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Abstract 

 

The objective of the experiments contained within this thesis was to provide further 

insight into the social learning capabilities of threespined sticklebacks and the factors 

affecting the transmission of information through populations. 

There are a number of previous studies which provide evidence that both threespined 

and ninespined sticklebacks possess the ability to learn socially under a range of 

contexts, such as foraging, anti-predator behaviour, mate choice, and cooperation. The 

studies presented in this thesis aim to extend this knowledge and shed light on the social 

learning processes used. 

Evidence was found to support previous opinion that threespined sticklebacks are 

capable of using a number of social learning processes, including local enhancement, 

stimulus enhancement, and the social enhancement of food preferences. However, there 

was no evidence to suggest that either threespined or ninespined sticklebacks are 

capable of using the social learning process of delayed local enhancement under a 

shelter choice context, a process which both species have previously been shown to use 

under a foraging context. 

This thesis also explores the effect of the social network within shoals of threespined 

sticklebacks upon the transmission of novel foraging information. It was discovered that 

both prior association preferences and prior diet have an effect on the order in which 

individuals discover a novel foraging task. 
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Chapter 1.  An Introduction to Animal Social Learning 

 

In this chapter I shall introduce the reader to the concept and previous literature 

surrounding the topic of animal social learning. I shall start by discussing the different 

forms of learning and use these to help understand the process of social learning. I shall 

then outline the different social learning processes that have been identified and give 

examples of each. I will also present empirical evidence for the different social learning 

strategies that exist and end with a review of the literature regarding the different 

contexts under which social learning has been identified, specifically in fish. 

1.1 The importance of social learning 

In a dynamic environment, information about biologically important aspects of life, 

such as the location of the most profitable food patches, the most nutrient rich food 

types, areas safe from predators, and the best mates, rapidly becomes outdated. Animals 

are therefore required to gather information about their environment in order to make 

biologically important decisions that can increase their fitness and chances of survival. 

The way they gather this information can vary. They can either choose to collect it for 

themselves by exploring and interacting with their immediate surroundings (asocial 

learning) or they can learn this information from others (social learning). Much of the 

relevant information required to make these decisions must be collected and learned 

rapidly if an individual is to avoid mishap. For example, a fledgling bird must learn to 

avoid predators before it is predated upon, or learn to select food items of the most 

nutritional value before internal reserves are exhausted (Galef and Laland 2005). 

Juveniles (and other naive individuals) of many species therefore benefit greatly from 

interactions with adults and other well informed individuals that have already acquired 
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successful patterns of behaviour allowing them to thrive in their environment by 

avoiding predators, consuming a nutritious diet, and know the locales of  water and safe 

refuges (Galef and Laland 2005). In using the behaviour of informed individuals to 

guide the development of their own behavioural repertoires, juveniles and other naive 

individuals are consequently able to acquire the optimal behavioural responses to the 

demands of the particular environment in which they are residing without incurring 

many of the costs associated with individual trial-and-error learning (Galef and Laland 

2005).  

 

Both asocial and social learning are types of phenotypic plasticity allowing individuals 

to acquire behaviour that is adaptive within their local environment (Boyd and 

Richerson 1988). However, theory has shown that when the environment is dynamic (as 

is the case in most, if not all, habitats), social learning proves to be the more 

advantageous. Rendell et al. (2010) organised a computer tournament in which multiple 

strategies where entered specifying how to use social learning and asocial learning to 

acquire adaptive behaviour in a complex environment. Strategies that relied 

predominantly on social learning were found to be the most successful, even when 

asocial information was no more costly to acquire than social information (Rendell et al. 

2010). 

 

1.2 What is animal social learning? 

1.2.1 Learning theory  

Before we can begin to understand and define animal social learning and how it 

manifests, we must first address the more general issue of animal learning as a whole, 

whether it be through social or asocial means. The most widely accepted definition of 
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animal learning within contemporary animal learning theory is “a change in an animal 

at a certain time, t1 that is detectable later, t2, in that animal’s behaviour” (Rescorla 

1988, Heyes 1994). Here I give a brief introduction to animal learning theory in its two 

most basic forms; associative learning and single-stimulus learning. 

1.2.1.1 Associative learning 

An important milestone in the theory of associative learning in animals was proposed by 

Edward Thorndike in 1898, who regarded learning as a direct result of connections 

being formed between stimuli and responses. Thorndike’s theory was based on what has 

since been coined ‘instrumental’ or ‘operant conditioning’, whereby the probability of 

an individual performing a behaviour (R) either increases or decreases in response to an 

environmental stimulus (S) depending on whether S is appetitive or aversive 

respectively. For example, exerting pressure on a lever (R) may either result in a 

positive stimulus such as a food reward, or a negative stimulus such as an electric shock 

(S). The former will result in an increase in the probability of performing behaviour R 

and the latter will result in a decrease in the probability of performing behaviour R.  

 

A second form of associative learning is ‘classical’ or ‘Pavlovian conditioning’. In this 

form of learning it is not an individual’s behaviour that is coupled with a positive or 

negative stimulus (unconditioned stimulus, US), but rather a second, neutral stimulus 

(conditioned stumulus, CS), with the animal forming an association between the two 

events. For example, Pavlov’s dogs would salivate upon hearing a bell (CS) after the 

sound had previously been repeatedly paired with the presentation of food (US). 
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1.2.1.2 Single-stimulus learning 

Single-stimulus learning is a non-associative learning mechanism where repeated 

exposure to a single stimulus (an object or event in an animal’s environment) elicits a 

change in an animal’s behaviour. This behavioural change could either result in the 

animal being more likely to respond to the stimulus (sensitisation) or less likely to 

respond (habituation).  

1.2.2 Social learning definitions and processes 

Social learning is essentially the acquisition and utilisation of information produced by 

others, or can be more specifically defined as “learning that is facilitated by observation 

of, or interaction with, another individual (or its products)” (Hoppitt and Laland, 

2013).This relatively broad definition has been further refined with the identification of 

many different mechanisms by which such learning can occur; social learning 

processes. Typically, individuals that acquire and or utilise information gathered via 

social means are described as ‘observers’, whilst those that provide the information are 

labelled as ‘demonstrators’. Below I give a brief review of each of the social learning 

processes that have been identified and outline the patterns of behaviour of the 

observers and demonstrators found in each. 

1.1.2.1. Imitation 

Imitation was first described by Thorndike (1898, pg. 50) as “learning to do an act by 

seeing it done”. This definition has since been refined several times within the social 

learning literature, however, consensus on the exact definition and the criteria required 

for imitation has yet to be reached. For example, whether or not there is evidence of 

intentional copying, how accurately the observer must copy the demonstrator, and 
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whether or not the behaviours copied must be novel to the observer are bones of 

contention (see Hoppitt and Laland 2008 for a more detailed discussion). 

With regards to the latter point of novelty the process of imitation can be divided into 

two sub-categories, contextual imitation and production imitation. Contextual imitation 

can be said to have occurred when “directly through observing a demonstrator perform 

an action in a specific context, an observer becomes more likely to perform that action 

in the same context.” (Hoppitt and Laland 2008, p.117). Hence what is acquired is 

knowledge about the context for performing the behaviour rather than the form of the 

behaviour itself. Conversely, production imitation occurs when “after observing a 

demonstrator perform a novel action, or novel sequence or combination of actions that 

is not in the observer’s own repertoire, the observer then becomes more likely to 

perform that same action or sequence of actions.” (Hoppitt and Laland 2008, p. 118). 

Production imitation therefore differs from contextual imitation in that the action or 

sequence of actions performed was not previously in the observer's repertoire.  

Several good examples of contextual imitation can be found in laboratory experiments 

using Coturnix japonica (Japanese quail) and Columba livia domestica (white carneaux 

pigeons) (Akins and Zentall 1996; Kaiser et al. 1997; Zentall et al. 1996). In these 

experiments a food reward could be achieved by either stepping or pecking on a treadle. 

The action used by observers to receive this award was found to be dependent on the 

action previously demonstrated to them by conspecifics. 

Evidence for production imitation comes from work by Moore (1992). Moore presented 

data from a single Psittacus erithacus (African grey parrot), which was demonstrated 

several patterns of behaviour made up of both vocal and motor behaviours, such as 

waving followed by saying “ciao”. The parrot learned to imitate each of these combined 
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actions, which the author believed highly unlikely to have already been within its 

repertoire, however this was not tested. 

1.1.2.2 Goal emulation 

Emulation differs from imitation in that the observer is not copying the actions of a 

demonstrator but rather the results that the demonstrator achieves. More formally, 

“Emulation occurs when, after observing a demonstrator interacting with objects in its 

environment, an observer becomes more likely to perform any actions that bring about a 

similar effect on those objects” (Hoppitt and Laland 2008, p. 122). A good example of 

emulation can be found in Pan troglodytes (chimpanzees). Whiten (1998) presented the 

chimpanzees with “artificial fruit” from which three defences had to be removed in 

order for the chimpanzees to access the food reward contained within. Each defence 

could be removed by either one of two methods. Whiten discovered that observer 

chimpanzees were more likely to use the method demonstrated to them, however, the 

specific action used to complete this method was not necessarily copied exactly, 

suggestive of emulation rather than imitation. 

1.1.2.3. Observational conditioning  

Observational conditioning can be thought of as a form of classical conditioning (Heyes 

1994), with an observer learning an appropriate response to an object or event in their 

environment via an association between that environmental stimulus (the CS) and the 

behavioural response of a demonstrator to this stimulus (the US). The social learning 

process of observational conditioning can be used to describe the behaviour of young 

Macaca mulatta (rhesus macaques) that adopted a previously absent fear response to 

snakes on observation of a fear response from their parents (Mineka and Cook 1988). 
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1.1.2.4 Local enhancement and stimulus enhancement 

The term local enhancement was first introduced by ethologist William Thorpe (1956). 

It was originally defined as “apparent imitation resulting from directing the animal's 

attention to a particular object or to a particular part of the environment” (Thorpe 1963, 

p.134). Thorpe’s definition can be applied to both local enhancement and stimulus 

enhancement. Opinion is currently divided on whether or not local enhancement and 

stimulus enhancement are two separate processes, with some authors classing local 

enhancement to be the same as or a sub-set of stimulus enhancement (Galef, 1988; 

Heyes, 1994) and others regarding them as two separate processes in their own right 

(Zentall, 1996; Hoppitt & Laland, 2008). Stimulus enhancement occurs when the 

observation of a demonstrator (or its products) increases the probability of an individual 

being exposed to a stimulus in the environment (or another of its type), with the location 

of the stimulus being irrelevant. In contrast, local enhancement occurs when observation 

of a demonstrator (or its products) draws an individual’s attention to a particular 

location, which may or may not be coupled with a stimulus. In both cases the observer, 

once drawn to the stimulus or location, will subsequently rely on asocial learning to 

obtain information. 

 

One possible example of stimulus enhancement can be found in a study by Krebs et al. 

(1972) on Parus major (great tits). Krebs et al. (1972) found that individuals would 

increase foraging effort in a particular type of hiding place (out of four possibilities) 

after conspecifics were observed to locate food in a similar location. Another example is 

the milk bottle opening behaviour by Parus atracapillus (black-capped chickadees). 

Sherry and Galef (1984) discovered that upon exposure to a previously opened bottle, 
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formerly naive birds could learn how to open them without the need for the direct 

observation of bottle opening behaviour of conspecifics. 

Examples of local enhancement include Gyps spp. (Old World vultures) circling over a 

carcass attracting conspecifics to the same location, despite having not seen the carcass 

themselves (Buckley, 1996) and the presence of Bombus terrestris (bumblebees) 

attracting conspecifics to flowers (Leadbeater and Chittka 2007). 

1.1.2.5 Social facilitation 

Hoppitt and Laland (2008) describe social facilitation as “when the mere presence of a 

demonstrator affects the observer’s behaviour” (pg. 115). This process has the potential 

to lead to social learning, for example via a reduction in fear or neophobia facilitating an 

increased likelihood of interacting with stimuli in the environment. Cebus capucinus 

(Capuchin monkeys) have been shown to have an increased likelihood of consuming a 

novel food type in the presence of conspecifics rather than when they are solitary, even 

when those conspecifics are not consuming the novel food themselves (Visalberghi and 

Adessi 2000). This reduction in fear may then lead to learning, for example by 

discovering that a novel food is palatable. 

1.1.2.6 Response facilitation 

Response facilitation is a term introduced by Byrne (1994) to describe a process of 

social learning in which an observer witnesses a demonstrator performing an act of 

behaviour and increases the likelihood of the observer performing that behavioural act 

itself. It has been defined by Visalberghi and Adessi (2000) as ‘‘the increased 

probability of performing a class of behaviours in the presence of a conspecific 

performing the same class of behaviors’’ (p. 69). Response facilitation may lead to 

social learning, as by synchronizing behaviour, an animal may learn when and where is 
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appropriate to perform certain actions (Hoppitt and Laland 2008). A good example of 

response facilitation comes from a study by Hoppitt et al. (2007). It was observed that 

Gallus gallus domesticus (chickens) would preen at a rate related to the number of 

conspecifics also preening within the same aviary. However, it is also possible that an 

outside stimulus unobserved by the experimenter may have facilitated preening in 

demonstrator and observers. 

1.1.2.7 Observational R-S learning 

Observational R-S learning can be defined as ‘a subset of response-reinforcer learning 

(R–S) in which observation of a demonstrator exposes the observer to a relationship 

between a response and a reinforcer at t1, and exposure to this relationship effects a 

change in the observer detected, in any behaviour, at t2’(Heyes 1994, pg. 225). R-S 

learning (alternatively known as operant conditioning) has been described above in 

section 1.1.1.1. Observational R-S learning differs from imitation in that it does not 

necessarily require the observer to witness the demonstrator being rewarded for its 

actions. It is conceivable that an observer could learn what not to do as a direct result of 

watching demonstrators make mistakes (Heyes, 1994; Want and Harris, 1998). 

However, observational R-S learning would overlap with contextual imitation when the 

observer’s learned response matches that of the demonstrator (Hoppitt and Laland 

2008).  

  

It may be feasible to distinguish observational R–S learning from other social learning 

processes by using a two-action test, where a demonstrator responds to a single stimulus 

with two different actions with one of the actions observed to be rewarded while the 

other is not. It would then be possible to confirm if an observer has formed an R-S 

association if the observer goes on to imitate only the action for which the demonstrator 
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was rewarded (Hoppitt and Laland 2008). However, to the author’s knowledge, no such 

study has been carried out. There is therefore currently no direct empirical evidence for 

observational R–S learning. 

1.1.2.8 Social enhancement of food preferences 

The social enhancement of food preferences can be defined as occurring when “after 

being exposed to a demonstrator carrying cues associated with a particular diet, the 

observer becomes more likely to consume that diet.” (Hoppitt and Laland 2008, pg. 

132) and is discussed in detail in section 4.1. 

 

1.3  Social learning strategies 

Relying on social learning to gain information about the environment can often be 

advantageous, as it allows individuals to avoid all the costs associated with the 

collection of private information such as exposure to predators and large costs in both 

energy and time that are common with trial and error learning. However, social learning 

can also prove to be costly in terms of both time and effort, as well as copying error, 

and theoretical studies reveal social learning to be costly (e.g. when individuals acquire 

outdated information) when social learning is used indiscriminately (Boyd and 

Richerson 1985; Feldman et al. 1996; Giraldeau et al 2002; Laland 2004; Kendal et al. 

2005). In order for social learning to be adaptive, individuals must be selective in their 

use of social learning and use it in combination with sampling the environment via 

asocial means (Laland 2004). It is therefore expected for natural selection to have 

favoured psychological mechanisms that dictate under what circumstances individuals 

should rely on social learning and from whom they should learn (Laland 2004; Rendell 
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et al. 2010). These mechanisms have been labelled social learning strategies (Laland 

2004). 

On reviewing a number of formal models, Laland (2004) collated a list of circumstances 

under which theory suggests fitness would be affected by a reliance on social rather than 

on individual learning (see also Kendal et al. 2005). Laland (2004) outlined two 

different types of social learning strategies; “When” strategies, which specify the 

circumstances under which individuals copy others, and “who” strategies, which 

identify from whom individuals learn, as detailed in Figure 1.1. Subsequently, Hoppitt 

and Laland (2013) added “what strategies” to refer to biases for acquiring particular 

content (e.g. a fear of snakes) socially. 

 

 

Figure 1.1: The different social learning strategies. Taken from Laland 2004 (pg. 5). 

1.3.1 Empirical evidence for social learning strategies 

A comprehensive review of the literature regarding the evidence for each social learning 

strategy, which now runs to hundreds of papers, is beyond the scope of this thesis. The 
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purpose of the following section is more to provide the reader with illustrative examples 

of a handful of different strategies. For a more detailed review see Laland (2004) and 

Hoppitt and Laland (2013). 

1.3.1.1 “When” Strategies 

1.3.1.1.1 Copy-when-established-behaviour-is-unproductive  

If a particular behaviour an animal is engaged in is not producing the desired 

consequences, it would likely be beneficial to switch to whichever behaviour others in 

the locality are performing. Evidence has been found in pigeons and bees to support the 

existence of this strategy.  

 

In a study by Lefebvre and Palameta (1988), white corneaux pigeons were presented 

with a foraging task in which they could access seed by pecking open a carton. The 

authors found that the pigeons’ first port of call was to scrounge seed from the success 

of others and that they would only switch tactic to solving the task and producing food 

once scrounging became unproductive due to the limited number of producers. Previous 

experimental analyses had established that asocial learning of the task was unlikely, 

therefore social learning of the producer strategy can be assumed (Lefebvre and 

Palameta 1988). 

 

When foraging, Apis mellifera (honeybees) will use their own private information about 

successful foraging locations in preference to spatial information provided by dancers 

(Grüter et al. 2008). However, if their previous foraging trip based on private 

information was unsuccessful, they will switch to the location mapped out by the 

dancers (Biesmeijer & Seeley 2005). 

http://intl-rsbl.royalsocietypublishing.org/content/5/3/310.full#ref-8
http://intl-rsbl.royalsocietypublishing.org/content/5/3/310.full#ref-3
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1.3.1.1.2 Copy-when-asocial-learning-is-costly 

When personal information is difficult or costly to acquire, it is logical for an individual 

to take advantage of the comparatively cheap social information (Boyd and Richerson 

1985). Examples for the use of this strategy are found across a range of taxa.  

Templeton and Giraldeau (1996) conducted a study on the foraging behaviour of 

Sturnus vulgaris (European starlings). It was found that the starlings would rely on 

social information (in this case, public information) only when personal information 

about relative patch quality was difficult to acquire. 

 

Further evidence for the use of this strategy can be found in an experiment by Webster 

and Laland (2008). Phoxinus phoxinus (European minnows) were presented with two 

prey patches under differing levels of predation risk. These prey patches were identical 

in every respect except for whether or not conspecifics were present (i.e. socially 

demonstrated or non-demonstrated) under a demonstration phase. When tested in the 

absence of demonstrators, it was discovered that, regardless of whether observers had 

received no prior experience or even conflicting experience of the prey patches, they 

spent a significantly higher proportion of time in the demonstrated over the non-

demonstrated prey patch when simulated predation risk was high than when predation 

risk was low. 

 

Bumblebees also show evidence of using a copy when asocial learning is costly 

strategy.  Saleh et al. (2006) have shown that bees that forage from more complex 

flowers with greater associated time costs are much more likely to rely on social 

learning than bees that visit simpler flowers, using conspecific scent marks to identify 

productive flowers. 

http://intl-rsbl.royalsocietypublishing.org/content/5/3/310.full#ref-20
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1.3.1.1.3 Copy-when-uncertain  

Theoretical models have assumed that animals should rely on their own experience 

(private information) when relatively certain about the properties of their environment, 

but should rely more heavily on social information when less certain (Boyd and 

Richerson 1985; 1988). There are a number of empirical studies that provide evidence 

for this assumption. For example, Templeton and Giraldeau, (1995) discovered that 

European starlings will use social information with regards to foraging locations 

(determined by colour association), but only when they themselves possess no personal 

information. If individuals possessed prior, conflicting, knowledge as to the location of 

food, social information was ignored. 

 

Galef et al. (2001) also provides evidence for a ‘copy when uncertain’ strategy in Rattus 

norvegicus (Norway rats). The focus of this study was kleptoparasitism, with regards to 

the stealing of food from conspecifics, despite there being a surplus. It was discovered 

that rats were significantly more likely to steal food from others when they had no prior 

experience of the food that was presented to them in comparison to those that had 

experienced prior exposure to the food. It is apparent therefore that when uncertain 

about the safety of a novel food type, rats will use social information to determine 

which food items are safe to consume. 

 

A further study on Norway rats by Galef et al. (2008) made a comparison of the food 

preferences of rats that were certain or uncertain about the safety of two foods. Certain 

or uncertain rats were determined by inducing illness into rats (by injecting lithium 

chloride) directly following the consumption of either one or two novel food flavours 

(cinnamon and/or cocoa). Those that had consumed only 1 novel flavour had reason to 
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be certain as to the cause for their illness, however, rats that consumed two novel 

flavours immediately prior to becoming ill could have been so due to either, or a 

combination, of both foods. Once recovered, both the certain and uncertain rats were 

allowed to interact with a demonstrator which had recently consumed one of two 

additional novel flavours. When later given the choice between the two additional 

flavours, uncertain rats were significantly more likely than certain rats to consume the 

same flavour as their demonstrator than certain rats. 

1.3.1.2 Who strategies 

1.3.1.2.1. Copy-the-majority 

Theoretical analyses have revealed that a conformist approach to social learning (i.e. 

disproportionately copying the majority behaviour) is favoured in most circumstances 

where social learning has the potential to be evolutionarily adaptive (Boyd and 

Richerson 1985). Such findings suggest that a ‘copy the majority’ strategy should be 

abundant in animal social learning. Whilst few empirical studies have addressed this 

question directly, there is evidence for the possibility of conformist social learning 

(Brown and Laland 2002). The probability of an individual adopting a behaviour, or 

pattern of behaviour, has been shown to increase in proportion to the number of 

individuals already exhibiting that behaviour across a range of species, including 

Poecilia reticulata (Trinidadian guppies) (Sugita 1980; Laland & Williams 1997; 

Lachlan et al. 1998), Norway rats (Beck & Galef 1989; Chou and Richerson 1992), and 

white corneaux pigeons (Lefebvre & Giraldeau 1994). However, whilst these studies are 

consistent with the idea of conformity, they do not provide direct evidence for it. 

 

Day et al. (2001) tested the foraging ability of differing shoal sizes of guppies by hiding 

patches of food in an aquarium. Individuals in larger shoals located food within a 
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shorter time frame than those in smaller shoals and conspecifics were attracted to 

foraging patches with a large number of conspecifics faster than those with small 

aggregations. However, a ‘copy the majority’ strategy has been shown to not 

necessarily be conducive to adaptive behaviour since it hinders the spread of rare 

behaviour with higher fitness. Day et al. (2001) went on to test the foraging ability of 

different shoal sizes when individuals were required to break visual contact with the 

remainder of the shoal in order to find food. In this instance smaller shoals were 

observed to locate food faster than larger ones, as the proportion of conspecifics 

remaining was much higher in the larger shoals. If individuals were taking a conformist, 

‘copy-the-majority’, approach, as seems to be the case, when in larger groups, they 

would copy the behaviour of the largest proportion of the shoal and remain in their 

location rather than break away from the rest of the shoal.  

1.3.1.2.2. Copy-successful-individuals 

Social learning will undoubtedly be more effective when adopting the same behaviours 

as the more successful members of the population (Laland 2004). Successful individuals 

could be identified by a range of cues, such as reproductive success, hunger state or 

health. Successful individuals may also include high-status individuals if there is a 

social hierarchy. 

 

Empirical evidence for the use of a ‘copy successful individuals’ strategy can be found 

in a range of taxa. For example, in nursing colonies of Nycticeius humeralis (evening 

bats), adult females, unsuccessful during a previous foraging trip, would subsequently 

follow successful individuals (Wilkinson 1992). It was also discovered that those 

previously unsuccessful females that engaged in a ‘copy successful individuals’ strategy 

were subsequently more successful than those that foraged alone (Wilkinson 1992). 
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Menzel (1974) conducted a study in which it was discovered that naive foraging 

chimpanzees were more likely to follow a conspecific with knowledge as to the location 

of food than they were to follow an uninformed conspecific. Fish have also been shown 

to follow informed individuals to a food source, with evidence from guppies (Lachlan et 

al. 1998) and Notemigonus crsoleucas (golden shiners) (Reebs 2000), whereby 

previously trained, informed, individuals were able to lead shoals of naive individuals 

toward a specific corner of the tank in which food was made available.  

 

Further examples of a ‘copy-successful-individuals’ strategy can be found in the nest-

site decisions of some insects and birds (Sarin and Dukas 2009; Seppanen et al. 2011; 

Forsman and Seppanen 2011). For example, Ficedula hypoleuca (pied flycatchers) 

copied the nest-site choices of successful heterospecific Periparus ater (coal tits) and 

Cyanistes caeruleus (blue tits), but were observed to avoid nesting in locations where 

coal tits and blue tits had low numbers of chicks (Seppanen et al. 2011; Forsman and 

Seppanen 2011).  

 

A study by Sarin and Dukas (2009) revealed that female Drosophila melanogaster 

exhibited a stronger preference for laying their eggs on a particular type of novel food 

after experiencing that food alongside other females who had laid eggs on that food 

compared with females that had experienced the same novel food alone. 

 

1.4 Social learning in fish 

The cognitive capabilities of fishes have historically been underestimated, and in many 

respects their intellectual faculties are comparable to birds and mammals (Laland et al. 

2011).  The belief that animal intelligence mirrors the degree of relatedness to humans 
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has become outdated, with the view of convergent evolution in distinct taxonomic 

groups becoming more popular (Shettleworth 2001; Emery and Clayton 2004). There is 

now extensive experimental evidence that social learning is a key aspect in the 

behavioural development of many fish species (Brown and Laland 2003; Laland et al. 

2011). 

 

Most species of fish are social animals and form shoals or small groups at some stage of 

their life cycle, with the behaviour of conspecifics (and in some cases, heterospecifics) 

providing an invaluable source of information with regards to a variety of biologically 

important decisions, such as the identity of predators and relevant predator-avoidance 

tactics, whom to mate with and where to deposit eggs, what to eat and where and how to 

access it, and many other challenges (Laland et al. 2011). 

 

Using fishes for the study of social learning has several practical advantages over other 

vertebrate species. The diffusion of information and innovations are group-level 

phenomena and require not just replicate animals, but replicate populations of animals if 

they are to be studied reliably (Laland et al. 2011). It is logistically difficult and 

expensive to address the practicalities of assembling large numbers of populations of 

replicate primates or cetaceans, but very simple and comparatively cheap to achieve this 

with small fishes in controlled laboratory conditions. For example, sticklebacks are 

widespread throughout the temperate Northern Hemisphere and easily captured and 

maintained in the laboratory in simple aquaria. 

 

Researchers using fish to study social learning therefore benefit from the multiple 

(controlled) conditions expected of good experimental design and good statistical 
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power, bringing experimental rigour to any social learning investigation (Laland et al 

2011). 

 

Below I give a review of the evidence for social learning in fishes under the contexts of 

mate choice copying, migration and orientation, foraging, anti-predator behaviour, and 

aggressive interactions. 

1.4.1 Mate choice copying 

Mate choice copying can be defined as an individual selecting a partner because others 

of the same sex have selected that individual as a partner previously (Gibson & 

Hoglund 1992). Social learning has been shown to influence mate choice in several 

species of fish including Pomatoschistus microps (common gobies), (Reynolds and 

Jones 1999), guppies (Dugatkin 1992; Dugatkin and Godin 1992, 1993; Briggs et al. 

1996; Godin and Hair 2009), Oryzias latipes (Japanese rice fish) (Grant and Green 

1996), Gasterosteus aculeatus (threespined sticklebacks) (Ridley and Rechten 1981; 

Goldschmidt et al. 1993), Cottus gobi (European bullheads) (Marconato and Bisazza 

1986) and Poecilia latipinna  (sailfin mollies) (Schlupp et al. 1994; Sclupp and Ryan 

1997; Witte and Ryan 1998, 2002).  

Perhaps the most widely known example of mate choice copying is in the guppy. 

Dugatkin (1992) conducted a series of experiments using wild caught Trinidadian 

guppies. Two males were secured at either end of an aquarium, with a model female 

residing near one of the males. A focal female was then placed into the middle of the 

tank and allowed to observe the males. After the model female was removed, the focal 

female was then allowed to swim freely within the aquarium during which time it was 

observed that focal females would spend a significantly larger amount of time with the 

male that had been near to the model female. This significance was upheld even when 
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the male's locations were reversed after the observation period (Dugatkin 1992). 

Dugatkin and Godin (1992) then went on to demonstrate that the mate preference of 

another female guppy was influential enough to reverse previous mate choice 

preferences. A further study by Dugatkin and Godin (1993) revealed the interesting 

finding that female guppies will copy the mate choice of larger (and therefore likely to 

be older) females, whilst the previous mate choice of smaller females had no effect. 

Witte and Ryan (2002) carried out mate choice trials on both male and female sailfin 

mollies similar to the original experiment undertaken on guppies by Dugatkin (1992). 

However, the trials by Witte and Ryan (2002) were implemented in-situ in the Comal 

River, New Braunfels, Texas. Mate-choice copying is therefore known not simply to be 

an artefact of the laboratory (Witte and Ryan 2002), at least in sailfin mollies. 

Mate choice copying has also been shown to occur between species. Poecilia formosa 

(the Amazon molly) is a species consisting entirely of females which reproduce 

clonally, however, they are reliant on the sperm of heterospecific males, in this case 

sailfin mollies, to initiate embryogenesis (Ryan 1997). Mating with gynogenetic species 

should incur no benefit to the male and therefore reduce the male's fitness due to both 

energy costs from courting and time costs taken away from courting female 

conspecifics. Male sailfin mollies have been shown to be able to distinguish between 

females of their own species and Amazon mollies. However, the continued existence of 

Amazon mollies suggests that sailfin molly males incur a benefit from such interactions 

(Schlupp et al. 1994). These benefits were identified by Schlupp et al. (1994) when they 

showed that female Amazon mollies will copy the mate choice of sailfin mollies. Males 

therefore increase their attractiveness to conspecific females by mating with the 

heterospecific gynogens. 
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1.4.2 Migration and orientation  

 For most fish species, biologically important locations, such as profitable foraging 

sites, areas safe from predators and suitable areas in which to find mates and reproduce, 

are all subject to environmental variation. Information as to the location of such areas 

can therefore not be entirely inherent and must be learned. Many fishes are now known 

to exhibit traditionality in their use of mating sites, preferred schooling sites, resting 

sites, feeding sites and pathways through their natural environments (Brown and Laland 

2003; 2006). A straightforward method for acquiring knowledge of the location of 

important resources is simply to follow others and in the process to learn the site or 

route for themselves. 

 

There are several experiments in which it has been demonstrated that an individual fish 

will follow another. For example, Reebs (2000) showed that a minority of informed 

golden shiners were able to lead a shoal of naïve conspecifics away from a preferred 

darker area of the tank to an expected food source. Kohler (1976) demonstrated a 

similar phenomenon in Cyprinus carpio (common carp). A single trained individual was 

able to lead up to 10 conspecifics to a feeding tube in response to an acoustic stimulus. 

Even though this is clear evidence of informed individuals leading uninformed 

conspecifics to a resource, it does not signify social learning, as there is no evidence that 

the naïve conspecifics could remember the route or signal and relocate the resource by 

themselves. However, Helfman and Schultz (1984) have indicated social learning of this 

type. They showed that transplanted Haemulon flavolineatum (French grunts) could 

learn the daily migration route between the foraging and resting sites used by resident 

conspecifics. The transplanted individuals only needed to follow the informed residents 
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twice before being able to navigate the route themselves in the absence of all previous 

residents.  

 

Migratory traditions have also been shown to be present in Thalassoma bifascatum 

(bluehead wrasse), which have mating-site locations that remain in place over many 

generations. When entire populations were removed and replaced with transplanted 

populations, the wrasse were observed to establish new mating sites, which remained 

constant over the 12 year period of the study (Warner 1988). However, when Warner 

replaced newly established populations after one month, he found the introduced fish 

reused the same sites as their immediate predecessors (Warner 1990). Thus, these sites 

are not fully determined by habitat structure; rather, Warner’s findings suggest that site 

use is initially based on resource assessment but then preserved through social learning. 

 

The use of social learning to acquire knowledge of a route to a resource has also been 

shown to occur under laboratory conditions. Laland and Williams (1997) trained 

individual guppies to follow a particular route (out of two alternatives) to a food source. 

After being placed in the experimental aquarium with the demonstrators once a day for 

5 days, it was apparent that the observers showed a significant preference for the route 

demonstrated to them and consistently chose to follow this route to a food source in the 

absence of a demonstrator, despite there being an alternative route of equal distance and 

complexity. Laland and Williams (1998) then went on to demonstrate the surprising 

level of influence these social cues impart. They used a transmission chain design, 

where small shoals were trained to take one of two routes, of which one route was 

substantially longer and therefore more energetically costly. These trained founders in 

each group were then gradually replaced by naïve individuals. After three days with no 
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original founders in the groups, the more costly route was still being utilised by those 

groups with founders that were trained to use it.  

1.4.3 Foraging 

Social learning is also a means by which fishes increase their foraging efficiency 

(Brown and Laland 2006). For instance, when a fish discovers a food patch, the 

foraging behaviour of that individual will frequently attract others to the same area. Fish 

also often appear attuned to the feeding movements of others. For example, juvenile 

Salmo salar (Atlantic salmon), dart to the water’s surface to catch prey items from their 

benthic foraging stations. This darting motion is used as a cue by conspecifics that 

indicate food is available (Brown and Laland 2002). Juvenile Dicentrarchus labrax 

(European sea bass), after observing trained conspecifics press a lever to gain a food 

reward, subsequently learned this behaviour themselves (Anthouard 1987). Fishes do 

not just learn of the location of food socially, but have been found to learn novel food 

types (Brown and Laland 2001, 2002) as well as to acquire novel foraging behaviour. A 

striking example of the latter is provided by Schuster et al. (2006), who demonstrate 

experimentally that Toxotes jaculatrix (archer fish) can learn to shoot down moving 

aerial prey through observation of the successful performance of conspecifics. 

 

1.4.4 Anti-predator behaviour 

Fishes also learn anti-predator behaviour from conspecifics. One mechanism by which 

this can be attained in fishes is via a chemical cue, known as Shreckstoff, released as a 

result of damage to the skin (Von Frisch 1938) or, in some species, voluntarily, as 

‘disturbance pheromones’ (Wisenden et al 1995). When these cues are detected by 

conspecifics, or heterospecifics, the receivers typically exhibit an anti-predator response 

(Brown and Godin 1997). Extensive experimental evidence, in multiple species, has 
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established that fish can learn the identity of predators through associating predator cues 

with the detection of Schreckstoff released by other fish. For instance, Hall & Suboski 

(1995) found that control of the alarm reaction could be transferred to previously neutral 

stimuli via paired conditioning and could provide a mechanism whereby naive animals 

learn to recognize predators without ever coming into direct contact with them. 

Similarly, Chivers & Smith (1994) demonstrated that minnows could associate these 

alarm substances with chemical cues emanating from predators. Minnows also learn to 

exhibit anti-predator behaviour in response to olfactory cues from a novel predator 

when these cues are received at the same time as seeing a fright response from 

conspecifics (Suboski et al. 1990). They can associate spatial areas, and even chemical 

cues associated with the water, with predator risk through the same mechanism (Chivers 

and Smith 1995), allowing fishes to recognize habitats with high predation risk. Chivers 

& Smith (1994) and Suboski et al. (1990) recorded that naive minnows (Pimphales 

promelas) and Danio rerio (zebra danios), respectively, receiving visual cues of a fright 

response from demonstrators through a clear barrier, acquire anti-predator responses to 

predator cues, if experiencing them simultaneously. It is also known that the observed 

fright behaviour of one individual will induce a similar response in others despite them 

having not seen the predator themselves (Krause 1993a). This phenomenon is known as 

the ‘Trafalgar effect’ (Treherne and Foster 1981). Shoaling fish are therefore made 

aware of a potential predator earlier than they would if solitary and the shoal can 

respond to the threat more effectively with coordinated evasion behaviour (Krause 

1993a). Magurran & Higham (1998) discovered that minnows, even though unable to 

see the predator, exhibited predator avoidance behaviour upon observing the fright 

reaction of conspecifics to a model pike. 
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1.4.5 Aggressive interactions 

Social learning also allows fishes to learn about the fighting potential of rivals. By 

exploiting signals communicated between others, known as ‘eavesdropping’ (McGregor 

1993), individuals can gain valuable information about the fighting ability and social 

status of others without the risk of engaging in contests themselves. Such behaviour has 

been observed in several species of fish, for example male Xiphophorus helleri (green 

swordtails) were less likely to initiate or escalate fights against others they had 

previously observed winning contests (Early and Dugatkin 2002). Oliviera et al. (1998) 

also found that male Betta splendens (Siamese fighting fish) use information gleaned 

from the observation of aggressive interactions between neighbouring conspecifics to 

subsequently guide their own fights. In a study by Grosenick et al. (2007), it was 

reported that males of Astatotilapia burtoni (a cichlid species), base their decisions on 

which conspecific males to fight following the observation of fights between rivals. By 

observing the fights of others, the cichlids are able to use indirect social cues to make 

inferences on the hierarchy. 

 

1.5 Broader comparative perspective 

Despite the large volume of evidence for various social learning mechanisms being 

utilised by fish under a variety of contexts, there are still extensive gaps in research, 

which the experiments in this theses aim to go some way toward filling. There are 

several contexts under which the use of social learning has not been examined. 

Predation is a significant threat to a wide variety of fish species, with many species 

being predated upon by a variety of taxa. Whilst some predator evasion techniques have 

been studied in fish under a social learning context, such as the use of Shreckstoff as an 

alarm pheromone (e.g. Hall & Suboski 1995), to the author’s knowledge, social learning 



26 
 

with regards to shelter location and selection has not. In fact, studies into the social 

learning of shelter choice have been undertaken in only a single genus; Panuliras (spiny 

lobsters) (e.g. Briones-Fourzan et al. (2008) and Childress & Herrnkind (1997; 2001)). 

This thesis aims to go some way in bridging this gap in research in Chapter 3.    

 

Whilst there is substantial evidence in the ability of a variety of fish species to use 

social learning under a foraging context, there are still a number of social learning 

mechanisms that have not been addressed under this context. One such mechanism is 

the social enhancement of food preferences (see sections 1.1.2.8 and 4.1). All of the 

studies into this form of social learning have focused on mammals and most extensively 

in rodents (Galef et al. 1983; Galef & Wigmore 1983; Galef 1988; Valsecchi et al. 

1996; Lupfer et al. 2003; Galef 2005; Ratcliffe & ter Hofstede 2005; Lupfer-Johnson & 

Ross 2007). There are no published studies that have studied the social learning 

mechanism of the social enhancement of food preferences in fish. The experiments in 

Chapter 4 therefore go some way in filling this gap in research. 

 

In addition to understanding the social learning mechanisms and strategies used by 

fishes, another key element to understanding the evolution and utilisation of social 

learning is to examine the pattern of diffusion of social information through 

populations. This can be achieved through the study of a population’s social network 

and the adoption of novel behavioural traits (discussed in detail in chapters 5 – 7). 

However, the study of social network structure in non-human animals, has only recently 

received attention and there is much research in the area still required. The experiments 

in Chapters 6 and 7 use Network Based Diffusion Analysis (NBDA), a new approach to 
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analysing social network data and the diffusion of information within networks to help 

add to the limited number of papers on fish in this area. 

 

1.6 Summary 

In summary, there are a number of different processes by which social learning can 

occur, evidence for which can be found across a wide range of taxa. In order to be 

adaptive, the use of these social learning processes cannot be employed 

indiscriminately, but rather in a more strategic manner, with many different social 

learning strategies depicting when and from whom individuals should acquire and 

utilise social information. There is a host of evidence to suggest that there are a variety 

of contexts under which fish are able to employ these processes and strategies.  

 

Chapter 2 leads on to discuss the characteristics of one particular species of fish, the 

threespined stickleback. This species is the focus test species for this thesis, reasons for 

which shall also be discussed.  
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Chapter 2.  The threespined stickleback 

 

In this chapter I briefly outline the general background and characteristics of my study 

species, the threespined stickleback. Topics include the phylogeny and natural history of 

the species, their global distribution, morphology, and basic ecology. I then go on to 

discuss the threepined stickleback as a model species, their merits in the laboratory, and 

previous examples of the utilisation of threespined sticklebacks in the study of social 

learning.  

2.1 Phylogeny and natural history 

 

The threespined stickleback belongs to Gasterosteidae, a family of small teleost fishes 

with 5 genera and 16 species (Barber and Nettleship 2010), the closest related of which 

are shown in Figure 2.1. The UK is host to three of these species; the threespined, 

Pungitius pungitius (ninespined stickleback) and Spinachia spinachia (fifteenspined 

stickleback) (Barber and Nettleship 2010). 

 

Figure 2.1: Stickleback phylogeny as per Kawahara et al. (2009) 

Threespined stickleback have been found in marine fossil deposits dating back 10 

million years and do not significantly differ from extant marine populations (Bell 1994). 
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Repeated colonisation of these marine threespined sticklebacks into freshwater lakes 

and rivers characterises the natural history of the species. Colonisation episodes often 

followed glacial retreat, with marine threespined sticklebacks invading newly created 

freshwater habitats, establishing freshwater and anadromous populations throughout 

North America, Europe and Asia (McKinnon and Rundle 2002). Inland populations in 

Northern Europe were founded as little as 8,000 – 10,000 years ago (Barber and 

Nettleship 2010). Once new populations were established, there were relatively high 

levels of morphological, behavioural and physiological divergence as a result of 

adaptation to a variety of selection pressures in freshwater and anadromous habitats, 

explaining the high level of diversity found across freshwater populations of threespined 

sticklebacks today. 

2.2 Geographical distribution 

 

Threespined sticklebacks have a wide geographical distribution, found throughout much 

of the northern hemisphere, specifically around the margins of the Atlantic and Pacific 

oceans (Bell 1994). See Figure 2.2 for a detailed distribution. 

 

Figure 2.2: Map showing the global distribution of the threespined stickleback (shaded 

areas). Adapted from McKinnon and Rundle (2002, pg. 481). 
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Populations can be solely marine, anadromous, or solely freshwater (Bell 1994). The 

diversity of habitats in which the threespined stickleback resides is far greater than that 

of most fish species (Reimchen 1994). Threespined stickleback are found across a wide 

range of differing aquatic habitats, including small ponds, littoral, benthic, and limnetic 

lake habitats, streams and rivers, estuaries, tidepools and even the open ocean 

(Reimchen 1994).  

2.3 Morphology 

 

The threespined stickleback is typically a small fish, with a mean standard length of 

5cm. General body shape is streamlined but with a large pectoral fin. The threespined 

stickleback is well protected from predators, possessing bony armoured lateral plates 

forming a single row along each side of the body and 3 dorsal spines, the first two of 

which are large and serrated. As well as dorsal spines, the threespined stickleback also 

possesses two pelvic spines, one on either side of the body (Bell 1994). The dorsal and 

pelvic spines can lock into an erect position when the fish is threatened, which along 

with the armour plating help protect against predation.  

There is significant morphological variation between habitats and populations, 

particularly with regards to the armour plating. Additional significant variations include 

body depth and dorsal spine length. Body colour of the threespined stickleback also 

varies with habitat and geographical location. As a general rule, they are cryptically 

coloured in varying shades of green and brown. During the reproductive season males 

will adorn a blue eye and a blue tinge to the body with a bright red throat, often 

extending along the abdomen. 
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2.4 Ecology 

2.4.1. Prey 

The diet of the threespined stickleback is highly dependent upon the habitat in which it 

resides. Populations differ in morphology according to habitat, in part due to 

adaptations or plastic responses to differing feeding regimes. Perhaps the most striking 

example of adaptation to differing prey items can be seen in the benthic/limnetic divide 

as documented by McPhail (1984). Benthic sticklebacks, with a larger jaw, feed on 

invertebrates from the lake bottom, whilst limnetic populations have adapted to feeding 

on zooplankton, with a greater number of gill rakers to trap fine prey (Hart and Gill 

1994). In general, threespined sticklebacks predate upon a wide variety of invertebrate 

prey species. 

2.4.2. Predators 

Their abundance, wide ecological diversity, small size and slow swimming speed makes 

the threespined stickleback accessible as prey to a large number of piscivorous 

predators, despite their armoured defences. There are at least 68 species of known 

predator to the threespined stickleback from 7 major taxa (for a detailed list see 

Reimchen 1994). These include other species of fish, such as Esox spp. (pike), Perca 

spp. (perch) and Salmo spp. and Oncorhynchus spp. (salmonids), avian predators, such 

as grebe, heron and kingfisher, and even some macroinvertebrate species (Reimchen 

1994). Cannabilism is also common, with adult conspecifics consuming fry and eggs 

(Foster 1988). 

2.4.3. Reproduction 

In spring males migrate to the breeding grounds where they establish territories, build 

nests from a variety of materials, and court females. Once the females have laid their 
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eggs in the nest of their chosen males, they have no participation in the rearing of 

young. There is however, an extensive level of paternal care whilst the eggs are 

developing. The male will continually oxygenate the eggs during the development 

process by fanning currents of water over the eggs with their pectoral fins and remove 

any eggs from the nest that are dead or diseased. Males will also guard their eggs from 

predators, including conspecifics (Whoriskey and FitzGerald 1994).  

An alternative mating tactic also exists, with some males opting for sneaky matings. 

Sneaking males do not adopt the bright colouration usually seen in males during the 

breeding season, but instead are drab and inconspicuous. Sneaking behaviour typically 

follows a pattern of freezing, sinking to the bottom of the water column, and slowly 

approaching the nest of a courting male. If the sneaker remains undetected by the 

courting male, they will enter the nest directly after the female and fertilise the eggs 

(Foster 1994). 

2.5 Threespined sticklebacks as a model species 

 

The threespined stickleback has been used to address a wide range of questions 

throughout many biological fields including behaviour, morphology, physiology, 

evolution, and ecology (Kingsley and Peichel 2007). The enormous diversity of 

freshwater populations enables evolutionary biologists to study the ecological basis of 

adaptive radiation and phenotypic variation (Barber and Nettleship 2010). A genome-

wide linkage map for the threespined stickleback was published by Peichel et al. (2001), 

followed by the publication of the full genome sequence in 2006 

(www.ensembl.org/Gasterosteus_aculeatus/index.html), enabling a plethora of research 

into the genetic basis of intra-specific diversity (Barber and Nettleship 2010).  

 

http://www.ensembl.org/Gasterosteus_aculeatus/index.html
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One of the founders of modern behavioural biology, Niko Tinbergen, first started 

working on the three-spined stickleback in the 1930s (Huntingford and Ruiz-Gomez 

2009). Since then extensive study into behavioural biology using the threespined 

stickleback has been undertaken in a variety of contexts including foraging (Milinski 

and Heller 1978; Mackney and Hughes,1995; Gill and Hart 1998; Salvanes and Hart 

1998; Araujo et al., 2008), shoaling (Bumann and Krause 1993; Krause and Tegeder 

1994; Barber, 2003; Ward et al., 2004a; Frommen and Bakker 2004; Frommen et al. 

2007a), personality (Ward et al., 2004b ; Pike et al., 2008; Ioannou et al., 2008), and 

sexual signalling (Milinski and Bakker 1990; Candolin, 1999; Kraak et al., 1999) (For a 

complete review see Huntingford and Ruiz-Gomez 2010). 

  

The species can be successfully bred in the laboratory and can be reared and maintained 

as adults in small group sizes. They adapt well to laboratory conditions, exhibiting their 

full behavioural repertoire (Barber and Nettleship 2010). The species’ popularity and 

diversity of uses has established the threespined stickleback as a biological 

‘supermodel’ (Gibson 2005). 

2.6 Social learning in sticklebacks 

 

As discussed in section 1.4, the cognitive capabilities of fishes have historically been 

underestimated, and in many respects their intellectual faculties are comparable to birds 

and mammals. There is now extensive experimental evidence that social learning plays 

an important role in the behavioural development of many fishes.  

 

Threespined sticklebacks and their closely related counterpart, the ninespined 

stickleback (see Figure 2.1) have been repeatedly demonstrated to possess a tendency 
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for social learning which, along with their suitability for behavioural studies in the 

laboratory, makes them an excellent species in which to study social learning. Below I 

give a brief outline of the evidence of social learning in sticklebacks under a number of 

different contexts.   

2.6.1. Foraging 

Threespined sticklebacks have been shown to rely on social cues to locate prey via the 

social learning process of local enhancement. Gotceitas & Colgan (1991) presented 

groups of 6 adult female threespined sticklebacks with two food patches of unequal 

profitability. When allowed free access to the food patches, the fish distributed 

themselves according to the ideal free distribution model (Fretwell and Lucas 1970). 

However, when the experiment was repeated with individuals prevented from gaining 

private information about patch quality, individuals selected the food patch with the 

greater number of conspecifics, regardless of food availability.  

 

In a similar study by Webster and Hart (2006a), threespined sticklebacks were allowed 

to develop foraging preferences for one of two experimental sub-habitats after prey 

availability was manipulated. Once established, these foraging preferences persisted 

regardless of experimental prey availability, suggesting individuals were relying on 

previously acquired foraging information. However, when presented with social 

information, focal individuals relied on local enhancement cues rather than prior 

personal information to select foraging sites.  

 

Webster et al. (2013) compared the effect of open and structured habitat structure on the 

transmission of foraging information through shoals of threespined sticklebacks. It was 

established that the location of foraging patches was not greatly affected by social 
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transmission in an open habitat, however, there was strong evidence that social 

transmission occurred in a structured habitat and moreover that the transmission of 

information regarding the location of foraging patches followed the network structure of 

the shoals (Webster et al. 2013). 

 

Coolen et al. (2003) were able to demonstrate that ninespined sticklebacks are capable 

of utilising public information in a foraging context. Public information use is the 

collection of information about the relative quality of a resource by monitoring the 

success of others (Valone 1989). Observer fish were secured in a central compartment 

and allowed to observe two groups of demonstrators being fed through artificial feeders 

at different rates. The set-up was arranged so that the observer could not see the actual 

food items, only the reactions of the demonstrators to the food. After observing the 

demonstrators feeding for a period of ten minutes, all demonstrators and remaining food 

items were removed from the tank and the observer was released and allowed into all 

sections of the test tank. The observers spent a significantly larger proportion of time in 

the feeding zone of the demonstrator group that was fed at the faster rate, thus they were 

able to use the behaviour of the demonstrators to establish which of the two foraging 

patches was the more profitable.  

Coolen et al. (2003) then went on to discover that although threespined sticklebacks and 

ninesined sticklebacks are a closely related and often co-occurring species, threesined 

sticklebacks show no evidence of utilising public information in the same context. The 

hypothesis from Coolen et al. (2003) for this species difference in public information 

use is that threespined sticklebacks possess greater armour, in the form of lateral plates 

and longer dorsal spines (Fitzgerald and Wooton 1996) this difference in armour is to 

such an extent that piscivorous fishes have been shown to display a predatory 
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preference for ninespined sticklebacks over threespined sticklebacks (Hoogland et al. 

1957). The superior defences of threespined sticklebacks mean that they are more likely 

to withstand the higher predation risk associated with personal sampling and therefore 

benefit more from maximizing their opportunities to feed. Ninespined sticklebacks 

however, are more vulnerable to predation and will therefore benefit from observing the 

success rate of others and only leaving an area of relative safety when high patch 

profitability is assured. Coolen et al. (2003) also demonstrated that ninespined 

sticklebacks are not only capable of utilising public information in a foraging context 

from conspecifics but from the heterospecific threespined stickleback as well.  

2.6.2. Anti-predator behaviour 

As discussed in section 1.3.4., fishes learn anti-predator behaviour from conspecifics via 

a chemical cue, known as Shreckstoff, released as a result of damage to the skin (Von 

Frisch 1938). Threespined sticklebacks have also been shown to possess the ability to 

detect and respond to Shreckstoff. Brown and Godin (1997) exposed individual 

threespined sticklebacks to Shreckstoff from a variety of sources; conspecifics 

belonging to the same population, conspecifics belonging to a different population, 

Apeltes quadracus (fourspine sticklebacks), a closely related species, and green 

swordtails, a distantly related species not known to possess alarm pheromones. Focal 

threespined sticklebacks were observed to exhibit a significant increase in anti-predator 

behaviour when exposed to the skin extract of both conspecific populations and of the 

fourspine sticklebacks, not to swordtail skin extract (Brown and Godin 1997). 

2.6.3. Mate choice 

Several studies have shown that female threespined sticklebacks prefer to spawn in 

nests that already contain eggs (Ridley and Rechten 1981; Goldschmidt et al. 1993). 
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One possible function for this behaviour is mate choice copying, the presence of eggs 

already present in a nest signifying the mate choice of a previous female and therefore a 

high quality male. Another possible explanation is that a female may prefer to spawn in 

a nest that already contains eggs in order to increase egg survival rate (Jamieson 1995). 

A large number of eggs in one nest reduces predation risk through a dilution effect and 

paternal care and subsequent offspring survival have been shown to increase in relation 

to the number of eggs in a male’s nest (Sargent 1988). 

 

In natural populations, it is highly likely that female threespined sticklebacks have the 

opportunity to observe the mate choices of other females (Patriquin-Meldrum and 

Godin 1998). Females have been observed to visit males in pairs (Wootton 1976), and 

in high-density populations, females are likely to view several courting males and their 

nests simultaneously (Whoriskey and FitzGerald 1994). 

 

A study by Patriquin-Meldrum and Godin (1998) examined mate choice copying by 

female threespined sticklebacks in terms of courtship displays. Using a setup similar to 

that of Dugatkin’s mate choice experiment on guppies (1992), females were presented 

with two males that had similar body lengths, nuptial colors, parental status, courtship 

behaviour rates, nests, and territory sizes. Patriquin-Meldrum and Godin (1998) 

observed that only 62.9% of focal females showed a mating preference for the male that 

they had previously observed being courted by another female, not sufficient for a 

significant result. This suggests mate choice copying is not the underlying reason for 

spawning in nests already containing eggs. However, this study based mate choice 

selection on courting behaviour only. Females did not have access to males’ nests in 

which to spawn, which may be a crucial element in determining mate choice selection. 
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2.6.4 Cooperation 

Milinski et al. (1990) have shown that cooperation also has the potential to be 

influenced by social learning in threespined sticklebacks. Focal individuals were 

observed to swim closer to a predator when they observed (through a one-way mirror) a 

conspecific ‘cooperator’ swim up to the predator than when they observed a conspecific 

‘defector’ swim only halfway. After four repeated experiences with both the 

‘cooperator’ and the ‘defector’, the focal fish continued to swim up to the predator and 

cooperate with the ‘cooperator’ even when the ‘cooperator’ defected, suggesting the 

focal individual was able to learn and recall which of the two conspecifics were more 

likely to cooperate. 

2.7 Summary 

 

Threespined sticklebacks are a widespread and common species. Repeated invasions of 

marine populations into newly-formed freshwater habitats resulted in a high level of 

morphological, behavioural and physiological diversity. The species feeds upon a wide 

variety of prey and are preyed upon by a wide variety of predators. The threespined 

stickleback is used widely in biological research and has become a model species, for 

which the entire genome has been mapped. The species has been used repeatedly in the 

study of animal social learning, with evidence of their ability to learn socially available 

under a variety of contexts, including foraging, anti-predator behaviour, mate choice, 

and cooperation. 

 

The next chapter, Chapter 3, is the first of 4 data chapters. In this chapter both 

threespined and ninespined sticklebacks were used to assess the use of delayed local 

enhancement under a shelter choice context.  
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Chapter 3. Threespined sticklebacks and ninespined sticklebacks don’t use delayed 

local enhancement in a shelter choice assay 

 

3.1 Introduction 

 

Shelter selection is a critical component of the behaviour of most mobile organisms, 

allowing them to avoid adverse physical and biotic environmental conditions 

(Schwarzkopf and Alford 1996). For example, a shelter has the potential to provide 

protection from predation (Manicom et al. 2008), assist in the regulation of homeostasis 

(Houseal and Olson 1995), avoidance of being displaced by flowing air or water (Pardo 

and Johnson 2006), and provide protection from dessication (Schwarzkopf and Alford 

1996). 

The social learning process of local enhancement can influence the behaviour of 

individuals under a wide range of different contexts, from foraging locations to mate 

choice. Local enhancement has been shown to influence shelter choice across a range of 

taxa, as the presence of conspecifics can guide individuals toward refuges and thereby 

improve refuge search efficiency, and thus reduce exposure to predators (Eggleston and 

Lipcius, 1992; Childress and Herrnkind, 1997, 2001). For example, Briones-Fourzan et 

al. (2008) demonstrated that Panulirus guttatus and P. argus (two species of spiny 

lobsters) were attracted to shelters emitting conspecific aggregation olfactory cues. 

There are numerous reasons why individuals would choose to shelter gregariously, for 

example improved access to mates and an increased ability to deter intruders. However, 

it is likely that the primary benefit is a reduction in predation levels via a dilution effect 

(Horner et al. 2006).   

Another hypothesis for an individual choosing to shelter alongside conspecifics is that 

individuals may use the occurrence of an already present individual as an indicator of 

http://www.biolbull.org/content/211/2/128.long#ref-22
http://www.biolbull.org/content/211/2/128.long#ref-22
http://www.biolbull.org/content/211/2/128.long#ref-17
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the quality of a general habitat or specific refuge. A settled individual can therefore be 

used as a source of public information, where it may indicate a resource of higher 

quality (Danchin et al. 1998; Wagner and Danchin 2003; Donahue 2006). Minimally, 

the presence of another individual provides an indication that this is a location in which 

shelter is possible, and perhaps that this location is well suited to providing refuge. The 

observing animal can infer that if the shelter were low quality, the sheltering animal 

would likely have moved on. 

Public information use is the collection of information about the relative quality of a 

resource by monitoring the success or failure of others (Valone 1989). Public 

information use therefore differs from local enhancement in that it provides information 

about the quality of an environmental resource, rather than where to find it (Valone and 

Templeton 2002). The ability to use public information can give individuals a distinct 

advantage, as they are able to gather information regarding the quality of a resource 

without having to incur the costs of sampling it for themselves (Coolen et al. 2003). 

 

Habitat selection has been shown to be influenced by public information use in a range 

of taxa with regards to breeding site selection. Deutsch and Nedft (1992) conducted a 

study on choice of mating territory in two species of lekking antelopes, Kobus kob 

Thomasi (Uganda kob) and K. leche kafuensis (Kafue lechwe). By experimentally 

transplanting soil from successful mating territories to less successful ones, Deutsch and 

Nedft (1992) were able to manipulate the number of successful matings at each 

territory, with the previously less successful sites in both species receiving 

approximately 10 times the number of matings than prior to soil transplantation. 

Deutsch and Nedft (1992) explain this significant difference due to the transplanting of 

olfactory cues in the urine of females being transplanted to the less successful sites 
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alongside the soil. These olfactory cues are subsequently used by prospecting females to 

determine the quality of the mating site and/or male holding the territory, by receiving 

an indication of the number of females selecting that territory previously. 

 

Public information use in the context of habitat choice for reproduction has also been 

shown in birds. Danchin et al. (1998) conducted a 17 year long study on breeding 

colonies of Rissa tridactyla (black-legged kittiwakes), a cliff-nesting seabird. During 

the study Danchin et al. (1998) discovered that breeding pairs tended to base their 

choice of cliff on which to breed on the success of the previous years’ breeders.  Failed 

breeders from a patch in which individuals had generally high patch-wide reproductive 

success tended to re-nest in the same patch the next year, whereas failed breeders from a 

patch in which individuals had low patch-wide reproductive success tended to nest in a 

different patch the next year. The decision of whether or not to switch cliffs was 

therefore not shown to be dependent on the personal success of the previous year, but 

rather the success of conspecifics and overall breeding success in each location.  

Doligez et al. (2002) also showed public information use playing a role in habitat 

selection for breeding purposes in Ficedula albicollis (collared flycatchers), a small 

migratory passerine bird. Doligez et al (2002) manipulated two components of public 

information, the mean number of offspring raised locally (“quantity”) and their 

condition (“quality”) in a 2 year experiment on the island of Gotland, Sweden, by 

transferring 7-day-old nestlings between nests among breeding plots. This created plots 

where the mean number of fledglings per breeding pair was increased, decreased, or left 

unchanged. Fledgling quality was altered as a result of manipulation of quantity, with 

larger broods having fledglings with a lower body condition due to the increase in 

demand for food across the clutch. Immigration rate was shown to decrease with local 
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offspring quantity, but did not depend on local offspring quality, suggesting that 

immigrants are deprived of information regarding local quality. However, emigration 

rate was shown to increase both when local offspring quantity or quality decreased, 

suggesting that collared flycatchers already resident within a breeding plot are capable 

of using both components of public information (Doligez et al. 2002). 

Public information use has been studied most extensively in a foraging context across a 

range of taxa (Templeton and Giraldeau 1995; Smith et al. 1999; Coolen et al. 2003; 

2005; Kendal et al. 2009). For example, Templeton and Giraldeau (1995) carried out 

field trials using group-foraging European starlings in which the birds were presented 

with an artificial food patch differing in availability of public information. By raising 

the height of opaque barriers between sampling patches, it became difficult for the 

starlings simultaneously to collect both private information about their current chosen 

sampling patch through their own success and public information about other sampling 

patches through the observation of others’ success. However, when these opaque 

barriers were low, it became possible to collect both types of information at the same 

time. The starlings were found to vary their use of public information in accordance to 

the sampling conditions they were presented with, choosing to use a combination of 

both private and public information to select the most profitable sampling patch when 

both were available simultaneously. However, relying solely on private sampling 

information when private and public information could not be gathered simultaneously 

and a choice had to be made between which type of information to collect. A similar 

experiment was also carried out by Smith et al. (1999) in Loxia curvirostra (red 

crossbills). The results of their experiment showed that red crossbills spent significantly 

less time sampling an empty foraging patch in the presence of two other conspecifics 
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than they did when sampling alone, suggesting that they were able to observe the 

success or failure of others foraging and switch patches accordingly. 

Extensive studies have also been carried out studying the use of public information in 

fish. There have been several recent publications by Coolen et al. (2003, 2005) 

demonstrating the use of public information in a foraging context by ninespined 

sticklebacks as discussed in section 2.6.1.  

Using the same experimental assay, Kendal et al. (2009) found that ninespined 

sticklebacks are also capable of deploying a ‘hill-climbing’ strategy when exploiting 

public information. Individuals with prior experience of foraging more successfully at 

one prey patch over another were shown to switch to the alternate patch when the prey 

capture rate of demonstrators was greater than that at the patch they had previously 

perceived to be the richer. Conversely, they were significantly less likely to switch to 

the alternative patch if the prey capture rate of the demonstrators was lower than that of 

the ‘rich’ patch based on their previous private information. Such a strategy, if widely 

deployed, potentially allows individuals in a population to steadily increase their 

foraging efficiency by gradually homing in on the most profitable foraging locations 

(Webster and Laland 2012).  

Despite not utilising public information, threespined sticklebacks have been shown to 

employ the simpler social learning process of ‘delayed local enhancement’, whereby an 

individual is attracted to a location where others had previously been observed. Coolen 

et al. (2003) showed that both threespined and ninespined stickleback observers were 

able to use previously observed foraging cues of conspecifics to determine which of two 

prey patches contained food, despite the absence of food and demonstrators at the time 

of choice (Coolen et al. 2003).  
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Delayed local enhancement has also been shown in fishes under the context of 

cooperation. Bshary and Grutter (2006) designed a series of experiments using 

Labroides dimidiatus (a species of cleaner fish). These cleaner fish may cooperate by 

removing ectoparasites from clients, or they may cheat by feeding on client mucus, 

which they typically prefer over ectoparasites (Grutter & Bshary 2003). Bshary and 

Grutter (2006) allowed a client fish to view two cleaner fish and their corresponding 

model clients simultaneously. One was cooperating with the model as though it was 

feeding on ectoparasites, and the other was not interacting with a model client at all. 

The focal client fish was observed to spend a significantly higher proportion of time in 

close proximity to the cooperative cleaner fish than the uncooperative cleaner fish.  

It is widely acknowledged that many fish species are attracted to structure within the 

environment and will move toward it. Such structure can include artificial reefs, 

vegetation, and floating algae (Holbrook and Schmitt, 1984; Walsh, 1985; Jara and 

Cespedes, 1994; Basset, 1994; West et al., 1994; Laegdsgaard & Johnson 2001) and can 

be used as a shelter for protection from predators. Shelters may differ in their quality 

reflecting variation in size (Hixon and Beets 1989) and location with regards to 

proximity to other resources, such as foraging patches. It is therefore likely to be 

beneficial to an individual to assess the quality of possible available shelters, an 

assessment for which the information provided by others might be of value. 

 

As described above, public information use has been recorded in a variety of species 

and taxa under a range of different contexts. However, to the author’s knowledge, to 

date there has been no assessment of public information use in any taxa under the 

context of refuge or shelter choice, a key resource for any prey species and worthy of 

attention.  Here I assess the ability of both threespined and ninespined sticklebacks to 
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use the more simple social learning process of delayed local enhancement to select one 

of two identical shelters based on the previously observed presence or absence of 

conspecifics. In line with the experiments of Coolen et al (2003), assuming that these 

psychological abilities generalise across contexts, it would be logical to predict that both 

species would be able to employ the simple process of delayed local enhancement to 

select the previously occupied shelter.  

3.2 Methods 

 

3.2.1 Subjects and apparatus 

Twenty ninespined sticklebacks and 20 threespined sticklebacks captured in Melton 

Brook, Leicestershire, UK (GRID REF: SP 602075) in April 2012 served as subjects. A 

further 80 of each species were used as demonstrators. In the laboratory, the fish were 

held in conspecific groups of 40 to 50 in 90L aquaria. Each aquarium contained a layer 

of coarse sand, an external filter, and artificial vegetation for cover. Overhead 

fluorescent lighting illuminated the holding tanks for 14 hr/day and the temperature was 

maintained at 8 °C. They were fed daily with frozen bloodworms (Chironomid sp.).  

 

The experiment was conducted between July and September 2012 and excluded any 

individuals that displayed nuptial colouring or gravidity, as ninespined sticklebacks’ use 

of public information is correlated with their reproductive state (Webster & Laland, 

2011). 

 

The experimental apparatus consisted of a glass tank (measuring 122cm by 30cm) filled 

with water to a depth of 20cm, and divided into three equal sections by two black lines 

at right angles to the tank’s major axis, and visible through its glass floor. Two identical 
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artificial shelters (15cm by 15cm with a height of 22cm), covered from above with thick 

black plastic cut to size and constructed of a white mesh, that allowed passage of both 

visual and olfactory cues, were placed at opposite ends of each experimental tank.  Each 

shelter, floored with coarse sand, contained an artificial plant. The remainder of the 

experimental tank, placed on white surface was bare to enhance the relative 

attractiveness to focal subjects of the shelters as places of refuge. A transparent circular 

holding compartment with a diameter of 10cm and a height of 25cm was placed in the 

centre of the tank (see Figure 3.1) A Canon HG20 video camera placed 1.2m above the 

tank permitted observation of the animals and video recording of their behaviour for 

later analysis.  

 

Figure 3.1: A plan view of the experimental setup. 

3.2.2 Procedure 

3.2.2.1 Demonstration phase 

Four demonstrators, who were size matched conspecifics of each focal individual and 

unfamiliar to the subject, were placed in a randomly selected shelter and allowed to 

settle for 15min.  After this time, the focal fish was placed in the holding compartment 

in the centre of the tank and allowed to settle for 10 min.  At the end of the settling 

period, the holding compartment was removed and the focal fish was allowed to explore 
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the entire tank except for the inside the two shelters, one of which contained the 

demonstrators. The focal individual explored the tank for 30 mins and was then 

recaptured and temporarily removed from the experimental tank.  

3.2.2.2 Test phase 

While the focal fish was absent from the experimental tank, the demonstrators were 

removed from the shelter, then both shelters were removed from the tank, and the water 

within the tank was mixed for 30 sec to ensure that any residual odour cues from the 

demonstrators within the shelter were dispersed throughout the tank. The shelters were 

then replaced with two identical shelters, however, this time with a small entrance (3cm 

x 3cm) in the bottom centre of the front wall to allow access to both shelters.  

 

The focal fish was returned to the holding compartment in the centre of the 

experimental tank and allowed to settle for a further 10 min, after which the holding 

compartment was removed and the focal fish was once again allowed to explore the 

tank, this time for a period of 20 min.  

3.2.2.3 Video playback 

The proportion of time that the focal fish spent in the third of the tank containing each 

shelter during both the last 20 min of the demonstration phase (to exclude initial 

exploratory behaviour) and the entire test phase was recorded. The proportion of time 

spent within each shelter during the test phase, the first line crossed, the latency with 

which each focal fish first crossed a line, and the first shelter entered by the focal fish 

was also recorded. 
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If the focal fish used the social learning process of delayed local enhancement in 

selecting a shelter, it could be predicted that the focal fish of both species would spend a 

significantly higher proportion of time in the vicinity of the shelter housing the 

demonstrators during the demonstration phase, a higher proportion of time inside the 

demonstrated shelter itself, and would select the demonstrated end of the tank and 

shelter first in a binary choice assay.  

3.3 Results 

3.3.1 Demonstration phase 

Both the threespined sticklebacks and ninespined sticklebacks spent a significantly 

higher proportion of time in the vicinity of the shelter in which the demonstrators were 

housed during the demonstration phase of the experiment. Due to a high proportion of 

zeros within the data, it could not be normalised and a parametric analysis could not be 

used (Wilcoxon Signed Ranks Test: Z18,1 = -2.113, P = 0.035 and Z19,1 = -2.133, P = 

0.033 respectively) (Figure 3.2). I can therefore be confident that the focal fish of both 

species were aware of the presence of the demonstrator shoal within the shelter. There 

was no significant difference observed in the proportion of time spent in the 

demonstrated end of the tank between the two species (Student’s T-test: T = -0.674, df = 

34, P = 0.505).  
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Figure 3.2: The mean proportion of time focal individuals spent in the demonstrated and 

non-demonstrated ends of the tank during the demonstration phase of the experiment. 

Left; threespined sticklebacks, Right; ninespined sticklebacks. 

3.3.2 Test phase 

However, neither the threespined nor the ninespined sticklebacks showed any 

significant difference in the proportion of time they spent in either the demonstrated or 

non-demonstrated ends of the tank during the test phase (inclusive of the time spent 

inside either shelter) (GLM: F = 0.606, df = 4, P = 0.661). Although from figure 3.3, it 

is visible that there was a slight trend toward the non-demonstrated end, this result is not 

a significant one and cannot be ruled out as having occurred by chance. There was also 

no preference for one particular end of the tank (left or right) (GLM: F = 0.001, df = 1, 

P = 0.974) and no significant difference observed in the proportion of time spent in the 

demonstrated end between the two species GLM: F = 0.432, df = 1, P = 0.515). 
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Figure 3.3: The mean proportion of time focal individuals spent in either the 

demonstrated or non-demonstrated end thirds of the tank, inclusive of the time spent in 

either shelter. Left; threespined sticklebacks, Right; ninespined sticklebacks. 

3.3.2.1 Test phase binary choice 

There was also no significant difference in either species between which shelter was 

entered first in a binary choice assay (either the demonstrated or non-demonstrated). It 

should be noted that not all focal individuals entered either shelter, with 11 threespines 

selecting a shelter and 19 ninespines (Binomial Test: N = 11, P = 1, N =19, P = 0.359 

respectively). 

There was no significant difference discovered in the binary choice of the end of the 

tank first entered (demonstrated vs non-demonstrated) during the test phase in the 

threespines (Binomial Test: N = 18, P = 0.815). However, there was a significant 

difference observed in the binary choice of the end of the tank first entered 

(demonstrated vs non-demonstrated) during the test phase in the ninespines (Binomial 

Test: N = 20, P = 0.041), with 5 individuals choosing to enter the vicinity of the 

demonstrated shelter first and 15 individuals choosing to enter the vicinity of the non-

demonstrated shelter first. 
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There was no significant difference between the two species when comparing the mean 

latency for which it took individuals during the test phase to enter  either of the two end 

thirds of the tank (GLM: F = 0.823, df = 1, P = 0.370) (Figure 3.4). Although from 

Figure 3.4, it is visible that there was a slight trend for the ninespined sticklebacks to 

have a longer latency than the threespined sticklebacks, this result is not a significant 

one and cannot be ruled out as having occurred by chance. 

 

Figure 3.4: The latency of each species to leave the central third of the tank after being 

released from the holding compartment and enter the vicinity of either shelter during the 

test phase. 

 

3.4 Discussion 

 

Both threespined and ninespined sticklebacks were tested on their ability to use the 

social learning mechanism of delayed local enhancement to select a shelter previously 

inhabited by conspecifics by presenting them with two identical shelters, one of which 

containing a small shoal of conspecifics, and allowing them access to these shelters 

once the demonstrator shoal had been removed. 

Both the threespined and ninespined sticklebacks spent a significantly larger proportion 

of time within the vicinity of the demonstrated shelter than the non-demonstrated shelter 
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during the demonstration phase (Figure 3.2). It can therefore be concluded that the focal 

individuals were aware of the presence of the demonstrator shoal within the selected 

shelter and that both species were attracted to the vicinity of the shelter in which the 

demonstrator shoal was housed. The thin mesh used to form the walls of the shelters 

meant that this attraction will likely have been through a combination of both visual and 

olfactory cues.  

Neither ninespined nor threespined sticklebacks used delayed local enhancement to 

select the end of the tank in which they had previously observed conspecifics within a 

shelter during the test phase.  Surprisingly, the ninespined sticklebacks selected the non-

demonstrated end third of the tank first, however there was no overall difference in the 

proportion of time either species spent in each end section (Figure 3.3).  

One possible explanation for the seemingly lack of preference between the 

demonstrated and non-demonstrated ends with regards to the proportion of time both 

species spent either within a shelter or within the vicinity of a shelter is that of stimulus 

enhancement. Stimulus enhancement occurs when the presence of a demonstrator in 

close proximity to, or interacting with, a stimulus in the environment (rather than a 

discrete spatial location) causes the observer to subsequently become more likely to 

interact with similar stimuli (Webster and Laland 2012). Generalisation is a crucial 

component of stimulus enhancement (Webster and Laland 2012) and can be used as a 

possible explanation for the findings of this experiment, whereby the observer becomes 

more likely to interact with, or be attracted to a similar stimulus in other locations 

(Hoppitt & Laland, 2008), rather than the specific stimulus in the specific location in 

which the demonstrator was observed. Therefore rather than using delayed local 

enhancement to select a shelter, both ninespined and threespined sticklebacks may be 

using generalised stimulus enhancement, whereby it does not matter which shelter is 
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selected, as they are both identical and are of a similar nature to the one in which the 

demonstrator shoal was observed and location does not play a role in shelter selection. 

Using non-identical shelters (e.g. different colours) would help to determine whether or 

not this is the case. 

Another possibility is that the focal fish was unable to differentiate between the two 

shelters once having been reintroduced at the beginning of the test phase due to an 

absence of any spatial cues. It would be interesting to repeat the experiment with 

different coloured cues (e.g. spots) on or near each shelter.  

When looking at the results as a binary choice test, neither the threespined sticklebacks 

nor the ninespined sticklebacks showed a significant preference for selecting either the 

demonstrated or non-demonstrated shelter first. These results are consistent with those 

found when looking at the proportion of time spent both within the demonstrated or 

non-demonstrated ends of the tank and suggest that neither species are using delayed 

local enhancement to influence their choice of shelter. However, when looking at a 

binary choice of the first end third of the tank to be chosen, the ninespined sticklebacks 

do show a significant preference for one over the other.  

One possibility for this result is that the focal ninespines developed a negative 

association with the demonstrated shelter due to an observable negative effect coming 

from the demonstrators through behavioural cues. It may be that 15 minutes was not a 

long enough settling period for the demonstrator shoal and they were still stressed from 

handling. However, a 15 minute or less settling period has previously been used in a 

multiple number of behavioural experiments on sticklebacks with no noticeable 

negative effect (e.g. Coolen et al. 2003, 2005; Webster et al. 2008; Kendal et al. 2009) 

so it is unlikely to be the case. 
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Another possible explanation comes from three studies on social learning with rhesus 

macaques (Darby & Riopelle 1959), starlings (Templeton 1998), and more recently 

Sciurus carolinensis (Grey squirrels) (Hopewell et al. 2010). In these studies, a 

conspecific demonstrator opened one of two food containers, which was either empty or 

contained a food reward. Test subjects then had to select the same container if the 

demonstrator had found food and the opposite one if they had been unsuccessful. In all 

three studies it was found that the test subjects learned to select the opposite container to 

the empty one chosen by the conspecific more readily than to select the same one. This 

suggests that subjects were readily able to learn that the observation of a conspecific 

removing food from a specific location meant that food was no longer available. This 

phenomenon was termed ‘the depletion effect’ by Templeton (1998). Although these 

studies were all under a foraging context, the same principles as the depletion effect 

could apply to this current study under the context of shelter choice, but instead of the 

resource that is being depleted being food, it is space. When the ninespined sticklebacks 

observed the conspecific shoal residing in one shelter, that shelter may then have been 

regarded as full, encouraging the focal fish to then swim toward the alternative, empty 

shelter first on test. Support of this hypothesis can be found in a study by Holbrook and 

Schmitt (2002) on Dascyllus flavicaudus and D. Trimaculatus, two species of tropical 

damselfishes. They showed that individuals were most at risk from predation when 

located near or just outside the perimeter of a shelter and that predation risk also 

increased with population density due to intraspecific interactions among sheltering fish 

jostling for space in the safest regions; this resulted in the displacement of less 

aggressive individuals to riskier locations from whence they were predated upon.  

Another hypothesis for the ninespined sticklebacks’ avoidance of the demonstrated 

shelter under a binary choice test is that the fish perceived an empty shelter that was a 



55 
 

recent previous refuge area for conspecifics as an area of high predation risk, or 

unsuitable as a refuge by some other means, as the fish that had previously inhabited the 

shelter had moved on. 

There was no significant difference between species in the latency to leave the central 

area and move into the vicinity of either shelter, however, as seen in Figure 3.6, there 

was a trend for the threespined sticklebacks to take longer than ninespined sticklebacks. 

Coolen et al. (2003) explained the species difference observed between threespines and 

ninespines in their ability to utilise public information, with ninespines able to use 

public information under a foraging context, whilst threespines could not, by a 

difference in their possession of anti-predator defences. Threespines have better 

protection from predators due to larger spines and the presence of an armoured pelvic 

girdle and plates (FitzGerald & Wootton 1996). This potentially allows them cope with 

increased exposure to predators and rely more on private information with increased 

sampling times but more accurate and current information. This private versus public 

information could also extend to a shelter choice context, with threespines affording to 

take longer to explore the open, central area of the environment than the ninespines 

therefore extending the latency with which they move into the vicinity of one of the 

shelters.  

3.5 Summary 

 

Neither threespined sticklebacks nor ninespined sticklebacks used delayed local 

enhancement to select a shelter they had previously observed to be inhabited by a small 

shoal of conspecifics, despite both species having previously been shown to be able to 

use this social learning mechanism in a foraging context. As a result of these findings, 

there was no need to alter the ratio of demonstrators in each shelter (and therefore vary 
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shelter quality) to extend the species comparison in a shelter choice context to test for 

public information use. 

 

Chapter 4 now goes on to look at the use of another mechanism of social learning in 

threespined sticklebacks, the social enhancement of food preferences. This time under a 

foraging context.  
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Chapter 4. The social enhancement of food preferences 

4.1 Introduction 

 

Generalist foragers may often be faced with the opportunity to exploit several different 

food types at a single point in time and must be able to choose between them in order to 

forage efficiently. Individuals that live in groups have the advantage of being able to use 

social information through observation of the actions, choices and success rates of their 

groupmates. The use of social information potentially allows foraging animals to learn 

about the distribution and availability of different food types within their local 

environment without having to incur the costs associated with sampling the area for 

themselves (Kendal et al. 2009). This social information can either be acquired directly 

by observing the real-time actions of their groupmates, or it can be acquired indirectly 

using food derived cues, such as residual odour or the metabolic by-products of ingested 

food (Galef and Wigmore 1983; Galef 1988). This indirect form of social learning about 

food has been termed the social enhancement of food preferences (Hoppitt & Laland 

2008) and has a distinct advantage to the observer in that it does not require the learner 

to be present while the demonstrator is exploiting the food resource.  

Most of the studies into this form of social learning have focused on rodents and most 

extensively in the Norway rat (Galef et al. 1983; Galef & Wigmore 1983; Galef 1988; 

Galef 2005). Other studies include Meriones unguiculatus (Mongolian gerbils) 

(Valsecchi et al. 1996), and Mesocricetus auratus and Phodopus campbelli, two species 

of hamster (Lupfer et al. 2003). Galef and Wigmore first demonstrated the social 

enhancement of food preferences in adult Norway rats in 1983. They found that a naive 

rat (henceforth the ‘observer’), after interacting with a recently fed conspecific (a 

‘demonstrator’), when given a choice between two novel foods, would preferentially 
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consume the same food type as the demonstrator. Galef et al. (1988) were able to 

determine that it is the presence of carbon disulphide on the breath of the demonstrator 

rats which is the key to observer rats developing a preference for a demonstrated food 

type. Observers exposed to a demonstrator that had recently consumed a cinnamon 

flavoured diet and observers exposed to a piece of cotton wool powdered with 

cinnamon and in addition, moistened with CS2, both subsequently showed significant 

preferences for cinnamon flavoured food. In comparison, rats exposed to cinnamon 

powdered cotton wool moistened with distilled water did not develop a preference for 

cinnamon (Galef et al. 1988). Munger et al. (2010) identified a specialised olfactory 

subsystem that is sensitive to carbon disulphide and required for the acquisition of 

socially transmitted food preferences in mice. Disruption of this olfactory subsystem 

resulted in a failure to acquire socially transmitted food preferences (Munger et al. 

2010). 

The social enhancement of food preferences has also been documented in other social 

mammals, including Carollia perspicillata (the short-tailed fruit bat) (Ratcliffe & ter 

Hofstede 2005), and Canis familiaris (the domestic dog) (Lupfer-Johnson & Ross 

2007). Ratcliffe & ter Hofstede (2005) presented demonstrator bats with either 

cinnamon or cocoa flavoured food. Demonstrators were then placed into the cage of a 

single observer and allowed to interact for a period of 30 mins. After this interaction, all 

observers displayed a preference for the demonstrated diet when presented with both 

food types. Ratcliffe & ter Hofstede (2005) also discovered that short-tailed fruit bats 

readily reversed their food preference when later allowed to interact with demonstrators 

which had recently consumed the opposite flavour food to that which was previously 

demonstrated. 
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Lupfer-Johnson & Ross (2007) found similar results in dogs. Demonstrators were fed 

either basil- or thyme-flavoured food immediately prior to being allowed to interact 

with an observer for a period of 10 mins. The observer then displayed a significant 

preference for the same flavour food as had been consumed by the demonstrator.  

The phenomenon of socially enhanced food preferences in Norway rats has been shown 

to have a strong influence on observers. Even observer rats that have been conditioned 

to show an aversion toward a particular food as a result of experiencing gastrointestinal 

distress immediately after consumption, were observed to reverse this previously 

learned negative response when presented with demonstrators that had eaten the same 

food (Galef 1986). This process exhibits several possible functions. One is that it serves 

to increase the repertoire of foods available to an individual. Consistent with this 

hypothesis, Galef (1993) noted that observer rats were more influenced in their food 

choices by demonstrator rats that ate an unfamiliar food than by those that ate a familiar 

one. Galef (1993) points out that if the social learning of food preferences were to have 

a greater influence on observer rats eating foods already familiar to them, it would 

increase the tendency for rats to limit their diets only to foods already in their repertoire. 

However, with observers being influenced more by demonstrated novel food, social 

interactions serve as a means to expand dietary repertoires (Galef 1993). 

A second possible function is the indirect avoidance of unpalatable or poisoned food 

types. Direct evidence for the avoidance of foods has consistently been found not to be 

present in rats (Galef et al. 1983, Galef and Beck 1985, Galef et al. 1990). However, 

indirectly, rats may inadvertently avoid consumption of unpalatable or poisoned foods 

through traditions for consuming palatable alternatives.  
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Socially learned food avoidance has also been shown to be absent in Macacca fuscata 

(Japanese macaques) (reviewed by Visalberghi 1994). There is however, substantial 

evidence of the social transmission of the avoidance of foods in several avian species. 

For example, Passer domesticus (house sparrows) were observed to consume 

significantly less red coloured food after watching conspecifics consume red food 

treated with quinine, which gave the food a bitter taste (Fryday and Grieg-Smith 1994). 

Another example is Agelaius phoeniceus (red-winged blackbirds) avoiding food 

associated with conspecifics displaying toxin-induced illness (Mason and Reidinger 

1982, 1983). Also domestic layer strain chicks avoided pecking beads of the same 

colour to which they had previously observed conspecifics display a disgust reaction 

due to them being coated in bitter tasting methyl anthranilate (Johnston et al. 1998). 

Shoaling fishes have recently been shown to be able to detect prey-specific cues 

generated by foraging conspecifics, a process that resembles the social enhancement of 

dietary preferences described above. The arrangement of fish shoals tends to be affected 

by a variety of phenotypic factors, including size, species, and age class (Hoare et al. 

2000). However, there are also more subtle factors that affect shoal structure, including 

specific individual recognition (Griffiths and Ward 2006) and resource-specific 

chemical cues (Webster et al. 2008a).   

When making shoaling decisions, individual threespined sticklebacks have been 

repeatedly shown to shoal preferentially with others that have recently occupied the 

same micro-habitat as themselves (Ward et al. 2004(c), 2005, 2007; Webster et al. 2007, 

2008a, 2008b). A variety of species including Salvelinus alpinus (Arctic char) (Olsen et 

al. 2003), guppies, (Morrell et al. 2007), and threespined sticklebacks (Ward et al. 

2004(c), 2005, 2007; Webster et al. 2007, 2008a, 2008b) are also able to recognise and 

choose to shoal with others that have recently consumed the same prey type as 
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themselves. Ward et al. (2005) even observed recognition of the same prey type 

occurring between species. Threespined sticklebacks showed self-referent matching to 

both habitat and diet cues, not only to conspecifics but also to stimulus shoals of 

ninespined sticklebacks. 

There are several hypotheses as to why a mechanism allowing fish to detect and identify 

food cues from others has evolved. Shoaling fishes potentially gain a number of benefits 

from shoaling with individuals with a preference to exploit the same resources as 

themselves (Webster et al. 2008a). Social foragers are known to benefit from higher 

rates of prey detection than those foraging on their own. By shoaling with and 

monitoring the success of conspecifics that are exploiting the same prey type as 

themselves, an individual may be able to gain information about the distribution of prey 

types others are exploiting. It is also reasonable to hypothesise that unfed fish might use 

this source of social information to match their own prey use patterns with prospective 

shoal mates. Hungry fish could also learn about prey types that are locally abundant, or 

that they have not previously encountered before, by indirectly monitoring the prey use 

of others. 

In a study on the social enhancement of food preferences in threespined sticklebacks by 

Atton (2010), small demonstrator shoals were fed one of two novel food types and then 

placed in a tank with either a black or a white base for an hour alongside a single 

observer fish. In accordance with previous studies into the social enhancement of food 

preferences in other taxa, it would be logical to predict that observers would display a 

preference for the demonstrated food type. However, when conditioned with the 

demonstrator shoal on a black base, observers were shown to have no preference for 

either food type and when conditioned with the demonstrator shoal on a white base, the 

observers displayed a significant preference for the non-demonstrated food type. 
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Threespined sticklebacks are preyed upon by many species of piscivore, both fish and 

birds. The sticklebacks, like many other species of small fish possess countershading, a 

gradation in colour from dark on the dorsum to light on the ventrum (Ruxton et al. 

2004). Countershading is considered an adaptive trait for protection against predators 

concealing shadows cast upon the body by overhead illumination (Ruxton et al. 2004). 

In fish, the dark dorsal side provides cryptic colouration from aerial predators whilst the 

lighter ventral side provides camouflage from predators beneath them in the water. 

Threespined sticklebacks are therefore highly visible to avian predators when placed in 

tanks with a white base, as the darker dorsal side of the fish contrasts strongly with the 

substrate. Threespined sticklebacks avoid areas of white, most likely for this very 

reason, and being confined in a tank with a white base may be stressful for them. 

Atton (2010) therefore attributed the observed aversion to the demonstrated food to a 

negative association developed by the observer due to stress. However, it is also 

possible that the negative association was formed due to indirect cues of stress emitted 

by demonstrators. This current study follows on from Atton (2010) and aims to clarify 

the mechanism behind the observed aversion to the demonstrated food when 

conditioning occurred on a white base. 

Food-derived amino acids in urine provide a possible medium for transmission of food-

specific cues. The epidermal mucus coating of fish provides another. Both have been 

shown to be used by fish in individual recognition. For example, by manipulating the 

diet of Ictalurus nebulosus (bullhead catfish), Bryant and Atema (1987) were able to 

change the behaviour patterns exhibited toward conspecifics, demonstrating that the 

food-derived amino acids in urine are used in individual recognition. Matsumura (2004, 

2007) showed that epidermal mucus contains phosphatidylcholines which, like the food-

derived amino acids, are also involved in individual recognition and may have an effect 
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upon diet choice (Matsumura 2007). Both of these possible mechanisms require further 

investigation to determine whether either, or both, of them play any role in the social 

transmission of food preferences, or avoidance as seen in this case. 

By changing the base colour of the tank before introducing the observer, I hope to be 

able to distinguish whether the negative association seen previously by Atton (2010) is 

as a result of the observers receiving the food cues simultaneously to being in a stressful 

situation, or as a result of the demonstrators giving indirect cues to the observer of both 

food type and stress cues through the water. If the latter is the case, I should also receive 

some indication as to the mechanism by which these cues are transferred. 

If the first hypothesis is correct; that a negative association is formed due to stress upon 

the observer when simultaneously receiving food cues from a demonstrator, it is likely 

that there would be no preference for either food type, or a positive preference for the 

demonstrated food type if the observers are not experiencing stressful conditions at the 

time of receiving the food cues, regardless of whether or not the demonstrators were 

under stress at the time of emitting them.  

If however, the negative association to the demonstrated food type is formed due to the 

observer receiving indirect stress cues from the demonstrators through the water, a 

preference for the non-demonstrated food type would be observed when the 

demonstrators are under stress at the time of emitting the cues, regardless of whether or 

not the observers were under stress at the time of receiving them. 

4.2 Methods 

4.2.1 Design 

The experimental procedure was split into 4 stages; feeding a demonstrator shoal, 

conditioning the demonstrator shoal, presenting the demonstrator shoal to an observer in 
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the same water in which the demonstrator shoal had been housed in stage 2, and finally 

testing the observer for a food preference (see Figure 4.1). The dependant variable was 

the food preference displayed by the observer in the final test phase, either the 

demonstrated or the non-demonstrated food type. The independent variables were the 

condition under which the demonstrators were housed in stage 2 (stressful or non-

stressful) and the condition in which the demonstrators were presented to the observer 

in stage 3 (stressful or non-stressful but opposite to the condition used in stage 2). 

 

Figure 4.1. A flow diagram describing the different stages of the experimental 

procedure. 

4.2.2 Subjects 

Threespined sticklebacks measuring circa 20mm were collected from the upper estuary 

of the Kinnesburn, a small stream in Fife, Scotland, in January 2010. They were held in 

the laboratory in groups of 15 fish in 30L aquaria, at 8°C under a 12 hour light / dark 

cycle. The fish were fed adlib bloodworm daily. Experiments were carried out between 
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February and May 2010. No individuals were used that were displaying signs of illness, 

nuptial colouration, or gravidity and no individual was used in the experiment more 

than once. All fish were deprived of food for 24 hours prior to testing to ensure 

motivation to feed.  Each trial used 4 demonstrator fish and 1 observer.  

4.2.3 Apparatus 

Stage 1 used glass tanks measuring 30 x 30 cm with a water depth of 20cm and no 

substrate. All vertical sides of the tanks were blacked out using black plastic wrapped 

around the outsides of the tanks to prevent outside disturbance. The tank was rested on a 

black surface. Two different prey types were used. These were frozen blocks of Artemia 

spp. and Tubifex tubifex (tubifex worms) chopped into 1mm pieces and allowed to 

defrost in water. Both foods were novel to both the demonstrators and the observers. 

Artemia naturally occur in hypersaline conditions, while tubifex are found in silty 

sediments in slow flowing or still water. The fish used in this study came from a fast 

flowing freshwater stream with a sand and gravel substrate and are therefore unlikely to 

have encountered these prey types previously. 

The second and third stages used tanks measuring 30 x 30 cm with a water depth of 

10cm. In the centre of each tank in stage 3 was a circular holding compartment 

measuring 5cm in diameter and 15cm in height through which both visual and olfactory 

cues could be transferred. Half of the tanks were placed on a white surface and half 

were placed on a black surface. All vertical sides were shielded from outside 

disturbance with black plastic. 

Stage 4 of the experiment was the test tank, measuring 30 x 30 cm with a water depth of 

10cm. Two petri dishes measuring 10cm in diameter containing the two food types 

(artemia and tubifex) were placed on opposite sides of the tank. There was also a 
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cylindrical holding compartment in the centre of the tank measuring 5cm in diameter 

and 15cm in height through which the focal fish could detect both visual and olfactory 

cues from the two prey types. The test tank had a black base to minimise stress. 

4.2.4 Procedure 

4.2.4.1 Stage 1 

Shoals of four demonstrator fish, size matched to within 2mm in length, were placed 

into the first tank and allowed to settle for 15 min, after which an excess of either 

tubifex or artemia was added to the water, ensuring that all demonstrator fish had the 

opportunity to feed. The demonstrators were allowed to feed for 1h. during which time 

all were observed to feed. In all cases food items remained at the end of this hour 

suggestive of satiation. 13 trials used tubifex as the demonstrated food type and 12 trials 

used artemia. 

4.2.4.2 Stage 2 

The demonstrators were then placed into the second tank with either a black or white 

base and were left for 1h. Care was taken to ensure that no remaining food items were 

transferred with the demonstrators from stage 1 to stage 2. 

4.2.4.3 Stage 3 

Both the demonstrator shoal and the water in which they were housed during stage 2 

were then transferred to the tanks used for stage 3. If the demonstrators had been housed 

on a black base in stage 2, they were transferred to a tank with a white base in stage 3 

and vice versa. The demonstrators had therefore been moved either: (1) from a stressful 

situation to a non-stressful situation or (2) from a non-stressful situation to a stressful 

one. The water in these tanks therefore contained stress cues (i.e.cortisol) plus food cues 

if they had been moved from white to black, or food cues only if they had been moved 
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from black to white. Demonstrator shoals were allowed to settle for 15 minutes, after 

which a focal fish (size matched to within 2mm of the demonstrator shoal) was placed 

in the central holding compartment. All five fish were left for a further hour after which 

the demonstrator shoal was removed.  

4.2.4.4 Stage 4 

15ml of both food types were added separately into the two petri dishes in the test tank 

using a pipette. Care was taken to ensure that no food items moved outside of the petri 

dishes and any food items that floated were removed with a net. The focal fish was then 

placed in the central holding compartment of the test tank and allowed to settle for 10 

minutes. After this time the focal fish was released and allowed to feed from the two 

petri dishes containing the two different food types (artemia and tubifex), one of which 

was previously eaten by the demonstrator shoal. The position of the two foods within 

the test tank was counterbalanced across trials.  

Trials were filmed using as Canon HG20 video camera placed 1.5m in front of the test 

tank. From each trial I recorded the first food type that was selected and the number of 

food items of each food type that were consumed within a 2 minute period directly 

following the first selection. If neither food type was consumed after 20 minutes, the 

trial was abandoned. 3 trials were abandoned in the black to white condition and 7 trials 

were abandoned in the white to black condition. I also recorded the latency with which 

each observer began to feed. 

4.3 Results 

4.3.1 Non-stressful to stressful (black to white) 

After focal fish interacted with demonstrators on a white background in stage 3, where 

the demonstrators had been housed with a black background in stage 2, they displayed 
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no significant preference for either the demonstrated or non-demonstrated food type 

during the test phase. This was observed in the first food item they selected, with 6 

individuals consuming the demonstrated food type first and 7 individuals consuming the 

non-demonstrated food type first (Chi squared: χ
2
 = 0.077, n = 13, P = 0.782) (Figure 

4.2 (left)). There was also no significant preference observed for either food type in the 

total number of food items consumed within the 2 minutes directly following their first 

selection (Wilcoxon Signed Ranks Test: Z 12,1 = -0.268, P = 0.789) (Figure 4.3 (left)). 

  

Figure 4.2: The number of times the demonstrated food and non-demonstrated food 

types were first to be consumed by the observers when the observers were conditioned 

with the demonstrators in tanks with a white base but which had previously been housed 

in tanks with a black base (left) and when the observers were conditioned with the 

demonstrators in tanks with a black base but which had previously been housed in tanks 

with a white base (right). 
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Figure 4.3: A boxplot showing the number of demonstrated and non-demonstrated food 

items consumed within 2 minutes after first selection when conditioned with 

demonstrators on a white base, which had previously been housed on a black base (left) 

and when conditioned with demonstrators on a black base, which had previously been 

housed on a white base (right). 

4.3.2 Stressful to non-stressful (white base to black base) 

Under this condition there were 12 successful trials and 7 abandoned trials. When 

observers were allowed to interact with demonstrators on a black background in stage 3, 

after the demonstrators had previously been housed in a tank with a white background 

in stage 2, observers again  displayed no significant preference for either the 

demonstrated or non-demonstrated food type during the test phase in the first food item 

they selected, with 4 individuals consuming the demonstrated food type first and 8 

individuals consuming the non-demonstrated food type first (Chi squared: χ
2
 = 1.333, n 

= 12, P = 0.248) (Figure 4.2 (right)). However, there was a significant preference 

observed for the non-demonstrated food type in the total number of food items 

consumed within the 2 minutes directly following their first selection (Wilcoxon Signed 

Ranks Test: Z 11,1 = -2.010, P = 0.044) (Figure 4.3 (right)). 

4.3.3 Comparisons between treatments 

There was no significant difference between treatments in the number of times the focal 

fish consumed the demonstrated or non demonstrated food types first (2x2 Chi Squared: 
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χ
2
 = 0.427, df = 1, P = 0.404). However, there was a significant difference between 

treatments in the total number of both the demonstrated and non-demonstrated food 

types consumed (2x2 Chi Squared: χ
2
 = 5.198, df = 1, P = 0.020) with greater 

consumption of the non-demonstrated food by the observers in the ‘white to black’ 

treatment than in the ‘black to white’ treatment. 

There was no significant difference between the two treatments in the latency with 

which the focal fish began feeding during the test phase (Mann Whitney: U = 53, n = 

12,13, P = 0.186) (Figure 4.4). 

 

Figure 4.4: The latency with which the focal fish began feeding under each condition. 

There was also no preference observed for either food type across both conditions, with 

the number of artemia and tubifex food items consumed being exactly equal at 36 each. 

4.4 Discussion 

 

Observer threespined sticklebacks were able to detect and identify prey-specific cues 

from shoals of conspecific demonstrators and use this information, not to enhance their 

selection of a demonstrated food, but to avoid a novel food type when prey-specific 

cues were received from demonstrators previously housed under stressful conditions. 
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Observers that interacted with demonstrators in a tank with a white base in stage 3 and a 

black base in stage 2 showed no preference for either the demonstrated or the non-

demonstrated food type. However, observers that interacted with demonstrators in a 

tank with a black base in stage 3 and a white base in stage 2 showed a significant 

preference for the non-demonstrated food type. Taken together, these findings suggest 

that it is the stress of the demonstrators rather than of the observers that is critical for 

information transmission. Observers appear to form an aversion to food odour cues as a 

result of demonstrators simultaneously emitting cues indicating stress. 

As seen in Figure 4.2, there was no significant preference shown for either food type 

when observers were allowed to interact with demonstrators in a tank with a white base 

in stage 3 when the demonstrators had been conditioned on a black base in stage 2. It 

can therefore be deduced that under these conditions, observers do not develop a 

negative association with the demonstrated food type, implying that they do not form an 

association between their own stress and the food cues received from the demonstrators. 

However, when observers were allowed to interact with demonstrators in a tank with a 

black base in stage 3 when the demonstrators had been conditioned on a white base in 

stage 2, a negative association with the demonstrated food type is formed, with the 

observers showing a significant preference for the non-demonstrated food type when 

looking at the total number of prey items consumed in each trial (Figure 4.3).  

The primary response of teleost fishes to a stressful situation includes the rapid release 

into the circulation of the stress hormones catecholamines and cortisol (Ellis et al. 

2004). Teleost fish are known to excrete cortisol into the water via the gills (Ellis et al. 

2004). Consequently, it is possible that observers detect the cortisol together with food-

derived amino acids excreted via the urine or epidermal mucus, giving rise to 

associative learning.  
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Individuals of a wide variety of species across taxa can be conditioned to avoid a certain 

food or property of a food by making the animal ill after consumption. This type of 

conditioning is often very effective with a marked aversion often being observed after 

just a single trial (Pearce 1997).  It is also possible to condition animals to avoid certain 

foods through observations of conspecifics. The experiments of Fryday and Greig-

Smith (1994) and Johnston et al. (1998), discussed in the introduction, show that birds 

are able to learn a negative association to a particular object or food characteristic by 

observing the disgust reactions of conspecifics to a bitter taste. A negative association 

can therefore be formed without the observer having to experience the negative effect 

themselves. It is highly plausible that negative associations to certain food types can 

also be formed in this manner in fish. If the stress cues of others take on negative 

secondary reinforcing properties as a result of past experience then they could act to 

inhibit diet consumption when associated with diet cues. 

One hypothesis for the results in this experiment is that it is stress cues from the 

demonstrators alongside the prey-specific cues being excreted in the urine or epidermal 

mucus of the demonstrators that allow observers to develop a negative association to the 

demonstrated food. If it were the observers being stressed at the time of receiving the 

prey-specific cues from the demonstrators, it is likely that I would have seen a 

preference for the non-demonstrated food type in observers that interacted with 

demonstrators on a white base in stage 3. 

I can also hypothesise that the mechanism behind the formation of the negative 

association is one of chemical cues from the demonstrator shoal, rather than behavioural 

cues. If the negative association in the observers were formed from behavioural stress 

cues received from the demonstrator, it is likely that I would have seen a preference for 

the non-demonstrated food when the observers interacted with demonstrators on a white 
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base in stage 3. However, a preference for the non-demonstrated food was developed 

when observers interacted with demonstrators on a black base, during which time the 

demonstrators (and observer) were not under stressful conditions and therefore should 

not have been displaying behavioural cues to the contrary. However, the water within 

the tank was taken from the hour in which the demonstrators were conditioned on a 

white base (in stage 2) and therefore under stress. Cortisol from this period of time, 

alongside the prey-specific cues were most likely still able to be detected in the water by 

the observers and as such, a negative association for the demonstrated food was formed. 

However, these conclusions can only be drawn under the assumption that both the 

cortisol and the food cues need to be emitted simultaneously to elicit an effect. Further 

work needs to be undertaken to investigate this hypothesis and clarify the mechanism 

behind the results seen (i.e. by quantifying cortisol levels).  

4.5 Summary 

 

In sum, while there is extensive evidence amongst animals for the social transmission of 

information through which the observer and demonstrator come to exhibit the same 

behaviour, it is comparatively rare for animals to learn from conspecifics what not to do, 

leading observing animals to perform different, or opposite, behaviour from their 

demonstrators. However, in circumstances where demonstrator animals exhibit signs of 

stress, avoiding performance of their behaviour may be adaptive. Here I show that 

sticklebacks avoid the diet of stressed conspecifics. My findings thereby establish a 

novel mechanism for the avoidance of maladaptive information transmission in fishes. 

It is plausible that this mechanism may be widespread in teleost fishes. 

 



74 
 

The following 3 chapters examine the use of social networks in the study social 

learning, starting with Chapter 5, which introduces the concept of social networks and 

gives an overview of the merits of using social network analysis under a variety of 

contexts. 
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Chapter 5. An Introduction to Animal Social Networks 

 

The following two data chapters, Chapters 6 and 7, examine how social learning may be 

influenced by the social network. The social network is an important feature of a 

population for a number of reasons and may influence the spread of novel behaviours. 

This chapter introduces the reader to the concept of social networks and the many uses 

of social network analysis.   

5.1 What is a social network? 

 

A network can be defined as a system of interacting components. The term is applied 

across all walks of life from anything from transport networks (Sen et al. 2003) to 

communication systems such as the internet (Tadic 2001). The study of network theory 

has been utilised widely by biologists and networks can be applied at a variety of 

biological levels (Krause et al. 2007). For instance, Barabasi and Oltavi (2004) were 

able to present insight into the functional organisation of the cell using gene and protein 

interaction networks; Laughlin and Sejnowski (2003) used neural networks to show 

how complex processes are controlled by interconnected cells; and Dunne et al. (2002) 

assessed how communities may be affected by invasive species by using the network of 

trophic interactions between organisms. The study of network theory is also used widely 

outside of biology (Newman 2010). 

 

Considering the use of networks in the social aspects of biology, the social network 

structure of a group or population quantifies the pattern of interactions and relationships 

among its individuals (Hinde 1976; Whitehead 1997; Sih et al. 2009). A group’s social 

network structure, and the specific network position of any individual within it, can 

have significant effects on social dynamics, individual fitness, and group function and 
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in turn can affect the evolution of social behaviour (Sih et al. 2009). The social network 

structure of human populations has been studied extensively by social scientists (Scott 

2000), however, the study of social network structure in non-human animals, by 

comparison, has only recently received attention (Wey et al. 2007; Croft et al. 2008; Sih 

et al. 2009).  

 

Studies on group-joining preferences have highlighted that individuals within a group or 

population commonly assort by phenotypic characteristics, which in turn is highly likely 

to generate a non-random network structure. Such phenotypic factors include sex 

(Reader & Laland 2000), familiarity (Swaney et al., 2001), size (Hoare et al., 2000), and 

hunger level (Krause, 1993). Indeed, there are several empirical studies that suggest that 

both captive and wild animal populations are characterised by a non-random social 

network structure (Croft et al., 2005). This has been seen in a variety of taxa, including 

fish (guppies) (Griffiths & Magurran 1997a; Croft et al. 2004), cetaceans (Tursiops 

truncatus (bottlenose dolphins) (Lusseau 2003), and birds (starlings) (Boogert et al., 

2008). 

A network can be visualised as a graph made up of edges and nodes, with nodes 

representing each individual within the network and edges representing any interaction 

(or association) between two nodes (Croft et al. 2004). Network theory provides a 

number of useful metrics for quantifying the social structure of a population. These 

include cluster analysis, path length analysis, and degree. Cluster analysis gives a 

measure of the mean clustering coefficient and can be classed as a local measure of 

cliqueishness (Croft et al., 2004). The clustering coefficient of a node (node A) is the 

fraction of pairs of individuals connected to node A that are also connected to each 

other. The average clustering coefficient of all nodes gives the global clustering 
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coefficient. A high global clustering coefficient is indicative of a heterogeneous 

network, rather than one arrived at by chance. There is evidence to suggest that a high 

clustering coefficient will decrease the spread of epidemics, as any infection would 

likely be contained among a small group of highly inter-connected individuals 

(Newman 2003). However, a high clustering coefficient may also inhibit the 

transmission of information through a population, depending on how tightly each 

cluster is maintained. 

 

The path length (or geodesic) is the smallest number of connections (edges) by which 

one node can be reached from another (Croft et al., 2004). Taking the mean geodesic 

gives an indication of how closely interconnected the network is as a whole. This can 

also have an influence upon the spread of both disease and information through a 

population, with a low mean geodesic indicating a highly interconnected network and in 

turn the possibility for rapid transmission (Croft et al., 2004). 

 

The degree of each node is calculated simply by taking the number of edges joined to it 

(Croft et al., 2004). If an individual has a high degree, it is probable that an innovation 

from that individual will be more likely to spread than if an innovator has a low degree 

(Croft et al., 2004). 

5.2 Why study social networks? 

 

The study of animal social networks has the potential to provide of us with a wealth of 

knowledge concerning the behaviour of animals under a wide variety of contexts that 

was previously inaccessible by other means. 
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5.2.1 Cooperation  

There are a number of areas under the umbrella topic of animal behaviour where the 

study of social networks could provide valuable insight. One such area is the study of 

cooperation. Croft et al. (2006) conducted a study on the social network of populations 

of free-ranging Trinidadian guppies, in which repeated persistent interactions were 

recorded between pairs of females. Interestingly these repeated interactions were not 

found between pairs of males or between mixed sex pairs. On exposure to a predator, 

pairs of females that persistently interacted within the network were regularly observed 

together during bouts of predator inspection, whereby small groups will approach and 

assess a possible predator. Pairs of fish were then isolated in a further experiment during 

which it was recorded that pairs which had previously experienced frequent interactions 

with one another as part of the network were more cooperative in their predator 

inspection behaviour. This was apparent by the pairs switching the more dangerous lead 

position more often than pairs which had not experienced frequent interactions with one 

another. The social network therefore has the potential to be used as a good predictor of 

cooperative behaviour. 

5.2.2 Disease transmission  

Networks have frequently been used to investigate how disease transmission may be 

influenced by social interactions between individuals and populations (e.g. Watts and 

Strogatz 1998; Potterat et al. 2002; Cross et al. 2004; Corner et al. 2003). However, the 

majority of studies which use a network approach have focused on human populations, 

with very few studies having been conducted on animal populations to date (Krause et 

al. 2007). The social network of a population is an important consideration when 

looking at the spread of disease. It may be possible to predict the pathway of 

transmission and the speed at which transmission may occur. In some cases, it may also 
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be possible to identify individuals that have a large number of connections within the 

social network and could therefore be likely to increase the spread of disease 

significantly (Corner et al. 2003; Christley et al. 2005). 

 

Integrating data from the social networks of animal populations with disease 

transmission dynamics has great potential for understanding and perhaps limiting the 

spread of disease. This is of great importance when considering an endangered species 

or the spread of disease through livestock. Using pair-wise association data of Syncerus 

caffer (African buffaloes) collected over two years, Cross et al. (2004) studied the 

potential for the spread of bovine tuberculosis. They integrated the empirical 

behavioural data with simulation models of disease spread, using the time spent in a 

herd with infected conspecifics as a predictor for the probability of becoming infected. 

It was discovered that non-random association patterns are an important factor in the 

spread of disease, particularly if the disease requires only a relatively short association 

period for transmission. Another study by Corner et al. (2003) used a networks 

approach to study the spread of bovine tuberculosis through a population of Trichosurus 

vulpecula (brushtail possums), an infector of livestock in New Zealand. In this case, 

they were able to use the behaviour of den sharing as a predictor as to the transmission 

of disease. 

 

Similar to disease transmission, social networks may also be used to assess the 

transmission of parasites within and/or between populations. Godfrey et al. (2009) used 

the behaviour of sharing rock crevices to map the transmission of parasites between 

individual Egernia stokesii (gidgee skinks). Two lizards were classed as being 
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connected if they used the same crevice within an estimated transmission time for 

parasite infection.  

 

As well as using the social network to predict the spread of a disease through 

populations, it may also be used on an individual level basis by predicting the likelihood 

of a particular individual to become infected (e.g. Christley et al. 2005). The probability 

of an individual becoming infected is likely to be determined by a variety of factors 

related to the social network, such as the number of network connections it has, the 

proportion of those individuals it is connected to that are infected, and the frequency of 

contact with those infected (Christley et al. 2005). There is huge potential to use such a 

method in the conservation of endangered species through identifying individuals with a 

high risk factor and ensuring measures are taken to minimise the risk of infection. 

5.2.3 Social structure and identifying the role of individuals   

Studying the social network of a population can also provide valuable insight into the 

importance of different social interactions and how the characteristics of individuals can 

affect social structure. For example, Flack et al. (2006) used knockout experiments on a 

captive population of Macaca nemestrina (pigtailed macaques) and were able to 

determine key individuals in the network with regards to policing behaviour. In the 

absence of these few individuals, the previously observed social network was 

destabilised, with group members forming smaller, less diverse, and less inter-

connected networks.  

Lusseau and Newman (2004), studying association data of bottlenose dolphins in New 

Zealand, identified communities and smaller sub-communities within the dolphin 

population, with sub-communities being more likely to contain members that are the 
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same sex and of a similar age. They also identified some key individuals, crucial to the 

maintenance of social cohesion of the population as a whole, by providing links 

between sub-communities.  

 

Ramos-Fernández et al. (2009) carried out a long-term study on the association patterns 

of a group of wild Ateles geoffroyi (spider monkeys). Using network derived analyses to 

study the relationships among individuals over a succession of 8 years, they discovered 

that adult females formed tightly linked clusters that were stable over time. However, 

any immigrant adult females showed little association with any adult in the group 

(Ramos-Fernández et al. 2009). They therefore concluded that by virtue of their higher 

and more stable association, it is the females of a population that are central to the social 

structure of spider monkeys (Ramos-Fernández et al. 2009). 

 

Henzi et al. (2009) conducted a study on two wild populations of Papio hamadryas 

ursinus (chacma baboons) over three consecutive seasons in South Africa. Social 

network analysis allowed them to test a previous assumption with regards to primate 

societies; that steady relationships between females will always be detectable and if 

such relationships are unable to be sustained, it is inevitable that the group will split into 

smaller daughter groups (Dunbar 1992). In contrast to this assumption, Henzi et al. 

(2009) discovered that when food is scarce, strong relationships were formed between 

females and high, persistent levels of association were seen between dyads. However, 

when food was readily available, the strong bonds identified previously by social 

network analysis in the food-scarce season were not maintained (Henzi et al. 2009). 
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Fischhoff et al. (2009) conducted a 4-year study on Equus burchelli (plains zebra) 

during which they looked at association levels among adult males and whether 

reproductive status affected bond formation between individuals and the social network 

of a population as a whole. An adult male can be classed as one of two categories; a 

bachelor with limited access to mates, or a stallion with a harem of females. Both are 

regularly found in the same herds, as harems and bachelors aggregate to form larger 

herds (Fischhoff et al. 2009). It was concluded that bachelors are more likely to be 

found in herds that contained a significantly higher proportion of adults than the herds 

in which stallions were more likely to be found and that associations formed between 

bachelors are much more stable than those formed between stallions, with bachelors 

forming cohesive sub-groups within a herd. 

 

Vonhof et al. (2004) discovered a novel social structure among bats after gathering 

association data on Thyroptera tricolor, (Spix’s disc-winged bats) in northeastern Costa 

Rica using mark-recapture data. Bats were captured from their roosts in young, rolled 

leaves of Heliconia or Calathea plants, each roost containing anywhere from 4 to 14 

individuals of mixed sex. 85% of dyads maintained high levels of association for up to 

100 days and 40% of dyads maintained long-term associations of a minimum of 420 

days. Despite home ranges overlapping in space to a relatively high extent, members of 

differing social groups rarely associated with one another. 

 

Using network analysis, Wolf et al. (2007) discovered a previously unknown 

complexity to the social structure of a colony of Zalophus wollebaeki (Galapagos sea 

lions). They studied the effects of age class, fine-scale site fidelity, and male territory 

distribution on the social organisation of a single population during the breeding season. 
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Network analyses revealed that the sea lion social system was comprised of three levels 

of complexity. All individuals were interconnected at the population level. This level 

could then be broken down into communities, which could then be broken down further 

into separate cliques. Wolf et al. (2007) were able to identify the factors influencing 

social structure at the population and community level to be sex and age class, and site 

fidelity, respectively. However, they were unable to account for the social structure seen 

within each of the cliques and therefore assumed these lower-level association 

preferences to be a result of genetic relatedness. Interestingly, male territories were not 

found to affect social structure on any level, but rather were superimposed on the 

structure formed by the females and their young (Wolf et al. 2007). 

 

5.3 Temporal networks 

By their very nature, animal social networks are dynamic in time and space, with 

individuals interacting or associating with one another at different times of day or in 

different seasons, and the fission and fusion of populations into larger and smaller 

groups. Time-ordered networks represent data observed for a set of interactions that 

occur at certain times, thereby retaining complete information on the ordering, duration 

and timing of events. While social network analysis has provided a useful tool for 

understanding the structure of social networks, it is less useful for understanding the 

temporal dynamics of these networks (Blonder et al. 2012). It is difficult to sufficiently 

study the flow of information between individuals and through populations using 

standard network analysis tools without making several key assumptions about the data. 

Such assumptions could include edges representing continual interactions; network 

structure being accurately and comprehensively recorded; interactions of interest being 
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sufficiently common and stable; and that the topology of the network is fixed (Blonder 

et al. 2012). 

One method of overcoming the problems associated with the assumptions of a static 

network is to use a method of data analysis that takes network dynamics, such as the 

time and order of events into account. There are many methods of analysis available 

(see Blonder et al. 2012 for a detailed review), discussion of which is beyond the scope 

of this thesis. One such method is Network-Based Diffusion Analysis (discussed below 

and in greater depth in Chapter 6). 

5.4 Network-based diffusion analysis 

 

Network based diffusion analysis (NBDA) is a statistical technique pioneered by Franz 

and Nunn (2009) which allows non-random social transmission and other social effects 

on behaviour to be detected and quantified.  Inference of social learning using NBDA 

results from comparing models that include social learning to models with only asocial 

learning to see if ’social-learning’ models provide a better fit to the observed data than  

‘asocial-learning’ models. When social learning is included in an NBDA model, the rate 

of social transmission between “informed” and “naïve” individuals is assumed to be 

proportional to the strength of the network connection between them.    

 

As NBDA was only developed fairly recently, there are few published examples in 

which it has been used (Hoppitt and Laland, 2013). One application of NBDA has been 

published by Hoppitt et al. (2010a). The authors applied NBDA to data from an 

experimental study by Boogert et al. (2008) on the diffusion of the solution to a 

foraging task in starlings. In Boogert et al’s original study, a randomisation technique 

failed to detect an association between the diffusion of the task solution and association. 
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However, upon the application of NBDA to the data, Hoppitt et al (2010a) found 

sufficient evidence for social transmission.  

 

Webster et al. (2013) compared the effect of open and structured habitat structure on the 

transmission of foraging information through shoals of threespined sticklebacks. With 

the use of NBDA, the authors were able to establish that the location of foraging 

patches was not greatly affected by social transmission in an open habitat, however, 

there was strong evidence that social transmission occurred in a structured habitat and 

moreover that the transmission of information regarding the location of foraging patches 

followed the network structure of the shoals (Webster et al. 2013). 

 

Another application of NBDA can be found in a study on lemurs by Kendal et al. 

(2010). However, in this case the authors failed to find evidence of social learning. 

NBDA has also been used in Chapters 6 and 7 of this thesis. 

5.4 Summary 

 

The study of network theory has been utilised widely by biologists with networks being 

present at a variety of biological levels. The social network structure of a group or 

population quantifies the pattern of interactions and relationships among its individuals. 

A variety of different phenotypic factors can generate non-random network structure 

within animal groups and the use of networks theory provides a number of useful 

metrics for quantifying the social structure of a population. 

 

The study of animal social networks has the potential to provide of us with a wealth of 

knowledge concerning the behaviour of animals under a wide variety of contexts that 
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was previously inaccessible by other means including cooperation, disease transmission, 

social structure, and the role of individuals. NBDA can also be used to reveal any 

patterns of transmission of information through populations. 

 

Chapter 6 is the first of two data chapters which use NBDA to study the transmission of 

information through populations of threespined sticklebacks under a foraging context.  
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Chapter 6. Information Flow Through Threespined Stickleback Networks Without 

Social Transmission 

 

6.1 Introduction 

 

Innovation can be said to occur when a new behaviour pattern is invented or when an 

existing behaviour pattern is modified to suit a novel context (Reader and Laland 2003). 

Behavioural innovation is an important facet of phenotypic plasticity enabling 

organisms to exploit new food sources, to improve their efficiency of utilising a familiar 

resource or to respond to other changes in their environment (Reader and Laland 2003).  

Social learning can lead to the transmission of behavioural innovations, potentially 

allowing innovations to spread rapidly through populations (Hoppitt et al. 2010a). There 

are a large number of studies that have reported innovations and novel behaviour 

patterns spreading through populations (Laland & Galef, 2009; Lefebvre 1995a, 1995b; 

Reader, 2004; Zentall & Galef, 1988). The most famous examples being Japanese 

macaques washing sweet potatoes (Kawai 1965) and British titmice opening milk 

bottles (Fisher and Hinde 1949; Hinde and Fisher 1951).  

 

Despite extensive recent research into animal social learning (Heyes 1994; Heyes and 

Galef 1996; Box and Gibson 1999; Rendell et al. 2011), the social factors influencing 

learning of innovations by individuals in freely interacting groups remain poorly 

understood (Coussi-Korbel and Fragaszy 1995; Reader and Laland 2000; Boogert et al. 

2008). It is commonly supposed that social learning, where it occurs, results in social 

transmission, i.e. where performance of a behaviour by one individual makes it more 

likely that other individuals will add the behaviour to their repertoires. However, in 

most cases in which the spread of a behavioural innovation has been reported in natural 

or captive populations, the possibility cannot be excluded that either asocial learning 
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caused the observed change in behaviour, or that the learned behaviour of one 

individual facilitates acquisition of behaviour by others in more subtle ways than are 

normally considered (Galef 1992; Reader 2004; Hoppitt et al. 2010b).  

Furthermore, many previous theoretical and empirical studies have tended to assume 

that all members of a population are equally likely to transmit or receive information 

(Reader and Laland 2000). Although animals might pay equal attention to the actions of 

each group member, Coussi-Korbel & Fragaszy (1995) suggest that this is unlikely and 

that, to the contrary, animals within a group are more likely to learn from some 

individuals than from others.  Indeed, this notion of ‘directed social learning’ suggests 

that animals might either copy strategically, for instance, by attending to the behaviour 

of older or more successful  individuals (Laland 2004) or might copy their nearest 

neighbours (e.g. Ballerini et al. 2008). The social network therefore has the potential to 

greatly influence the transmission of innovations through a population. A higher level of 

association between some individuals than others is likely to give rise to a higher 

probability of social learning taking place.  

Network-based diffusion analysis (NBDA; Franz & Nunn 2009) is a recently developed 

method of data analysis of potential use in the field of animal social learning that allows 

non-random social transmission, as well as other social effects on behaviour to be 

detected and quantified. Here we apply NBDA to captive groups of threespined 

sticklebacks presented with either one or two foraging tasks, to provide evidence of any 

non-random patterns of social influence on task discovery and solution within shoals.  

In NBDA, the rate that individuals move from a naïve to an informed state (having 

solved a task) is modelled as a function of the total of their network connections to 

informed individuals. Thus, NBDA implicitly assumes that social learning will be 
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manifest as social transmission. However, in a foraging task social influences other than 

social transmission might operate independently to decrease either the latency with 

which naive individuals discover the task or the latency with which they subsequently 

solve it. Furthermore, a fully informed individual who has solved a task might exert 

more influence on the naive than an individual who has merely discovered that task. To 

investigate such possibilities, we extend the NBDA model to multiple states, analysing 

the process of task solution as comprising two identifiable stages, discovery and 

solution, thus allowing specific types of social influences on each to be both detected 

and quantified. 

6.2 Methods 

 

6.2.1 Subjects and apparatus 

Subjects were 160 threespined sticklebacks maintained in 16 groups of 10, with 8 

groups used in each experiment. We used no individuals displaying signs of nuptial 

colouration or gravidity, as reproductive state has been shown to affect an individual’s 

reliance on social learning in sticklebacks (Webster and Laland 2011). 

To encourage size-assortative shoaling (Krause 1993b), and thereby to promote 

heterogeneity of social network structures, we deliberately generated variation in body 

size within groups. Individuals ranged from 38 to 71mm in length with an overall mean 

within-group range of 14.8mm. 

We captured subjects using mesh cage traps from the Kinnessburn, St Andrews, U.K. 

(56°20’05”N; 2°47’14”W) between June and September, 2010 and held them in groups 

of 40 in 60 L tanks at a temperature of 8°C, and fed them daily with frozen chironomid 

(Chironomus sp.) larvae for a minimum of 2 weeks before testing (July to October 

2010).  
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We tested groups of 10 individually marked fish (Webster and Laland 2009) in a 

rectangular black test tank measuring 60x80cm. To ensure that vertical distance within 

the water column between individuals did not confound estimates of inter-individual 

distances measured from above, we filled the test tank with filtered tap water to a depth 

of only 5 cm. The test tank had a gravel substrate 1cm in depth, and 10 black, pyramid-

shaped obstacles (measuring 10cm diam. at the base and 6cm high) placed at regular 

intervals throughout the tank (see Figure 6.1) allowing only associating individuals to 

see one another whilst allowing the experimenter to view all fish. We filmed each test 

trial using a Canon HG20 video camera held 1.2 m above the test tank.  

 

We conducted both one-task and two-task experiments, involving identical foraging 

tasks, comprised of a transparent cylindrical tube measuring 24 cm in length and 7 cm 

in height placed horizontally on the gravel substrate at each end of the test tank. We 

inserted 15 ml of defrosted chironomid larvae suspended in water into one end of the 

tubes, which had 15 small holes (2 mm diam.) allowing olfactory cues from larvae to 

escape. The other end of each tube was open and its circumference clearly marked with 

black electrical tape. Consequently, although fish could see and smell food at both ends 

of each tube, they could gain access to food only at one end (see Figure 6.1). 
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Figure 6.1: A plan view of the experimental tank after the addition of the task in the 

one-task experiment with an up-scaled diagram of the novel foraging task.  

 

We predicted that diffusion of information regarding both the location of food and the 

solution to the tasks would be influenced by the social network, with individuals that 

had a high level of association with one another being more likely to discover and solve 

the tasks in succession and with more similar latencies than individuals that had a low 

level of association. 

6.2.2 Procedure 

6.2.2.1 Determining the network structure 

To describe social networks, for each experiment, we individually placed each of eight 

groups of 10 fish into the test tank and allowed each group to settle and explore the tank 

for a period of 15 min before filming for 2 hr. We subsequently took point samples from 

the film at 6-min intervals, giving a total of 20 observations for each group.  

 

We defined individuals as associating if they were within four body lengths (defined as 

the mean body length of a group’s members) of one another from head to head, a 

distance generally accepted as indicative of shoaling in fishes (Pitcher and Parrish 

1993). We then created an association matrix based upon the proportion of point 
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samples that each fish was observed to be within four body lengths of each of the other 

fish in its group. 

 

To test for within-group association networks, we calculated the sum of the squared 

difference in association strength from the mean association strength for the group (the 

‘test statistic’). This value would be larger than a null distribution if individuals were 

associating non-randomly. To generate the null distribution, we randomised the identity 

of each fish across observations and recalculated both the association network and sum 

of squared differences for the randomized group. To calculate a p value, we determined 

the proportion of the null distribution that was greater than or equal to the observed test 

statistic. 

6.2.2.2 Testing for social learning 

At the end of the 2-hr filming of a group, we introduced the foraging tasks and filmed 

the group for a further 45 min, after which the trial ended and we removed all fish from 

the experiment. We recorded both the latency with which each individual first 

discovered each task (defined as occurring when an individual was seen striking at food 

through the transparent tube) and the latency with which each individual first solved 

each task (defined as consuming food within the tube). We scored only the first 20 min 

of video footage after the first fish in each group solved each task at which time food 

items were still visible inside the tube in all trials. 

 

In addition to recording the latency for discovery and solution of the tasks, we also 

recorded the latency with which each fish entered an arbitrary area (measuring 20 cm x 

10 cm) within the tank. This control location contained no food and no distinctive 

topographical features. In our analysis, we compared inter-individual latencies to 
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“discover” the control location with similar latencies to discover the tasks.  This 

comparison allowed us to distinguish between effects of affiliation and effects of 

exposure to individuals in the vicinity of the tasks.   

6.2.2.3 Network Based Diffusion Analysis 

We used Network Based Diffusion Analysis (NBDA) (Franz and Nunn 2009; Hoppitt et 

al. 2010a) to determine whether the sequence with which subjects discovered and or 

solved the tasks was correlated with the pattern of association observed between 

individuals in a group (i.e. the social network).  

We used the order of acquisition diffusion analysis (OADA) variant of NBDA (Hoppitt 

et al. 2010a), which is sensitive only to the order in which individuals acquire a trait, not 

to latencies of acquisition (see Appendix 1 for justification). We analyzed order of 

acquisition across all groups, treating the data from all eight groups as a single diffusion 

network, with zero network connections between individuals in different groups. This 

treatment of the data renders the OADA sensitive to between-group differences.  If 

consecutive discoverers/solvers tend to be from the same group, this is consistent with 

the hypothesis that they are learning from each other.  

We also modified the OADA model to allow for multiple states (see Appendix 1 for 

details). Existing NBDA approaches assume that individuals move directly from a 

‘Naïve’ to ‘Informed’ state when they first solve a task (Hoppitt and Laland 2011). Here 

we wished to tease apart social effects influencing the rate at which individuals 

discovered and solved the task (c.f. Boogert et al. 2008). We assumed that at any given 

time an individual could be in one of three states: ‘Naïve’ (has not discovered the task), 

‘Discovered’ (has discovered the task), and assumed further that Discovered individuals 

could be either a ‘Non-solver’ (has not solved the task) or ‘Solver’ (has solved the task). 



94 
 

Each task was treated separately in the two-task experiment, for example an individual 

could be classed as a ‘Solver’ for the left hand task, however, could still be ‘Naïve’ for 

the right hand task. 

We fitted separate OADA models for: (i) the rate at which naïve individuals discovered 

the task, and (ii) the rate at which ‘discovered’ individuals solved the task (see 

Appendix 1). We allowed for the fact that both rate of discovery and rate of solving 

might be affected by network connections to individuals that: (i) had discovered the 

task; or (ii) had solved the task.   

We also included body length as an individual-level variable (entered as a difference 

from group mean body length) and treated ‘group’ as a factor, to allow for the 

possibility that groups might differ in their rates of asocial discovery or solving. We 

considered social learning and group differences in asocial rates of learning as 

alternative explanations for differences between groups and consequently did not 

include both variables in the same model although we considered models including all 

other possible combinations of variables.  

Instead of using a model-selection procedure to choose a best model, we used a model 

averaging approach, using Akaike’s Information Criterion, corrected for sample size 

(AICc) (Burnham and Anderson 2002). Inferences based on model averaging take into 

account uncertainty as to which model is best. AICc estimates the Kullback-Leibler (K-

L) information for a model (i.e. the extent to which the predicted distribution for the 

dependent variable approximates its true distribution). The AICc allows us to calculate 

an Akaike weight for each model that gives the probability that the model is the actual 

best K-L model (that with the lowest K-L information) out of those considered, 

allowing for sampling variation. By summing Akaike weights for all models that 
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include a specific variable, we obtain the probability that a variable is in the best K-L 

model, thus quantifying support the data give for an effect of a variable (Burnham and 

Anderson 2002). 

This approach is preferable to calculating a p value to quantify the strength of evidence 

for each effect, because: (i) the p value depends on which model is chosen and 

consequently does not account for model uncertainty, and (ii) a large p value tells us 

little about the strength of evidence against an effect (i.e. whilst statistical power can be 

calculated, the power has to be for specified, usually arbitrary, effect sizes (Johnston 

1999)). Therefore, for each variable considered, we give its total Akaike weight (as a %) 

and model averaged estimate (Burnham and Anderson 2002). We also provide 

unconditional 95% confidence intervals using Burnham and Anderson’s (2002) method 

for adjusting profile likelihood confidence intervals for model selection uncertainty. 

6.2.2.4 Comparison of network-specific and homogeneous effects 

Our OADA analysis is sensitive to between-group differences in discovery and solving 

times. Consequently, evidence of an effect of network connections to other ‘discovered’ 

and/or ‘solved’ individuals might reflect an effect that operates equally among all 

individuals in each group, rather than an effect that follows the social network. To tease 

apart network-specific and homogeneous (i.e. non-network-specific) effects, we fitted 

alternative versions of models for rate of discovery and for solving. To reduce the set of 

models to be fitted, we constrained all models to include effects for which there was 

more support for than there was against (>50%). To assess whether each social effect 

operated homogeneously within groups (i.e. independent of patterns of association), we 

replaced the social network with a homogeneous network (connection of strength 1 for 

individuals in the same group, 0 for those in a different group) for each effect. We also 
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allowed for the possibility of network-specific and homogeneous components to each 

effect (see Appendix 1 for details).  

6.2.2.5 Social transmission versus an untransmitted social effect 

NBDA was designed such that evidence for s > 0 could be used to infer social 

transmission of a trait. However, an s > 0 need not indicate social transmission of 

discovery of a food patch. Closely associated ‘undiscovered’ individuals might discover 

the food source at a similar time simply because they tend to move about together, and 

movement in a group is distinct from social transmission.  In social transmission, one 

individual discovering a food patch causes associated individuals to discover the food 

patch sooner than they otherwise would. In contrast, we refer to the simultaneous 

discovery of a food patch by naive individuals moving in a group as an “untransmitted” 

social effect. The key distinction here is that, in the case of social transmission, 

knowledgeable individuals pass on some of their knowledge to others, whereas with an 

untransmitted social effect the individuals that facilitate learning in others are 

uniformed. Perhaps slightly confusingly, such untransmitted social effects often meet 

accepted definitions of social learning (Heyes 1994), which encompass any social 

process that facilitates learning in others. Note that simple movement in a group can 

account only for an apparent social transmission effect on the rate of discovery, not on 

the rate of solving. 

To separate untransmitted and transmitted social effects, we reasoned that untransmitted 

social effects would be seen whenever individuals first entered any arbitrary area within 

the test arena. As mentioned in the Methods, we identified an arbitrary control patch 

that contained no food in the test arena and recorded the time at which each individual 

in each group first entered the control patch. We then treated these data as an additional 
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set of diffusions, and estimated the s parameter for both control and real patches, i.e. sR  

and sC respectively. We then estimated the strength of social transmission as the 

difference in s parameters between real and control patches ( sR - sC ). We included only 

body length as an additional covariate in this analysis since body length was strongly 

supported by the Akaike weights (see Table 1a). 

6.3 Results 

6.3.1 Two task experiment 

Individuals in six of the eight groups were found to be associating with others 

significantly differently from chance expectations (P = 0.001 to 0.047), whilst the other 

two groups (P = 0.073 and 0.196 respectively), had less heterogeneous networks. 

6.3.1.1 First discovery 

There were no trials in which all individuals within a group discovered both tasks, with 

the number of discoverers of each option ranging from 3 to 8. A minimum of seven 

individuals discovered one or the other of the tasks with 112 first discoveries across 

both individuals and tasks. Diffusion curves for discovery time (Figure 6.2c) generally 

reveal a rapid increase in the number of individuals discovering one or both tasks after 

initial discovery by one individual.  
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Figure 6.2: The diffusion curves for the times of (a) first discovery in the one-option 

task, (b) first solving in the one-option task, (c) first discovery in the two-option task, 

and (d) first solving in the two-option task. The two-option diffusion curves show times 

for both the left- and right-hand tasks. Each colour represents a different group. 

 

Both estimates from the NBDA and support for each variable are shown in Table 6.1a. 

There was strong evidence (total Akaike weight = 97.8%) that being well connected to 

others who had already discovered a task increased the probability that a naïve 

individual would be the next to discover that task, providing clear evidence of social 

learning. The magnitude of this effect was estimated to be a linear increase of 1.5 times 

(95% CI= [0.32, 4.4]) the average asocial rate of discovery for every unit of network 

strength. However, there was no evidence for social transmission of the patch location, 

with the contrast between real and control food patches ( - ) estimated at -2.48 

(95% CI: [-11.0,1.4]), a result in the opposite direction to that expected if social 

transmission were occurring. The present finding that effects of group membership at 

sR sC
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real patches were not greater than those at control patches suggests that the social effect 

on discovery may be a result of associated individuals encountering the task at 

approximately the same time because of their influence on each other’s movements. 

There was little evidence that being well-connected to solvers of a task facilitated 

discovery of that task, and strong evidence against an effect of connectedness to 

discoverers generalising across tasks, implying that discovery was a location-specific 

effect.  

Surprisingly, there was some support for the hypothesis that individuals were more 

likely to discover a task next if they were well connected to individuals who had solved 

the other task than if they were not so connected. This effect was estimated to be similar 

in magnitude to the task-specific effect of discovers (1.4, 95% CI= [0.20,6.5]). There is 

also support for an effect of body length, with larger individuals being more likely than 

smaller individuals to discover a task first, as well as evidence that individuals that had 

discovered one task were less likely to discover the other (see Table 1a for estimated 

effects and confidence intervals). 

6.3.1.2 First solve 

In all 8 trials, each task was solved by at least one individual within the allotted time 

with 6 individuals solving the task in 3 of the groups and a total of 39 first solves across 

all individuals and tasks. Again, discoverers did not move food items outside of the 

tube. 

As confirmed by the NBDA analysis, diffusion curves for the solving times of the 

foraging tasks (Figure 6.2d) show individuals solving both tasks at fairly regular 

intervals rather than in collective bursts, suggesting that solvers were not influenced by 

other solvers. 
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Both estimates from the NBDA and support for each variable are shown in Table 6.1b. 

Probably as a result of the low number of total solvers (39 of 80 subjects), there is no 

strong support for any one effect. However, total support for models in which at least 

one social effect is operating is high (93.3%), and there is little support for the 

alternative hypothesis of underlying group differences in rate of discovery of the two 

tasks. A likely explanation for the pattern of data is that individuals that had already 

discovered one task and were closely connected to other discoverers of that task were 

more likely to solve that task than other individuals (support= 77.9%), with the effect 

estimated at 3.9 (95% CI=[0.334, 590]). There is also some evidence for an effect of 

body size on solving, with smaller individuals who had already discovered a task 

tending to solve it sooner than larger discoverers. 

6.3.1.3 Comparison of network-specific and homogeneous effects 

Support for models that included social effects on learning, either specific to the social 

network and/or non-network-based group effects, is shown in Table 6.2. There is a 

fairly clear indication that, if there is a social effect on the rate at which discoverers first 

solve the task, it follows the social network (support= 88.5%).  Effects of the social 

network are less clear on the rate at which naïve individuals discover the task. Possibly, 

individuals are attracted to a task by strongly connected individuals that have already 

solved a task, and consequently, are more likely to return to that task and/or remain near 

it than individuals weakly connected to solvers, making it likely that they will solve that 

task more rapidly than individuals only weakly connected to solvers. Counteracting this 

effect is evidence for a second process whereby, when many individuals in a group have 

solved a task, those group members that had not yet discovered the alternative task are 

more likely to do so, perhaps because the popular task becomes too crowded to solve. In 

either case, there is clear evidence of social learning. 
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Table 6.1a: Two task NBDA results for naïve -> discovered 

 

Variable d.f. 
Support (sum of 

Akaike weights) 

Model 

averaged effect 

estimate 

Unconditional 95% 

confidence interval 

Total network 

connection to 

discoverers:         task 

specific 

1 97.8% 1.4 [0.32, 4.4] 

Total network 

connection to 

discoverers:           

cross task 

1 5.6% 0.007  

Total network 

connection to solvers:                

task specific 

1 24.2% 0.094  

Total network 

connection to solvers:                   

cross task 

1 75.4% 1.4 [0.20,6.5] 

Body length (mm) 1 91.3% 0.048 [0.016,0.096] 

Bias towards right 

task 
1 26.3% 1.0x  

Group 7 1.1% 1.0x - 

Discovered other task 1 81.8% 0.29x [0x, 0.78x] 

Solved other task  1 32.7% 0.02x  
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Table 6.1b: Two task NBDA results for discovered non-solver -> solver 

 

Variable d.f. Support (sum of 

Akaike weights) 

Model 

averaged effect 

estimate 

Unconditional 95% 

confidence interval 

Total network 

connection to 

discoverers:         task 

specific 

1 79.9% 3.9 [0.334, 590] 

Total network 

connection to 

discoverers:           

cross task 

1 26.5% 0.38 - 

Total network 

connection to solvers:                

task specific 

1 6.8% 0.048 - 

Total network 

connection to solvers:                   

cross task 

1 12.6% 0.087 - 

Body length (mm) 1 82.4% -0.171 [-0.94,-0.0049] 

Bias towards right 

task 

1 28.6% 1.1x  

Group 7 <0.1% 1.0x - 

Discovered other task 1 30.3% 1.2x  

Solved other task  1 47.2% 1.9x  

Shaded cells indicate there was more support for an effect than against (>50%). Social 

effects are estimated relative to the mean rate of asocial discovery, e.g. the 1.4 in Table 

6.2a signifies that an average individual with one unit of total association to discoverers 

of a task is 2.4x faster to discover the same task than an average individual with no 

connections to discoverers of that task. The effect of body length is estimated as the 

logarithm of the multiplicative difference per mm in body size (standard in modelling 

rates), e.g. in Table 6.2a 0.048 indicates that the asocial rate of discovery for a fish of 

50mm would be exp (5x 0.048) = 1.27x greater than that for a fish of 45mm. For all 

other effects we give the estimated multiplicative difference in rate, for group this is for 

the most extreme groups. Unconditional 95% confidence intervals were calculated using 

a computationally intensive profile likelihood procedure (see Appendix 1) so we only 

calculated these for variables with support >50%. The effect of association to solvers is 

estimated as the effect over and above that of their effect as discoverers. Likewise the 

effect of having solved the other task is estimated as the effect over and above the effect 

of having discovered the other task. 
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Table 6.2: Support for models in which social effects are assumed to follow the social 

network, act homogeneously within groups, or as a combination of the two in the two-

task experiment. “Total network-specific” support quantifies the level of support for 

models in which network connections influence the strength of each social effect. 

 Support (sum of Akaike weights) 

 
Network    

(1 d.f.) 

Homogeneous 

(1 d.f.) 

Both         

(2 d.f.) 

Total network-

specific  

Naïve -> discovered     

Total network connection to 

discoverers: task specific 
44.5% 35.7% 19.8% 64.3% 

Total network connection to 

solvers: cross task 
39.6% 43.9% 16.5% 56.1% 

Discovered non-solver -> solver   

Total network connection to 

discoverers: task specific 
56.9% 11.5% 31.6% 88.5% 

 

6.3.2 One task experiment 

Individuals in all groups were found to associate with others at proportions significantly 

different from chance (P = <0.001).  

6.3.2.1 First discovery 

In four groups, all individuals made contact with the task, whilst in the other four 

groups 7 to 9 of their 10 members did so. Diffusion curves for discovery can be seen in 

Figure 6.2a. Both estimates from the NBDA and support for each variable are shown in 

Table 6.3a. There was strong support across groups for the hypothesis that naïve 

individuals who were well connected to others who had discovered the task were more 

likely than were individuals who were weakly associated with discoverers to be the next 

to discover it themselves (total Akaike weight= 99.8%, see Table 6.3a for estimated 

effects) providing clear evidence of social learning. However, there was no strong 

evidence for social transmission of patch location, with the contrast between real and 
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control food patches ( - ) estimated at 1.84 (95% CI: [-3.9,11.3]). There was also 

little evidence that association with task solvers facilitated discovery of the task (total 

Akaike weight= 19.8%) and little support for an effect of body length on rate of 

discovery (total Akaike weight= 48.5%). These findings suggest an untransmitted social 

effect underpinning the observed diffusions of task discovery. 

6.3.2.2 First solve 

In all 8 groups, a minimum of 4 fish solved the task within the allotted 20 min after first 

solution in a group. No scrounging was observed, as solvers did not move food items 

outside the tube. Diffusion curves for solving can be seen in Figure 6.2b. As can be seen 

in Table 6.3b, which shows estimates from the NBDA and support for each variable, 

social transmission did not influence the rate at which individuals solved the task either 

individually or as a group. However, there was also no support for models containing 

neither of these effects (total Akaike weight= 31.7%), suggesting that there may be 

some important difference between groups, the nature of which we could not resolve in 

this analysis. 

6.3.2.3 Comparison of network-specific and homogeneous effects 

No other variables were included in the model since none had support >50%. The 

results clearly support the social network (support= 98.8%) over the homogeneous 

model. As with the two-task experiment, we also fitted a model with a network and 

homogeneous effect but the homogeneous effect was estimated at 0, meaning that this 

model is effectively the same as the network model. 

 

 

sR sC
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Table 6.3a.NBDA results for naïve -> discovered transition 

Variable d.f. Support (sum 

of Akaike 

weights) 

Model 

averaged 

effect estimate 

Unconditional 95% 

confidence interval 

Total network 

connection to 

discoverers 

1 99.8% 4.0 [1.17,12.7] 

Total network 

connection to solvers 

1 19.8% 0.081 - 

Body length (mm) 1 48.5% 0.018 - 

Group 7 0.2% 1.0x - 

 

Table 6.3b. NBDA results for discovered non-solver-> solver 

Variable d.f. Support (sum 

of Akaike 

weights) 

Model 

averaged 

effect estimate 

Unconditional 95% 

confidence interval 

Total network 

connection to 

discoverers 

1 16.4% 0.006 - 

Total network 

connection to solvers 

1 21.5% 0.042 - 

Body length (mm) 1 30.0% 0.007 - 

Group 7 35.8% 2.0x - 

Shaded cells indicate there was more support for an effect than against (>50%). Social 

effects are estimated relative to the mean rate of asocial discovery, e.g. the 4.0 in Table 

6.3a signifies that an average individual with one unit of total association to discoverers 

is 5x faster to discover the task than an average individual with no connections to 

discoverers. The effect of body length is estimated as the logarithm of the multiplicative 

difference per mm in body size (standard in modelling rates), e.g. in Table 6.3a 0.018 

indicates that the asocial rate of discovery for a fish of 50mm would be exp(5x 0.018)= 

1.09x greater than that for a fish of 45mm. For group we provide the estimated 

multiplicative difference in average asocial rate between the most extreme groups. 

”Unconditional” 95% confidence intervals were calculated using a computationally 

intensive profile likelihood procedure (see Appendix 1) so we only calculated these for 

variables with support >50%. The effect of association to solvers is estimated as the 

effect over and above that of their effect as discoverers. 
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 6.4 Discussion 

 

We present one of the first examples of network-based diffusion analysis of the 

behaviour of nonhuman animals. By breaking the processes of task solution into 

identifiable stages, specific types of social influences were both characterised and 

quantified. 

6.4.1 Discovery 

We found strong evidence in both the one-task and two-task experiments for a social 

effect of the discovery of the novel foraging tasks, with individuals tending to discover 

a task sooner when others in their group had previously done so. However, overall we 

find no evidence that this effect is the result of the task location being socially 

transmitted between individuals, since the social effect on “discovery” of an arbitrary 

empty control patch appeared as strong as discovery of a patch where foraging was 

possible. These findings suggest that an untransmitted social effect underlies the 

observed diffusions - almost certainly the influence of fish on one another’s movements. 

We note that, in the absence of NBDA, most researchers would have interpreted the 

evidence of diffusion along a social network as indicative of social transmission, 

although the possibility of asocial learning underlying diffusions has long been 

recognized (Lefebvre, 1995; Reader, 2004; Hoppitt et al., 2010b). Here, use of NBDA 

provided evidence for a third possibility: the social learning of task location in the 

absence of social transmission. There is unambiguous evidence for both learning and a 

social influence on latencies to learn, but no evidence of social transmission. The social 

effect on “discovery” of an arbitrary empty control patch appeared as strong as the 

social effect on discovery of the tasks.  
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A number of previous studies of social learning in fish that report social effects 

consistent with local enhancement but equally consistent with the hypothesis of a 

mutually reinforcing tendency of individuals that have discovered a potential food 

source to remain near that food source and eventually learn to exploit it (eg. Baird et al. 

1991; Laland and Williams 1997; Day et al. 2001; Webster and Hart 2006). The present 

findings are of particular significance in that they draw attention to the possibility that 

many natural diffusions may similarly result from untransmitted social effects rather 

than from either social transmission or asocial learning.   

6.4.2 Solution 

Our findings also provide little evidence of social transmission of solution to the task. In 

both the one-task and two-task experiments, a higher level of association with previous 

solvers did not predict a higher rate of solving the task and gaining access to food. 

Social transmission would require that association with those that had solved the task 

leads to a higher rate of transition from a naïve to an informed state: either increasing 

the rate of discovery or the subsequent rate of solving. Here we find evidence of neither. 

Nonetheless, we did find evidence of a social effect on solving the task; a higher degree 

of association with those that had previously discovered the task predicted a higher rate 

of solving it.  

Unexpectedly, in the two-task experiment, we found that associating with others that 

have previously solved one task leads to an increased rate of discovery of the remaining 

task.  Two processes, stimulus enhancement and competition, provide plausible 

explanations. Stimulus enhancement (Spence 1937) is a process similar to local 

enhancement.  However, in cases of stimulus enhancement individuals attract the 

attention of others not to a particular location but to a class of objects.  Because the two 
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tasks were identical, stimulus enhancement of one task would have led to increased 

attention to the other. Alternatively, when one of the tasks had attracted many foragers, 

remaining individuals may have sought an alternative foraging location where there was 

less completion for food.  

6.4.3 Size effects 

An individual fish’s size was found to have a significant effect in the two-task 

experiment, with larger fish being more likely to discover the task first and smaller fish 

being more likely to solve the task first. However, this finding was not observed in the 

one-task experiment. The difference between the one-task and two-task diffusions may 

be explained by the fact that, as a result of the sizes of fish available when we initiated 

each experiment, the size range within each group was smaller in the one-task 

experiment (mean within group difference of 12.5 mm) than in the two-task experiment 

(mean within group difference of 17.1 mm). Larger fish are known to be more likely to 

be at the front of a shoal and have a greater influence over others than smaller fish. For 

example, Reebs (2001) demonstrated that a minority of large golden shiners were able 

to lead smaller fish to a known foraging patch. However, when smaller fish acted as 

leaders the group did not follow. Another possible explanation for the observed 

difference is simply due to the fact that the larger fish are able to cover a greater area 

than smaller fish within a given time due to faster swimming speeds. They are therefore 

more likely to discover the location of the task at a faster rate, as was found by Day et 

al. (2001) amongst shoals of guppies. 

However, it was also observed that smaller individuals were significantly more likely 

than larger individuals to solve the task first, a finding also reported in guppies (Laland 

& Reader 1999). Small fish often have a higher motivation to feed than large fish due to 
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lower metabolic efficiency (Weatherley and Gill 1987; Wootton 1994) and might 

therefore be more likely to both persevere in their attempts to access food than larger 

fish and to find a solution to the task. 

6.5 Summary 

Our results suggest that social influences on learning can be strong, even without direct 

transmission of information (e.g. patch locations or task solutions) between individuals. 

Individuals within each group tended to discover a food patch sooner when others in 

their group had previously done so, but this temporal pattern of discovery did not appear 

to be a result of social transmission per se.  Rather, the tendency of fish to travel in 

groups resulted in increased simultaneity of discovery, followed by individual learning 

of the solution.  Knowledge as to how to solve a task and acquire food did not spread 

from informed to uninformed individuals; rather uninformed individuals learned 

together, but nonetheless benefited from the elevated rate of patch discovery associated 

with social foraging. The fact that these results are replicated in both the one-task and 

two-task experiments gives significant strength to our arguments. The methods of 

analysis employed here could be widely used by those studying diffusion of social 

information through populations to provide finer characterization of the nature of social 

influences on diffusion of innovations through social groups. 

Chapter 7 uses a similar methodology and analysis to study the effect of familiarity on 

transmission of information through populations of threespine sticklebacks.  
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Chapter 7. Familiarity affects social network structure and discovery of prey patch 

locations in foraging stickleback shoals 
 

7.1 Introduction 

 

In this study we sought to determine the role of fine-scale social organisation in 

determining patterns of information diffusion using NBDA of the foraging behaviour of 

groups of threespine sticklebacks that contained both familiar and unfamiliar 

individuals. In many species of fishes, active preferences for associating with familiar 

individuals have been shown to strongly affect social organisation (Ward and Hart 

2003; Griffiths and Ward 2011). Broadly speaking, familiarity operates via at least two 

mechanisms (Ward et al. 2009). The first is based upon learned recognition of other 

individuals. After a period of continuous interaction, fish come to remember the identity 

of their shoalmates, and prefer to group with them over other conspecifics with whom 

they haven’t previously interacted (e.g. Griffiths &Magurran 1997, reviewed by 

Griffiths & Ward 2011). Familiarity also occurs via a more general mechanism based 

upon self-referent matching, whereby fish prefer to associate with individuals that have 

recently eaten the same prey or occupied similar habitat types to themselves (Olsen et 

al. 2003; Ward et al. 2004; 2005; 2007; 2009; Webster et al. 2008a; 2008b; 2009). 

While the precise mechanism behind this mechanism of recognition is not fully clear, it 

potentially operates via diet- or habitat derived amino acids or other metabolites 

released via the gills (in freshwater), or through the urine or epidermal mucus of the fish 

(Bryant &Atema 1987; Courtenay et al. 1997; Moore et al. 1994; Matsumura et al. 

2004; Olsen et al. 1998). 
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Learned familiarity has been shown to play a role in directing the transmission of 

information between guppies under binary choice conditions. In a study by Lachlan et 

al. (1998), individual adult guppies were presented with two shoals of conspecifics, 

consisting of either familiar or unfamiliar individuals. When given the choice of 

following either shoal to opposite ends of the tank, it was seen that focal guppies were 

more likely to follow the shoal comprised of familiar rather than unfamiliar fish. Such 

behaviour is likely to lead to information acquisition and social learning, for example, if 

following conspecifics to a food source. A further study on guppies by Swaney et al. 

(2001) tested the hypothesis they would learn more effectively from familiar than 

unfamiliar demonstrators that had been trained to swim a particular route to a food 

source. The trained demonstrators were placed with small shoals of untrained observers. 

It was revealed that untrained individuals were more likely to discover and subsequently 

learn the route to the food source when demonstrators were familiar to them than when 

they were unfamiliar. This suggests that familiarity between individuals can influence 

social learning, with individuals learning more effectively from familiar conspecifics.  

 

In nature, given the fission-fusion dynamics seen to occur in many systems (e.g. Croft et 

al. 2003), it seems likely that groups will exist that contain both familiar and unfamiliar 

individuals. Until relatively recently the statistical tools to quantify the effects of factors 

promoting differences in fine-scale social organisation, such as differences in 

familiarity, upon patterns of information transmission in free-ranging groups did not 

exist. The recent development of network-based diffusion analysis (NBDA, Franz & 

Nunn 2009; Hoppitt et al. 2010), which allows non-random transmission of information 

to be detected, means that the importance of such factors can now be accounted for 

quantitatively. Indeed, recent research has demonstrated that NBDA is an appropriate 
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and flexible method for quantifying diffusion. It has been deployed to address questions 

about the diffusion of information and novel behavioural innovations in a range of 

species, including fishes, birds, and among mammals in herpestids and cetaceans, both 

in the laboratory and in the wild (Allen et al. 2013; Aplin et al. 2012; Atton et al. 2012; 

Hoppitt et al. 2012; Webster et al. 2013).   

 

Sticklebacks exhibit familiarity through both learned recognition (Frommen et al. 

2007b) and through recognition of habitat- and diet-derived cues (Ward et al. 2004; 

2005; 2007; Webster et al. 2008b). In this study our primary aim was to determine the 

role, if any, of familiarity in driving directed transmission of information. The precise 

mechanism by which familiarity occurred was of less concern. For this reason, in order 

to maximally differentiate familiar and unfamiliar fish, we used a protocol which 

allowed for familiarity to occur via both learned and resource-derived recognition. We 

adopted the approach of Chapter 6 (Atton et al. 2012), in which groups of sticklebacks 

were placed into an arena and allowed to search for and feed upon prey placed within 

novel feeder apparatuses. We tested the following predictions: (1) That the social 

network structure of groups of sticklebacks would be influenced by familiarity. 

Specifically, we expected to see more frequent patterns of association between familiar 

fish than between unfamiliars. (2) That information would diffuse via association 

networks, with greater likelihood of transmission between more strongly associated 

individuals. (3) Stemming from this, we expected to see that individuals would be more 

likely to acquire information about the location of feeder apparatuses and how to access 

them from familiar groupmates, than from unfamiliar individuals.   
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7.2 Methods 

7.2.1 Subjects and treatment groups 

Threespined sticklebacks were captured from the Kinnessburn, a small stream in St 

Andrews, U.K. (56.33.4925 N, 22.78.8151W) using mesh cage traps in April 2012 and 

held in two groups of 40 in 90 L tanks at a temperature of 8°C in our laboratory. The 

fish were fed daily with frozen bloodworms (Chironomussp. larvae) for two weeks 

immediately following capture. After this initial holding period two groups of 40 

individuals were switched to separate, novel diets for one month. One group was fed 

exclusively on Artemia and the other group exclusively on Tubifex. At the end of this 

period we had two groups that had been held separately for six weeks, enough time for 

learned within-group familiarity to become established in this species (Ward & Hart 

2003), and which had been fed on different diets for four weeks, which is sufficient for 

familiarity based upon diet-derived cues to develop (Ward et al. 2007; Webster et al. 

2007). Hereafter, fish taken from the same holding tank are referred to as ‘familiar’ and 

fish from different holding tanks as ‘unfamiliar’. 

 

From these fish we formed seven replicate groups each containing 10 individually 

marked fish to use in the foraging diffusion experiment. No individuals that were 

displaying signs of nuptial colouration or gravidity were used, as reproductive state has 

been shown to affect an individual’s reliance on social information in sticklebacks 

(Webster and Laland 2011). Each fish was marked with a unique non-invasive disc-tag 

attached to its first dorsal spine, as described in Webster &Laland (2009). Each group of 

ten fish contained five fish from the Artemia-fed treatment and five from the Tubifex-

fed treatment, selected haphazardly from their holding tanks. Individuals within each 
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group were size matched to within 4mm of one another. No fish was tested more than 

once. 

 

7.2.2 Test arena and procedure 

Each group was tested separately in a rectangular black test tank measuring 60x80 cm. 

To ensure that vertical distance within the water column between individuals did not 

confound estimates of inter-individual distances, described below, we filled the test tank 

with filtered tap water to a depth of only 5 cm. The test tank had a gravel substrate 1cm 

in depth, and 10 black, pyramid-shaped obstacles (measuring 10cm square at the base 

and 6cm high) placed at regular intervals throughout the tank (Figure 6.1) to provide a 

degree of structural complexity, whilst allowing the experimenter to view all fish at all 

times. The test tank was held within a shelter to minimize outside disturbance. Two 60 

watt fluorescent strip lights were used to provide illumination. We recorded each test 

trial using a Canon HG20 video camera fixed 1.2 m above the test tank above a small 

filming hole.  

 

In the second phase of the trial, described below, bloodworm prey were presented 

within two identical feeding apparatuses, hereafter referred to as foraging tasks. These 

consisted of transparent cylindrical tubes, accessible from one end, measuring 24 cm in 

length and 7 cm in diameter placed horizontally on the gravel substrate at each end of 

the test tank (see section 6.2.1). We inserted 15 ml of defrosted bloodworms suspended 

in water into the closed end of the tubes, which had 15 small holes (2 mm diameter), 

allowing chemical cues from bloodworms to escape. At the open, accessible end of the 

tube, the entrance was clearly marked with black electrical tape around its 
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circumference. Consequently, although fish could see and smell food at both ends of 

each tube, they could gain access to food by entering it from one end only. 

 

Fish were tagged two hours before the trial began. The group of ten fish was then added 

to the test tank and allowed to settle for 15 minutes. Following this the trial began. The 

trial had two phases, an association phase, which we used to quantify social network 

structure, and the foraging phase, from which we extracted data to perform the NBDA. 

The association phase ran for 120 minutes. From the recording of this phase we point 

sampled the shoaling behaviour of the fish at six-minute intervals, giving a total of 20 

observations for each group. If individuals were within four body lengths of one another 

(defined as the mean body length of the groups’ members) from head to head, a distance 

generally accepted as indicative of shoaling in fishes (Pitcher and Parrish 1993), they 

were classed as shoaling. Using this data we created an association matrix for each 

group based upon the proportion of point samples that each fish was observed to be 

within four body lengths of each of the other fish in its group. 

 

Following the 120-minute association phase, we carefully introduced the foraging tasks 

and filmed the group for a further 45 minutes, after which the trial ended and we 

removed all fish from the experiment. We recorded both the latency with which each 

individual first discovered each task (defined as occurring when an individual was seen 

striking at food through the transparent tube) and the latency with which each individual 

first solved each task (defined as consuming food within the tube). We scored only the 

first 20 min of video footage after the first fish in each group solved each task at which 

time food items were still visible inside the tube in all trials. 
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In addition to recording the latency to discovery and solution of the tasks, we also 

recorded the latency with which each fish entered an arbitrary area (measuring 20 cm x 

10 cm) within the tank. This control location contained no food and no distinctive 

topographical features (such as the wall of the tank). In our analysis, we compared 

social effects on inter-individual latencies to “discover” the control location with similar 

latencies to discover the tasks.  This comparison allowed us to distinguish social 

transmission from other processes that might result in a superficially similar pattern of 

acquisition (see Webster et al. 2013). 

 

7.2.3 Testing for effects of familiarity upon association preferences 

We used a randomization test of whether fish preferred to associate with fish from the 

same habitat background. For each group we constructed a binary habitat matrix 

indicating whether each pair of fish were from the same habitat (1) or not (0). We then 

ran a simple regression with the values from the upper triangle of each association 

matrix as the response, and the upper triangle of the habitat matrix as the predictor. The 

coefficient of the slope was taken as the test statistic. We generated a null distribution 

by randomizing the rows and columns within each habitat matrix and recalculating the 

test statistic 100,000 times. The p-value was taken to be the (1+ number of the null 

distribution > test statistic)/100,001 (Dekker, Krackhardt&Snijders, 2007; Manly, 

2008). Analyses were conducted in the R statistical environment version 2.15.3 (R Core 

Team, 2013). 

 

7.2.4 Network-based diffusion analysis 

To analyse the data we used network based diffusion analysis (NBDA) (Franz and Nunn 

2009), specifically the order of acquisition diffusion analysis (OADA) variant (Hoppitt 
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et al. 2010a). OADA can be used to determine whether the order in which subjects 

discover and/or solve a task is correlated with different social networks representing 

different hypotheses about the pathways of transmission. We used the multi-state 

version of OADA developed by Atton et al. (2012) (Chapter 6 of this thesis), which 

models multiple options that can be used to solve a task (in this case the two versions of 

the task) allowing us to distinguish option-specific and cross-option social effects, and 

teases apart social effects on a) the rate at which fish discover each option; and b) the 

rate at which fish solve each option once they have discovered it (see Appendix 1 for a 

full model specification). 

 

We compared the predictive power of three social networks: a) one reflecting observed 

patterns of association outside of the task context (the “association network”) – this 

represents the hypothesis that the rate of social transmission from individual A to 

individual B is proportional to the association between them; b) one in which there were 

binary connections only between individuals from the same diet background (the 

“familiarity network”– this represents the hypothesis that information is transmitted 

only between individuals from the same diet background and c) one in which there were 

binary connections between all the individuals in each group (the “homogeneous 

network”)– this represents the hypothesis that information is transmitted 

homogeneously between all members of the group (Hoppitt&Laland, 2013). We also 

fitted a model with different social effects between fish that were familiar and 

unfamiliar, to allow for the possibility that there was a social effect between all 

individuals, but that it was stronger between fish that were familiar (Hoppitt and Laland 

2013). For each social network we also considered two different models, additive and 
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multiplicative, for the interaction between social effects and asocial learning (see 

Hoppitt et al. 2010 for details).    

 

‘Holding’ and ‘group’ were included as factors to allow for the possibility that 

individuals from each of the familiarity holdings, and/or experimental groups might 

differ systematically in their rates of asocial discovery or solving. We also included 

factors allowing for an overall bias for the left or right feeder, and an effect of having 

discovered/solved one option on the rate of discovery/solving the other option. Models 

were fitted with each combination of network, additive versus multiplicative model, and 

presence/absence of other factors, excluding group (we considered social effects and 

group differences in asocial rates of learning as alternative explanations for differences 

between groups and consequently only included ‘group’ in models with no social 

network). 

 

We used a model averaging approach based on Akaike’s Information Criterion, 

corrected for sample size (AICc), to estimate the effects of each predictor variable, 

accounting for model selection uncertainty, and to quantify the relative support for each 

network/variable using summed Akaike weights (Burnham & Anderson, 2002; see 

Appendix 1). Unconditional confidence intervals were calculated using the profile 

likelihood technique corrected for model selection uncertainty suggested by Burnham & 

Anderson (2002). 
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7.3 Results 

7.3.1 Effects of familiarity upon association preferences 

There was a significant difference in association between fish from the same and 

different habitat backgrounds (p= 0.001; means: same habitat= 0.366; different habitat= 

0.332), though there was considerable variability within each category (Fig. 7.1). 

 
 

Figure 7.1.(a) Box plot of association strengths familiar and unfamiliar. (b) Histogram 

showing the null distribution from the randomization test. The dashed line shows the 

observed test statistic. 

 

7.3.2 Network based diffusion analysis 

7.3.2.1 First discovery 

There were no trials in which all individuals within a group discovered both options, 

with the number of discoverers of each option ranging from 0-9. A minimum of 7 

individuals discovered one or the other of the options with a total of 60 first discoveries 

across both individuals and options (see Figure 7.2). Diffusion curves for discovery 

time (Figure 7.2) generally reveal a rapid increase in number of individuals discovering 

one option after initial discovery of that same option within the group.  
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Figure 7.2.The diffusion curves for the times of first discovery (top) and first solving 

(bottom) showing times for both the left- and right-hand options. Each colour represents 

a different group. Circles represent individuals fed the Tubifex diet and triangles 

represent individuals fed the Artemia diet. 

 

7.3.2.2 Support for effect of different social networks on discovery rate 

In all seven groups, at least four fish solved a task within the allotted 20 minutes 

following first solution within a group. No scrounging was observed, as solvers did not 

move food items outside the tube. There were a total of 39 first solves across all 

individuals and options. 

 

There was strongest support for the familiarity network influencing on the rate at which 

individuals discover the tasks (Akaike weight of 86.2% for multiplicative model), with 

fish being more likely to discover a task if familiar fish have already done so, but not if 

unfamiliar individuals have discovered the task (see Figure 7.2 & Table 7.1). A 

homogeneous network receives little support, with an Akaike weight of 5.4%. The 

association network also receives very little support (Akaike weight = 1.8%), as does a 
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model with no social effect (Akaike weight= 0.0%). A multiplicative model with the 

familiarity network was therefore used to estimate the effects reported in 7.3.3.3 below 

(using model averaging across other predictor variables). 

 

We also fitted a multiplicative model with different social effects between fish from the 

same (ssame) and a different familiarity holding treatment (sdiff), allowing us to assess the 

difference between the two. ssame was estimated at 1.80 (95% C.I.= [0.68, 4.52]) and sdiff 

was estimated at 0.20 (95% C.I.= [0, 1.18]), giving an estimated difference of 1.61 

(95% C.I.= [0.46, 3.96]), providing evidence of a stronger social effect between familiar 

individuals. This means the increase in discovery rate for each informed familiar 

individual relative to the rate of asocial discovery was estimated to be 1.6 units greater 

than the effect of an informed unfamiliar individual.  

 

Table 7.1. A comparison of the support (based on Akaike weight) for familiarity and 

homogeneous effects on the discovery of the foraging tasks. 

 

Network Akaike weight 

No social 

effect 0.00% 

  Model 

  Additive Multiplicative 

SameDiet 5.84% 86.19% 

Homogeneous 0.15% 5.42% 

Measured 0.60% 1.79% 

  

 

7.3.2.3 Estimates of effects on discovery rate 

Both estimates from the NBDA and support for each variable are shown in Table 7.2. 

An explanation of the method used to calculate support for each variable (Akaike’s 

Information Criterion) can be found in Chapter 6. There was strong evidence (total 
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Akaike weight = 100%) that being well connected to familiar individuals who had 

already discovered an option increased the probability that a naïve individual would be 

the next to discover that option, providing clear evidence of a social effect on task 

discovery. The magnitude of this effect was estimated to be a linear increase of 1.5 

times (95% CI= [0.64, 3.5]) the average asocial rate of discovery for every informed 

familiar individual. However, evidence for social transmission of the patch location was 

unsubstantial, with the contrast between real and control food patches ( - ) 

estimated at 0.716 (95% CI: [-1.14, 2.75]). The finding that effects of familiarity at real 

patches were not greater than those at control patches suggests that the social effect on 

discovery may be a result of associated individuals encountering the task at 

approximately the same time because of their influence on each other’s movements, 

rather than transmitting the location of the patch once they had discovered it.  

 

There was no evidence that being well-connected to solvers of an option facilitated 

discovery of that option (over and above their effect as individuals that had discovered 

that option), and no evidence against an effect of connectedness to discoverers 

generalising across options (total Akaike weight= 0.0%). There was also little support 

for the hypothesis that individuals were more likely to discover a option next if they 

were well connected to individuals who had solved the other task option than if they 

were not so connected (total Akaike weight= 24.1%). There was little evidence of a 

difference in the rate of discovery between individuals from each of the familiarity 

holdings. There was however, strong evidence that individuals that had discovered one 

option were less likely to discover the other (Akaike weight = 99.8%). There was also 

strong evidence of a bias toward the left hand task (Akaike weight = 96.2%). 

 

 

sR sC
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Table 7.2. Two option NBDA results for naïve -> discovered. 

Variable d.f. 

Support (sum 

of Akaike 

weights) 

Model 

averaged effect 

estimate 

Unconditional 

95% confidence 

interval* 

 

Total network connection 

to discoverers: option 

specific 

 

1 100% 1.5 [0.64, 3.5] 

Total network connection 

to discoverers: cross 

option 

 

1 0% 0  

Total network connection 

to solvers: option specific 

 

1 0% 0  

Total network connection 

to solvers: cross option 

 

1 24.1% 0.009  

Holding 

 
1 26.2% -0.03  

Bias towards left option 

 
1 96.2% -0.73 [0.23, 1.31] 

Group 

 
7 0% 0  

Discovered other option 

 
1 99.8% -1.67 [-2.78, -0.76] 

Solved other option 

 
1 24.2% 0.02  

*Shaded cells indicate there was more support for an effect than against (>50%). Social effects 

are estimated relative to the mean rate of asocial discovery, e.g. a value of 1.5 signifies that an 

average individual with one unit of total association to discoverers of an option is 1.5 times 

faster to discover the same option than an average individual with no connections to discoverers 

of that option. Unconditional 95% confidence intervals were calculated using a computationally 

intensive profile likelihood procedure (see Appendix 1) so we only calculated these for 

variables with support >50%. 
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7.3.2.4 Support for effect of different social networks on solving rate 

There is strongest support for an effect of the familiarity network (Akaike weight: 

additive= 35.3%; multiplicative= 28.5%) on the rate at which individuals solve the tasks 

(see Table 7.3), with fish being more likely to solve a task if familiar fish have already 

done so, but not if unfamiliar individuals have solve the task (Figure 7.2), however this 

evidence is not overwhelming: the model with no social effect had an Akaike weight of 

8.4%. There was little support for the homogeneous network (Akaike weight: additive 

model= 10.0%; multiplicative model= 8.9%) or association network (Akaike weight: 

additive model= 4.42%; multiplicative model= 4.38%) suggesting a familiarity-based 

social effect is the most likely. The additive familiarity network was used to estimate 

the effects below. 

 

Table 7.3: A comparison of the support (based on Akaike weight) for diet-specific and 

homogeneous effects on the solving of the foraging tasks. 

 

Network Akaike weight 

No social 

effect 8.40% 

  Model 

  Additive Multiplicative 

SameDiet 35.29% 28.53% 

Homogeneous 10.04% 8.94% 

Measured 4.42% 4.38% 

 

 

7.3.3.5 Estimates of effects on solving rate 

 

As confirmed by the NBDA, diffusion curves for the solving times of the foraging tasks 

(Figure 7.2) show individuals solving both options at fairly regular intervals rather than 
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in collective bursts, suggesting that solvers were not influenced by other solvers. Both 

estimates from the NBDA and support for each variable are shown in Table 7.4. 

 

There is some suggestive evidence for an option specific effect of solvers (Akaike 

weight= 70%; s=0.66; 95% CI [0, 3.02]), with individuals being more likely to solve a 

specific option if they are well connected to previous solvers. However, the evidence is 

not overwhelming with the unconditional 95% CI including 0. There was little evidence 

of an effect of familiar fish that had discovered either option, nor of familiar fish that 

had solved the other option (see Table 7.4). 
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Table 7.4: Two option NBDA results for discovered non-solver -> solver 

Variable d.f. Support (sum of 

Akaike weights) 

Model 

averaged effect 

estimate 

Unconditional 95% 

confidence interval 

Total network 

connection to 

discoverers:         

option specific 

1 24.3% 0.05  

Total network 

connection to 

discoverers:           

cross option 

1 17.4% 0.03 - 

Total network 

connection to solvers:                

option specific 

1 70% 0.66 [0, 3.02] 

Total network 

connection to solvers:                   

cross option 

1 27.3% 0.14 - 

Diet 1 25.0% -0.04  

Bias towards right 

option 

1 27.9% 0.04  

Group 7 3.7% 0.00*  

Discovered other 

option 

1 39.2% 0.22  

Solved other option  1 32.7% 0.30  

 

* Model averaged estimate of the difference between the fastest and slowest group 

 

7.4 Discussion 

Our results provide evidence of an effect of familiarity upon group social organisation, 

with fish being more likely to associate with familiar than with unfamiliar individuals. 

Furthermore, familiarity was seen to affect the likelihood of an individual discovering a 

foraging task, with strong evidence of a social effect on discovery of the foraging tasks, 

such that individuals tended to discover a task sooner if a familiar individual from their 
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group had previously done so. Despite finding that familiarity affected both group social 

structure, and the likelihood of an individual discovering the task, we found that the 

overall association network of a group had little effect upon the likelihood of an 

individual discovering a feeding task. In other words, a given fish was no more likely to 

discover the feeding task if it was strongly connected to fish that had previously 

discovered it, than it was if it was poorly connected to previous discoverers. Finally, we 

found no evidence that reduced latency to discovery  is a result of task location being 

socially transmitted between individuals, because the social effect on “discovery” of an 

empty control patch was plausibly as strong as was discovery of a patch where foraging 

was possible. The marked similarity in social effects on foraging and control patches 

suggests that an un-transmitted social effect might underlie the observed diffusions, 

almost certainly due to the influence of fish on one another’s movements.   

Such an interpretation is consistent with results of studies of foraging behaviour in 

stickleback shoals reported in both Chapter 6 (Atton et al. (2012)) and the ‘open 

environment’ condition in Webster et al. (2013). In both these studies conducted in open 

or relatively unstructured environments, similar to the one used in the current study, 

network structure was a poor predictor of patch discovery (Atton et al. 2012; Webster et 

al. 2013). In contrast, in structurally complex environments, order of patch discovery 

was linked to network structure (Webster et al. 2013). This difference in outcome may 

be due to the effects of the environment upon network characteristics, as groups in 

structurally complex environments had lower network density overall, and more 

heterogenous, ‘cliquey’ networks than groups in structurally simple environments. 

Difference in outcome may also be due to structured environments limiting the distance 

over which social cues indicative of patch location, such as feeding behaviours, can be 

detected, making it more likely that only closely associating individuals will detect cues 
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containing foraging information from one another (Atton et al. 2012; Webster et al. 

2013).   

In addition to influencing task discovery, familiarity was also seen to have an effect 

upon latency to solve the feeding tasks, with individuals being more likely to solve a 

task when familiar than when unfamiliar individuals had already done so. Evidence of a 

difference in the effects of familiar and unfamiliar individuals on task solution is not 

particularly strong.  However, the familiarity network explains the data better than does 

a homogeneous network, suggesting a familiarity-based social effect is present. Such an 

interpretation is consistent with the social effects seen in the same model, where there 

was also some support for an effect on the rate of an individual solving a specific task 

when they were well connected to familiar previous solvers. 

Finding an effect of familiarity on task solution is consistent with the results of previous 

studies, that have found that associations between familiar individuals can give rise to 

directed social transmission of information (Lachlan et al. 1998; Swaney et al. 2001). If 

so, shoaling with familiar fish may be adaptive, in that it may allow individuals to locate 

resources more rapidly or with greater efficiency when foraging with familiar than 

unfamiliar group mates. Shoaling with familiar individuals has also been suggested to 

provide anti-predator benefits in some species through greater shoal cohesion (Chivers 

et al. 1995).  

The mechanism underlying familiarity effects on information acquisition is not clear. 

Familiarity effects may reflect a perceptual or attentional bias for observing or more 

strongly responding to the behaviour of familiar individuals. Where familiarity is based 

upon diet- or habitat-derived cues, selection might favour behaviour whereby 

individuals follow or copy others that are exploiting the same range of resources (Ward 
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et al. 2007; Webster et al. 2009b). A tendency to follow or copy the behaviour of 

individuals exploiting similar resources may also occur when familiarity is based solely 

upon learned recognition, because the development of learned recognition requires 

prolonged interaction that may also result in individuals being exposed to and exploiting 

similar resources. Our methods allowed both learned and resource-derived familiarity to 

develop within our treatment subgroups. Useful further work might seek to determine 

the relative contributions of these two forms of recognition to the effects observed in the 

current study and to identify the way in which each increases the likelihood of patch 

discovery.    

7.5 Summary 

In summary, familiarity between shoal members had a clear effect on discovery of prey 

patches. Familiarity was also seen, to a lesser extent, to affect solving of a novel 

foraging task. These results demonstrate that factors that affect fine-scale social 

interactions can influence how individuals encounter and exploit resources, and 

suggests that researchers should take into account such social factors when investigating 

how information and behaviour diffuse through populations. 
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Chapter 8. General discussion 

 

8.1 Overall objective 

 

Due to its small size, wide geographical distribution and ease of retaining in the 

laboratory, the threespined stickleback is an excellent species in which to study social 

learning and transmission, and indeed is used as a model species throughout biology. It 

is particularly effective for investigating the transmission of information through 

populations, and how social network structure affects that diffusion, since it is relatively 

straight forward and cheap to establish replicate populations in the laboratory. There are 

a number of studies which provide evidence that both threespined and ninespined 

sticklebacks possess the ability to learn socially under a range of contexts, such as 

foraging, anti-predator behaviour, mate choice, and cooperation. The studies presented 

in this thesis extend these and shed light on the mechanisms. 

The objective of the experiments contained within this thesis was to provide further 

insight into the social learning capabilities of threespined sticklebacks and build upon 

present knowledge with regards to the social learning processes used by the species, the 

contexts under which they are used, and the factors affecting the transmission of 

information through populations. In all these respects, the experiments have been 

successful. 

8.2 Social learning processes 

 

The ability to learn socially can prove advantageous in a dynamic environment, aiding 

in the gathering of relevant and up to date information in order to make informed, 

biologically important decisions, which in turn can affect survival and reproduction. 

There are many different processes by which social learning can occur, including 
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imitation, goal emulation, observational conditioning, local enhancement, stimulus 

enhancement, social facilitation, response facilitation, observational R-S learning, and 

the social enhancement of food preferences. Evidence for some, but not others, of these 

processes is reported in this thesis.  

8.2.1 Social learning processes studied and identified 

8.2.1.1 Delayed local enhancement 

The first experiment, presented in Chapter 3 of this thesis, tested both threespined and 

ninespined sticklebacks in their use of the social learning process of delayed local 

enhancement to select a shelter that previously housed a small shoal of conspecifics. 

Both species were shown to elicit a preference to be in the vicinity of the demonstrated 

shelter whilst it contained the demonstrator shoal during the demonstration phase. 

However, neither threespined nor ninespined sticklebacks showed a significant 

preference for the previously demonstrated end of the tank during the test phase. 

Previous studies (e.g. Coolen et al 2003) however, have indentified the use of the social 

learning process of delayed local enhancement in both species, implying that the 

absence of its use in this instance can be explained by the difference in context under 

which its use was examined (discussed further in section 8.3.1.1). Nonetheless, it is 

perhaps surprising that these fishes should possess the psychological capability for a 

particular social learning mechanism, but not deploy it in a context where it would be 

ostensibly valuable. 

8.2.1.2 The social enhancement of food preferences 

The experiment in Chapter 4 explores the social learning process of the social 

enhancement of food preferences. However, rather than enhancing a preference for a 

particular food, it was shown that threespined sticklebacks will avoid the diet of stressed 
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conspecifics. In circumstances where demonstrator animals exhibit signs of stress, it is 

logical to assume that avoiding performance of their behaviour may be adaptive. While 

there is extensive evidence amongst animals for the social transmission of information 

through which the observer and demonstrator come to exhibit the same behaviour, it is 

comparatively rare for animals to learn from conspecifics what not to do.  

Previous work of mine (Atton 2010) had established that when given a choice between 

two novel foods, rather than display a preference for the demonstrated food, as seen in 

Norway rats (Galef 1983; Galef and Wigmore 1983; Galef 1988; Galef 2005), 

threespined sticklebacks showed no preference for either food type under normal 

laboratory conditions, but displayed a preference for the non-demonstrated food type 

when both demonstrators and observer were under stress. I extended this work in 

Chapter 4 by changing the base colour of the tank between stages 2 and 3 of the 

experiment (stage 2 being the hour directly after the demonstrators had fed and stage 3 

being the hour for which the observer was introduced to the demonstrators). In this way 

it was possible to distinguish that the negative association seen previously by Atton 

(2010) was a result of the observers receiving stress cues from the demonstrators 

alongside the prey-specific cues being excreted in the urine or epidermal mucus of the 

demonstrators that allowed the observers to develop a negative association to the 

demonstrated food. These findings thereby establish a novel mechanism for the 

avoidance of maladaptive information transmission in fishes. By avoiding food types 

associated with conspecific stress cues, an individual may avoid ingesting potentially 

harmful substances, or avoid foraging for a specific prey type that is only found in areas 

of high predation risk.   
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8.2.1.3. Local enhancement 

In Chapters 6 and 7, shoals of threespined sticklebacks were presented with two 

identical foraging tasks and network-based diffusion analysis (NBDA) was applied to 

determine whether the order in which individuals in a social group discovered and 

solved the tasks was affected by the group’s network structure. The use of NBDA 

allowed for a more detailed investigation of mechanisms, which established that social 

transmission could be ruled out, where it might otherwise have been assumed.  

There was strong evidence in both chapters for a social effect on discovery of the 

foraging tasks, with individuals tending to discover a task sooner when others in their 

group had previously done so. However, the same patterns of association did not 

reliably predict the spread of the solution to the tasks, suggesting that social interactions 

affected the time at which the tasks were discovered, but not the latency to its solution 

following discovery. 

In both instances, we find no evidence that this effect is the result of the task location 

being socially transmitted between individuals, since the social effect on “discovery” of 

an arbitrary empty control patch appeared as strong as the discovery of a patch where 

foraging was possible. These findings suggest that an untransmitted social effect 

underlies the observed diffusions - almost certainly the influence of fish on one 

another’s movements. There is evidence for the social learning process of local 

enhancement in both experiments, but in neither case does this support social 

transmission. 

Chapters 6 and 7 illustrate how NBDA can lead to insight into the mechanisms 

supporting behaviour acquisition that more conventional statistical approaches might 

miss. Importantly, they also provide compelling evidence that the spread of novel 
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behaviours can result from social learning in the absence of social transmission, an 

untransmitted social effect on learning. There are a number of previous studies of social 

learning in fish that report social effects consistent with the hypothesis of a mutually 

reinforcing tendency of individuals that have discovered a potential food source to 

remain near that food source and eventually learn to exploit it (eg. Baird et al. 1991; 

Laland and Williams 1997; Day et al. 2001; Webster and Hart 2006). The present 

findings are of particular significance in that they draw attention to the possibility that 

many natural diffusions may similarly result from untransmitted social effects, rather 

than from either social transmission or asocial learning as frequently reported. 

8.2.1.4 Stimulus enhancement 

The social learning process of stimulus enhancement however, was identified as a 

possible explanation for some of the results seen in chapter 6. Unexpectedly, in the two-

task experiment, we found that associating with others that have previously solved one 

option leads to an increased rate of discovery of the remaining option.  Because the two 

tasks were identical, stimulus enhancement of one task may have led to increased 

attention to the other. Given the surprising absence of clear evidence for stimiulus 

enhancement in animals (Hoppitt & Laland 2008, 2013), this finding is of some 

significance. 

8.3 Contexts under which social learning is used 

 

There is a host of evidence to suggest that fish have the capability to utilise social 

learning processes and strategies under a variety of contexts, including mate choice 

copying, migration and orientation, foraging, anti-predator behaviour, and aggressive 

interactions. The experiments in this thesis focused on a foraging context with the 

exception of chapter 3, which looked at the context of shelter choice. 
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8.3.1 Contexts studied  

8.3.1.1 Shelter choice 

As discussed previously, both threespined sticklebacks and ninespined sticklebacks 

were shown to elicit a preference to be in the vicinity of the demonstrated shelter whilst 

it contained the demonstrator shoal during the demonstration phase in the experiment 

conducted in Chapter 3. However, neither threespined nor ninespined sticklebacks 

showed a significant preference for the previously demonstrated end of the tank during 

the test phase, suggesting that neither species used delayed local enhancement to 

influence shelter choice, despite evidence of both species being able to utilise this social 

learning process under a foraging context (Coolen et al. 2003).  It is therefore apparent 

that the use of this social learning process is context specific. This may be due to the 

fact that adequate shelter is likely to be more readily available and easier to locate than 

profitable foraging patches, therefore the adaptation of using delayed local enhancement 

to locate shelter is not sufficiently advantageous to be readily employed under a shelter 

choice context. 

8.3.1.2 Foraging 

The remaining experiments (Chapters 4 – 7) all took place under a foraging context and 

provide significant evidence that social learning impacts upon the foraging decisions of 

sticklebacks in a number of ways. For example, social learning facilitates locating food, 

as seen in Chapters 6 and 7, and provides information on which food type is to be 

consumed, as seen in Chapter 4. 

It is apparent from Chapter 4 that threespined sticklebacks are able to detect and identify 

a specific food type that has been eaten by conspecifics, possibly via amino acids 

excreted in the urine and that they subsequently avoid this food type if the conspecifics 
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that had recently consumed it are displaying signs of stress. The experiment in Chapter 

7 then went on to show that threespined sticklebacks are also able to identify prey types 

consumed by others and use this information with regards to self-referent matching, 

identifying individuals that have consumed the same prey type as themselves, and in 

turn be more influenced by them in their actions and in this case, increasing their 

chances of discovering a food source. In both cases, social information is being 

exploited in a manner that potentially enhances the effectiveness of individual decision 

making, thereby incrementing fitness. 

8.4 Impacts of the social network 

 

With networks now being recognised as present at a variety of biological levels, the 

study of network theory has been utilised widely by biologists (Croft et al. 2008). 

Included in this is the study of the social network structure of a group or population. A 

non-random network structure can be generated by variety of different phenotypic 

factors and the use of network theory provides a number of useful metrics for 

quantifying this social structure. The study of animal social networks also has the 

potential to provide us with a wealth of previously inaccessible knowledge concerning 

the behaviour of animals under a wide variety of contexts including cooperation, disease 

transmission, social structure, and the role of individuals Krause et al. 2007)  

 

The last two experiments in this thesis, Chapters 6 and 7, focused upon identifying 

potential effects of the social network on the transmission of information through a 

population under a foraging context. As discussed above, populations of threespined 

sticklebacks were presented with two identical foraging tasks and NBDA was applied to 

determine whether the order in which individuals in a social group discovered and 
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solved the tasks was affected by the group’s network structure. Even though NBDA 

showed an untransmitted social effect, it was still apparent in Chapter 6 that the spread 

of discovery of the foraging tasks was influenced by groups’ social networks, with 

individuals being more likely to discover a task when others they were more closely 

associated with had previously done so. The social network of a population can 

therefore be said to influence an individual’s foraging success, dependent upon with 

whom they form an association.  

 

In Chapter 7, shoals of threespined sticklebacks consisted of an equal ratio of fish fed 

on one of two diets. Familiarity between shoal members had a clear effect on discovery 

of prey patches. Familiarity was also seen, to a lesser extent, to affect solving of a novel 

foraging task. These results demonstrate that factors that affect fine-scale social 

interactions can influence how individuals encounter and exploit resources, and 

suggests that researchers should take into account such social factors when investigating 

how information and behaviour diffuse through populations. 

8.5 Future studies 

 

8.5.1 Avoidance of maladaptive information transmission  

The findings from Chapter 4 establish a novel mechanism for the avoidance of 

maladaptive information transmission in fishes, with threespined sticklebacks being 

shown to avoid a novel food when that food is associated with the stress cues of 

conspecifics. This is a very interesting finding, as while there is extensive evidence 

amongst animals for the social transmission of information through which the observer 

and demonstrator come to exhibit the same behaviour, it is comparatively rare for 

animals to learn from conspecifics what not to do, leading observing animals to perform 
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different, or opposite, behaviour from their demonstrators. However, in circumstances 

where demonstrator animals exhibit signs of stress, avoiding performance of their 

behaviour may be adaptive.   

It would therefore be beneficial to expand upon this study by searching for this 

mechanism in different species and under different contexts. One such study would be a 

species comparison between threespined sticklebacks and ninespined sticklebacks. 

Differences in the use of social learning mechanisms between these two closely related 

species have already shown to be apparent, with ninespined sticklebacks having been 

shown to be able to utilise public information under a foraging context whilst 

threespines do not (Coolen et al. 2003, 2005). It would therefore be interesting to 

examine whether or not they differ further in other adaptive foraging mechanisms. 

Ninespined sticklebacks have also been shown to utilise public foraging information 

from both conspecifics and heterospecific threespines (Coolen et al. 2003, 2005). It is 

possible that the avoidance of maladaptive information may also be utilised with 

information from heterospecifics. A further study could therefore be undertaken using 

threespined focal individuals and heterospecific ninespined demonstrators and vice 

versa. 

It is also plausible that this mechanism may be widespread in teleost fishes where there 

are social influences on foraging and could be tested for in a variety of species, which 

may provide insight into the evolution of the process. 

8.5.2 Self-referent matching or familiarity? 

Due to the nature of the experimental setup in Chapter 7, it was not possible to 

distinguish whether the observed effect of individuals from one diet group being more 

likely to discover a food source when an individual of the same diet had previously 
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done so was due to self-referent matching, as assumed, or familiarity. For example, 

Griffiths and Magurran (1997a) have shown that guppies have the capability to 

recognise and become familiar with up to 40 other individuals, similar to the number of 

threespined sticklebacks that were assigned to each diet background and cohabited. It is 

possible that threespined sticklebacks share this ability and that the strategy they 

adhered to was copy-the-familiar, rather than being an effect of self-referent matching 

to diet and/or habitat cues. Further studies will need to be carried out to tease apart these 

two possible mechanisms.  

This can be done repeating the experiment, but this time housing the fish in 10 separate 

groups of 7 fish (the number of groups would be dependent upon the number of trials). 

5 of the groups would be fed diet A and the other 5 groups diet B. The test populations 

would then be made up of 1 fish from each group, resulting in 5 unfamiliar fish sharing 

each diet. 

8.5.3 Additional phenotypic factors affecting the discovery of a food source 

In Chapter 6 the phenotype of each study population was manipulated by varying the 

size of fish, with equal numbers of ‘large’ and ‘small’ fish being present in each group. 

Size was not shown to have any impact upon the social network of each population, or 

upon the likelihood of discovering the foraging task(s). In Chapter 7 the phenotype of 

each group was manipulated by diet and/or familiarity, with equal numbers of fish in 

each population being housed separately and fed on one of two diets prior to each trial. 

Whilst this difference in diet and/or familiarity was shown not to have an effect upon 

the social network, it did however, significantly affect the likelihood of an individual 

discovering the foraging tasks, with fish of the same diet being more likely to discover 

the task in succession.  
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Further studies can be undertaken to establish additional aspects of phenotypes that may 

affect the order in which a food source is discovered. Such a study could be based upon 

social learning strategies, with particular attention paid to ‘who’ strategies.   

 

Populations of threespined sticklebacks could be manipulated with regards to a copy-

successful-individuals strategy. This could be carried with regards to either hunger state 

or health, for example by creating populations containing recently fed and starved 

individuals, or by using populations containing parasitised and non-parastised 

individuals. It could be hypothesised that ‘unsuccessful’ individuals may be more likely 

to discover a food source when observing a ‘successful’ individual who has discovered 

it previously than a less successful individual. Likewise copy-kin is also a plausible 

investigation that could be undertaken using the same experimental setup, with 

populations being comprised of groups of related or unrelated individuals. 

 

It would also be interesting to carry out the same experiments using ninespined 

sticklebacks, however, there would be technical difficulties with regards to tagging the 

fish for individual identification, as the dorsal spines on the ninespined sticklebacks are 

significantly smaller than those of the threespines. 

8.6 Conclusions 

 

In sum, in this thesis I set out to provide further insight into the social learning 

capabilities of threespined sticklebacks. I found that a variety of social learning 

processes are used under the context of foraging, and that the use of these processes is 

affected by a number of phenotypic factors and the social network of a population. 
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Appendix 1 

Supplementary Material for Chapter 6 

1.TADA and OADA 

 

Both TADA and OADA variants of NBDA can be expressed, for multiple diffusions in different 

groups, as either: 

 

   ( )     ( )(     ( ))( ∑       ( )

  

   

    (   )) 

Eqn. S1a 

 

In which the rate of social transmission and asocial learning combine additively, or a 

multiplicative model: 

 

   ( )     ( )(     ( ))( ∑       ( )

  

   

  )   (   ) 

Eqn. S1b 

 

Where: 

   ( )is the rate of acquisition (or “hazard rate” in survival analysis terminology) of the trait for 

individual i in group k at time t; 

   ( )is a baseline rate function for individuals in group k; 

   ( )is an indicator variable giving the status of i in group k at time t (1= informed; 0=naïve); 

    is the network connection from j to i in group k; 

s is a parameter giving the strength of social learning (  ; but see section 3, below); and 

    is a linear predictor allowing the modelling of the effect of individual level variables (e.g. 

size) in a manner analogous to a Cox survival model or generalised linear model (GLM); and  

  is the number of individuals in group k. 
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The original TADA (Franz and Nunn, 2009) assumes that    ( )    , i.e. a constant, but 

Hoppitt et al. (2010b) found that this assumption could lead to false positives if    ( ) was 

systematically increasing. This problem can be alleviated if a suitable function can be found to 

model    ( ). OADA, in contrast, makes no assumptions about the shape of    ( ), and 

should therefore be used if a suitable model is not available for    ( ) (Hoppitt & Laland, 

2011). We decided to use OADA since it makes fewer assumptions about the baseline 

acquisition function, though modified as described in section 2. 

Hoppitt et al (2010a) suggested that the multiplicative model might be more appropriate for 

indirect social influences on learning, such as local enhancement(which, in the Discussion we 

suggest to be responsible for some of the observed social effects) and the additive model more 

appropriate for processes that directly result in social learning. Hoppitt et al suggest using the 

relative fit of the additive and multiplicative models to distinguish between direct and indirect 

social influences. However, in a simulation study (Hoppitt, unpublished) we found that there 

was little if any distinguishing power. Furthermore, it seems intuitively obvious that the 

multiplicative model will fit better if individual level variables influence both asocial and social 

learning ability in the same way, even if social transmission is aseparate stochastic process. 

Consequently, we do not attempt to use the additive and multiplicative models to distinguish 

social learning mechanism in the way suggested by Hoppitt et al (2010a). 

2. Modifying OADA for multiple groups 

The form of OADA for multiple diffusions given by Hoppitt et al (2010a) is only sensitive to the 

order of acquisition within groups, and so is not sensitive to between group patterns (see main 

text), i.e. it allows for a different    ( ) for each group. However, we felt it was reasonable to 

assume that there is a common baseline rate function for all groups    ( )    ( ), since 

groups were selected from the same population and diffusions run in identical and constant 

laboratory conditions. We accomplished this by treating the data the order across groups, 
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effectively as a single diffusion, but with zero social network connections between individuals 

in different groups. We did, however, allow for a proportional difference in the rate of 

discovery and solving in each group at any given time, which was considered as an alternative 

explanation to social transmission. This was accomplished by including “group” as a factor in 

the linear predictor    . We then ran additional analyses to determine whether social effects 

followed the social network or whether they operated homogeneously across each group. 
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3. Three state NBDA 

We applied this multistate version of NBDA to the data from a single task experiment, the 

results of which are reported in section 8 below. The model was further expanded to allow for 

two options (tasks), as reported in section 6 below. We expanded NBDA from a two state 

model (naïve->informed) to a three state model (naïve-> discovered non-solver -> solver), 

which allowed us to examine the social effects on each transition. Analysing the rate of 

discovery (naïve->discovered) and solving (naïve -> solver) separately (e.g. Hoppitt et al 2010a) 

fails to fully tease apart the two transitions. The additive model for discovery is expressed 

generally as follows: 

 

     ( )       ( )(     ( ))(   ∑       ( )

  

   

    ∑       ( )

  

   

    (     )) 

Eqn. S2a 

 

And the multiplicative as: 

     ( )       ( )(     ( ))(   ∑       ( )

  

   

    ∑       ( )

  

   

  )   (     ) 

Eqn. S2b 

Where: 

     ( )is the rate of discovery and      ( ) the corresponding baseline function, taken here to 

be      ( )      ( ), see section 2; 

   ( ) remains an indicator for whether i in group k has solved the task prior to time t; 

whereas    ( ) is an indicator for whether i in group k has discovered the task prior to time t, 

regardless of whether i has yet solved the task; 

   is then a parameter giving the social effect of connected individuals who have discovered 

the task on rate of discovery; 

   is then a parameter giving the additional social effect of connected individuals who have 

also solved the task on rate of discovery; and 
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     is a linear predictor as above. 

 

The additive model for solving is then: 

 

     ( )       ( )(   ( )     ( ))(   ∑       ( )
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    (     )) 

Eqn. S3a 

 

And the multiplicative is 

     ( )       ( )(   ( )     ( )) (   ∑       ( )
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Eqn. S3b 

     ( )is the rate of solving for discovered individuals and      ( ) the corresponding baseline 

function, taken here to be      ( )      ( ), see section 2; 

   is then a parameter giving the social effect of connected individuals who have discovered 

the task on rate of solving; and 

   is then a parameter giving the additional social effect of connected individuals who have 

also solved the task on rate of solving; and 

     is a linear predictor as above. 

Note the (   ( )     ( ))term ensures that only individuals who have discovered the task 

(   ( )   ) but not solved it (   ( )   ), are included in the likelihood function for a given 

solving event occurring at time t. 

For all NBDA models, we suggest that individual-level variables included in the linear predictor, 

     , are transformed by subtracting the mean across all individuals. This means that the 

social effects can be interpreted consistently as the increase in rate per unit of network 

connection, relative to the average asocial rate. 

We calculated the likelihood function in an analogous manner to the standard OADA (see 

Hoppitt et al 2010a) or Cox model (Therneau&Grambsch 2000). We used the “exact” method 



146 
 

to correct for ties which sums the log-likelihood across all orders that are consistent with the 

data(Hoppitt et al 2010a, Therneau&Grambsch 2000). Models were fitted using maximum 

likelihood using the nlminb or optim optimisation functions in the R 2.11.1 statistical 

environment (R Development Core Team 2010).TADA using discrete (Franz & Nunn 2009) or 

continuous (Hoppitt et al 2010a) data could also be used to fit the three state model (and two 

option model below) if suitable baseline rate functions,     ( ) and      ( )can be found 

(Hoppitt et al 2010b). 

Hoppitt et al (2010a) suggest reporting a more intuitive parameterisation in which the 

parameter giving the strength of social transmission is bounded between 0 (no social 

transmission) and 1 (all social transmission). It is possible to parameterise the multi-state 

models here such that there is a single such parameter representing the overall importance of 

social learning for each transition, with other parameters giving the relative effect of different 

types of individual (e.g. solvers versus demonstrators). However, we found the models were 

difficult to fit in this parameterisation, meaning we could not get confidence intervals using the 

methods described in section 4 below. Consequently we use the unbounded parameterisation 

here. 

4. Model averaging and unconditional confidence intervals 

Before calculating model-averaged estimates, we dropped any models in which the fitted 

value for any parameter was zero, since this would result in model redundancy (Burnham & 

Anderson 2002). We calculated model-averaged estimates for each parameter using the 

procedure given in Burnham and Anderson (2002). We performed model averaging across 

additive social transmission models and models without social transmission, since the additive 

model was favoured. It makes little sense to average across additive and multiplicative models 

since the s parameters operate on different functions. In every case we calculated across the 
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entire set of such models, since, where are parameter was not present it could be interpreted 

as having a value of zero (Burnham & Anderson 2002). 

Burnham and Anderson (2002) present a method for calculating unconditional standard errors 

for parameters that allows for model uncertainty, which can be used to calculate unconditional 

Wald confidence intervals.  However, we found this method to be misleading since standard 

errors only reflect the local shape of the likelihood function at the maximum likelihood 

estimator (MLE), and so Wald confidence intervals can be misleading where the likelihood 

surface if asymmetrical about the MLE. This is the case for many of our parameters. 

95% confidence intervals can also be constructed using profile likelihood techniques (Morgan 

2009), which involves determining the set of values for a parameter,  , that could not be 

rejected at the 5% level in a likelihood ratio test (LRT) against a model in which   is 

unconstrained. This gives a more accurate picture when the likelihood surface is asymmetrical. 

Burnham and Anderson (2002) propose a method for adjusting profile likelihood confidence 

intervals by increasing the critical value for rejection in the LRT, based on the unconditional 

standard error. We calculated profile likelihoods from the best K-L model and used obtained 

conditional standard errors for each model from the numerical estimate of the Hessian matrix, 

returned by the optim function. 
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5 Two option NBDA 

The full additive models for the two-option extension are: 
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Eqn. S5a 
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Eqn. S5b 
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Eqn. S5c 
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Eqn. S5d 

where: 

      ( )is the rate of discovery of option m by i in group k at time t; 

      ( )is the rate of solving of option m by i in group k at time t; 

    ( )is an indicator for whether i in group k has solved the task using option mprior to time 

t;  

    ( ) is an indicator for whether i in group k has discovered option mprior to time t, 

regardless of whether i has yet solved the task using option m; 

On s parameters, the subscript OS indicates that a social effect is option specific, whereas CO 

indicates that it operates across options (“cross option”). 

 is the effect on discovery rate of option m, on the scale of the linear predictor, of having 

previously discovered the other option; 

 is the effect on discovery rate of option m, on the scale of the linear predictor, of having 

previously solved the other option; 

 is the effect on discovery rate of option m, on the scale of the linear predictor, of having 

previously discovered the other option; 

 is the effect on discovery rate of option m, on the scale of the linear predictor, of having 

previously solved the other option. 

Note the common baseline rate functions across options,      ( ) and      ( ), taken to be 

    ( ) and     ( ) respectively (the same shape across groups). This means that the model for 

discovery takes as data the order of discovery across groups and options, and the model for 

solving takes as data the order of solving across groups and options. The (    ( )  

    ( ))term ensures individuals are only included in the likelihood function for a solving 

event at time t for options they have discovered, (    ( )   ) but not solved (    ( )   ). 
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We calculated the likelihood function in an analogous manner to the standard OADA (see 

Hoppitt et al 2010a) or Cox model (Therneau&Grambsch 2000). We used the “exact” method 

to correct for ties which sums the log-likelihood across all orders that are consistent with the 

data (Hoppitt et al 2010a, Therneau&Grambsch 2000). Models were fitted using maximum 

likelihood using the nlminb or optim optimisation functions in the R 2.11.1 statistical 

environment (R Development Core Team 2010). 
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The full multiplicative models are given by: 
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Eqn. S6a 
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Eqn. S6b 
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Eqn. S6c 
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Eqn. S6d 

6 Models fitted for two-task experiment 

File 2TaskDiscoveryModels.txt gives the list of models fitted for the two-task experiment to the 

rate of discovery transition. File 2TaskSolvingModels.txt gives the list of models fitted for the 

two-task experiment to the rate of solving transition. Both are in tab delimited text format. 

The maximum likelihood estimators are given: where NA indicates a variable was not included 

in a model. The standard errors are also given, calculated from the numerical estimate of the 

Hessian matrix provided by the optima function. 

7 Homogeneous versus network-specific effects 

As explained above, the OADA used here is sensitive to between-group differences in 

discovery and solving times. Consequently, evidence of an effect of network connections to 

other ‘discovered’ and/or ‘solved’ individuals might reflect an effect that operates 

homogeneously amongall individuals in each group, rather than following the social network. 

To tease apart which effect was operating, we fitted alternative versions of models for rate of 

discovery/solving. To reduce the set of models to be fitted, we constrained all models to 

include the effects for which there was more support for than against (>50%). To assess 

whether each social effect operated homogeneously between groups, we replaced the social 

network based with a homogeneous network (connection of strength 1 for individuals in the 

same group, 0 for those in a different group) for each effect. We also allowed for the 
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possibility of network-specific and homogeneous components to each effect (see below). We 

considered both additive and multiplicative models. We calculated the total support for a 

network-specific component for each social effect by summing the Akaike weights for the 

models in which it was present. If such support were strong, it would suggest that the strength 

of connections to other individuals is important, as oppose to the number of individuals in a 

specific state in the same group. 

To assess the evidence for whether each social effect operated via the social network within 

groups, or whether it operated with equal strength between all individuals in a group, we fit 

alternative models in which the social network was replaced with a network that was 

homogeneous within groups. For example, for the option specific effect of total connection to 

discoverers, on the rate of discovery, we replaced 
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Eqn. S7a 

 

with 
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Eqn. S7b 

 

Equivalent to setting all       . We also allowed for the fact that a social effect might have 

network specific and homogeneous component, in which case we instead used the term: 
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Eqn. S7c 

 

Here,the rate of social transmission is linearly related to network connection strength with 

slope        and intercept  ́     . 
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