehension of the 

processes occurring at the nanoscale. However, such an approach is still challenging 

and further investigations are certainly required in order to achieve full understanding 

and, potentially, predict the reactivity of a NP-bound monolayer. In addition, early stage 

studies on the post-synthetic modification of NP properties and self-assembly could 

provide, in the future, new tools for the development of bottom-up synthetic strategies 

for the preparation of an entire new class of nanomaterials which can potentially have 

countless applications in many fields including optics, electronics, catalysis and 

medicine. 
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5. Chapter 5: 
Experimental and synthetic 

procedures 
 

5.1 General experimental procedures 
 

Unless stated otherwise, all reagents were purchased from commercial sources and 

used without further purification. Dry solvents were obtained by means of a MBBRAUN 

MB SPS-800TM. Column chromatography was carried out using Geduran® Si60  

(40-63 µm, Merck, Germany) as the stationary phase, and thin-layer chromatography 

(TLC) was performed on pre-coated silica gel plates (0.25 mm thick, 60F254, Merck, 

Germany) and observed under UV light. AuNP micrographs were obtained using a 

JEM 2010 TEM on samples prepared by deposition of one drop of nanoparticle 

suspension on Holey Carbon Films on 300 mesh Cu grids (Agar Scientific®). Scanning 

tunnelling microscopy analysis was performed by Mr Ross Blackley. UV-Vis 

spectroscopy was performed using a Thermo Scientific Evolution Array UV-Visible 

Spectrophotometer. 1H, 13C, 19F and 31P NMR spectra were recorded on Bruker AV 

300, 400 and 500 instruments, at a constant temperature of 25 °C. 1H and 13C chemical 

shifts are reported in parts per million (ppm) from high to low field and referenced to the 

literature values for chemical shifts of residual non-deuterated solvent, with respect to 

tetramethylsilane.[237] 19F NMR chemical shifts are referenced with respect to CFCl3 

(0.00 ppm) using an internal standard as reported. 31P NMR chemical shifts are 

referenced to PPh3 (–6.00 ppm) as external standard. Standard abbreviations 

indicating multiplicity are used as follows: bs (broad singlet), d (doublet), dd (doublet of 

doublets), m (multiplet), q (quartet), s (singlet), t (triplet), J (coupling constant). 

Quantitative NMR experiments were run with a pulse delay time ≥ 5×T1 for the slowest 

relaxing signal to be observed. Relaxation times for all quantified species are listed in 

Section 5.6.1. All melting points were determined using a Stuart SMP30 Melting Point 

Apparatus.  

Laser desorption ionization mass spectrometry (LDI-MS) was performed by applying a 

NP solution (0.5 µL) to a MALDI target followed by air drying. The spectrum was then 

acquired using a 4800 MALDI TOF/TOF Analyser (ABSciex, Foster City, CA) equipped 

with a Nd:YAG 355 nm laser and calibrated using a mixture of peptides. Samples were 
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analysed in positive and negative MS mode over the appropriate m/z range, by 

averaging 1000 laser spots. On-NP LDI-MS measurements were performed by Dr 

Catherine Botting and Dr Sally Shirran. DLS measurements were performed on a 

Malvern Zetasizer µV instrument. As a first approximation, viscosity, refractive index 

and dielectric constant values for binary mixtures were calculated according to 

equations reported in the literature.[238–240] 

 

5.2 Synthesis of organic compounds 
 
Methyl 11-mercaptoundecanoate (1)[141] 
 

 
 

11-Mercaptoundecanoic acid (5.01 g, 22.9 mmol) was dissolved in MeOH (100 mL) 

and concentrated H2SO4 (5 mL) was added. The reaction mixture was refluxed for 3 h 

and monitored by TLC. The solvent was then removed under reduced pressure, H2O 

(50 mL) was added and the aqueous layer was extracted with CH2Cl2 (3 × 50 mL). The 

combined organic layers were dried over MgSO4 and the solvent was evaporated 

under reduced pressure to afford ester 1 (5.38 g, 99%) as a yellow oil.  
1H NMR (400.1 MHz, CDCl3): δ 1.21–1.41 (m, 12H, 6 × CH2), 1.30–1.34 (t, J = 7.5 Hz, 

1H, SH), 1.55–1.65 (m, 4H, 2 × CH2), 2.25–2.32 (t, J = 8.0 Hz, 2H, CH2CO), 2.47–2.55 

(q, J = 7.5 Hz, 2H, CH2S), 3.70 (s, 3H, OMe) ppm. 
13C NMR (125.8 MHz, CDCl3): δ 25.4, 25.7, 29.1, 29.8, 29.9, 30.0, 30.1, 30.2, 34.8, 

34.9, 52.2, 175.1 ppm. 

 

Methyl 11-mercaptoundecanoate hydrazide (2)[142] 

 

 
 

Hydrazine monohydrate (10.6 mL, 219 mmol) and methyl ester 1 (5.09 g, 21.9 mmol) 

were dissolved in MeOH (50 mL). The reaction mixture was refluxed for 3 h. The 

solvent was then removed under reduced pressure, the crude product was dissolved in 

H2O (50 mL) and extracted with CH2Cl2 (4 × 30 mL). The combined organic layers were 

then washed with saturated aqueous NH4Cl solution, dried with MgSO4, filtered and 
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concentrated at reduced pressure to afford hydrazide 2 (4.06 g, 80%) as white solid. 

Mp: 94–95 °C. 
1H NMR (400.1 MHz, CDCl3): δ 1.22–1.41 (m, 12H, 6 × CH2), 1.30–1.34 (t, J = 7.6 Hz, 

1H, SH), 1.54–1.68 (m, 4H, 2 × CH2), 2.10–2.17 (t, J = 7.6 Hz, 2H, CH2CO), 2.47–2.55 

(q, J = 7.2 Hz, 2H, CH2S), 3.92 (bs, 2H, NH2), 6.82 (bs, 1H, NH) ppm. 
13C NMR (125.8 MHz, CDCl3): δ 24.8, 25.6, 28.5, 29.2, 29.4, 29.5, 29.6, 34.2, 34.7, 

39.4, 174.1 ppm. 

 

1-(4-Formylphenyl)-N,N,N-trimethylmethanammonium iodide (3)[144] 
 

 
 

Compound 10 (984 mg, 2.82 mmol) was dissolved in a mixture CH3CO2H/H2O 1:1  

(20 mL) and stirred for 23 h at rt. After solvent removal under reduced pressure, 

aldehyde 3 (736 mg, 85%) was obtained pure after crystallisation from EtOH/Et2O 1:1 

with HexH as pale yellow solid. Mp: 208–212 °C (lit[144]: 205–206 °C). 
1H NMR (500.1 MHz, [D6]DMSO): δ 3.07 (s, 9H, 3 × CH3), 4.66 (s, 2H, CH2N),  

7.74–7.83 (d, J = 8.0 Hz, 2H, HAr), 8.02–8.08 (d, J = 8.0 Hz, 2H, HAr), 10.11 (s, 1H, 

CHO) ppm. 
13C NMR (499.9 MHz, [D6]DMSO): δ 52.0, 66.7, 129.8, 133.7, 134.4, 137.1, 139.0 ppm. 

HRMS (ES+) m/z calculated for C11H16NO [M–I]+ 178.1226, found 178.1224. 

 

N'-(4-Fluorobenzylidene)-11-mercaptoundecanehydrazide (4H) 
 

 
 

Hydrazide 2 (2.00 g, 8.61 mmol) was dissolved in EtOH (60 mL) to which CH3CO2H  

(50 µL, 0.86 mmol) was added. Then, 4-fluorobenzaldehyde (0.92 mL, 8.61 mmol) was 

added and the reaction mixture was stirred for 17 h at rt. The white suspension was 

filtered, washed with Et2O and dried under vacuum to afford hydrazone 4H (2.83 g, 

97%) as white solid. Mp: 90–93 °C. 
1H NMR (500.1 MHz, CD2Cl2): δ 1.21–1.51 (m, 12H, 6 × CH2), 1.32–1.35 (t, J = 7.8 Hz, 

1H, SH), 1.52–1.60 (m, J = 7.2 Hz, 2H, CH2), 1.64–1.71 (m, J = 7.7 Hz, 2H, CH2), 
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2.44–2.50 (q, J = 7.4 Hz, 2H, CH2S), 2.68–2.74 (t, J = 7.6 Hz, 2H, CH2CO), 7.05–7-12 

(t, J = 8.7 Hz, 2H, HAr), 7.62–7.69 (dd, J = 8.7, 5.5 Hz, 2H, HAr), 7.74 (s, 1H, CH=), 9.43 

(bs, 1H, NH) ppm. 
13C NMR (100.6 MHz, CD2Cl2): δ 24.9, 25.2, 25.8, 28.8, 29.5, 29.77, 29.86, 29.89, 

33.0, 34.5, 116.0–116.3 (d, J = 22 Hz), 129.2–129.3 (d, J = 8.6 Hz), 130.89–130.93 (d, 

J = 3.0 Hz), 142.2, 162.8–165.3 (d, J = 249 Hz), 176.6 ppm. 
19F NMR (470.5 MHz, CD2Cl2): δ –111.14 ppm (s, 1F). 

HRMS (ES+) m/z calculated for C18H27FN2NaOS [M+Na]+ 361.1726, found 361.1712. 

 

11,11'-Disulfanediylbis(N'-(4-fluorobenzylidene)undecanehydrazide) (42) 
 

 
 

Iodine (149 mg, 0.59 mmol) was added to a solution of hydrazone 4H (99.1 mg,  

0.29 mmol) in CH2Cl2 (10 mL). The mixture was stirred at rt for 30 min. Then, the 

solution was decoloured with sodium sulfite saturated solution and diluted with brine. 

The organic phase was separated and the aqueous phase was further extracted with 

CH2Cl2 (2 × 20 mL). The combined organic layers were dried over magnesium sulfate 

and evaporated under reduced pressure to afford disulfide 42 as a clean product  

(73.4 mg, 75%). Mp: 118–119 °C. 
1H NMR (500.1 MHz, CDCl3 + 2 drops of CD3OD): δ 1.11–1.37 (m, 32H, 16 × CH2), 

2.55–2.62 (t, J = 7.5 Hz, 4H, 2 × CH2S), 2.63–2.69 (t, J = 7.5 Hz, 4H, 2 × CH2CO), 

6.91–7.07 (m, 4H, HAr), 7.53–7.67 (m, 4H, HAr), 7.76 (s, 2H, 2 × CH=), 10.08 (bs, 2H,  

2 × NH) ppm. 
13C NMR (125.8 MHz, CDCl3 + 2 drops of CD3OD): δ 24.8, 25.7, 28.5, 29.2, 29.3, 

29.40, 29.43, 32.6, 34.9, 39.1, 115.7–115.9 (d, J = 22 Hz), 128.8–128.9 (d, J = 8.5 Hz), 

130.25–130.28 (d, J = 3.3 Hz), 142.9, 162.8–164.8 (d, J = 251 Hz), 176.9. 
19F NMR (470.5 MHz, CDCl3 + 2 drops of CD3OD): δ –110.52 (s, 1F) ppm. 

HRMS (ES+) m/z calculated for C36H53F2N4O2S2 [M+H]+ 675.3573, found 675.3571. 
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11-Mercapto-N'-(4-methoxybenzylidene)undecanehydrazide (5H) 
 

 
 

Hydrazide 2 (306 mg, 1.32 mmol) was dissolved in EtOH (30 mL) to which CH3CO2H 

(7.5 µL, 0.13 mmol) was added. Then, p-anisaldehyde (0.16 mL, 1.32 mmol) was 

added and the reaction mixture was stirred for 3 h at rt. The solvent was removed 

under reduced pressure, H2O was added (30 mL) followed by extraction with CH2Cl2  

(3 × 25 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated under vacuum and the crude product was purified by chromatography 

(SiO2, c-Hex/EtOAc 4:1) to afford hydrazone 5H as pale yellow solid (415 mg, 89%). 

Mp: 100–104 °C. 
1H NMR (400.1 MHz, CDCl3): δ 1.21–1.46 (m, 12 H, 6 × CH2), 1.29–1.35 (t, J = 7.7 Hz, 

1H, SH), 1.54–1.63 (m, J = 7.2 Hz, 2H, CH2), 1.68–1.77 (m, J = 7.7 Hz, 2H, CH2), 

2.46–2.54 (q, J = 7.5 Hz, 2H, CH2SH), 2.71–2.79 (t, J = 7.5 Hz, 2H, CH2CO), 3.84 (s, 

3H, OMe), 6.89–6.94 (d, J = 8.8 Hz, 2H, HAr), 7.57–7.63 (d, J = 8.8 Hz, 2H, HAr), 7.76 

(s, 1H, CH), 9.91 (bs, 1H, NH) ppm. 
13C NMR (75.5 MHz, CDCl3): δ 24.8, 24.9, 26.0, 28.8, 29.5, 29.7, 29.84, 29.88, 33.0, 

34.5, 55.8, 114.6, 127.2, 176.5, 128.9, 129.4, 143.6 ppm. 

HRMS (ES+) m/z calculated for C19H30N2NaO2S [M+Na]+ 373.1926, found 373.1909. 

 

N'-Benzylidene-11-mercaptoundecanehydrazide (6H) 
 

 
 

Hydrazide 2 (300 mg, 1.29 mmol) was dissolved in EtOH (30 mL) to which CH3CO2H 

(7.4 µL, 0.1 Eq) was added. Then, benzaldehyde (131 µL, 1.29 mmol) was added and 

the reaction mixture was stirred for 3 h at rt. The solvent was removed under reduced 

pressure, H2O (25 mL) was added to the crude product followed by extraction with 

CH2Cl2 (3 × 25 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated under reduced pressure to afford hydrazone 6H (386 mg, 93%) as white 

solid. Mp: 65–69 °C. 
1H NMR (400.1 MHz, CD2Cl2): δ 1.21–1.44 (m, 12H, 6 × CH2), 1.31–1.35 (t, J = 7.6 Hz, 

1H, SH), 1.51–1.61 (m, 2H, CH2), 1.64–1.75 (m, 2H, CH2), 2.43–2.52 (q, J = 7.2 Hz, 
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2H, CH2S), 2.69–2.76 (t, J = 7.6 Hz, 2H, CH2CO), 7.33–7.43 (m, 3H, HAr), 7.62–7.70 

(m, 2H, HAr), 7.80 (s, 1H, CH=), 9.79 (bs, 1H, NH) ppm. 
13C NMR (75.5 MHz, CD2Cl2): δ 25.0, 25.2, 28.8, 29.5, 29.8, 29.9, 30.0, 30.3, 33.1, 

34.5, 127.4, 129.1, 130.3, 134.6, 143.4, 176.5 ppm. 

HRMS (ES+) m/z calculated for C18H28N2NaOS [M+Na]+ 343.1820, found 343.1805. 

 

1-(4-((2-(11-Mercaptoundecanoyl)hydrazono)methyl)phenyl)-N,N,N-
trimethylmethanammonium iodide (7H) 
 

 
 

Aldehyde 3 (500 mg, 1.64 mmol) was dissolved in MeOH (10 mL) to which CH3CO2H 

(10 µL, 0.16 mmol) was added. Then, a solution of hydrazide 2 (381 mg, 1.64 mmol) in 

MeOH (10 mL) was added to the reaction mixture and it was stirred for 17 h at rt. The 

solvent was then removed under reduced pressure and hydrazone 7H (815 mg, 96%) 

was obtained after crystallisation from Et2O/EtOH 1:1 with HexH as white solid. Mp: 

158–162 °C. 
1H NMR (400.1 MHz, [D6]DMSO): δ 1.16–1.29 (m, 13H, 6 × CH2 + SH), 1.42–1.64 (m, 

4H, 2 × CH2), 2.38–2.48 (m, 2H, CH2S), 2.58–2.65 (m, 2H, CH2CO), 3.05 (s, 9H,  

3 × CH3), 4.57 (s, 2H, CH2N), 7.54–7.65 (m, 2H, HAr), 7.72–7.81 (m, 2H, HAr), 8.02 (s, 

1H, CH=), 11.32 (bs, 1H, NH) ppm. 
13C NMR (75.5 MHz, [D6]DMSO): δ 23.7, 24.2, 24.9, 27.7, 28.5, 28.7, 28.8, 28.9, 31.8, 

33.4, 51.8, 67.3, 126.9, 129.3, 133.2, 136.1, 141.2, 168.8 ppm. 

HRMS (ES+) m/z calculated for C22H38N3OS [M–I]+ 392.2730, found 392.2718. 

 

4-(1,3-Dioxolan-2-yl)benzonitrile (8)[143] 
 

 
 

To a solution of 4-cyanobenzaldehyde (2.28 g, 17.4 mmol) in dry toluene (20 mL), 

ethylene glycol (3.87 mL, 69.5 mmol) and p-toluenesulfonic acid (1.65 mg, 0.01 mmol) 

were added. The mixture was refluxed for 5 h and H2O was removed by Dean-Stark 

apparatus. The solution was then cooled at rt and 5% NaHCO3 solution (10 mL) was 

added. An extraction with CH2Cl2 (3 × 20 mL) followed. The combined organic layers 
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were then washed with H2O (2 × 20 mL), dried over MgSO4 and evaporated under 

reduced pressure. Pure colourless hygroscopic compound 8 (1.63 g, 53%) was 

crystallised from the residual oil in HexH/Et2O 6:4. Mp: 45–46 °C (lit[143]: 40 °C). 
1H NMR (400.1 MHz, CDCl3): δ 4.03–4.14 (m, 4H, 2 × CH2), 5.85 (s, 1H, CH),  

7.57–7.61 (d, J = 8.0 Hz, 2H, HAr), 7.66–7.70 (d, J = 8.4 Hz, 2H, HAr) ppm. 

 

(4-(1,3-Dioxolan-2-yl)phenyl)methanamine (9)[143] 
 

 
 

To a solution of LiAlH4 (490 mg, 12.9 mmol) in dry Et2O (15 mL), a solution of 

compound 8 (1.13 g, 6.46 mmol) was added dropwise at 0 °C. The mixture was stirred 

for 1 h and then gently warmed to rt and stirred for further 18 h. The reaction was then 

quenched with EtOH (1 mL) and a mixture EtOH/H2O 1:1 (1 mL). After 30 min stirring, 

it was filtered over MgSO4 and the resulting filtrate was washed with diethyl ether. The 

organic solvent was removed under vacuum to afford 9 (989 mg, 85%) as yellow oil. 
1H NMR (400.1 MHz, CDCl3): δ 2.69 (bs, 2H, NH2), 3.83 (s, 2H, CH2N), 3,94–4.14 (m, 

4H, 2 x CH2O), 5.77 (s, 1H, CH), 7.28–7.32 (d, J = 8.1 Hz, 2H, HAr), 7.41–7.44 (d,  

J = 8.2 Hz, 2H, HAr) ppm. 

 

1-(4-(1,3-Dioxolan-2-yl)phenyl)-N,N,N-trimethylmethanammonium iodide (10)[144] 
 

 
 

A solution of compound 9 (1.58 g, 8.84 mmol) and Bu3N (4.21 mL, 17.7 mmol) in DMF 

(11 mL) was cooled at 0 °C, and MeI (2.75 mL, 44.2 mmol) was added dropwise. The 

solution was warmed to rt and stirred for further 20 h. EtOAc (100 mL) was then added 

to the mixture and the so obtained precipitate was filtered and washed with Et2O to 

afford compound 10 (1.96 g, 63%) as pale yellow solid. Mp: 197–200 °C (lit:[144]  

196–198 °C). 
1H NMR (400.1 MHz, [D6]DMSO): δ 3.04 (s, 9H, 3 × CH3), 3.91–4.11 (m, 4H,  

2 × CH2O), 4.57 (s, 2H, CH2N), 5.79 (s, 1H, CH), 7.57 (m, 4H, HAr) ppm. 
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11-(Tritylthio)undecan-1-ol (11)[186]  
 

 
 

A solution of NaOH (1.12 g, 28.1 mmol) in H2O (10 mL) was added to a solution of 

triphenylmethanethiol (5.51 g, 19.9 mmol) in 1:1 EtOH/toluene (50 mL). Then, a 

solution of 11-bromoundecan-1-ol (5.01 g, 20.0 mmol) in 1:1 EtOH/toluene (50 mL) 

was added and the reaction mixture was stirred at rt for 3.5 h. The mixture was poured 

into a saturated solution of NaHCO3 (25 mL) and extracted with Et2O (3 × 20 mL). The 

combined organic layers were washed with brine (2 × 20 mL), dried over MgSO4 and 

evaporated under reduced pressure. The crude product was purified by flash 

chromatography (SiO2, HexH/EtOAc 8:1 to 1:1) to afford alcohol 11 as pale yellow oil 

(8.28 g, 93%, spectral data in agreement with the literature[186]). 
1H NMR (500.1 MHz, CDCl3): δ 1.08–1.49 (m, 16H, 8 × CH2), 1.52–1.59 (m, 2H, CH2), 

2.10–2.16 (t, J = 6.9 Hz, 2H, CH2S), 3.61–3.66 (t, J = 7.0 Hz, 2H, CH2O), 7.18–7.23 (m, 

3H, HAr), 7.25–7.30 (m, 6H, HAr), 7.39–7.43 (m, 6H, HAr) ppm. 
13C NMR (125.8 MHz, CDCl3): δ 25.8, 28.3, 28.7, 29.1, 29.3, 29.5, 29.6, 29.7, 32.1, 

32.9, 34.2, 63.1, 126.6, 127.9, 129.7, 145.2 ppm. 

 

11-(Tritylthio)undecyl methanesulfonate (12)[186] 
 

 
 

A solution of alcohol 11 (5.16 g, 11.5 mmol) and Et3N (2.41 mL, 17.3 mmol) in CH2Cl2 

(30 mL) was cooled at 0 °C. Methanesulfonyl chloride (1.79 mL, 23.1 mmol) in CH2Cl2 

(15 mL) was then added dropwise. The solution was stirred for 30 min at 0 °C and then 

warmed to rt and stirred for a further 4 h. The solvent was then removed under reduced 

pressure and the crude oil was re-dissolved in CH2Cl2 (50 mL) and washed with 0.1 M 

HCl (2 × 50 mL), saturated NaHCO3 solution (2 × 50 mL) and brine (100 mL). The 

organic phase was dried over MgSO4 and evaporated under vacuum to afford 
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compound 12 as yellow oil (5.94 g, 98%, spectral data in agreement with the 

literature[186]). 
1H NMR (400.1 MHz, CDCl3): δ 1.09–1.33 (m, 14H, 7 × CH2), 1.34–1.45 (m, 2H, CH2), 

1.70–1.78 (m, 2H, CH2), 2.09–2.16 (t, J = 7.3 Hz, 2H, CH2S), 3.00 (s, 3H, CH3),  

4.18–4.24 (t, J = 6.6 Hz, 2H, CH2O), 7.18–7.23 (m, 3H, HAr), 7.25–7.31 (m, 6H, HAr), 

7.39–7.43 (m, 6H, HAr) ppm. 
13C NMR (75.5 MHz, CDCl3): δ 25.5, 28.7, 29.1, 29.2, 29.3, 29.5, 29.5, 32.1, 32.9, 34.2, 

37.5, 66.5, 70.3, 126.6, 127.9, 129.7, 145.2 ppm. 

 

1,1,1-Triphenyl-14,17,20,23-tetraoxa-2-thiapentacosan-25-ol (13)[186] 
 

 
 

A solution of NaOH (1.75 g, 43.8 mmol) in H2O (2 mL) was mixed with tetraethylene 

glycol (84 mL) and heated to 90 °C for 1 h. Then, compound 12 (15.3 g, 29.2 mmol) 

was added to the mixture and stirred at 90 °C for 23 h. The reaction mixture was then 

cooled to rt, poured into H2O (200 mL) and extracted with EtOAc (2 × 200 mL). The 

organic phase was washed with a saturated NaHCO3 solution (3 × 100 mL) and brine 

(3 × 100 mL), dried over MgSO4 and evaporated under reduced pressure to afford 

alcohol 13 as yellow oil (14.0 g, 77%, spectral data in agreement with the literature[186]). 
1H NMR (400.1 MHz, CDCl3): δ 1.06–1.42 (m, 16H, 8 × CH2), 1.51–1.60 (m, 2H, CH2), 

2.08–2.16 (t, J = 6.9 Hz, 2H, CH2S), 3.39–3.46 (t, J = 6.8 Hz, 2H, CH2O), 3.48–3.68 (m, 

16H, 8 × CH2O), 7.15–7.20 (m, 3H, HAr), 7.22–7.31 (m, 6H, HAr), 7.36–7.43 (m, 6H, HAr) 

ppm. 
13C NMR (75.5 MHz, CDCl3): δ 28.7, 29.15, 29.28, 29.32, 29.48, 29.54, 29.61, 29.63, 

29.69, 29.73, 32.2, 45.3, 61.9, 66.5, 70.2, 70.5, 70.7, 70.8, 71.7, 72.7, 126.6, 127.9, 

129.7, 145.2 ppm. 
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1,1,1-Triphenyl-14,17,20,23-tetraoxa-2-thiapentacosan-25-yl  
methanesulfonate (14)[186] 
 

 
 

Under an atmosphere of Ar, alcohol 13 (4.09 g, 6.57 mmol) was dissolved in dry 

CH2Cl2 (60 mL) and Et3N (2.75 mL, 19.7 mmol) was added. The reaction mixture was 

cooled to 0 °C and methanesulfonyl chloride (0.76 mL, 9.85 mmol) was added and the 

mixture stirred at 0 °C for a further 10 min and then allowed to warm to rt and stir for 4 

h. The reaction was quenched with 0.1 M HCl (2 × 50 mL) and the organic layer was 

washed with saturated NaHCO3 solution (2 × 50 mL) and brine (2 × 50 mL), dried over 

MgSO4 and evaporated under reduced pressure. The crude product was purified by 

chromatography (SiO2, HexH/EtOAc 1:2) to afford 14 as a yellow oil (3.47 g, 75%, 

spectral data in agreement with the literature[186]). 
1H NMR (500.1 MHz, CDCl3): δ 1.06–1.44 (m, 16H, 8 × CH2), 1.51–1.60 (m, 2H, CH2), 

2.08–2.15 (t, J = 8.1 Hz, 2H, CH2S), 3.06 (s, 3H, CH3), 3.40–3.46 (t, J = 6.7 Hz, 2H, 

CH2O), 3.49–3.68 (m, 12H, 6 × CH2O), 3.73–3.72 (m, 2H, CH2O), 4.34–4.39 (m, 2H, 

CH2O), 7.16–7.22 (m, 3H, HAr), 7.23–7.31 (m, 6H, HAr), 7.37–7.43 (m, 6H, HAr) ppm. 
13C NMR (125.7 MHz, CDCl3): δ 26.2, 27.0, 28.7, 29.0, 29.2, 29.3, 29.5, 29.6, 29.7, 

29.8, 32.2, 37.9, 45.3, 69.2, 69.4, 70.2, 70.3, 70.65, 70.72, 70.77, 71.7, 126.6, 127.9, 

129.7, 145.2 ppm. 

 

N′-(4-Fluorobenzylidene)-4-hydroxybenzohydrazide (17) 
 

 
 

To a solution of 4-hydroxybenzhydrazide (1.25 g, 8.24 mmol) in MeOH (150 mL), 

CH3CO2H (10 mL) and 4-fluorobenzaldehyde (0.88 mL, 8.24 mmol) were added. The 

reaction mixture was stirred for 19 h at rt, monitored by TLC. The mixture was then 

evaporated under reduced pressure obtaining a white solid which was re-dissolved in 
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hot EtOH and precipitated with cold water, affording clean hydrazone 17 as a white 

solid (2.02 g, 95%). Mp: 247–248 °C. 
1H NMR (500.1 MHz, [D6]DMSO): δ 6.80–6.93 (d, J = 8.5 Hz, 2H, HAr), 7.21–7.36 (t,  

J = 8.7 Hz, 2H, HAr), 7.69–7.88 (m, 4H, HAr), 8.43 (s, 1H, CH=), 10.14 (bs, 1H, OH), 

11.67 (bs, 1H, NH) ppm. 
13C NMR (75.5 MHz, [D6]DMSO): δ 115.0, 115.7–116.0 (d, J = 22 Hz), 123.8,  

129.0–129.1 (d, J = 8.6 Hz), 129.7, 131.13–131.17 (d, J = 2.8 Hz), 145.7, 160.7, 

161.3–164.6 (d, J = 248 Hz), 162.8 ppm. 
19F NMR (470.5 MHz, [D6]DMSO): δ –110.45 (s, 1F) ppm. 

HRMS (ES–) m/z calculated for C14H10FN2O2 [M–H]– 257.0732, found 257.0733. 

 

4-Hydroxy-N′-(4-(trifluoromethyl)benzylidene)benzohydrazide (18) 
 

 
 

4-(Trifluoromethyl)benzaldehyde (2.7 mL, 19.7 mmol) was added to a solution of  

4-hydroxybenzhydrazide (1.50 g, 9.84 mmol) in 6% CH3CO2H in MeOH (70 mL). The 

reaction was monitored by TLC and the mixture was left stirring at rt for 24 h. The 

mixture was then evaporated under reduced pressure and white crystals of hydrazone 

18 were obtained by recrystallization from hot MeOH/EtOH 1:1 with HexH (2.89 g, 

95%). Mp: 266–267 °C. 
1H NMR (500.1 MHz, [D6]DMSO): δ 6.81–6.96 (d, J = 8.5 Hz, 2H, HAr), 7.72–7.81 (d,  

J = 8.0 Hz, 2H, HAr), 7.82–7.92 (d, J = 8.5 Hz, 2H, HAr), 7.93–8.02 (m, 2H, HAr), 8.50 (s, 

1H, CH=), 10.18 (bs, 1H, OH), 11.86 (bs, 1H, NH) ppm. 
13C NMR (125.7 MHz, [D6]DMSO): δ 115.1, 123.1, 123.6, 125.2, 125.71–125.74 (d,  

J = 3.5 Hz), 127.5, 129.4–129.6 (d, J = 32 Hz), 129.8, 138.6, 145.0, 160.9–163.0 (d,  

J = 259 Hz) ppm. 
19F NMR (470.3 MHz, [D6]DMSO): δ –60.74 (s, 3F) ppm. 

HRMS (ES+) m/z calculated for C15H11F3N2NaO2 [M+Na]+ 331.0670, found 331.0658. 
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N′-(4-Fluorobenzylidene)-4-((1,1,1-triphenyl-14,17,20,23-tetraoxa-2-
thiapentacosan-25-yl)oxy)benzohydrazide (19) 
 

 
 

Under an atmosphere of Ar, K2CO3 (1.26 g, 9.12 mmol) was added to a solution of 

hydrazone 17 (785 mg, 3.04 mmol) in dry DMF (25 mL) and stirred for 20 min at rt. 

Then a solution of alcohol 14 (1.77 g, 2.52 mmol) in dry DMF (25 mL) was added and 

the reaction mixture was heated at 90 °C for 14 h. The reaction progress was 

monitored by TLC. The mixture was then allowed to cool to rt before brine (50 mL) was 

added. The aqueous layer was extracted with CH2Cl2 (3 × 100 mL). The combined 

organic layers were dried over MgSO4, filtered and evaporated under reduced 

pressure. The crude oil was purified by chromatography (SiO2, CH2Cl2/MeCN 1:1) to 

afford 19 as a colourless oil (1.13 mg, 52%). 
1H NMR (500.1 MHz, CD2Cl2): δ 1.05–1.30 (m, 14H, 7 × CH2), 1.32–1.46 (m, 2H, CH2), 

1.56–1.59 (m, 2H, CH2), 2.04–2.14 (t, J = 8.5 Hz, 2H, CH2S), 3.33–3.42 (t, J = 8.5 Hz, 

2H, CH2O), 3.46–3.71 (m, 12H, 6 × CH2O), 3.77–3.88 (m, 2H, CH2O), 4.10–4.22 (m, 

2H, CH2O), 6.88–6.99 (d, J = 7.4 Hz, 2H, HAr), 7.00–7.10 (t, J = 8.0 Hz, 2H, HAr),  

7.15–7.21 (m, 3H, HAr), 7.23–7.29 (m, 6H, HAr), 7.35–7.41 (m, 6H, HAr), 7.56–7.76 (m, 

2H, HAr), 7.77–7.94 (m, 2H, HAr), 8.20 (s, 1H, CH=), 9.34 (bs, 1H, NH) ppm. 
13C NMR (100.6 MHz, CD2Cl2): δ 26.5, 28.9, 29.4, 29.5, 29.76, 29.85, 29.86, 29.9, 

30.1, 32.2, 60.6, 66.6, 68.0, 69.8, 70.4, 70.85, 70.87, 70.91, 71.1, 71.7, 79.5, 114.7, 

116.0–116.2 (d, J = 22 Hz), 116.6, 125.80, 125.81, 126.8, 128.1, 129.6–129.7 (d,  

J = 8.1 Hz), 129.9, 130.74–130.76 (d, J = 2.8 Hz), 145.4, 162.2, 163.0–165.5 (d,  

J = 250 Hz) ppm. 
19F NMR (470.6 MHz, CD2Cl2): δ –110.42 (s, 1F) ppm. 

HRMS (ES+) m/z calculated for C52H63FN2NaO6S [M+Na]+ 885.4289, found 885.4278. 
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N′-(4-(Trifluoromethyl)benzylidene)-4-((1,1,1-triphenyl-14,17,20,23-tetraoxa-2-
thiapentacosan-25-yl)oxy)benzohydrazide (20) 
 

 
 

Under an atmosphere of Ar, hydrazone 18 (771 mg, 2.50 mmol), K2CO3 (865 mg,  

6.26 mmol) and KI (173 mg, 1.04 mmol) were dissolved in dry DMF (20 mL) and stirred 

for 20 min at rt. Then, a solution of alcohol 14 (1.46 g, 2.09 mmol) in dry DMF (20 mL) 

was added and the reaction mixture was heated to 90 °C and stirred for 2 days. After 

cooling to rt, EtOAc (100 mL) was added and the organic phase was washed with 

water (100 mL), brine (3 × 100 mL), dried over MgSO4, filtered and evaporated under 

reduced pressure. The crude product was then purified by chromatography (SiO2, 

HexH/EtOAc 1:3) to afford 20 as a yellow oil (1.06 g, 55%). 
1H NMR (400.1 MHz, CD2Cl2): δ 1.07–1.42 (m, 16H, 8 × CH2), 1.47–1.58 (m, 2H, CH2), 

2.08–2.17 (t, J = 7.6 Hz, 2H, CH2S), 3.34–3.44 (t, J = 6.8 Hz, 2H, CH2O), 3.49–3.73 (m, 

12H, 6 × CH2O), 3.74–3.88 (m, 2H, CH2O), 4.03–4.14 (m, 2H, CH2O), 6.83–6.99 (d,  

J = 8.4 Hz, 2H, HAr), 7.17–7.24 (m, 3H, HAr), 7.25–7.33 (m, 6H, HAr), 7.38–7.46 (m, 6H, 

HAr), 7.49–7.58 (d, J = 8.0 Hz, 2H, HAr), 7.67–7.76 (d, J = 8.0 Hz, 2H, HAr), 7.89–7.98 

(d, J = 8.8 Hz, 2H, HAr), 8.45 (s, 1H, CH=), 10.96 (bs, 1H, NH) ppm. 
13C NMR (100.6 MHz, CD2Cl2): δ 26.5, 28.9, 29.4, 29.5, 29.79, 29.87, 29.89, 30.0, 

30.1, 32.3, 66.7, 68.0, 68.6, 69.8, 70.4, 70.88, 70.92, 71.1, 71.8, 114.6, 120.3, 120.9, 

123.0, 125.6, 125.85–125.88 (d, J = 3.3 Hz), 126.9, 127.9, 128.2, 129.9, 131.4–131.7 

(d, J = 32 Hz), 132.5, 138.2, 145.5, 146.8, 162.3–164.5 (d, J = 220 Hz) ppm. 
19F NMR (376.5 MHz, CD2Cl2): δ –63.37 (s, 3F) ppm. 

HRMS (ES+) m/z calculated for C53H63F3N2NaO6S [M+Na]+ 935.4257, found 935.4235. 
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4,4′-(3,6,9,12,37,40,43,46-Octaoxa-24,25-dithiaoctatetracontane-1,48-
diylbis(oxy))bis(N′-(4-fluorobenzylidene)benzohydrazide) (212) 
 

 
 

Iodine (162 mg, 0.64 mmol) was added to a solution of compound 19 (275 mg,  

0.32 mmol) in MeOH (20 mL). The mixture was stirred at rt for 1 h. Then, the solution 

was decoloured by addition of a saturated solution of NaHSO3, and extracted with 

CH2Cl2 (3 × 20 mL), dried over MgSO4 and evaporated under reduced pressure. The 

crude oil was purified by chromatography (SiO2, CH2Cl2/MeOH 20:1) to afford 212 as a 

colourless oil (222 mg, 99%). 
1H NMR (500.1 MHz, CD2Cl2): δ 1.16–1.40 (m, 28H, 14 × CH2), 1.45–1.55 (m, 4H,  

2 × CH2), 1.58–1.68 (m, 4H, 2 × CH2), 2.60–2.70 (t, J = 7.5 Hz, 4H, 2 × CH2S),  

3.31–3.41 (t, J = 6.5 Hz, 4H, 2 × CH2O), 3.45–3.68 (m, 24H, 12 × CH2O), 3.72–3.86 

(m, 4H, 2 × CH2O), 3.98–4.15 (m, 4H, 2 × CH2O), 6.77–7.02 (m, 8H, HAr), 7.50–7.58 

(dd, J = 7.6, 5.5 Hz, 4H, HAr), 7.86–8.03 (d, J = 8.0 Hz, 4H, HAr), 8.39 (s, 2H, 2 × CH=), 

11.01 (bs, 2H, 2 × NH) ppm. 
13C NMR (125.8 MHz, CD2Cl2): δ 26.5, 28.8, 29.56, 29.57, 29.84, 29.86, 29.90, 29.94, 

30.0, 39.5, 67.9, 69.8, 70.4, 70.83, 70.89, 70.90, 71.1, 71.7, 114.6, 115.9–116.1 (d,  

J = 22 Hz), 125.8, 129.58–129.64 (d, J = 8.1 Hz), 130.0, 130.94–130.95 (d, J = 1.9 Hz), 

147.5, 162.1, 163.1–165.1 (d, J = 250 Hz), 164.3 ppm. 
19F NMR (376.4 MHz, CD2Cl2): δ –110.50 (s, 2F) ppm. 

HRMS (ES+) m/z calculated for C66H96F2N4NaO12S2 [M+Na]+ 1261.6326, found 

1261.6297. 

MALDI-MS (positive mode): [212+Na]+ calc. 1261.63, found 1261.55; [212–S+Na]+ calc. 

1229.66, found 1229.52; [21H+Na]+ calc. 643.32, found 643.24; [21H–H2S+Na]+ calc. 

609.33, found 609.26. In order to analyse 21 by MALDI-MS, the sample was mixed 

with matrix α-cyano-4-hydroxycinnamic acid. 
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4,4′-(3,6,9,12,37,40,43,46-Octaoxa-24,25-dithiaoctatetracontane-1,48-
diylbis(oxy))bis(N′-(4-(trifluoromethyl)benzylidene)benzohydrazide) (222) 
 

 
 

Iodine (587 mg, 2.31 mmol) was added to a solution of compound 20 (1.06 g,  

1.16 mmol) in MeOH (40 mL). The mixture was stirred at rt for 30 min. The solution 

was decoloured by addition of a saturated solution of sodium sulfite then the volume 

was partially reduced under reduced pressure. Brine (50 mL) was then added, the 

aqueous phase was extracted with CH2Cl2 (3 × 50 mL), dried over MgSO4 and 

evaporated under reduced pressure. The crude oil was purified by chromatography 

(SiO2, CH2Cl2/MeOH 20:1) to afford 222 as a white foam (404 mg, 52%). 
1H NMR (500.1 MHz, CD2Cl2): δ 1.19–1.38 (m, 28H, 14 × CH2), 1.45–1.54 (m, 4H,  

2 × CH2), 1.58–1.67 (m, 4H, 2 × CH2), 2.61–2.68 (t, J = 7.2 Hz, 4H, 2 × CH2S),  

3.33–3.40 (t, J = 7.0 Hz, 4H, 2 × CH2O), 3.47–3.67 (m, 24H, 12 × CH2O), 3.75–3.82 

(m, 4H, 2 × CH2O), 4.04–4.13 (m, 4H, 2 × CH2O), 6.84–6.95 (d, J = 7.5 Hz, 4H, HAr), 

7.51–7.60 (d, J = 7.5 Hz, 4H, HAr), 7.69–7.77 (d, J = 8.0 Hz, 4H, HAr), 7.85–7.95 (d,  

J = 8.0 Hz, 4H, HAr), 8.41 (s, 2H, 2 × CH=), 10.67 (bs, 2H, 2 × NH) ppm. 
13C NMR (125.7 MHz, CD2Cl2): δ 26.5, 28.9, 29.6, 29.86, 29.89, 29.90, 29.94, 29.95, 

30.1, 39.5, 68.0, 69.8, 70.4, 70.86, 70.88, 70.91, 70.92, 71.1, 71.7, 114.7, 121.1, 

123.3, 125.6, 125.88–125.90 (d, J = 3.4 Hz), 127.9, 129.92–129.94 (d, J = 2.5 Hz), 

131.4–131.7 (d, J = 32 Hz), 138.1, 146.6, 162.3 ppm. 
19F NMR (470.3 MHz, CD2Cl2): δ –62.92 (s, 6F) ppm. 

HRMS (ES+) m/z calculated for C68H96F6N4NaO12S2 [M+Na]+ 1361.6263, found 

1361.6248. 
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N′-(4-Fluorobenzylidene)-4-(2-methoxyethoxy)benzohydrazide (23) 
 

 
 

Under an atmosphere of Ar, K2CO3 (667 mg, 4.83 mmol) was added to a solution of 

compound 17 (509 mg, 1.97 mmol) in dry DMF (22 mL) and stirred for 20 min at rt. 

Then, 2-chloroethyl methyl ether (0.18 mL, 1.84 mmol) was added and the reaction 

mixture was heated to 90 °C for 2 days. The reaction progress was monitored by TLC. 

The mixture was then allowed to cool to rt, before brine (20 mL) was added and the 

aqueous phase then extracted with CH2Cl2 (2 × 20 mL). The combined organic layers 

were dried over MgSO4 and evaporated under reduced pressure. The crude was 

purified by chromatography (SiO2, CH2Cl2/MeOH 20:1), followed by precipitation from 

hot ethanol with cold water to give 23 as a pale green solid (248 mg, 42%). Mp:  

168–169 °C. 
1H NMR (400.1 MHz, [D6]DMSO): δ 3.32 (s, 3H, CH3), 3.64–3.73 (m, 2H, CH2O),  

4.12–4.23 (m, 2H, CH2O), 7.00–7.14 (d, J = 8.4 Hz, 2H, HAr), 7.23–7.37 (t, J = 7.3 Hz, 

2H, HAr), 7.71–7.84 (m, 2H, HAr), 7.85–7.95 (d, J = 8.4 Hz, 2H, HAr), 8.44 (s, 1H, CH=), 

11.75 (bs, 1H, NH) ppm. 
13C NMR (100.6 MHz, [D6]DMSO): δ 58.2, 67.1, 70.2, 114.2, 115.8–116.0 (d,  

J = 22 Hz), 125.4, 129.1–129.2 (d, J = 8.1 Hz), 129.5, 131.06–131.09 (d, J = 2.2 Hz), 

146.0, 161.3, 161.8–164.3 (d, J = 247 Hz), 162.5 ppm. 
19F NMR (376.5 MHz, [D6]DMSO): δ –110.85 (s, 1F) ppm. 

HRMS (ES+) m/z calculated for C17H17FN2NaO3 [M+Na]+ 339.1121, found 339.1110. 

 

4-(2-Methoxyethoxy)- N′-(4-(trifluoromethyl)benzylidene)benzohydrazide (24) 
 

 
 

2-Chloroethyl methyl ether (0.76 mL, 8.32 mmol), hydrazone 18 (513 mg, 1.66 mmol), 

K2CO3 (690 mg, 4.99 mmol) and KI (138 mg, 0.83 mmol) were dissolved in dry DMF 

(10 mL). The mixture was heated under microwave irradiation (200 W) at 120°C for  

30 min. Then, EtOAc (50 mL) was added and the organic phase was washed with H2O 
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(50 mL) and brine (2 x 50 mL), dried over MgSO4, filtered and evaporated under 

reduced pressure. Product 24 was obtained by recrystallization from hot MeOH/EtOH 

with H2O as a pale yellow solid (177 mg, 29%). Mp: 201–202 °C. 
1H NMR (500.1 MHz, [D6]DMSO): δ 3.32 (s, 3H, CH3), 3.63–3.76 (m, 2H, CH2O),  

4.12–4.26 (m, 2H, CH2O), 7.03–7.14 (d, J = 8.0 Hz, 2H, HAr), 7.75–7.86 (d, J = 7.0 Hz, 

2H, HAr), 7.87–8.02 (m, 4H, HAr), 8.51 (s, 1H, CH=), 11.94 (bs, 1H, NH) ppm. 
13C NMR (125.7 MHz, [D6]DMSO): δ 58.2, 67.2, 70.2, 114.2, 123.1, 125.2, 125.7–125.8 

(d, J = 3.5 Hz), 127.6, 129.4, 129.7, 138.5, 145.3, 161.4, 162.7 ppm. 
19F NMR (470.3 MHz, [D6]DMSO): δ –60.71 (s, 3F) ppm. 

HRMS (ES+) m/z calculated for C18H17F3N2NaO3 [M+Na]+ 389.1089, found 389.1074. 

 

N′-(4-Fluorobenzyl)-4-(2-methoxyethoxy)benzohydrazide (25) 
 

 
 

Under an atmosphere of Ar, compound 23 (109 mg, 0.34 mmol) was dissolved in 

MeOH (10 mL) and cooled to 0 °C. NaCNBH3 (53.9 mg, 0.85 mmol) was then added 

and the reaction mixture was acidified with HCl (0.5 mL). After 1 h, the reaction was 

neutralised with saturated NaHCO3 (10 mL) and the aqueous phase was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic layers were dried over MgSO4, and 

evaporated under reduced pressure. The crude was purified by chromatography (SiO2, 

CH2Cl2/MeCN 1:1) to afford 25 as a white solid (62.2 mg, 57%). Mp: 115–116 °C. 
1H NMR (500.1 MHz, [D6]DMSO): δ 3.30 (s, 3H, CH3), 3.63–3.67 (m, 2H, CH2O),  

3.92–3.96 (d, J = 5.0 Hz, 2H, CH2N), 4.11–4.15 (m, 2H, CH2O), 5.36–5.44 (m, 1H, 

CH2NH), 6.95–7.00 (d, J = 8.5 Hz, 2H, HAr), 7.11–7.17 (t, J = 9.0 Hz, 2H, HAr),  

7.37–7.43 (m, 2H, HAr), 7.72–7.77 (d, J = 9.0 Hz, 2H, HAr), 9.87–9.92 (m, 1H, CONH) 

ppm. 
13C NMR (125.8 MHz, [D6]DMSO): δ 54.0, 58.2, 67.1, 70.3, 114.0, 114.8–115.0 (d,  

J = 21 Hz), 125.4, 128.9, 130.5–130.6 (d, J = 8.1 Hz), 134.84–134.86 (d, J = 2.8 Hz), 

160.4–162.3 (d, J = 242 Hz), 160.9, 162.3 ppm. 
19F NMR (470.5 MHz, [D6]DMSO): δ –115.49 (s, 1F) ppm. 

HRMS (ES+) m/z calculated for C17H19FN2NaO3 [M+Na]+ 341.1277, found 341.1264. 
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4-(2-Methoxyethoxy)-N′-(4-(trifluoromethyl)benzyl)benzohydrazide (26) 
 

 
 

Under an atmosphere of Ar, compound 24 (23.7 mg, 0.06 mmol) was dissolved in 

MeOH (5 mL) and cooled to 0 °C. NaCNBH3 (10.2 mg, 0.16 mmol) was then added 

and the reaction mixture was acidified with HCl (0.25 mL). After 40 min, the reaction 

was neutralised with saturated NaHCO3 (20 mL) and the aqueous phase was extracted 

with CH2Cl2 (3 × 20 mL). The combined organic layers were dried over MgSO4, filtered 

and evaporated under reduced pressure. The crude was purified by chromatography 

(SiO2, HexH/EtOAc 1:3) to afford 26 as a white solid (8.10 mg, 37%). Mp: 160–161 °C. 
1H NMR (500.1 MHz, [D6]DMSO): δ 3.29 (s, 3H, CH3), 3.63–3.68 (m, 2H, CH2O),  

4.04–4.09 (m, 2H, CH2N), 4.12–4.15 (m, 2H, CH2O), 5.58 (m, 1H, CH2NH), 6.94–7.00 

(d, J = 9.0 Hz, 2H, HAr), 7.58–7.63 (d, J = 8.0 Hz, 2H, HAr), 7.66–7.71 (d, J = 8.0 Hz, 

2H, HAr), 7.72–7.75 (d, J = 9.0 Hz, 2H, HAr), 9.89 (m, 1H, CONH) ppm. 
13C NMR (125.7 MHz, [D6]DMSO): δ 54.1, 58.2, 67.1, 70.2, 114.0, 115.5, 118.2, 

124.93–124.96 (d, J = 3.6 Hz), 127.4–127.7 (d, J = 32 Hz), 128.9, 129.2, 143.8, 160.9, 

165.4 ppm. 
19F NMR (470.5 MHz, [D6]DMSO): δ –60.30 (s, 3F) ppm. 

HRMS (ES+) m/z calculated for C18H19F3N2NaO3 [M+Na]+ 391.1245, found 391.1232. 

 

3-(Undecyloxy)benzaldehyde (28) 
 

 
 

Under an atmosphere of Ar, 3-hydroxybenzaldehyde (1.25 g, 10.3 mmol), K2CO3  

(4.26 g, 30.8 mmol) and KI (852 mg, 5.13 mmol) were dissolved in dry MeCN (50 mL) 

and stirred at rt for 30 min. Then, 1-bromoundecane (3.06 mL, 12.3 mmol) was added 

and the reaction mixture was refluxed for 19 h, monitoring the reaction by TLC. The 

solvent was then partially evaporated under reduced pressure, EtOAc (50 mL) was 

added and the organic phase was washed with H2O (50 mL) and brine (2 × 50 mL), 

dried over MgSO4, filtered and evaporated. The crude product was then purified by 
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chromatography (SiO2, HexH/EtOAc 19:1) to afford pure aldehyde 28 as a yellow oil 

(2.40 g, 84%). 
1H NMR (500.1 MHz, CDCl3): δ 0.84–0.91 (t, J = 7.0 Hz, 3H, CH3), 1.20–1.50 (m, 16H, 

8 × CH2), 1.76–1.84 (m, 2H, CH2), 3.98–4.03 (t, J = 6.5 Hz, 2H, CH2O), 7.14–7.20 (m, 

1H, HAr), 7.37–7.39 (m, 1H, HAr), 7.41–7.46 (m, 2H, HAr), 9.97 (s, 1H, CHO) ppm. 
13C NMR (125.7 MHz, CDCl3): δ 14.28, 22.8, 26.1, 29.3, 29.49, 29.51, 29.71, 29.74, 

29.8, 32.1, 68.5, 112.9, 122.1, 123.5, 130.1, 137.9, 159.9, 192.4 ppm. 

HRMS (ES+) m/z calculated for C19H32NaO3 [M+Na+MeOH]+ 331.2249, found 

331.2241. 

 

Chloro(triphenylphosphine)gold(I) (AuPPh3Cl)[187,188] 
 

 
 

A solution of triphenylphosphine (2.69 g, 10.3 mmol) in Et2O (35 mL) was added 

dropwise over 15 min to a solution of gold(III) chloride trihydrate (2.02 g, 5.12 mmol) in 

Et2O (100 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 3 h and then 

allowed to warm to rt. The white precipitate was recovered by filtration, washed with 

cold Et2O then recrystallized from CH2Cl2/HexH to give AuPPh3Cl as a white solid  

(2.24 g, 89%). Mp: 236–237 °C. 
1H NMR (500.1 MHz, CDCl3): δ 7.45–7.55 (m, 15H, HAr) ppm. 
13C NMR (125.8 MHz, CDCl3): δ 129.1–128.4 (d, J = 96.7 Hz), 129.5–129.3 (d, J = 11.8 

Hz), 132.3–132.0 (d, J = 2.5 Hz), 134.4–134.1 (d, J = 13.7 Hz) ppm. 
31P NMR (202.5 MHz, CDCl3): δ 33.31 (s, 1P) ppm (in agreement with the literature 

values[187,188]). 

HRMS (ES+) m/z calculated for C18H15AuClNaP [M+Na]+ 517.0163, found 517.1602. 
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5.3 Procedures for nanoparticle synthesis and 
functionalisation 

 

5.3.1 Preparation of TOAB-stabilised gold nanoparticles and functionalisation 
by ligand exchange 

 

5.3.1.1 Gold colloid solution (AuNP-TOAB)[160] 
 

 
 

All batches were made following the same general procedure.[160] The preparation of 

AuNP-TOABg (see Table 5.6) is described as an explanatory example. 

To a solution of gold(III) chloride trihydrate (0.3 mmol) in H2O (10 mL), a solution of 

TOAB (1.4 mmol) in toluene (28 mL) was added. The biphasic mixture was vigorously 

stirred for 15 min, while the yellow aqueous solution turned into deep red. Then, a fresh 

solution of NaBH4 (3.2 mmol) in H2O (5 mL) was added dropwise. After 1 h stirring, 

phases were separated, the aqueous layer was discarded and the organic solution was 

kept refrigerated under Ar for further use. Mean diameter: 3.01 ± 0.92 nm (31% 

dispersity). SPR λmax = 520 nm (in toluene). 
1H NMR (400.1 MHz, CDCl3): δ 0.84–0.96 (t, J = 7.2 Hz, 3H, CH3), 1.20–1.48 (m, 10H, 

5 × CH2), 1.61–1.75 (m, 2H, CH2), 3.30–3.42 (m, 2H, CH2N) ppm. 
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Figure 5.1 AuNP-TOAB: TEM micrograph (scale bar 20 nm), size distribution (diameter  

3.01 ± 0.92 nm, 31% dispersity) and UV-Vis spectrum (SPR λmax = 520 nm). 

 

5.3.1.2 Preparation of AuNP-4 by the ligand exchange method 
 

 
 

Under Ar, to a degassed solution of gold colloid solution AuNP-TOAB (45 mL), a 

solution of hydrazone 4H (133 mg, 393 µmol) in CH2Cl2 (5 mL) was added. The 

reaction mixture was vigorously stirred for 2 h at rt. An excess of MeOH was then 

added in order to induce NP precipitation. The supernatant solution was then decanted 

and the solid was transferred into a centrifuge tube, washed with methanol (40 mL), 

sonicated (10 min) and centrifuged (10 min, 6000 rpm, 5 °C). The precipitate was then 

dissolved in THF and purified by size exclusion chromatography (100% THF).[176] The 

clean fractions were then collected and evaporated under reduced pressure. A pure 

black solid was obtained (65.3 mg). Mean diameter: 3.71 ± 0.86 nm (23% dispersity).  
1H NMR (499.9 MHz, CD2Cl2): δ 0.12–3.19 (m, 20H, 10 × CH2), 6.80 (m, 2H, HAr), 7.45 

(m, 2H, HAr), 8.40 (bs, 1H, CH=) ppm. 
19F NMR (470.3 MHz, CD2Cl2): δ from –110.68 (bs, 1F) ppm. 
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5.3.1.3 Preparation of AuNP-5 by the ligand exchange method 
 

 
 

Under Ar, to a degassed solution of gold colloid solution AuNP-TOAB (50 mL), a 

solution of hydrazone 5H (291 mg, 831 µmol) in CH2Cl2 (5 mL) was added. The 

reaction mixture was vigorously stirred for 2 h at rt. An excess of MeOH was then 

added in order to induce NP precipitation. The supernatant solution was then decanted 

and the solid was transferred into a centrifuge tube, washed with methanol (40 mL), 

sonicated (10 min) and centrifuged (10 min, 6000 rpm, 5 °C). The precipitate was then 

dissolved in THF and purified by size exclusion chromatography (100% THF).[176] The 

clean fractions were then collected and evaporated under reduced pressure. A pure 

black solid was obtained (65.3 mg). Mean diameter: 2.86 ± 0.65 nm (23% dispersity). 
1H NMR (400.1 MHz, CD2Cl2): δ 0.52–2.97 (m, 20H, 10 × CH2), 3.63 (bs, 3H, CH3), 

6.61 (m, 2H, HAr), 7.06 (m, 2H, HAr), 7.45 (bs, 1H, CH=), 8.32 (bs, 1H, NH) ppm. 

 

5.3.2 Preparation of functionalised gold nanoparticles by direct synthesis 
 

5.3.2.1 Hydrazone stability under the reducing conditions used for nanoparticle 
synthesis 

 

In order to investigate the stability of the hydrazone moiety under reducing conditions, 

model hydrazones 23 or 24 (8 µmol), AuPPh3Cl (3.95 mg, 8 µmol) and tert-butylamine 

borane complex (6.96 mg, 80 µmol) were dissolved in DMF/[D8]THF 1:9 (0.5 mL) at rt. 

The stability of the hydrazone moiety was monitored by 19F NMR over 24 h (Figures 5.2 

and 5.3) by calculating its concentration against the internal standard  

(4-fluorotoluene, 16.0 mM). Hydrazone 23 was confirmed to be stable for at least 24 h 

at rt since its concentration did not change over time (Figure 5.2). On the other hand, 
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hydrazone 24 was stable only for 7 h. After 24 h, about 20% of hydrazone 24 was 

found to be reduced under the chosen conditions (Figure 5.3). 

 

 
Figure 5.2 19F NMR (DMF/[D8]THF 1:9, 470.5 MHz, 295 K) of compound 23 recorded after TBAB 

addition at rt (a–e). IS: internal standard (4-fluorotoluene, 16.0 mM). Conditions: 
AuPPh3Cl (1 Eq), TBAB (10 Eq), DMF/[D8]THF 1:9, rt. 

 

 
Figure 5.3 19F NMR (DMF/[D8]DMSO 1:9, 470.5 MHz, 295 K) of compound 24 after TBAB addition 

(a–e). IS: internal standard (4-fluorotoluene, 16.0 mM). Conditions: AuPPh3Cl (1 Eq), 
TBAB (10 Eq), DMF/[D8]THF 1:9, rt. 
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5.3.2.2 Preparation of AuNP-21 by direct synthesis method 
 

 
 

Representative procedure as summarised in Table 2.5 (entry g): Disulfide 212  

(40.0 mg, 32.2 µmol) and AuPPh3Cl (31.9 mg, 64.5 µmol) were dissolved in DMF/THF 

1:9 (4.0 mL). tert-Butylamine borane complex (56.1 mg, 645 µmol) was then added as 

a powder and the reaction mixture was vigorously stirred for 6 h at rt. The reaction was 

then quenched with Et2O (5 mL) in order to achieve NP precipitation. The black solid 

was then washed with MeOH using the following procedure: NPs were dispersed in 

MeOH and Et2O (7 mL), sonicated for 15 min, and centrifuged (4000 rpm, 5 °C,  

10 min). The operation was repeated 3 times for each solvent. Evaporation under 

vacuum afforded AuNP-21 as a black solid (9.73 mg). Mean diameter: 3.39 ± 0.61 nm 

(18% dispersity). SPR λmax = 509 nm (in DMF). 
1H NMR (500.1 MHz, [D7]DMF): δ 0.49–2.28 (m, 22H, CH2), 3.31–3.94 (m, 14H, 

CH2O), 4.04–4.34 (m, 2H, CH2O), 6.79–7.41 (m, 4H, HAr), 7.63–7.91 (m, 2H, HAr), 8.56 

(bs, 1H, CH=), 11.84 (bs, 1H, NH) ppm. 
19F NMR (470.5 MHz, [D7]DMF): δ –111.49 (s, 1F) ppm. 

 

The histograms corresponding to all the conditions employed for the synthesis of 

AuNP-21 (Table 2.5, entries a–i) are summarised in Figure 5.4. 
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Figure 5.4 Size distribution of AuNP-21 prepared as summarised in Table 2.5. 

 

5.3.2.3 Preparation of AuNP-22d by direct synthesis method 
 

Representative procedure as summarised in Table 2.6 (entry d): disulfide 222 (50.0 mg, 

37.3 µmol) and AuPPh3Cl (36.9 mg, 74.7 µmol) were dissolved in DMF/THF 1:9  

(4.7 mL). tert-Butylamine borane complex (32.5 mg, 373 µmol) was then added as a 

powder and the reaction mixture was vigorously stirred for 6 h at rt. The reaction was 

then quenched with an excess of Et2O in order to achieve full NP precipitation. The 

black solid was recovered by centrifugation and then washed with MeOH using the 

following procedure: NPs were dispersed in MeOH/Et2O 1:6 (7 mL), sonicated for  
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15 min, and centrifuged (4000 rpm, 5 °C, 10 min). The operation was repeated 3 times. 

Evaporation under vacuum afforded a black solid (42.8 mg). Mean diameter:  

5.37 ± 0.86 nm (16% dispersity). SPR λmax = 533 nm (in DMF). 

 

5.4 Synthesis of AuNP-22e via hydrazone exchange 
from AuNP-21: preparation, purification and 
characterisation 

 

 

5.4.1 Synthetic procedure 
 

To a solution of AuNP-21 (2.69 µmol in terms of ligand 21, 500 µL) in D2O/[D7]DMF 

1:9, a solution of 4-(trifluoromethyl)benzaldehyde 16 (53.7 µmol, 20 Eq, 50 µL) in 

D2O/[D7]DMF 1:9 and a solution of CF3CO2H (13.4 µmol, 5 Eq, 50 µL) in D2O/[D7]DMF 

1:9 were added. The reaction mixture was heated at 50 °C overnight. After 16 h the 

equilibrium was achieved and Et2O (5 mL) was added in order to achieve NP 

precipitation. The black solid was then washed with MeOH/Et2O 1:6 using the following 

procedure: NPs were dispersed in the solvent mix (7 mL), sonicated for 15 min, and 

centrifuged (4000 rpm, 5 °C, 10 min). Intermediate 19F NMR analysis revealed a 1:9 

ratio between ligands 21 and 22. The black solid was then re-dissolved in D2O/[D7]DMF 

1:9 (500 mL) and fresh aldehyde 16 (53.7 µmol, 20 Eq, 50 mL) and CF3CO2H  

(13.4 µmol, 5 Eq, mL) in D2O/[D7]DMF 1:9 were added. The reaction mixture was 

heated at 50 °C overnight and the full conversion was monitored by 19F NMR. The 

reaction was then quenched with Et2O (5 mL) in order to achieve NP precipitation. The 

black solid was then washed with MeOH using the same procedure described above. 

Evaporation under vacuum afforded pure AuNP-22e (32.3 mg, Figures 5.5 and 5.6). 
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1H NMR (500.1 MHz, [D7]DMF): δ 0.52–2.37 (m, 22H, 11 × CH2), 3.19–3.98 (m, 14H,  

7 × CH2O), 4.01–4.35 (m, 2H, CH2O), 6.80–7.24 (m, 4H, HAr), 7.48–7.88 (m, 4H, HAr), 

8.64 (bs, 1H, CH=), 12.01 (bs, 1H, NH) ppm. 
19F NMR (470.5 MHz, [D7]DMF): δ –61.46 (s, 3F) ppm. 

5.4.2 Full sweep width 1H NMR spectra for dynamic covalent hydrazone 
exchange from AuNP-21 to AuNP-22e 

 

 
Figure 5.5 1H NMR ([D7]DMF, 500.1 MHz, 295 K) for hydrazone exchange from AuNP-21 to  

AuNP-22e. a): disulfide 212. b): AuNP-21. c): AuNP-22e. d): disulfide 222. 
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5.4.3 Full sweep width 19F NMR spectra for dynamic covalent hydrazone 
exchange from AuNP-21 to AuNP-22e 

 

 
Figure 5.6 19F NMR (a, d, f, g: [D7]DMF; b, c, e: D2O/[D7]DMF 1:9; 470.5 MHz, 295 K) for 

hydrazone exchange from AuNP-21 to AuNP-22e. a): Disulfide 212. b): AuNP-21. c): 
Crude sample after exchange with 4-(trifluoromethyl)benzaldehyde 16 (20 Eq). d): 
Purified sample after exchange: AuNP-210.1220.9. e): Crude sample after a second round 
of exchange with 4-(trifluoromethyl)benzaldehyde 16 (20 Eq). f): Purified AuNP-22e 
displaying complete hydrazone exchange. g): Disulfide 222. IS: 3-fluoronitrobenzene. 

 

5.4.4 LDI-MS of AuNP-22e prepared by dynamic covalent exchange from  
AuNP-21 

 

AuNP surface-bound molecular species can be detected by LDI-MS.[76] Direct 

absorption of the UV laser excitation energy (355 nm) by the AuNPs leads to 

desorption and ionisation of surface-bound molecules without requiring addition of an 

external matrix. The surface desorbed ions formed from similar thiolate-protected 

AuNPs have previously been characterised,[76] and the same ionisation and 

fragmentation pattern was observed for desorbed ligand 22 (Figure 5.7). Molecular 
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ions for the disulfide 222 (peak A) and thiol 22H (peak D) were both observed. In 

addition, progressive loss of one and two sulfur atoms from the disulfide (peaks B and 

C, respectively) and the loss of H2S from the thiol (peak E) were also observed. 

 

 
Figure 5.7 LDI mass spectrum and fragmentation pattern for AuNP-22e. The ion corresponding to 

disulfide 222 (peak A, [222+Na]+: m/z 1361.61) undergoes a progressive loss of two 
sulfur atoms (peak B, [222–S+Na]+: m/z 1329.64; peak C, [222–2S+Na]+: m/z 1297.66). 
The ion corresponding to thiol 22H (peak D, [22H+Na]+: m/z 693.30) loses H2S (peak E, 
[22H–H2S+Na]+: m/z 659.30). 
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5.5 Reverse direction dynamic covalent exchange from 
AuNP-22e to AuNP-21 

 

5.5.1 Synthetic procedure 
 

To a solution of AuNP-22e (1.32 µmol in terms of ligand 22, 500 µL) in D2O/[D7]DMF 

1:9, a solution of 4-fluorobenzaldehyde 15 (13.2 µmol, 10 Eq, 50 µL) in D2O/[D7]DMF 

1:9 and a solution of CF3CO2H (6.58 µmol, 5 Eq, 50 µL) in D2O/[D7]DMF 1:9 were 

added. The reaction mixture was heated at 50 °C for 2 days and then Et2O (5 mL) was 

added in order to achieve NP precipitation. The black solid was washed with 

MeOH/Et2O 1:6 using the following procedure: NPs were dispersed in the solvent mix 

(7 mL), sonicated for 15 min and centrifuged (4000 rpm, 5 °C, 10 min). 19F NMR 

analysis revealed a 1:1 ratio between ligands 21 and 22. The black solid was then re-

dissolved in D2O/[D7]DMF 1:9 (500 µL) and fresh 4-fluorobenzaldehyde 15 (39.5 µmol, 

30 Eq, 50 µL) and CF3CO2H (6.58 µmol, 5 Eq, 50 µL) in D2O/[D7]DMF 1:9 were added. 

The reaction mixture was heated at 50 °C for 3 days and the full conversion was 

monitored by 19F NMR. The reaction was then quenched with Et2O (5 mL) in order to 

achieve NP precipitation. The black solid then was washed with MeOH/Et2O 1:6 using 

the same procedure described above. A sample of pure NPs (8.8 mg) was obtained 

after evaporation under vacuum. 
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5.5.2 Full sweep width 19F NMR spectra of the exchange from AuNP-22e to 
AuNP-21 

 

 
Figure 5.8 19F NMR (a, d, g, h: [D7]DMF; b, c, e, f D2O/[D7]DMF 1:9, 470.5 MHz, 295 K) for 

hydrazone exchange from AuNP-22e to AuNP-21. a): Disulfide 222. b): AuNP-22e. c): 
Crude sample after exchange with 4-fluorobenzaldehyde 15 (10 Eq). d): Purified sample 
after exchange: AuNP-210.5220.5. e): Crude sample after a second round of exchange 
with 4-fluorobenzaldehyde 15 (30 Eq). f): Purified sample after the second exchange, 
before NP precipitation. g): Purified sample after second round of exchange:  
AuNP-210.74220.26 h): Disulfide 212. IS: 3-fluoronitrobenzene. 

 

5.5.3 LDI-MS analysis: AuNP-210.74220.26 
 

For fragmentation pattern of AuNP-21 and AuNP-22e see Figures 2.12 and 5.7.[76] The 

formation of a mixed monolayer for AuNP-210.74220.26 was confirmed by observation of 

ions corresponding to each of the parent thiolates (21H and 22H), homodisulfides (212 

and 222) and mixed disulfide (21•22). 
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Figure 5.9 LDI mass spectrum of AuNP-210.74220.26. A): [212+Na]+: m/z 1261.55. B): [212–S+Na]+: 

m/z 1229.57. C): [212–2S+Na]+: m/z 1197.61. D): [21H+Na]+: m/z 643.27. (E):  
[21H–H2S+Na]+: m/z 609.29. F): [222+Na]+: m/z 1361.54. G): [222–S+Na]+: m/z 1329.56. 
H): [222–2S+Na]+: m/z 1297.59. I): [22H+Na]+: m/z 693.27. J): [22–H2S+Na]+: m/z 
659.28. K): [21•22+Na]+: m/z 1311.54. L): [21•22–S+Na]+: m/z 1279.57. M):  
[21•22–2S+Na]+: m/z 1247.60. 
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5.5.4 Nanoparticulate structural characterisation: AuNP-210.74220.26 
 

 
Figure 5.10 Representative TEM micrographs of AuNP-210.74220.26 (scale bar 20 nm), size 

distribution (diameter 3.40 ± 0.81, 24% dispersity) and UV-Vis spectrum (SPR  
λmax = 508 nm). 
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5.6 Kinetic studies by 19F NMR spectroscopy 
 

5.6.1 Relaxation times 
 

Longitudinal relaxation times (T1) for 19F signals were determined by inversion-recovery 

method in order to set appropriate pulse delay times (≥ 5×T1) for quantitative NMR 

experiments. 

 
Table 5.1 Relaxation times for quantitative 19F NMR experiments in D2O/[D7]DMF 1:9 at rt. 

Compound T1 / s Compound T1 / s 

 
19 

0.92  
15 

3.47a 

 
AuNP-21 

0.68 
 

2.47 

 
20 

1.18  
16 

1.73 

 
AuNP-22e 

0.96 
 

3.04 

 
23 

1.07 
 

2.33 

 
24 

0.91  
Internal standard 

3.24 

a: Longest T1. The 19F NMR quantitative experiment was set with a delay time of 22 s. 
 

5.6.2 Kinetic measurements and deconvolution data 
 

5.6.2.1 Hydrolysis of AuNP-21 
 

Hydrazone hydrolysis was examined starting from AuNP-21 in 10% D2O/[D7]DMF. The 

concentration of 21 was assessed by 19F NMR in the presence of  

1-fluoro-3-nitrobenzene (internal standard), then the reaction triggered by addition of 

CF3CO2H (5 Eq with respect to 21). Reaction progress was assessed by deconvoluting 
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signals corresponding to both the NP-bound hydrazone 21 and released  

4-fluorobenzaldehyde 15 (Figure 5.11). 

 

 
Figure 5.11 Stacked 19F NMR spectra (D2O/[D7]/DMF 1:9, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of 

the hydrolysis of AuNP-21 at rt recorded for 242 h. Conditions: CF3CO2H (5 Eq), 
D2O/[D7]/DMF 1:9, rt. IS: 1-fluoro-3-nitrobenzene (4.95 mM). 
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5.6.2.2 Hydrolysis of AuNP-22e 
 

Hydrolysis of AuNP-22e was examined with the same procedure adopted for AuNP-21 

(see Section 5.6.2.1). 

 

 
Figure 5.12 Stacked 19F NMR spectra (D2O/[D7]/DMF 1:9, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of 

the hydrolysis of AuNP-22e at rt recorded for 99 h. Conditions: CF3CO2H (5 Eq), 
D2O/[D7]/DMF 1:9, rt. IS: 1-fluoro-3-nitrobenzene (4.95 mM). 

 

5.6.2.3 Equimolar exchange from AuNP-21 to AuNP-22e 
 

In a similar manner to the hydrolysis reactions (Sections 5.6.2.1–2), hydrazone 

exchange in the presence 4-(trifluoromethyl)benzaldehyde 16 (1 Eq) was tracked in 

real time for AuNP-21. Figure 5.13 shows the 19F NMR spectra for a characteristic 

equimolar exchange experiments from AuNP-21. After the addition of 16 and 

CF3CO2H, a gradual decrease in intensity of the peaks corresponding to NP-bound 21 

and free 16 was observed, together with an associated increase in the peaks 

corresponding to NP-bound 22 and displaced 4-fluorobenzaldehyde 15. 
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Figure 5.13 Stacked 19F NMR spectra (D2O/[D7]DMF 1:9, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of 

the exchange of AuNP-21 at rt recorded for 289 h. Conditions: 16 (1 Eq), CF3CO2H  
(5 Eq), D2O/[D7]DMF 1:9, rt. IS: 1-fluoro-3-nitrobenzene (4.95 mM).  
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5.6.2.4 Equimolar exchange from AuNP-22e to AuNP-21 
 

Equimolar exchange starting from AuNP-22e was examined with the same procedure 

adopted for AuNP-21 (Section 5.6.2.3). 

 

 
Figure 5.14 Stacked 19F NMR spectra (D2O/[D7]DMF 1:9, 470.5 MHz, 295 K, 16 scans, D1: 22 s) of 

the exchange of AuNP-22e at rt recorded for 218 h. Conditions: 15 (1 Eq), CF3CO2H  
(5 Eq), D2O/[D7]DMF 1:9, rt. IS: 1-fluoro-3-nitrobenzene (4.95 mM). 

 

5.6.3 Fitting of the hydrolysis experiments by COPASI®[198] 
 

The COPASI® software package was used to determine the appropriate set of 

differential equations to which the experimental data could be fit in order to obtain 

estimates of the rate constants k1 and k2.[198] 

Hydrolysis experiments were fit using Equation 3.1 (see Sections 5.6.3.1–4). The 

kinetic constant values are summarised in Tables 3.1–3. 
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5.6.3.1 Hydrolysis of hydrazone 23 
 

 
Figure 5.15 Representative example of the experimental data for the hydrolysis of model hydrazone 

23 (Table 3.1, entry a) fitted with COPASI®. 

 

 
Figure 5.16 Global fitting by COPASI® for the hydrolysis of model hydrazone 23 (Table 3.1, entries 

a–c). The calculated k values are shown in Table 3.1, entry d. 
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5.6.3.2 Hydrolysis of model hydrazone 24 
 

 
Figure 5.17 Representative example of the experimental data for the hydrolysis of model hydrazone 

24 (Table 3.1, entry e) fitted with COPASI®. 

 

 
Figure 5.18 Global fitting by COPASI® for the hydrolysis of model hydrazone 24 (Table 3.1, entries 

e–g). The calculated k values are shown in Table 3.1, entry h. 
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5.6.3.3 Hydrolysis of AuNP-21 
 

 
Figure 5.19 Representative example of the experimental data for the hydrolysis of AuNP-21 (Table 

3.2, entry b) fitted with COPASI®. 

 

5.6.3.4 Hydrolysis of AuNP-22e 
 

 
Figure 5.20 Representative example of the experimental data for the hydrolysis of AuNP-22e (Table 

3.3, entry b) fitted with COPASI®. 

 

5.6.4 Fitting of the exchange experiments 
 

In a preliminary stage, the rate constants calculated for the individual hydrolysis 

experiments of molecular compounds 23 and 24 (Table 3.1, entries d and h) were used 

for generating a model with Equations 5.1 and 5.2. In fact, the general hydrazone 

mechanism could be described as the combination of two reversible hydrolysis 

reactions for the hydrazone starting material and product. 



Chapter 5 – Experimental and synthetic procedures 

 171 

 
Equation 5.1 

 
Equation 5.2 

 

Ideally, the rate constants would have described the hydrazone exchange. 

Surprisingly, it was observed that the model was able to simulate the experimental data 

only for the first ten hours from the CF3CO2H triggering (Figure 5.21). After, a deviation 

from the experimental data was consistently observed for both NP-bound and unbound 

hydrazones. 

For this reason, exchange experiments were fit according to the mechanism of 

Equation 3.4 (see Sections 5.6.4.1–3). 

The kinetic constant values are summarised in Tables 3.4–6. 

 

 
Figure 5.21 Kinetic profile for hydrazone exchange with compound 23 and 24. Conditions: 23  

(0.1 Eq), 24 (0.9 Eq), 4-fluorobenzaldehyde 15 (0.9 Eq), 4-(trifluoromethyl)benzaldehyde 
16 (0.1 Eq), CF3CO2H (5.1 Eq), D2O/DMF 1:9, rt. � : 23. � : 24. � :  
4-Fluorobenzaldehyde 15. �: 4-(Trifluoromethyl)benzaldehyde 16. Full lines: fitting by 
COPASI®: hydrolysis of 23: k1 = 2.50 × 10–9 mM–1s–1 and k2 = 2.40 × 10–4 mM–1s–1; 
hydrolysis of 24, k1 = 7.59 × 10–10 mM–1s–1 and k2 = 3.85 × 10–4 mM–1s–1. 
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5.6.4.1 Equimolar exchange with molecular hydrazones 23 and 24 
 

 
Figure 5.22 Global fitting by COPASI® for the equimolar exchange between 23 and 24 from three 

repeated experiments (Table 3.4, entries a–c). The calculated k values are shown in 
Table 3.4, entry d). 

 

5.6.4.2 Equimolar exchange from AuNP-21 to AuNP-22e 
 

 
Figure 5.23 Equimolar exchange from AuNP-21 to AuNP-22e (Table 3.5, entry a) fitted with 

COPASI®. 
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5.6.4.3 Equimolar exchange from AuNP-22e to AuNP-21 
 

 
Figure 5.24 Equimolar exchange from AuNP-22e to AuNP-21 (Table 3.6, entry b) fitted with 

COPASI®. 

 

5.7 Comparison of dynamic covalent hydrazone 
exchange with monolayer ligand exchange 

 

Dynamic hydrazone exchange and monolayer ligand exchange in the NP monolayer 

occur via quite different mechanisms, making quantitative comparison of kinetics 

challenging. For this reason, the two processes were analysed under analogous 

conditions (same starting concentration of the NP-bound ligand 21 and same excess of 

the exchange unit, aldehyde 16 or disulfide 222) at 50 °C. For an additional 

comparison, a further exchange experiment using molecular compound 24 at 50 °C 

was also performed. The experiments were monitored by 19F NMR spectroscopy as 

described in Section 5.6. 

Experimental conditions: 

• Ligand exchange: AuNP-21 (1.95 µmol with respect to 21, 500 µL), 222  

(19.5 µmol, 50 µL, 20 Eq excess with respect to 21), D2O/DMF 1:9, 50 °C. 

• Hydrazone exchange: AuNP-21 (2.01 µmol with respect to 21, 500 µL), 16 

(40.2 µmol, 50 µL, 20 Eq excess), CF3CO2H (10.1 µmol, 50 µL, 5.0 Eq), 

D2O/DMF 1:9, 50 °C. 

• Hydrazone exchange with molecular compound: 24 (1.52 µmol, 500 µL), 16 

(30.3 µmol, 50 µL, 20 Eq excess), CF3CO2H (7.58 µmol, 50 µL, 5.0 Eq excess), 

D2O/DMF 1:9, 50 °C. 
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The two processes where compared by using the half-life, calculated in, respectively, 

17.9, 4.1 and 2.1 h, confirming that ligand exchange is slower when compared to 

hydrazone exchange (both for NP-bound and unbound species). In addition, ligand 

exchange is also less efficient since it proceeds to 63% exchange while hydrazone 

exchange (in the NP-bound monolayer) proceeds to 86% exchange. 

The ligand exchange process using 1 Eq of ligand 22 at rt in D2O/DMF 1:9 provides  

< 3% exchange, even after an extended reaction time of 48 h. 
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5.8 Solubility switching between AuNP-21, AuNP-30 
and AuNP-31 

 

Switching between each of AuNP-21, AuNP-30 and AuNP-31 could be achieved in 

either direction. The solvent compatibility properties of each species were independent 

from the route to produce it (Scheme 5.1). 

 

 
Scheme 5.1 a): 3-(Undecyloxy)benzaldehyde 28 (20 Eq), CF3CO2H (5 Eq), D2O/[D7]DMF 1:9, 1.5 h, 

50 °C. b): 4-Fluorobenzaldehyde 15 (20 Eq), CF3CO2H (5 Eq), D2O/[D7]DMF 1:99, 
overnight, 50 °C, purify, repeat. c): 2-Formylbenzene sulfonic acid sodium salt 29  
(20 Eq), CF3CO2H (5 Eq), D2O/[D8]THF 5:95, 1 h, 50 °C. d):  
3-(Undecyloxy)benzaldehyde 28 (20 Eq), CF3CO2H (5 Eq), D2O/[D8]THF 1:9, 1 h, 50 °C. 
e): 2-Formylbenzene sulfonic acid sodium salt 29 (20 Eq), CF3CO2H (5 Eq), 
D2O/[D7]DMF 1:9, overnight, 50 °C. f): 4-Fluorobenzaldehyde 15 (20 Eq), CF3CO2H  
(5 Eq), D2O/[D7]DMF 1:9, overnight, 50 °C. Solvents (from left to right) in the inset 
pictures: hexane, CHCl3, THF, MeOH, DMF, water. 

 

 

 



Chapter 5 – Experimental and synthetic procedures 

 176 

5.8.1 Solubility switching between AuNP-21 (polar organic) and AuNP-30 
(apolar organic) 

 

 
 

Aldehyde 28 (91.6 µmol, 20 Eq, 50 µL) and CF3CO2H (22.9 µmol, 5 Eq, 50 µL) were 

added to a solution of AuNP-21 (4.58 µmol in terms of ligand 21, 500 µL) in 

D2O/[D7]DMF 1:9. The reaction mixture was heated at 50 °C for 1.5 h after which full 

precipitation of NPs had resulted. The supernatant was analysed by 19F NMR to 

determine unbound molecular species before removal (Figure 4.1). The resulting black 

solid was then re-suspended in MeOH (1 mL), HexH (7 mL) was added to induce NP 

flocculation and the resulting suspension was sonicated for 15 min. Precipitated NPs 

were recovered by centrifugation (4000 rpm, 5 °C, 10 min). This operation was 

repeated three times and pure AuNP-30 was afforded. Mean diameter: 2.82 ± 0.48 nm 

(18% dispersity). SPR λmax = 508 nm (in CHCl3). 
1H NMR (500.1 MHz, CDCl3): δ 0.46–2.33 (m, CH2), 2.92–4.55 (m, CH2O), 6.40–6.93 

(m, HAr), 6.96–7.49 (m, HAr), 7.45–8.24 (m, HAr), 8.75 (bs, 1H, CH=), 11.94 (bs, 1H, NH) 

ppm. 

 

5.8.1.1 LDI-MS analysis of AuNP-30 
 

LDI-MS analysis was performed as discussed in Section 5.4.4.[76] Peaks corresponding 

to AuNP-21 are barely visible, while the relative abundance of the peaks corresponding 

to the heterodisulfide 21!30 is not more than 10% (Figure 5.25). LDI-MS analysis 

further confirms that the exchange is almost complete. 
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Figure 5.25 LDI mass spectrum and fragmentation pattern for AuNP-30. The ion corresponding to 

the disulfide of ligand 30 (peak A, [302+Na]+: m/z 1566.30) undergoes a progressive loss 
of two sulfur atoms (peak B, [302–S+Na]+: m/z 1534.32; peak C, [302–2S+Na]+: m/z 
1502.33). The ion corresponding to thiol 30H (peak D, [30H+Na]+: m/z 795.60) loses 
H2S (peak E, [30H–H2S+Na]+: m/z 761.60), followed by progressive loss of CH2 units. 
F): [21H+Na]+: m/z 643.32. G): [21H–H2S+Na]+: m/z 609.35. H): [21!30+Na]+: m/z 
1413.73. I): [21!30–S+Na]+: m/z 1381.76. J): [21!30–2S+Na]+: m/z 1349.86. 
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5.8.1.2 Nanoparticulate structural characterisation: AuNP-30 
 

 
Figure 5.26 Representative TEM images of AuNP-30 (scale bar 20 nm), size distribution (diameter 

2.82 ± 0.48 nm, 18% dispersity) and UV-Vis spectrum (SPR λmax = 508 nm). 

 

5.8.1.3 Reversibility of the exchange (apolar organic to polar organic) 
 

4-Fluorobenzaldehyde (33.8 µmol, 20 Eq, 50 µL) and CF3CO2H (8,45 µmol, 5 Eq,  

50 µL) were added to a solution of AuNP-30 (1.69 µmol in terms of ligand 30, 500 µL) 

in D2O/[D7]DMF 1:99. The reaction mixture was heated at 50 °C overnight. The dark 

red solution was analysed by 19F NMR to confirm the presence of AuNP-21. Then Et2O 

was added to induce NP precipitation. The supernatant was discarded and the 

resulting black solid then was washed with MeOH/Et2O 1:7 using the following 

procedure: NPs were dispersed in the solvent mixture (8 mL), sonicated for 15 min, 

and centrifuged (4000 rpm, 5 °C, 10 min). The operation was repeated three times and 

clean functionalised NPs (7.51 mg) were afforded displaying solubility properties 

intermediate between AuNP-30 and AuNP-21 (Scheme 5.1B3). NMR analysis (Figure 

5.27) revealed peaks equal to those shown in NMR spectra of AuNP-21 prepared by 

direct synthesis (Section 5.3.2.2). LDI-MS analysis revealed fragments corresponding 

to both ligands 21 and 30 with similar intensities (Figure 4.6). The material was again 

dried and dissolved in D2O/[D7]DMF 1:99 (500 µL) with fresh 4-fluorobenzaldehyde 
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(33.8 µmol, 20 Eq, 50 µL) and CF3CO2H (8,45 µmol, 5 Eq, 50 µL). The mixture was 

heated at 50 °C overnight. After precipitation and purification as before, the sample 

showed identical solubility properties (Scheme 5.1A2) to those showed by a sample of 

AuNP-21 prepared as discussed in Section 5.3.2.2 (Scheme 5.1A1). 

 

 
Figure 5.27 a): 1H NMR ([D7]DMF, 500.1 MHz, 295 K) of AuNP-210.9300.10 produced via exchange 

from AuNP-30. b): T2-filtered spectrum (D21: 0.1 s). c): 19F NMR ([D7]DMF, 470.5 MHz, 
295 K). 
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5.8.2 Solubility switching between AuNP-30 (apolar organic) and AuNP-31 
(aqueous) 

 

 
 

2-Formylbenzene sulfonic acid sodium salt 29 (53.5 µmol, 20 Eq, 50 µL) and CF3CO2H 

(13.4 µmol, 5 Eq, 50 µL) were added to a solution of AuNP-30 (2.68 µmol in terms of 

ligand 30, 500 µL) in D2O/[D8]THF 5:95. The reaction mixture was heated at 50 °C for  

1 h, after which full NP precipitation had resulted. The supernatant solution was 

analysed by 1H NMR to confirm the presence of displaced aldehyde 28 and then 

discarded. The black solid was washed with H2O/THF 1:99 using the following 

procedure: NPs were dispersed in the solvent mixture (8 mL), sonicated for 15 min and 

centrifuged (4000 rpm, 5 °C, 10 min). The operation was repeated seven times and 

pure AuNP-31 was obtained. Mean diameter: 2.62 ± 0.91 nm (35% dispersity). SPR 

λmax = 519 nm (in H2O). 
1H NMR (500.1 MHz, D2O): δ 0.60–2.11 (m, CH2), 2.58–4.19 (m, CH2O), 6.38–8.61 (m, 

HAr), 9.00 (bs, 1H, CH=) ppm. 
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5.8.2.1 Nanoparticulate structural characterisation: AuNP-31 
 

 
Figure 5.28 Representative TEM images of AuNP-31 (scale bar 20 nm). Size distribution (diameter 

2.62 ± 0.91 nm, 35% dispersity) and UV-Vis spectrum (SPR λmax = 519 nm). 

 

5.8.2.2 Reversibility of the exchange (aqueous to apolar organic) 
 

Aldehyde 28 (53.5 µmol, 20 Eq, 50 µL) and CF3CO2H (13.4 µmol, 5 Eq, 50 µL) were 

added to a solution of AuNP-31 (2.68 µmol in terms of ligand 31, 500 µL) in 

D2O/[D8]THF 1:9. The reaction mixture was heated at 50 °C. After 20 min a black solid 

precipitated from the reaction mix. The sample was further heated for 40 min to ensure 

full NP precipitation (Figure 5.29). 

The recovered black solid showed identical solubility properties and LDI-MS 

fragmentation pattern to AuNP-30 prepared by other routes (Scheme 5.1B2). In 

addition, LDI-MS analysis (Figure 5.29) confirmed that the fragmentation pattern is 

identical to that shown for AuNP-30 (Figure 5.25). 

 



Chapter 5 – Experimental and synthetic procedures 

 182 

 
Figure 5.29 LDI mass spectrum of AuNP-30 produced via exchange from AuNP-31. A): [302+Na]+: 

m/z 1566.89. B): [302–S+Na]+: m/z 1533.91. C): [302–2S+Na]+: m/z 1501.97. D): 
[30H+Na]+: m/z 795.44. E): [30H–H2S+Na]+: m/z 761.46. 

 

5.8.3 Solubility switching between AuNP-21 (polar organic) and AuNP-31 
(aqueous) 

 

 
 

2-Formylbenzene sulfonic acid sodium salt (33.8 µmol, 20 Eq, 50 µL) and CF3CO2H 

(8.45 µmol, 5 Eq, 50 µL) were added to a solution of AuNP-21 (1.69 µmol in terms of 

ligand 21, 500 µL) in D2O/DMF 1:9. The reaction mixture was heated at 50 °C 

overnight. The mixture was analysed by 1H and 19F NMR to confirm the presence of 

displaced 4-fluorobenzaldehyde. Then, Et2O (7 mL) was added to induce NP 

precipitation. The supernatant solution was discarded and the black solid was washed 

with H2O/THF 1:99 using the following procedure: NPs were dispersed in the solvent 

mixture (8 mL), sonicated for 15 min and centrifuged (4000 rpm, 5 °C, 10 min). The 
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operation was repeated three times and pure AuNP-31 (14.8 mg) was obtained. Mean 

diameter: 3.35 ± 0.93 nm (28% dispersity). SPR λmax = 541 nm (in H2O). 

The extent of hydrolysis was calculated as discussed in Section 5.8.1 and found to be 

76%. Despite an incomplete exchange, the resulting purified NPs were soluble in water 

(Scheme 5.1C1). LDI-MS analysis confirmed the presence of fragments corresponding 

to both ligands 21H and 31H (Figure 5.31). 

 

 
Figure 5.30 a): 1H NMR (D2O, 500.1 MHz, 295 K) of AuNP-31 produced via exchange from  

AuNP-21. b): T2-filtered spectrum (D21: 0.1 s). Inset: partial 19F NMR (D2O, 470.5 MHz, 
295 K) showing the presence of AuNP-21 not exchanged (< 24%). *: Residual THF. 
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5.8.3.1 LDI-MS analysis of AuNP-31 
 

LDI analysis was performed as discussed in Sections 5.4 and 5.8.2.[76,231] 

 

 
Figure 5.31 LDI mass spectrum of AuNP-31 produced via exchange from AuNP-21 (positive mode). 

A): [31H+Na]+: m/z 727.23. B): [31H–H2S+Na]+: m/z 693.25. C): [212+Na]+: m/z 1261.57. 
D): [212–S+Na]+: m/z 1229.58. E): [21!31+Na]+: m/z 1345.56. F): [21!31–S+Na]+: m/z 
1313.53. G): [21!31–S+Na]+: m/z 1281.56. 

 

5.8.3.2 Nanoparticulate structural functionalisation: AuNP-31 from  
AuNP-21 

 

 
Figure 5.32 Representative TEM images of AuNP-31 (scale bar 20 nm). Size distribution (diameter 

3.35 ± 0.93 nm, 28% dispersity) and UV-Vis spectrum (SPR λmax = 541 nm). 
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5.8.3.3 Reversibility of the exchange (aqueous to polar organic) 
 

4-Fluorobenzaldehyde (33.8 µmol, 20 Eq, 50 µL) and CF3CO2H (8.45 µmol, 5 Eq,  

50 µL) were added to a solution of AuNP-31 (1.69 µmol in terms of ligand 31, 500 µL) 

in D2O/[D7]DMF 1:9. The reaction mixture was heated at 50 °C overnight. The dark red 

solution was analysed by 19F NMR to confirm the presence of AuNP-21. Then Et2O 

was added to induce NP precipitation. The supernatant was discarded and the 

resulting black solid then was washed with DMF/Et2O 1:7 using the following 

procedure: NPs were dispersed in the solvent mixture (8 mL), sonicated for 15 min, 

and centrifuged (4000 rpm, 5 °C, 10 min). The operation was repeated three times and 

clean functionalised NPs (7.56 mg) were afforded. 

The recovered nanoparticles were no longer soluble in water (Scheme 5.1A3).  
19F NMR confirmed the presence of the broad peak corresponding to AuNP-21 (Figure 

5.33). LDI-MS analysis confirmed the presence of peaks corresponding to both ligands 

21H and 31H (Figure 5.35). 

 

 
Figure 5.33 19F NMR (D2O/[D7]DMF 1:99, 470.5 MHz, 295 K). A): AuNP-21 produced via exchange 

from AuNP-31 after 24 h. B): AuNP-21 after purification. IS: 3-fluoronitrobenzene  
(4.95 mM). 
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Figure 5.34 a): 1H NMR ([D7]DMF, 500.1 MHz, 295 K) of AuNP-21 produced via exchange from 

AuNP-31. b): T2-filtered spectrum (D21: 0.1 s).  

 

 
Figure 5.35 LDI mass spectrum of AuNP-21 produced by exchange from AuNP-31 (positive mode). 

A): [212+Na]+: m/z 1261.64. B): [212–S+Na]+: m/z 1229.57. C): [212–2S+Na]+: m/z 
1197.61. D): [21H+Na]+: m/z 643.28. E): [21H–H2S+Na]+: m/z 609.29. F): [31H+Na]+: 
m/z 727.23. G): [31H–H2S+Na]+: m/z 693.25. 

 

 

 

 

 

 



Chapter 5 – Experimental and synthetic procedures 

 187 

5.9 Non-covalent aggregation of AuNP-30 
 

5.9.1 AuNP-30 in chloroform 
 

 
Figure 5.36 Representative TEM images of AuNP-30 (scale bar 20 and 100 nm). NP core diameter: 

2.84 ± 0.93 nm, 33% dispersity. Solvodynamic diameter: 7.44 ± 1.09 nm, 15% 
dispersity. 
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5.9.2 AuNP-30 in chloroform/tetrahydrofuran 1:1 
 

 
Figure 5.37 Representative TEM images of AuNP-30 (scale bar 100 nm). Solvodynamic diameter: 

70.24 ± 3.31 nm, 5% dispersity. 

 

5.10 Assembly of AuNP-21 via hydrazone exchange 
 

5.10.1 AuNP-21 before hydrazone exchange 
 

 
Figure 5.38 Representative TEM images of AuNP-21 (scale bar 20 nm). NP core diameter:  

2.88 ± 0.95 nm, 33% dispersity. 
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5.10.2 Assembly of AuNP-21 with terephthalaldehyde (0.5 equivalents) and 
trifluoroacetic acid (5 equivalents) 

 

 
Figure 5.39 Representative TEM images of AuNP-21 (scale bar 100 nm) with 0.5 Eq of 

terephthalaldehyde (with respect to 21) after 21 days from addition of CF3CO2H (5 Eq 
with respect to 21). 

 

5.10.3 Assembly of AuNP-21 with terephthalaldehyde (1 equivalent) and 
trifluoroacetic acid (5 equivalents) 

 

 
Figure 5.40 Representative TEM images of AuNP-21 (scale bar 50 nm) with 1 Eq of 

terephthalaldehyde (with respect to 21) after 21 days from addition of CF3CO2H (5 Eq 
with respect to 21). 
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5.10.4 Assembly of AuNP-21 with terephthalaldehyde (5 equivalents) and 
trifluoroacetic acid (5 equivalents) 

 

 
Figure 5.41 Representative TEM images of AuNP-21 (scale bar 100 nm) with 5 Eq of 

terephthalaldehyde (with respect to 21) after 21 days from addition of CF3CO2H (5 Eq 
with respect to 21). 

 
Figure 5.42 Representative scanning tunnelling microscopy images of AuNP-21 (scale bar 100 nm) 

with 5 Eq of terephthalaldehyde (with respect to 21) after 21 days from addition of 
CF3CO2H (5 Eq with respect to 21). 
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5.10.5 Control experiment: AuNP-21 with terephthalaldehyde  
(0.5 equivalents) 

 

 
Figure 5.43 Representative TEM images of AuNP-21 (scale bar 20 and 100 nm) with 0.5 Eq of 

terephthalaldehyde (with respect to 21) after 21 days. 

 

5.10.6 Control experiment: AuNP-21 with trifluoroacetic acid  
(5 equivalents) 

 

 
Figure 5.44 Representative TEM images of AuNP-F (scale bar 20 and 100 nm) after 21 days from 

addition of CF3CO2H (5 Eq with respect to F). 

 

5.11 Tables 

 
Table 5.2 Estimation of the nanoparticle concentration of 5 nm commercial gold colloid 

solution.[152] Summary of concentration values in Table 5.4. 

Entry A εa / 
M–1cm–1 

Path / 
cm 

Cb
(cuvette) / 

M 
Dilution 
factor 

Cb
(sample) / 

M 

1 0.17461 1.03 × 107 0.5 3.39 × 10–8 2.50 8.47 × 10–8 

2 0.10032 “ “ 1.95 × 10–8 3.75 7.30 × 10–8 
a: Molar extinction coefficient estimated with Huo’s relationship.[149] 
b: Concentration. 
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Table 5.3 Examples of the theoretical determination of the weight of functionalised gold 
nanoparticles for a known volume of TOAB-stabilised AuNP solution and the amount of 
ligand necessary to cover the total surface area. 

  Entry AuNP-TOABc AuNP-TOABd 

Diameter  
(d1NP)a / nm   5.00 4.81 

Radius  
(r1NP) / nm d1NP / 2  2.50 2.41 

Volume of 1 AuNP  
(V1AuNP) / nm3 4/3 π r1NP

3  65.45 58.27 

Surface area of 1  
AuNP (S1NP) / nm2 4 π r1NP

2  78.54 72.68 

Volume of 1 Au  
atom (VAu)[241] / nm3 0.017    

Surface occupied  
by 1 ligand (SLig)[151] / nm2 0.241    

No. Au atoms  
per AuNP (N1AuNP) V1NP / VAu  3850 3428 

Mass of 1 AuNP  
(W1AuNP) / g NAu / NA × 197  1.26 × 10-18 1.12 × 10-18 

No. ligands to cover  
1 AuNP (NLig1AuNP) S1NP / SLig  367 340 

HAuCl4 for ligand exchange 
(mmolHAuCl4) / mmol   1.2 1.2 

Total weight of Au used for 
ligand exchange (WAuTot) / g 

mmolHAuCl4 ×  
197 / 1000  0.2364 0.2364 

Total No. of AuNPs  
in toluene (NAuNPTot) 

WAuTot / W1AuNP  1.88 × 1017 2.11 × 1017 

Volume of toluene  
used (VToluene) / mL   112 112 

Volume used for  
the exchange (VExch) / mL   12.4 16.4 

No. AuNPs in the  
used volume (NAuNPExch) 

NAuNPTot ×  
VExch / VToluene 

 2.08 × 1016 3.09 × 1016 

No. Au atoms in the  
used volume (NAuExch) 

NAuNPExch × N1AuNP  8.00 × 1019 1.06 × 1020 

Weight of Au in the  
used volume (WAuExch) / mg 

NAuExch / NA ×  
197 × 1000  26.17 34.62 

No. Ligands for  
full coverage (NFull) 

NAuNPExch × NLig1AuNP  7.63 × 1018 1.05 × 1019 

MW of 4H  
(MW) / g mol–1   338.48 338.48 

Weight of 4H  
needed (WFull)b / mg 

NFull / NA × MW × 
1000  4.29 5.89 

Theoretical sample  
weight / mg WAuExch + WFull  30.5 40.5 

a: The mean diameter is estimated using ImageJ®. 
b: The upper value for the mass of AuNPs functionalised with hydrazone 4H is estimated assuming that all 
the gold used to make the stock solution of TOAB-stabilised AuNPs (Section 5.3.1) is completely 
transferred from the aqueous to the organic phase and is fully converted into colloidal stable NPs. It is also 
assumed that the NP size does not change after the ligand, all functionalised AuNPs are fully recovered 
after the work-up and all the TOAB is completely removed (Table 5.6). 
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Table 5.4 Concentration of commercial gold colloid solutions.[152] Concentrations are reported as 
mean values of two UV-Vis measurements with different concentration. The molar 
extinction coefficient is determined from Huo’s relationship (Equation 2.3).[149] 

Entry Diameter / nm ε  / cm–1M–1 [AuNP] / nM 

AuNP-citrate 5 1.03 × 107 78.9 

AuNP-citrate 10 1.03 × 108 9.32 

AuNP-citrate 20 1.03 × 109 0.91 

AuNP-citrate 40 1.03 × 1010 0.10 

 
Table 5.5 Reaction conditions for ligand adsorption experiments on commercial citrate-capped 

AuNPs. None of the above conditions produced readily dispersed organic-soluble NPs. 

Entry Ligand Diameter / nm Solvent TOAB HCl Reaction  
time 

a Hydrazide 2 5 Toluene NO NO 24 h 

b Hydrazide 2 5 Toluene YES NO 24 h 

c 1-Decanethiol 5 Toluene NO YES 10 min 

d 1-Decanethiol 5 Toluene NO YES 5 min 

e 1-Decanethiol 5 Toluene NO NO 15 min 

f 1-Decanethiol 5 CH2Cl2 NO YES 15 min 

g 1-Decanethiol 5 CH2Cl2 NO NO 15 min 

h 1-Decanethiol 5 CHCl3 NO YES 15 min 

i 1-Decanethiol 5 CHCl3 NO NO 15 min 

j None 5 Toluene NO YES 15 min 

k 1-Decanethiol 10 Toluene NO YES 15 min 

l 1-Decanethiol 20 Toluene NO YES 15 min 

m 1-Decanethiol 40 Toluene NO YES 15 min 
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Table 5.6 Preparation of TOAB-stabilised gold colloid solutions (AuNP-TOABa–g) and 
characterisation by TEM and UV-Vis spectroscopy (in toluene). SPR: surface plasmon 
resonance band. 

Entrya Aub / mmol Diameterc / nm 
(dispersity) 

λmax (SPR)  
/ nm 

AuNP-TOABa 0.30 3.60 ± 1.41 
(39%) 528 

AuNP-TOABb 0.60 2.74 ± 0.85 
(31%) 522 

AuNP-TOABc 1.20 5.00 ± 1.41 
(28%) 525 

AuNP-TOABd 1.20 4.81 ± 1.34 
(28%) 523 

AuNP-TOABe 1.22 3.20 ± 1.11 
(35%) 517 

AuNP-TOABf 1.23 3.76 ± 1.14 
(30%) 538 

AuNP-TOABg 1.23 3.01 ± 0.92 
(31%) 520 

a: Au/TOAB/NaBH4 ratio was kept constant (1:5:10). 
b: [Au] was kept constant (30 mM). 
c: Size distributions are expressed as mean ± s.d. 
 
Table 5.7 Comparison between the theoretical mass for pure ligand functionalised AuNPs and the 

effective weight recovered after the work-up. See Table 5.3 for complete explanatory 
examples for the calculation of the theoretical mass. 

Entry NP stock 
solution 

Ligand  
excess / Eq 

Theoretical  
massa / mg 

Recovered  
mass / mg 

a AuNP-TOABc 100 30.5 141 

b “ 100 30.5 105 

c “ 100 30.5 197 

d “ 50 30.5 268 

e AuNP-TOABd 50 40.5 187 

f “ 50 40.5 162 

g “ 50 40.5 195 

h “ 50 40.5 217 
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Reversible Control of Nanoparticle Functionalization and
Physicochemical Properties by Dynamic Covalent Exchange**
Flavio della Sala and Euan R. Kay*

Abstract: Existing methods for the covalent functionalization
of nanoparticles rely on kinetically controlled reactions, and
largely lack the sophistication of the preeminent oligonucleo-
tide-based noncovalent strategies. Here we report the applica-
tion of dynamic covalent chemistry for the reversible modifi-
cation of nanoparticle (NP) surface functionality, combining
the benefits of non-biomolecular covalent chemistry with the
favorable features of equilibrium processes. A homogeneous
monolayer of nanoparticle-bound hydrazones can undergo
quantitative dynamic covalent exchange. The pseudomolecular
nature of the NP system allows for the in situ characterization
of surface-bound species, and real-time tracking of the
exchange reactions. Furthermore, dynamic covalent exchange
offers a simple approach for reversibly switching—and subtly
tuning—NP properties such as solvophilicity.

Despite tremendous advances in the preparation of nano-
particles (NPs) from a range of materials,[1] manipulation and
characterization of NP surface functionality remains a crucial
challenge in the quest to exploit the often remarkable
properties observed within this newfound region of chemical
space. Direct incorporation of surface-bound functional
molecules during NP synthesis is intrinsically restrictive,
demanding compatibility with the synthesis conditions. Post-
synthetic substitution of temporary surface species in
a “ligand exchange” process can facilitate the introduction
of a wider range of surface-bound functionalities, independ-
ent of the NP synthesis methods.[2] Yet, such processes are
often irreversible, inefficient, and can lead to NP surface
reconstruction or etching.

A generalizable synthetic approach whereby a set of NP
“building blocks” may be predictably functionalized, manip-
ulated, and assembled is therefore highly desirable. The
potential of such a concept is well exemplified by oligonu-
cleotide-functionalized nanomaterials.[3] Yet, biomolecular
methods only operate within tightly defined conditions and
offer limited scope for customization. On the other hand, non-
biomolecular strategies will allow the full gamut of synthetic
chemistry to be exploited in the optimization of nanomaterial
structure, function, and properties. Innovative designs
exploiting noncovalent interactions for NP functionaliza-
tion,[4] aggregation,[5] and surface immobilization[6] have
recently been explored, but these non-biomolecular systems
cannot yet match the stability, specificity, and selectivity of
oligonucleotide hybridization. Postsynthetic covalent modifi-
cation of NP-bound monolayers is an attractive alternative,
but traditionally this strategy has relied on kinetically
controlled reactions,[7] which at best produce statistical
mixtures of products and only offer one-shot opportunities
for functionalization. Thermodynamically controlled covalent
bond-forming reactions instead combine the error-correcting
and stimuli-responsive features of equilibrium processes with
the stability and structural diversity of covalent chemistry.[8]

The first examples of dynamic covalent exchange taking place
on 2D surface-confined molecular monolayers,[9a–c] or at the
surface of self-assembled phospholipid bilayers,[9d,e] have
recently been reported. We now show that such reactions
may also be successfully performed on 3D NP-bound mono-
layers. We present prototypical “dynamic covalent NP build-
ing blocks”: gold nanoparticles (AuNPs) bearing a homoge-
neous monolayer of N-aroylhydrazones (Figure 1), through
which reversible control of NP functionalization and proper-
ties can be achieved.

Figure 1. Preparation and reversible surface modification of a dynamic
covalent NP building block exploiting N-aroylhydrazone surface mono-
layers.
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Hydrazones display stability under a wide range of
conditions, yet undergo covalent exchange reactions in the
presence of acid or nucleophile catalysts,[10] making them
particularly useful for creating dynamic covalent systems with
good differentiation between kinetically labile and locked
states.[11] This combination of behaviors likewise appeared
ideal for a robust but exchangeable linkage for the con-
struction of dynamic covalent AuNPs.[12] Ligand 1 bears an N-
aroyl hydrazone unit, connected through an aliphatic linker to
a thiolate functionality for binding to AuNP surfaces (Fig-
ure 2a).[13] The alkyl linker encourages the formation of

a well-ordered surface monolayer, maximizing van der Waals
interactions between neighboring chains,[2a] whereas the outer
tetraethylene glycol unit confers compatibility with polar
solvents and conformational flexibility at the dynamic cova-
lent reactive site.[14]

Gold nanoparticles bearing a homogeneous monolayer of
1 were prepared in a one-step, single-phase process,[15] which
consistently yielded NPs of mean diameters in the range of

2.8–3.4 nm, with dispersities < 20% (Figures 2d and S6), and
exhibiting a well-defined surface plasmon resonance (SPR,
Figures 2e and S6). The absence of surfactants or temporary
ligands facilitated the preparation of single-component
monolayers, while all unbound contaminants could be
removed by NP precipitation and washing. Verification of
both comprehensive purification, and the structural integrity
of NP-bound 1,[16] were essential for being able to unambig-
uously characterize the surface-confined dynamic covalent
processes. AuNP-1 displays characteristically broad 1H and
19F NMR spectra (Figure 2b and c) consisting only of the
resonances expected for a single-component monolayer of 1.
The absence of nonsolvent unbound contaminants was
confirmed by T2-filtered 1H NMR spectroscopy using the
recently developed CPMG-z pulse sequence (Figures 2b,
bottom, and S3).[17] Corroboration of the surface-bound
molecular structure was provided by LDI-MS, whereby all
major ions could be assigned as originating from desorbed
1 (Figures 2 f and S4).[18] Finally, only products consistent with
a homogeneous monolayer of 1 were detected after iodine-
induced oxidative ligand stripping from AuNP-1 (Figure S5).

Directly tracking reactions that occur on molecules
confined to non-uniform faceted surfaces, within a heteroge-
neous population of NPs, presents several challenges. Inher-
ently low concentrations, fast transverse relaxation, and
chemical shift heterogeneity combine to yield broad, weak
1H NMR spectra for NP-bound molecules (Figure 2b,
middle), making quantitative deconvolution of resonances
from structurally similar species extremely challenging.[19]

Incorporating fluorine labels allowed us to exploit the
significant chemical shift dispersion and excellent sensitivity
of 19F NMR spectroscopy to interrogate the composition of
hydrazone-bound monolayers before and after dynamic
covalent exchange reactions (Figure 3).

A stable colloidal suspension of AuNP-1 in 10% D2O/
[D7]DMF was treated with an excess of p-(trifluoromethyl)-
benzaldehyde (5) and CF3CO2H.[20] After 16 h at 50 88C,
19F NMR spectroscopy showed that the signal for NP-bound
p-fluorobenzylidene hydrazone 1 had decreased in intensity
and two new resonances had appeared: one corresponding to
free p-fluorobenzaldehyde (6), and another corresponding to
NP-bound p-(trifluoromethyl)benzylidene hydrazone 2 (see
Figure S10 for full sweep width crude and purified spectra).
Unbound molecular species (released 6, excess 5, and
CF3CO2H) were removed by NP precipitation and washing
with nonsolvents, yielding a NP sample with a mixed mono-
layer comprising 90 % hydrazone 2 and 10% hydrazone
1 (AuNP-10.120.9, Figure 3b). By subjecting this sample again
to the same exchange conditions, followed by purification as
before, yielded a pure sample of AuNP-2 (Figure 3b). A
homogeneous monolayer of 2 was confirmed by 19F and
1H NMR spectroscopy (Figures 3b, middle, S9, and S11),
LDI-MS (Figures 3c, middle, and S12), and oxidative ligand
stripping (Figure S13).[21]

The dynamic covalent exchange process is entirely
reversible. Treatment of AuNP-2 with 6, under identical
exchange conditions to before, produced a sample displaying
a mixed monolayer of the two hydrazones in the ratio 1:1
(AuNP-10.520.5, Figure 3b). Subjecting this sample to a further

Figure 2. Synthesis and characterization of AuNP-1. a) Nanoparticle
synthesis. 1) AuPPh3Cl, borane tert-butylamine complex, DMF/THF
1:9, RT, 6 h. b) 1H NMR spectra ([D7]DMF, 500.1 MHz, 295 K): 12

(top); AuNP-1 (middle); AuNP-1 T2-filtered spectrum (bottom). Sig-
nals at 8.02, 3.50, 2.92, and 2.75 ppm correspond to residual non-
deuterated solvent and water. c) 19F NMR spectra ([D7]DMF,
470.5 MHz, 295 K): 12 (top); AuNP-1 (bottom). d) Size distribution of
a representative batch of AuNP-1 (mean diameter 3.39⌃0.61 nm).
e) UV/Vis spectrum of AuNP-1 in DMF (SPR lmax =509 nm). f) LDI-
MS of AuNP-1.
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excess of 6 increased the ratio of hydrazones 1:2 in the
monolayer to approximately 3:1 (AuNP-10.7420.26, Figure 3b).
Peaks corresponding to mixed disulfide in the LDI-MS of
AuNP-10.7420.26 (Figure 3 c, bottom) indicate the intimate
mixing of hydrazones on the NP surface,[18] whereas the
lower extent of exchange in this reverse process is in line with
the greater stability expected for the p-(trifluoromethyl)ben-
zylidene hydrazone.[10c] Importantly, these mixed hydrazone
samples allowed us to confirm that quantification of the
monolayer composition by integrating the broad NP-bound
19F NMR signals was consistent with the results of iodine-
induced oxidative ligand stripping and subsequent analysis of
the released molecular species (Figure S17).

The ability to quantify both NP-bound and unbound
species using 19F NMR spectroscopy allowed us to track

hydrazone exchange in real time and explore the effects of
surface confinement on reactivity. The concentrations of all
four fluorinated species (AuNP-1, AuNP-2, 5, 6) were
monitored during the exchange of AuNP-1 with aldehyde
5.[22] Comparing the resulting kinetic profile to that of a freely
dissolved model compound under the same conditions (Fig-
ure S20) indicates a clear kinetic inhibition for the NP-bound
reaction. Fitting to derive apparent rate constants
(Table S1),[22] counterintuitively revealed the inhibitory
effect to be stronger in one reaction direction (kNP/kMOL-
(F!CF3) = 0.2) than the other (kNP/kMOL(CF3!F) = 0.5),
corresponding to an equilibrium endpoint that favors
AuNP-1 more strongly than predicted by the model reaction
in bulk solution. Slower kinetics for the NP-bound process
might be expected on the basis of simple steric arguments.
However, it is unclear whether the very small increase in size
on converting 1 to 2 can explain the differential effect on the
exchange rates, or whether other intra-monolayer interac-
tions or local concentration effects are also at play.

Mild and reversible methods for postsynthetic NP modi-
fication are highly desirable and would have significant
benefits for nanomaterial property control, handling, and
processability. For example, tuning solvent compatibility is
often required to match an optimized NP synthesis route with
a specific end application,[23] yet existing methods involve
either encasing a nanoconstruct in a polymeric modifier,
encapsulation in micelles, or completely replacing the surface
ligands. The latter strategy may be considered as a dynamic
exchange of the Au Š bond.[2] However, completely replacing
the stabilizing monolayer is a relatively harsh and slow
process. Whereas hydrazone exchange at 50 88C (as described
in Figure 3) reaches 90% exchange within 24 h, the ligand
exchange of AuNP-1 with disulfide 22 takes several days to
reach an endpoint exhibiting far lower conversion (63%)
under analogous conditions (Figure S21), and does not
proceed at all at ambient temperatures.[24] By exchanging
only simple units on the periphery of the stabilizing mono-
layer, dynamic covalent exchange occurs rapidly under mild
conditions; it furthermore avoids the necessity for multistep
synthesis of several thiol-containing ligands, offers simple
purification of the modified NPs from the molecular exchange
species, and is entirely reversible.[24]

To demonstrate the potential of dynamic covalent
exchange for reversible property control, we sought to
introduce simple aldehyde exchange units, chosen to confer
different solvophilic characteristics on our dynamic covalent
AuNP building blocks (Figure 4). AuNP-1 functionalized
with p-fluorobenzylidene hydrazone showed good colloidal
stability only in polar aprotic solvents such as DMF and
DMSO (Figure 4, top). Treating AuNP-1 with an excess of
hydrophobic aldehyde 7 and CF3CO2H in 10 % D2O/
[D7]DMF at 50 88C resulted in complete precipitation of the
NPs within 1.5 h. The solid was easily recovered by centrifu-
gation, and then purified from all molecular species by
redispersion in methanol followed by precipitation with
hexane. The resulting residue exhibited markedly different
solubility properties to AuNP-1 and could be readily re-
redispersed in organic solvents of intermediate polarity, such
as chloroform or tetrahydrofuran (AuNP-3, Figure 4, left).

Figure 3. a) Hydrazone exchange between AuNP-1 and AuNP-2. Con-
ditions: aldehyde (20 equiv with respect to 1), CF3CO2H (5 equiv with
respect to 1), D2O/[D7]DMF 1:9, 50 88C. b) Partial 19F NMR spectra
([D7]DMF, 470.5 MHz, 295 K), from top to bottom: AuNP-1; AuNP-
10.120.9 ; AuNP-2 ; 10.520.5 ; AuNP-10.7420.26 . c) Partial LDI-MS spectra of
AuNP-1 (top), AuNP-2 (middle), and AuNP-10.7420.26 (bottom).
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Analysis of the reaction supernatant by 19F NMR spectros-
copy indicated> 95% conversion of the starting NP-bound p-
fluorobenzylidene hydrazones (Figure S23). On the other
hand, 1H NMR and LDI-MS analysis of the new NP sample
(Figures S22 and S24) were consistent with the expected m-
alkoxybenzylidene hydrazone. Clearly, dynamic covalent
exchange of NP-bound hydrazones occurred to give AuNP-
3 and the consequent marked change in solvent compatibility.

In a similar manner, AuNP-3 could be converted to
AuNP-4, which showed excellent colloidal stability in water
(Figure 4, right). o-Sulfonylbenzylidene hydrazone was con-
firmed as the major constituent of the NP-bound monolayer
by a combination of 1H NMR spectroscopy and LDI-MS
(Figures S28–S30). Each of these exchange reactions proved
to be entirely reversible, such that any of the three AuNP
systems, exhibiting markedly different solvophilicity proper-
ties, could be accessed from either one of the other two by
treatment with the appropriate aldehyde exchange unit
(Figure 4 and Scheme S2). Interestingly, during the conver-
sion of AuNP-3 to AuNP-1, a sample was obtained exhibiting
solubility properties that were intermediate between the two
extremes (Scheme S2). That this state arises from a mixed
monolayer of hydrazones 3 and 1 was confirmed by LDI-MS
analysis, which presented ion fragments originating from both
possible hydrazones in roughly equal intensities (Figure S27).
Subjecting this material to a further round of exchange with
aldehyde 6 then yielded a sample displaying indistinguishable
physical and chemical properties to AuNP-1 produced by all
other routes. Thus, it is possible to access a continuum of
AuNP solvophilicity characteristics across a remarkably wide
range by fine-tuning the monolayer composition through the
appropriate choice of exchange conditions.

Controlling the molecular details of NP surface function-
ality will be critical for realizing the full technological
potential of nanomaterials. Dynamic covalent NP building
blocks now offer a generalizable strategy for achieving this,
using simple molecular designs and mild processes that are
independent of the underlying NP material. The ability to
reversibly tune surface functionality raises the prospect of
smart NP-based devices with environment-responsive proper-
ties, or reconfigurable self-assembly capabilities. The pseu-

domolecular nature of 3D NP-bound monolayers allows the
direct characterization of surface-bound chemical processes,
offering fundamental insights into the influence of crowded
environments on reactivity, which have not been so readily
accessible from analogous 2D surface-bound systems.[8b]

Determining the complex influence of nanoscale features,
such as surface curvature and monolayer composition, on
reactivity is the next step that can now be addressed in the
development of dynamic covalent NP building blocks to
become flexible and versatile nanomaterial synthons.[25]

Keywords: dynamic covalent chemistry · gold nanoparticles ·
hydrazones · supramolecular chemistry
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