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Abstract

Pervasive and sensor-driven systems are by nature open and extensible, both in terms of input and tasks
they are required to perform. Data streams coming from sensors are inherently noisy, imprecise and in-
accurate, with di↵ering sampling rates and complex correlations with each other. These characteristics
pose a significant challenge for traditional approaches to storing, representing, exchanging, manipulating
and programming with sensor data. Semantic Web technologies provide a uniform framework for capturing
these properties. O↵ering powerful representation facilities and reasoning techniques, these technologies are
rapidly gaining attention towards facing a range of issues such as data and knowledge modelling, querying,
reasoning, service discovery, privacy and provenance. This article reviews the application of the Semantic
Web to pervasive and sensor-driven systems with a focus on information modelling and reasoning along
with streaming data and uncertainty handling. The strengths and weaknesses of current and projected ap-
proaches are analysed and a roadmap is derived for using the Semantic Web as a platform, on which open,
standard-based, pervasive, adaptive and sensor-driven systems can be deployed.

Keywords: Ontologies, Pervasive Computing, Streaming Query, Uncertainty reasoning, Context
Awareness

1. Introduction

Nowadays computing is pervasive, anywhere and any-time, leading to a profound impact on everyday life. To
begin with, our homes have installed energy monitoring sensors and intelligent systems that automatically
adjust and control heaters based on our behaviours or preferences, aiming at maximising comfort but
also minimising energy consumption [75]. Furthermore, smart home based pervasive assistants can help
elderly people lead independent lives by collecting symptoms-related data and adapting to di↵erent types
of physical and cognitive deficits [20, 32]. Even our phones have evolved into a hub of sensing, computing
and communication, helping us locate featured restaurants, plan a day trip or suggest a transport mode
depending on tra�c conditions and weather information.

Moving beyond individuals, by collectively analysing GPS data acquired from a large number of users
we can identify hot zones within a city, further contributing to tourist recommendations [159] and urban
planning [48]. Outside the cities, sensors can be deployed in remote areas to monitor pollution in landfilled
sites [121] or gather environmental information, in order to accurately control the concentration of fertiliser
in soil [54]. Such remote sensing supports the long-term collection of fine-grained environmental data, which
would be otherwise di�cult or impossible to gather. This is a vital factor in fostering scientific research and
increasing understanding of the environment and all these broad application scenarios are well supported
by the advances in pervasive sensing and communication technologies.

On the other hand, pervasive computing faces the challenge of how to model and reason on such massive
amounts of data and how to facilitate sharing and interoperability across heterogeneous systems and appli-
cations. For example, how can an intelligent tra�c control system e↵ectively use pollution data monitored

Preprint submitted to Pervasive and Mobile Computing January 7, 2015



in a city, in order to design a pollution-free route? Or how can a smart home energy system meaningfully
use tra�c information, in order to predict when a user will arrive home? Consequently, there is a pressing
need for open and standards-based representations that will facilitate integrating information of heteroge-
neous types and modalities, as well as communicating and exchanging information between devices and
components [153].

A suitable solution lies in Semantic Web (SW ) technologies [11], which aim to bring to the table the
ability to formally capture intended semantics and to support automated reasoning, supporting sharing,
integration and management of information from heterogeneous sources. These capabilities satisfy perfectly
all those common requirements in pervasive, sensor-driven and adaptive computing environments mentioned
above. Via explicitly rendering meaning, the Semantic Web tries to facilitate data exchange between sys-
tems and components in an open, extensible manner, maintaining semantic clarity across applications. SW
technologies have demonstrated to successfully address several pervasive computing concerns in a number
of small-scaled and targeted applications, such as representing complex sensor data [93], recognising hu-
man activities [27] and modelling and querying location data across heterogeneous coordinate systems [131].
Additionally, the use of ontologies elegantly supports the cooperation of data sources within an open sys-
tem [129], while ontological reasoning proves useful in manipulating structured conceptual spaces [12, 153].

However, the potential of SW technologies in addressing other key pervasive computing application
requirements is yet to be fully explored. Sensor data typically exhibit heterogeneous modalities and formats,
real-time updating and imperfection. Such data often need to be continuously queried, aggregated to a more
consistent conclusion and abstracted to di↵erent levels of generalisation for di↵erent applications types.
In addition, processing and reasoning on such data are often conducted on resource-constrained devices.
Thus, the key challenges include representing and reasoning on information uniformly across various sensing
technologies, applications, systems and platforms; capturing temporal semantics of data and querying and
applying di↵erent reasoning schemes to highly dynamic data; and, reasoning in the presence of extensive
uncertainty. This survey explores these issues and seeks to answer three questions: (a) to what extent do
existing SW technologies address the requirements? (b) what additional techniques might be needed? (c)
how might the research community address these deficiencies?

The discussion is organised as follows. The background of SW technologies is described in section 2.
Section 3 introduces modelling information and their semantic relations at di↵erent levels of abstraction,
including raw sensor data, well-structured domain information (context), and an atomic concept indicating
a change of state (event). Section 4 introduces di↵erent reasoning mechanisms applied. Section 5 discusses
existing strategies in modelling temporal information, facilitating querying on dynamic data and reasoning
on temporal knowledge, while section 6 discusses the approaches of handling uncertainty. Finally, section 7
identifies challenging research issues that still require further exploration and section 8 concludes the paper.

2. Background of Semantic Web Technologies

The Semantic Web [11] is a resource-oriented extension of the current Web that aims at a common framework
for sharing and reusing data across heterogeneous applications and systems. The rationale is to convert
the currently unstructured and semi-structured collection of Web documents into a ‘web of data’, where
the underlying semantics are expressed in a formal and machine-understandable way. Within this vision,
ontologies play a key role, providing consensual and formally-defined terms for describing resources in an
unambiguous manner.

In 2004, the Web Ontology Language (OWL1) became a W3C recommendation, paving the way for a new
generation of state of the art tools (ontology editors and reasoners) and the proliferation of ontology-based
applications in several domains. Formally founded on Description Logics (DL) [6], OWL is endowed with
expressive representational constructs that allow capturing complex knowledge. At the same time, OWL
avails of well-defined DL reasoning services for a↵ording automated reasoning support. These advantages
furnish OWL with a variety of appealing features within the context of pervasive applications. For example,

1http://www.w3.org/TR/owl-features/
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in OWL one can e↵ectively model and reason over taxonomic knowledge. This is a desirable feature in
pervasive applications, where there is the need for modelling information at di↵erent levels of granularity
and abstraction that will drive the derivation of further successively detailed contexts. Similarly, OWL
supports consistency checking, another useful feature when dealing with imperfect context information
coming from multiple sources.

2.1. Resource Description Framework (RDF)
The Resource Description Framework (RDF 2) provides a directed graph formalisation, with nodes repre-
senting resources and arcs representing properties. Its semantics are prescribed by two ontology languages:
RDF Schema (RDFS ) and OWL. RDFS provides a basic vocabulary for dividing RDF resources into classes
and introduces subClass and subProperty for capturing relations between classes and properties at varying
levels of abstraction. On the other hand, OWL, as discussed later, provides a richer ontology language
that supports expressing functional, transitive and inverse properties, equivalent properties and classes, and
cardinality restrictions on the structure of class members.

For sensor-driven systems, the benefits of these technologies emerge directly from their formality. RDF’s
use of Uniform Resource Identifiers (URIs) in identifying concepts and properties, combined with OWL’s
support for modelling equivalent classes and properties, allows determining whether lexically identical terms
share the same meaning, or if two lexically di↵erent terms are synonyms or not. This formality has several
advantages: (a) there is no single authority responsible for engineering ontologies or producing data; (b)
entities may be described by combining concepts from di↵erent ontologies; (c) combining both ontologies
and data from multiple sources is straightforward.

Another benefit is domain-neutrality. RDF supports the representation of information across disparate
application domains, unifying all data under a single model. Also, data across di↵erent components in a
system and across di↵erent systems is seamlessly merged [26]. This can be contrasted to traditional database
schemata, where terms and relations have no prescribed semantics, and XML Schema, which is concerned
with the hierarchical structure of data elements and not with capturing the underlying relations.

Technologies for managing RDF stores exist in the form of SPARQL3 and SPARQL Update. SPARQL
supports queries consisting of triple patterns, conjunctions, negations and disjunctions, while SPARQL
Update supports the conditional insertion and removal of triples from an RDF store. Similarly to relational
databases, there exist various tools supporting RDF-graph level manipulations or providing services to map
RDF concepts to programming language type systems. Some representative examples are: Jena [84], OWL
API [66] and RDFReactor [147].

A further RDF benefit is that an environment model can build upon, and interlink with, existing ontology-
based domain knowledge through the principles of Linked Data - a set of best practices for exposing, sharing,
and connecting pieces of knowledge on the SW [16]. The premise of Linked Data is that by using URIs
and RDF to link to data sources, a semi-structured web of ontologically-represented data emerges that can
be navigated and explored. Thus, Linked Open Data provides a structured means for accessing data from
existing ‘non-pervasive’ sources and integrating it with existing RDF representations (or via an RDF wrapper
for legacy data sources). This has particular potential for bootstrapping systems with the knowledge held
by myriad social information sources on the web [117, 127].

2.2. OWL and OWL 2
OWL’s design is strongly influenced by Description Logics (DL) [6]. DLs are a family of knowledge

representation formalisms characterised by logically grounded semantics and well-defined reasoning. The
main building blocks are concepts representing sets of objects (e.g. Person), roles representing relationships
between objects (e.g. worksIn), and individuals representing specific objects (e.g. Alice). Starting from
atomic concepts, such as Person, arbitrary complex concepts can be described through a rich set of con-
structors that define the conditions on concept membership. For example, the concept 9hasFriend.Person
describes all those individuals that are friends with at least one person.

2http://www.w3.org/RDF/
3http://www.w3.org/TR/sparql11-query/
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OWL comes in three dialects of increasing expressive power: OWL Lite, OWL DL and OWL Full. The
first two languages can be considered as syntactic variants of the SHIF(D) and SHOIN (D) DLs, respec-
tively. The third and most expressive language is designed to provide full compatibility with RDFS. It
neither imposes any constraints on the use of OWL constructs, nor lifts the distinction between instances
(individuals), properties (roles) and classes (concepts). However, the price for this high degree of expres-
siveness is the loss of decidability that makes the language di�cult to implement. As a result, the focus lies
on the two decidable dialects, and particularly on OWL DL.

Nevertheless, despite the rich primitives provided for expressing concepts, OWL DL has often proven
insu�cient to address the needs of practical applications [55]. Furthermore, OWL can model only domains
where objects are connected in a tree-like manner [89]. This constraint can be restrictive for real-world
applications, including the pervasive domain that requires modelling more generic relational structures [154].
Responding to these as well as to other drawbacks concerning the use of OWL in di↵erent application
contexts, the W3C working group has introduced OWL 2 [55]. OWL 2 (equivalent to the SROIQ(D) DL)
is a revised extension of OWL, now commonly referred to as OWL 1 . OWL 2 extends OWL 1 with qualified
cardinality restrictions; hence for example, one can assert that a social activity is an activity that has more
than one actors: SocialActivity v Activity u � 2 hasParticipant.Person. Furthermore, it is possible
to define properties to be reflexive, irreflexive, transitive, and asymmetric, and to define disjoint pairs of
properties, thus providing extended support for capturing mereology relations (i.e. the study of part-whole
relations). Three profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL, trade portions of expressive
power for reasoning e�ciency, targeting di↵erent application scenarios.

Another prominent OWL 2 feature is the extended relational expressiveness provided through the in-
troduction of complex property inclusion axioms (property chains). To maintain decidability, a regularity
restriction is imposed on such axioms disallowing the definition of properties in a cyclic way. Hence, one
can assert the inclusion axiom locatedIn � containedIn v locatedIn, making it possible to infer that if a
person is located, for example, in the Engineering Department of the University, then she is located in the
University as well.

2.3. Reasoning
Besides formal semantics, DLs come with a set of powerful reasoning services that are based on e�cient,
sound and complete reasoning algorithms, with well-understood computational properties (e.g. tableaux-
based algorithms [7]). State of the art implementations include Racer [60], Hermit [92], Pellet [124] and
Fact++ [144]. DL reasoning services typically include subsumption, satisfiability, consistency, instance
checking and realisation. Through subsumption one can determine whether concept A subsumes concept
B, i.e. whether description of A is more general than the description of B, deriving the implicit taxonomic
relations among concepts, for example that Room subsumes OccupiedRoom. Satisfiability checking leads
to identifying concepts for which it is impossible to have members under any interpretation; a sample
unsatisfiable concept, though trivial, is OccupiedRoom u ¬OccupiedRoom. Consistency checking allows
identifying whether the set of assertions comprising the knowledge base is admissible with respect to the
terminological axioms. For example, if EmptyRoom and OccupiedRoom are asserted as disjoint concepts, then
the presence of both OccupiedRoom(kitchen) and EmptyRoom(kitchen) leads to inconsistency. Instance
checking denotes the task of determining whether a specific individual is an instance of a given concept,
whereas realisation returns all concepts from the knowledge base that a given individual is an instance of.

Falling under the Classical Logics paradigm, reasoning in DL (and hence in OWL) adopts the open-world
assumption. Intuitively, open-world semantics assumes that we do not have complete information about
the world, providing an elegant way of modelling incomplete information. This assumption is well-suited
for sensor-driven systems, where information may be incomplete due to sensor inaccuracies or imperfect
observations. For example, if the only available knowledge regarding the residents of a house is the assertion
livesIn(Alice,house), we cannot deduce based on it alone that no one else lives in the house. In contrast,
formalisms adhering to the closed-world assumption make the common-sense conjecture that all relevant
information is explicitly known, so all unprovable facts should be assumed not to hold. In our example, this
would lead to the conclusion that Alice is the sole resident of this house.
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2.4. Combining Ontologies and Rules
To achieve decidability, OWL trades expressiveness for reasoning e�ciency. The tree-model property, men-
tioned above, is one such example; as a result, it is not possible to describe classes whose instances are
related to an anonymous individual through di↵erent property paths . To leverage OWL’s limited relational
expressiveness and overcome modelling shortcomings that OWL alone would insu�ciently address, research
has been devoted to the integration of OWL with rules. User-defined rules on top of the ontology allow
expressing richer semantic relations that lie beyond OWL’s expressive capabilities and couple ontological
and rule knowledge.

A proposal towards this direction is the Semantic Web Rule Language (SWRL) [67], in which rules are
interpreted under the classical first order logic semantics. Via allowing concept and role predicates to occur
in the head and body of a rule, SWRL maximises the interaction between OWL and rule components, but at
the same time renders the combination undecidable. To regain decidability, proposals have explored syntactic
restrictions on rules [91, 116] as well as their expressive intersection [56]. The DL-safe rules introduced in
[91] impose the application of rule semantics only over known individuals. It is worth noting that in practice
DL reasoners providing support for SWRL actually implement a subset of SWRL based on this notion of
DL-safety. Parallel to these e↵orts, a highly challenging and active SW research area addresses the seamless
integration of open and closed world semantics. Representative initiatives in this quest include the hybrid
formalism of Minimal Knowledge and Negation as Failure (MKNF ) knowledge bases [90], the extension of
ontologies through the use of integrity constraints and the grounded circumscription approach.

Taking a di↵erent perspective, a number of approaches have investigated combining ontologies and rules
based on mappings of a subset of the ontology semantics on rule engines. For instance, [139] defines a
weakened variant of OWL Full, according to which classes can also be instances and are extended to apply
to a larger subset of the OWL vocabulary. Inspired by the previous approach and DLP [56], the semantics
of the OWL 2 RL profile is realised as a partial axiomatisation of OWL 2 semantics in the form of first-
order implications, known as OWL 2 RL/RDF rules. Especially for the case of sensor-driven systems in
the pervasive domain, expressing rich semantic relations is essential. The reason lies in the fact that the
derivation of high-level knowledge from low-level sensor data requires relational structures that capture the
interrelation of various pieces of information in terms of time, location, actors and resources.

2.5. Summary
This section has introduced the basic notions underlying the Semantic Web and provided a brief overview

of key technologies empowering the envisaged knowledge sharing and reuse across heterogeneous environ-
ments. Expressive ontology languages allow the elegant capture of complex knowledge and its semantics
in a formal way, rendering it amenable to automated reasoning tasks with well-understood computational
properties. Rules augment further the expressive capabilities, by allowing the representation of richer se-
mantic relationships. Table 1 summarises the advantages and disadvantages of the formalisms presented in
this section with respect to reasoning complexity, expressivity and suitability in application domains.

Given the inherently open nature of pervasive, sensor-driven systems, where a crucial requirement is the
need to aggregate low-level context information and meaningfully integrate domain knowledge, it comes as
no surprise that SW technologies have been acknowledged as a↵ording a number of highly desirable features.

3. Modelling Sensor Data, Context and Events

Information within a pervasive sensor-driven system may include raw sensor data, context, domain knowledge
and events. Raw sensor data can be abstracted into relations of well-structured concepts, called context,
which describe properties of an environment or a user, such as Location, Time, Person and Resource.
Context associates concepts in each domain with particular properties and relationships and, thus, provides
a uniform way of representing sensor data. This makes the latter sharable and re-usable between di↵erent
systems, regardless of the heterogeneity and complexity of the underlying sensing technologies. If we consider
a context representing a state of an environment, an event indicates a change in the state that should be
identified, processed and managed by the system, in order to deliver personalised services to users; e.g. an
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Table 1: Advantages and disadvantages of the formalisms presented in Section 2

Advantages Disadvantages
RDF reasoning e�ciency limited expressivity

OWL Full highest expressivity non-decidable
OWL DL high expressivity high computational complexity

OWL 2 DL higher expressivity than OWL DL high computational complexity
OWL 2 EL low computational complexity, handles

e�ciently ontologies with large number
of classes and properties

low expressivity

OWL 2 QL handles e�ciently very large volumes of
instance data, fast query answering

moderate expressivity

OWL 2 RL scalable reasoning without sacrificing
too much expressive power, can be eas-
ily implemented using a standard rule
language

less scalable than EL

SPARQL W3C standard, supported by the ma-
jority of RDF repositories

limited availability of tools for
supporting users (e.g. SPARQL
query editors)

SWRL high expressivity (higher than OWL
DL)

not a standard, non-decidable

DL-Safe rules decidable, supported by reasoners less expressive than SWRL (han-
dles only known individuals)

event of ‘a user having a heart attack’ might trigger an application of calling an ambulance. An event can
be conceptually defined as an action or occurrence that happens at a certain time within an environment
and is described through basic elements such as when, where, what, and who.

Providing a commonly-agreed vocabulary to represent sensor data, context and events is important for
making them understandable, sharable and interoperable across di↵erent systems and platforms. Such a
vocabulary needs to be su�ciently rich to represent properties, structures and relationships among informa-
tion, thus, facilitating querying, personalising and further processing of data, as well as their sharing and
reuse. Additionally, this common vocabulary can be used for semantically annotating data and ‘meaning-
fully’ relating it to other data. In the following sections we will discuss to what extent SW technologies have
contributed to providing such a vocabulary to model sensor data, context, and events.

3.1. Sensor and Sensor Data modelling
Pervasive sensors have exhibited heterogeneity in multiple aspects in that they produce di↵erent values,
with di↵erent data schemas, precision or accuracy, and in di↵erent units of measurement [23]. Heterogeneity
leads to significant di�culty in integrating and querying data over multiple sensor networks. The main
contributions of SW technologies to modelling sensor data are providing uniform syntactic representations,
enhancing their semantic meaning from their associated domain concepts, reasoning over sensor data to
derive new knowledge, and facilitating querying over live sensor streams. The following subsections focus
on the first two topics, while reasoning is further discussed in section 4.

3.1.1. Uniform Syntactic Representation
There exist small-scale sensor ontologies serving as uniform syntactic representations for a particular domain,
for example Sensory Data Set Description Language (SDDL) [68] and ontologies in PI [156] for representing
data sets collected from sensors deployed in smart home environments. These ontologies mainly aim towards
facilitating sharing and reusing data between researchers. SDDL is an XML-encoded description language
for specifying sensors, actuators, data set parameters, and sensor events. PI, modelled in OWL, represents
sensor observations and links each field to the domain ontologies; for example Location, Domain and Object.
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Each sensor type is associated with a domain that describes what is measured (e.g. acceleration or gas
usage), and a technical specification that includes its manufacturer, model, size, deviation of readings (e.g.
‘a maximum precision of ± 1.5% full scale’ for a gas flow sensor), its sampling frequency and a number of
valueRange parameters – boundary values that characterise di↵erent states. These values may come from
the manufacturer or through the application of learning techniques. It supports deriving high-level context
from raw sensor readings; e.g. a context stoveOn is inferred if the gas sensor on the stove has a reading
greater than a threshold.

[stoveOnRule:
(?A sensor:domain "GAS"),
(?A sensor:value ?B),
(?A sensor:object ?C),
(?C rdf:type :Stove),
ge(?B "1"^^xsd:double)

-> createClassification(?A, "stoveOn")]

A more generic framework for sensor data modelling and encoding is the Sensor Web Enablement group
(SWE ) [136] proposed by the Open Geospatial Consortium (OGC ). SWE specifications include three core
languages: Sensor Model Language (SensorML), Observations & Measurements (O&M ) and Transducer
Model Language (TransducerML). These languages provide standard models and XML schemas for encoding
sensors, sensor networks, processes, and sensor observations, etc. These specifications o↵er the following
advantages: (a) a standardised communication and interaction with arbitrary types of sensors and sensor
systems; (b) availability of sensors over the Web through well-defined formats and Web service interfaces; (c)
concealment of the sensor communication details and the heterogeneous sensor protocols from applications
working on top of these services [22]; (d) standardisation of the discovery, exchange and processing of sensor
observations [21]. However, these specifications are mostly based on XML data, which lacks the support of
semantic interoperability and of linking the described resources to the existing knowledge [150].

3.1.2. Semantics Enhancement
In order to extract new knowledge from raw sensor data, we need to enhance the latter with semantics.
This research has been developed through several stages, from relating sensor ontologies to domain ontolo-
gies [119], to focusing on analysing spatial, temporal and thematic semantics of sensor data [150] and to
applying the Linked Data principle [70] (see section 2.1) when more and more public ontological sources are
available. OntoSensor [119] is one of the early works, built on SensorML (see 3.1.1), the IEEE Suggested Up-
per Merged Ontology (SUMO)4 and ISO 19115. It is a comprehensive deep sensor ontology, which includes a
domain theory expressed in a language constructed using the functional and relational basis sets to support
ontology-driven inference. It is able to capture sensors’ computing and communication capabilities and their
percept attributes that are used to store measurements of physical phenomena, and detection, classification
and tracking of physical objects. OntoSensor also includes more advanced inference mechanisms that can
be used for synergistic fusion of heterogeneous data.

Semantic Sensor Web (SSW ) [123] enhances the meaning of sensor observations by adding semantic
annotations to SWE standards (see previous subsection), such as spatial, temporal and thematic semantics.
The spatial metadata refers to sensor location and data in terms of a geographical reference system, local
reference, or named location. The temporal metadata refers to the time instant or interval when the sensor
data is being captured, while the thematic metadata describes a real-world state extracted or abstracted
from sensor data.

Following SSW’s idea of semantic annotation, the Linked Data principle presents a more generic approach
by creating RDF links between sensor data and concepts on the Semantic and Social Web [70]; that is, the
concepts published by authoritative sources (e.g. DBpedia) or user-generated content (e.g. tags) on the
Social Web. Such annotation enables reasoning over the sensor and the linked data to provide advanced

4http://suo.ieee.org/SUO/SUMO/SUMO_173.kif
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sensor data query and retrieval functions. Janowicz et al. [70] present a Linked Data model and a RESTful
proxy for the OGC Sensor Observation Service to improve integration and interlinking between sensor
observations for the digital Earth. This RESTful proxy is used to assign meaningful identifiers to sensor
data and to directly publish the raw data on the web. A Semantic Enablement Layer is implemented
to encapsulate SW reasoners and repositories within the OGC services (see 3.1.1) and thus, to enable a
transparent and seamless integration of SW technologies with the Spatial Data Infrastructure.

More sensor ontologies can be found in relevant reviews by W3C and Compton et al [31]. The W3C
Semantic Sensor Network Incubator group developed the Semantic Sensor Network (SSN ) ontology [30].
It provides a formal and machine-processable representation of sensor capabilities, properties, observations
and measurement processes, to aid in searching, querying, and managing sensor networks and their data.
Central to the ontology is the Stimulus-Sensor-Observation (SSO) ontology design pattern that provides a
lightweight model for representing sensors, their inputs (called stimuli) and observations. SSO is re-usable
for a variety of application areas and it can be used in conjunction with other relevant ontologies. Both
SSN and SSO have been aligned with the DOLCE+DnS Ultralite (DUL) ontology [51], in order to facilitate
the integration into more complex ontologies as a common ground for alignment, matching, translation, and
interoperability.

3.1.3. Analysis

Table 2: Sensor Data modelling

Requirement Techniques

Syntax Light-weight, small-scale [68, 156]
all-encompassing, standard SWE [136]

Semantics
Relating to domain ontologies [119]

Semantic annotation SSW [123]
Linked Data [70, 150]

Conclusively, the sensor- and observation-centric ontologies presented above have evolved from a syntactic
to a semantic and knowledge model. Table 2 presents an overview. SDDL and PI tend to share and reuse
sensor data sets by describing sensors and data in a light-weight syntactic model. PI supports classifying
raw sensor data into high-level context through user-specified rules. SDDL and PI focus on data and are
relatively easy to adopt, while more standard solutions like SensorML aim to standardise interfaces for
services and description languages for sensors and their processes to enable syntactic interoperation.

At the same time, various sensor ontologies have been developed to derive knowledge from raw sensor
data. One of the first initiatives, OntoSensor, supports ontology-driven inference by combining the domain
conceptual model with the syntactical standards. SSW applies a more generic analysis on semantic di-
mensions of sensor data, distinguishing spatial, temporal, and thematic aspects. The principle of Linked
Data seems as a promising approach to enhance semantics of raw sensor data by linking them to domain
concepts on other standard resources. In fact, the generic ontologies like SensorML and SSN must be re-
conceptualised, re-defined, combined, or extended with other domain ontologies, so that they can be reused
in a particular application domain. In summary, sensor ontologies are moving towards a deeper knowledge
model to express and automatically create a composition of processes of sensors and sensor data.

3.2. Context modelling
The applications encompassed by the broad notion of pervasive computing are vastly heterogeneous in nature
and broad in their data requirements and scope. Hence, in an open environment it is impossible to define
a ‘complete’ model of content, without a priori knowledge of the applications that will use it. However, a
large number of applications exhibit overlapping data requirements, the most common of which are the need
to represent time, location, actors and resources. These neatly correspond to the notions of when, where,
who, and what.

8



3.2.1. When - Time
Temporal features play a key role in enhancing entity descriptions within a pervasive environment. For
example, representing the time at which an event takes place, the frequency with which a sensor samples
the environment (e.g. every 10 seconds), or the expected duration of an activity (e.g. 30 minutes). Here,
we must also consider semantically meaningful notions of time, which may have an exact (e.g. Monday
morning, Christmas) or fuzzy (e.g. lunch time, trip duration) correspondence to physical time.

The most common representation for physical time is the ISO 8601 standard [69], which is based on the
Gregorian calendar, and provides a lexical format for modelling dates, times, durations, time intervals, and
time zones. For example, 2012-05-10T09:32BST represents the time of 9:32am on the 10th of May, 2012 in
British Summer Time. A subset of the lexical formats defined in this standard is adopted by XML schema,
and is further adopted by RDF as a means for typing date literals. Given any two temporal features, there
exists a relationship between them that we may also wish to model. Instants are related to intervals by the
notion of containment, while Allen’s temporal calculus [1] defines the following seven relationships between
time intervals

• during(t1, t2): time interval t1 is fully contained within t2 ;

• starts(t1, t2): time interval t1 shares the same beginning as t2, but ends before t2 ends;

• finishes(t1, t2): time interval t1 shares the same end as t2, but begins after t2 begins;

• before(t1, t2): time interval t1 is before interval t2, and they do not overlap in any way;

• overlap(t1, t2): interval t1 starts before t2, and they overlap;

• meets(t1, t2): interval t1 is before interval t2, but there is no interval between them, i.e. t1 ends
where t2 starts;

• equal(t1, t2): t1 and t2 are the same interval.

and their inverses (contains, startedBy, finishedBy, after, overlappedBy, and metBy) for a total of thirteen
relationships (equals being its own inverse).

The W3C OWL-Time ontology5, which provides a vocabulary for Allen’s thirteen temporal relations, uses
XML Schema’s dateTime formats, but also provides its own component based on DateTimeDescription
that can express additional information (e.g. ‘day of week’ and ‘day of year’) for facilitating the mechanical
extraction of and reasoning on this information. However, note that as a temporal relationship is formed
by each pair of temporal entities, it is impractical to manually specify or concretely realise these in any
data model of notable size. This indicates a need for special consideration when evaluating these temporal
predicates as part of a query.

Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) [25], one of the well-known
ontologies in pervasive computing, supports a formal way to model context and thus provides rich semantics
for programming. It borrows terms from other standard domain ontologies such as FOAF6, DAML-Time [65],
OpenCyc [80], RCC [19], and the Rei Policy [73] Ontology. SOUPA’s temporal predicates are based on
DAML-Time (predecessor of OWL-Time). On the other hand, Ontonym [129], a set of upper ontologies
that represent core concepts in pervasive computing, adopts OWL-Time directly in its modelling of temporal
concepts. Temporal concepts may be directly mapped to the top level ontologies discussed. Although it is
possible to represent all the temporal relations, only a subset of the relations map to the properties of the
underlying model (e.g. during or overlap) upon which standard inference is performed.

5http://www.w3.org/TR/owl-time/
6http://xmlns.com/foaf/spec/
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3.2.2. Where - Location
Location information provides a means of invoking application behaviour based on the real world positioning
of users and artefacts. Location information has a number of possible representations, ranging from absolute,
to relative, and to symbolic, all of which can be related, and with specific forms more appropriate than others
for any given application [42]. Location is often regarded as the most important type of context, and related
models and query frameworks have been already extensively researched, before the emergence of the Semantic
Web (e.g. [71, 108]).

The CONtext ONtology (CONON ) [57] is a context model that encompasses a common upper ontology
for the general concepts in pervasive computing as well as domain-specific ontologies that apply to di↵erent
subdomains like smart homes. Aspect-Scale-Context (ASC ) is a contextually based model [134]. A context
is a set of contextual information characterising entities (like a person, place, or a general object) relevant
for a specific task in their relevant aspects. An aspect is a classification, symbol- or value-range, whose
subsets are a super-set of all reachable states, grouped in one or more related dimensions called scales. For
example, ‘GeographicCoordinateAspet’ is a location aspect, which may have two scales ‘WGS84Scale’ and
‘GaussKruegerScale’. A piece of contextual information is an object instance under a certain scale, e.g. new
GaussKruegerCoordinate("367032", "533074"). As presented, the ASC’s location ontologies are mainly
used for modelling spatial positions in these coordinate systems and for representing distances between
positions. In contrast, the primary goal of the CONON location ontologies is to di↵erentiate between indoor
and outdoor spaces.

More comprehensive is SOUPA’s location ontology, which is formed through the conjunction of two
existing location vocabularies, OpenCyc [80] and Region Connection Calculus (RCC ) [19]. OpenCyc sup-
ports the symbolic representation of spaces, while RCC provides a set of spatial relations (e.g. overlap,
disconnection, and tangental part) that may hold between two regions – essentially the location equivalent
of Allen’s temporal relations discussed above. Ontonym adopts a simpler spatial relation model, supporting
only containment, overlap, and adjacency. It supports multiple coordinate systems (based on the coordinate
translation scheme of Jiang et al. [71]) and incorporates a notion of relative positioning between entities
based on compass directions and distance. An API (Application Programming Interface) is also provided
for querying the position of entities and for generating paths between two points in the model [131].

3.2.3. Who - Person/Agent
This context type broadly relates to the actors in a pervasive system, which are typically people or agents
whose identities are manifest by software. The data representation requirements associated with these
entities are usually application-specific, and focus on the role played, or interactions expected of an entity
in a scenario. The CONON person ontology is tightly-coupled to its application o↵erings and provides a
small vocabulary for describing a person’s name, age, and situation. FOAF is an ontology centred on linking
people not only through social relationships, but also networks of human collaboration and interests. SOUPA
builds upon FOAF to support the expression of human profile information (name, age, and contact details),
and MoGATU BDI [104] to support the description of agent state – their beliefs, desires, and intensions. On
the other hand, Ontonym’s person vocabulary is based on a subset of terms from vCard7, W3C PIM 8 and
FOAF, and provides support for modelling date of birth, gender, language, and contact profiles, postal
and email addresses, telephone and fax numbers, and web presence. Ontonym provides a component-based
name model that supports the semantic modelling of name terms (e.g. ProfessionalTitle, GivenName,
and PatronymicName), and borrows from Davies and Vitiello’s relationship vocabulary for FOAF to define
social relations between people covering genetic, working, romantic, residential, and friendship connections.

A recent trend is towards applications that use the information available about the social relations or
shared interests between groups of people – collectively, their social context – as a primary driver in adapting
application behaviour. Biamino [13] posits that objects in a pervasive environment should have the capability
to detect users and the social connections between them, should be able to infer a group’s social context

7http://www.w3.org/2006/vcard
8http://www.w3.org/2000/10/swap/pim/
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according to its network structure (i.e., its size and density of social relationships), and correspondingly
provide a context-driven output.

Kourtellis et al. [76], Toninelli et al. [143] and Kabir et al. [72] all develop social context management
frameworks, intended as a basis for developing socially-aware applications, that draw data from social media
platforms (e.g., Facebook, LinkedIn, and Twitter), with the common aims of providing: i) a semantically rich
repository of social relation data, ii) an ontology-based modelling substrate for representing either “object-
centric” relationships (based on common interest), “people-centric” relationships (formal and declarative),
or both, iii) a uniform API for accessing the social data, and iv) socially aware access control to the managed
data.

Of these frameworks, the Social Context Information Management System (SCIMS) of Kabir et al. [72]
supports both object- and people-centric relations. SCIMS is based on a core upper ontology that defines
four first-class entities: Person, SocialRole, Relationship, and CurrentStatus, and domain specific
ontologies that extend from this. For example, relationship models for Family, Work, and CommonInterest,
each with further refinements (e.g, work relations for an educational institution are further specified as
Student-Teacher, Student-Supervisor, or Colleague). Role based access control policies use the model
concepts to define under which conditions information about a given resource is accessible.

3.2.4. What - Resource
Given that the term resource is itself generic, the lack of an all-encompassing vocabulary for describing
resources is not surprising. A resource may refer to anything not otherwise explicitly modelled in a particular
pervasive system, for example, a device, an image, a document, a physical object or a virtual artefact. While
the properties of a resource might be application-specific in nature, resource descriptions might draw from
multiple ontologies. For example, FOAF provides some general terms for describing images, documents, and
projects, the Dublin Core Metadata Initiative (DCMI 9) vocabulary provides terms for describing aspects of
resources such as their creators, representation format, and licensing, and the GoodRelations ontology [64]
provides an e-commerce vocabulary for describing products and services.

3.2.5. Movement and Trajectory
With the increasing popularity of GPS-equipped devices, it becomes very convenient to collect the posi-

tioning data about human, animals, cars and ships. Thus, the research on movement analysis and trajectory
discovery have gained lots of attention during the past few years. Various machine learning and statistical
techniques have been applied to extract meaningful trajectory patterns, however, often these patterns are ei-
ther too di�cult to explain or understand, or too far away from the real need of applications [152]. Ontologies
have been applied to try to compress and abstract raw GPS data into higher-level qualitative information.
One strand of research is to represent a trajectory into a sequence of stops and moves [61, 125, 152]. These
models focus on stops or points (or areas) of interest; for example, one trajectory can be represented as
hBuilding1, t1i ! hRoom1, t2i ! hRoom2, t3i [152]. With the help of geographic and application knowledge,
higher-level application queries can be answered, such as “how many cars visited a gas station today”.

Another strand of research is to use association rules to extract dynamic characteristics from raw GPS
data, such as acceleration and speed. Based on them, a set of motion patterns can be described such as
stand still – no perceivable movement, steady motion – movement with unchanged speed, positive
acceleration – movement with increasing speed, negative acceleration – movement with decreasing
speed, positive course change – movement with the course angle changing over a certain degree, and
negative course change – movement with the angle changing less than a certain degree. With this
taxonomy, the raw GPS data can be compressed into a sequence of motion patterns, which will be more
straightforward to be used by high-level applications. The computation of these patterns are still based on
statistical methods, such as a simple threshold based motion calculation [109] or piecewise linear algorithm [2,
94].

9http://dublincore.org/documents/dcmi-terms/

11



3.2.6. Analysis
This section evaluated the way in which the most common elements of context in pervasive computing are
represented. While one can adopt to a degree a single, shared temporal and location model, upon which event
descriptions are based, the specification of the actors and resources in a pervasive environment still remains
highly application-specific. Where the need to model particular features of such entities occurs separately
(i.e. using separate vocabularies), the promise of Linked Data [16] plays a critical role in supporting the
integration of entities with diverse descriptions across applications and environments. Table 3 lists the most
commonly adopted ontologies in pervasive communities.

Table 3: Most commonly adopted ontologies in context modelling

Context Type Ontologies
When DAML-Time, W3C OWL-Time
Where OpenCyc, RCC
Who vCard, W3C PIM, BDI, FOAF
What FOAF, DCMI

Beyond the above four primitive types of context, we have also introduced a higher-level type of context
– movement and trajectory. From the mentioned work, we have seen that there exists few work on providing
semantic representation for raw GPS data, which is often too bulky and thus ine�cient to process and query.
Most semantic work focuses on abstracting the raw movement data into trajectory patterns with qualitative
information. Geographic and application knowledge can be applied to enrich the trajectory and thus answer
higher-level application queries.

3.3. Event modelling
The e�cient representation and processing of events is an important and challenging task in pervasive
environments. In most cases, only a small number or a combination of raw primitive events that are generated
directly by the sensors or after low-level data processing is of real interest. However, the recognition of
high-level, real-world complex events, such as situations and human activities, often requires incorporating
expressive domain knowledge that would enable further correlation of events and multi-modal information
beyond predefined patterns and attributes.

In order to overcome the above limitations, research e↵orts have focused on the definition of ontology-
based event models. Ontologies are used in this context as common vocabularies for representing knowledge
relevant to events and their inter-relationships. At the same time, they assist in solving interoperability
problems and providing the means for high-level event interpretations based on ontology reasoners (see
section 4). This section reviews existing domain-independent ontologies for event modelling, presenting the
di↵erent design patterns and expressive capabilities they provide.

Almost all the event ontologies support representing the three key aspects of an event: when and where
an event happens and optionally who is participating in the event. Generally an event is defined as a generic
concept and links with temporal, spatial, and actor ontologies (as introduced in section 3.2) via corresponding
properties. For example, in Simple Event Model (SEM ) [146], the class sem:Event is associated with
sem:Actor, sem:Place, and sem:Time. Each of these core classes is associated with the sem:Type class
that is used to aggregate implementations of type systems from other ontologies promoting for re-usability
of existing type vocabularies.

An event can also be modelled hierarchically. In SOUPA [25], an event is a generic concept and the spatial
and temporal aspects are modelled as a subclass of both soupa:Event and soupa:SpatialTemporalThing.
In Ontonym [129], an event is defined as the union of the ontonym:InstantEvent and ontonym:Inte-
rvalEvent classes that are used to model events that occur instantaneously or over a time period, respec-
tively. These two classes are further extended with location ontologies to represent the spatial aspect of an
event; that is, ontonym:SpatioInstantEvent and ontonym:SpatioIntervalEvent. Their di↵erent ways of
modelling the when and where aspects of an event have been depicted in Figure 1.
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EventSpatialTemporalThing

TemporalThing SpatialThing

SpatialTemporalEvent

SOUPA Event Ontologies
Ontonym Event Ontologies

Figure 1: Event Ontologies in SOUPA and Ontonym

Who is modelled when an event involves an active actor which can be a person, device, resource, object,
or even an agent. In Ontonym, the property ontonym:containsRole identifies the types of roles that can
be taken in an event and the ontonym:playsRole property is used to associate an entity with an event. The
Event Ontology (EO)10 uses eo:agent to represent actively participating agents. There exist rich semantic
relationships between events. Event-Model-F follows the descriptions and situations ontology design pattern
(DnS) [52], introducing six design patterns for modelling various aspects of events. The Participation Pattern
models the participation of objects (dul:Object) in events (dul:Event); the Mereology Pattern models the
composition of a composite event out of its component events; the Causality Pattern expresses relationships
between events that play the roles of causes and e↵ects; the Correlation Pattern clusters correlated events (i.e.
events that have a common cause and there is no causality relationship among them); the Documentation
Pattern is used to provide evidence for events (evidence may be a specialisation of the dul:Object class or
another event); and finally, the Interpretation Pattern models di↵erent viewpoints on which the perception
of an event may depend.

The LODE vocabulary is aligned with other event-related vocabularies and ontologies, such as DUL [51],
EO and CIDOC [43]. Events are modeled as instances of the lode:Event class that is defined as subclass
of the E2 Temporal Entity class of CIDOC and is equivalent to the eo:Event and dul:Event classes. An
event can be further associated with a time interval through the lode:atTime property that is a subproperty
of CIDOC’s P4.has time-span and dul:isObservableAt properties. The lode:inSpace property relates
an event to some spatial boundary. The association of events with objects and agents is performed via the
property lode:involved and its subproperty lode:involvedAgent, respectively.

3.3.1. Analysis
Events capture the dynamic aspects of a domain and their e�cient representation, processing and analysis
are considered key requirements in pervasive and sensor-driven environments. The motivation behind the
development and use of ontology-based event models is to provide formal and explicit vocabularies for seman-
tically representing and correlating common aspects of events (e.g. places, people, and objects) amenable
to reasoning (see section 4), and thus to high-level interpretation. This section briefly presented existing
event ontologies, focusing on the provided ontology constructs and design patterns. The representation of
common aspects of events, such as time, location and participation, is supported by all ontologies. However,
the representation of more complex event relationships, such as mereological or causal relationships, are
fully supported only by the Event-Model-F ontology that provides a rich axiomatisation of ontology design
patterns. SOUPA and Ontonym follow a modular design with a moderate axiomatisation compared to EO,
LODE and SEM ontologies. Among them, only SEM is capable of capturing di↵erent interpretations of the

10http://motools.sourceforge.net/event/event.html
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Table 4: Comparison of the event ontologies
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same event, which has potential benefit in supporting multiple applications. Table 4 summarises the strong
and weak points of each ontology.

4. Reasoning

The higher-level integration of raw context data as well as the comprehension of their meaning are key
prerequisites towards understanding a user’s state, behaviour and surroundings. Espousing the ontology-
based modelling paradigm, the low-level context information acquired from sensors is translated to respective
ontological class and property assertions. Hence, typical ontological reasoning tasks can be employed for
checking the consistency of the aggregated set of contextual assertions, and more importantly, to derive more
complex context abstractions (e.g. recognise a user’s activity based on current location and objects used)
that would otherwise remain implicit. In many cases, data-driven approaches are used in the first place, such
as machine learning and statistical models, to extract observations from the sensory data collected through
the sensor monitoring infrastructure. The data then serve as input to the semantic representation layer,
where ontologies provide the common reference point for the projection and aggregation of the extracted
descriptions. Finally, the interpretation layer provides the context-aware semantic reasoning procedures
for the derivation of higher level context abstractions. Figure 2 presents the abstract architecture of a
semantically-enriched pervasive framework.

Low-level sensor data 

Representation Layer
{Ontologies / ABox - TBox}

Interpretation Layer
{OWL Reasoning / DL - Rules}

Class / property assertions

Semantically-enriched Pervasive Framework

Data-driven analysis
(Hidden Markov Models, naïve  Bayes  

networks, Support Vector Machines, etc.)
Complex context 

abstractions Fusion

Figure 2: An abstract semantically-enriched pervasive architecture.

In addition to adopting plain ontology-based solutions though, a number of approaches have explored
reasoning frameworks that combine ontologies and rules [12] in order to cope with OWL’s restricted relational
expressiveness (see section 2.4). Based on the level of interaction that di↵erent combination frameworks
a↵ord, these approaches can be discriminated into three categories: maximising the interaction between the
ontology- and rule-based inferences; adhering to a tight integration; and adopting a much looser notion of
coupling. In the following, representative frameworks for each of the three paradigms are discussed.
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4.1. Ontology-based frameworks
Semantic Smart Home (SSH ) [26] is one of the characteristic examples using plain ontology-based reasoning.
In SSH, activities of daily living (ADLs) are modelled through restrictions in relation to equipment, location
and other types of constraints. The inference of ADLs is performed on the basis of the assertional knowledge
made available through sensors. For example, an ADL a is inferred to be an instance of KitchenADL
⌘ 9hasLocation.Kitchen, if there is sensor evidence that asserts hasLocation(a, kitchen).

Towards a more e↵ective engineering of the domain knowledge, a generic methodology for situation
modelling has been proposed in [126]. The methodology is based on the systematic decomposition of
situations according to aspects of interest that consider spatial, temporal and acting person criteria, and
aims to assist system developers in e↵ectively capturing situations at di↵erent levels of granularity. Such
modelling allows to e↵ectively avail of the subsumption semantics and derive inferences (though at coarser
levels of abstraction) when not all pieces of relevant context information are available.

A more recent example is the OWL 2 based context modelling and reasoning architecture presented
in [112]. Ontologies are used to represent not only activities but also relevant knowledge that can drive
activity recognition, including locations, objects, and so forth. Sensor data are first fed to COSAR (context-
aware activity recognition system) [111], where primitive activities are derived through a combination of
statistical and ontological reasoning. These simple activities, in combination with further contextual data,
once aggregated and processed so as to resolve possible conflicts, formulate the assertional knowledge, over
which OWL 2 DL reasoning is applied to recognise more complex activities. Via OWL 2’s support for
composition of properties and for qualified cardinality restrictions, the captured knowledge is considerably
more expressive compared to that a↵orded by earlier frameworks that use OWL DL.

4.2. Tightly-coupled frameworks
An early example of a context reasoning framework that combines ontologies and rules is Gaia [115], an
infrastructure for smart spaces – pervasive computing environments that encompass physical spaces. Context
information in Gaia is represented as first-order predicates, with the name of a predicate indicating the type
of context described. Higher-level contexts can be deduced based on a set of predefined rules that are
reevaluated whenever a change occurs. For reasoning in first-order logic, the XSB [120] reasoning engine is
used. More recent examples include the context-aware systems [157] that investigate the use of SWRL rules.
In particular, OWL and SWRL are used to capture and reason over contextual information about museum
visitors, including their preferences and surroundings, in order to provide context-aware recommendation
services [157]. Racer and Jess comprise the system’s reasoning module, allowing for consistency checking and
taxonomic classification (subsumption checking), and the processing of SWRL rules and queries, respectively.

Zhang et al. explore the use of SWRL rules in a SW-enabled framework for self-management in pervasive
computing [158]. More specifically, a set of Self-Management Pervasive Service (SeMaPS ) ontologies is used
to capture salient notions about persons (including their habits and preferences), locations, software agents,
devices, malfunctions and recovery solutions, quality of service parameters and dynamic context aspects,
and so on. SWRL rules are used in parallel to capture those parts of complex contextual knowledge that
cannot be expressed in OWL. Through the Protege-OWL/SWRL APIs, the RacerPro and Jess reasoning
engines are used to derive higher-level context abstractions. Despite the use of SWRL rules, reasoning
in both frameworks remains decidable, since the current reasoner implementations employ inherently the
DL-safety notions.

4.3. Loosely-coupled frameworks
Unlike the previous frameworks, loosely-coupled frameworks minimise the interaction between ontology-
and rule-based reasoning. Rules are applied to the consequences derived by means of ontology reasoning,
and a↵ect the knowledge base lightly. Such a framework is the Service-Oriented Context-Aware Middleware
(SOCAM ) [58]. In SOCAM, ontology-based reasoning is used to deduce additional knowledge from the
context data that are directly acquired through sensors; e.g. based on the transitive semantics of the
locatedIn relation, the reasoner can infer that a person is located inside the house, provided that she is
located in the house’s bedroom. Once implicit knowledge is made explicit, first order logic rules are invoked
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to derive higher-level contexts, such as sleeping, cooking and watching TV. A similar rationale has been
adopted in the Semantic Space framework [149]. RDQL (RDF Data Query Language) queries over the
context knowledge base allow to examine desired contexts, so that relevant sets of first order rules can be
invoked to derive higher-level contexts.

Ontologies and rules have also been coupled in the health monitoring and alarm management system
proposed by Paganelli and Giuli [100]. The context model consists of four ontologies that capture knowledge
about patients (e.g. heart rate and body temperature), home environmental parameters (e.g. humidity),
alarm management (including policies and contact person information), and social context (e.g. relatives),
respectively. Context reasoning is triggered whenever a change in the context knowledge base occurs.
Ontology-based reasoning is employed to determine the complex context class to which a specific instance
belongs (i.e. realisation) and to check the consistency of the knowledge base once a new conclusion is
inserted.

The context-aware access control framework proposed in [142] constitutes another example. The frame-
work follows a hybrid architecture, combining a DL reasoner (Pellet) and a production rule engine (Jess) in
order to apply more expressive context reasoning such as deriving property path relationships. For instance
in a meeting situation, given that the owner of a requested resource is located at the same place as the re-
source requestor, we could infer that these two persons are co-located. Such relationships can be expressed
in terms of production (if-then) rules whose head and body match classes and properties of the ontology.

However, the close-world semantics that is usually employed for rules may easily lead to incorrect in-
ferences. Such semantics allow the rules to introspect the knowledge base and derive conclusions based on
the absence of information. This induces a non-monotonic behaviour, where new inferences may invalidate
previously derived conclusions. A representative example is given in [112], which considers a three-room
smart home, equipped with four sensors, one in each room monitoring the presence of people, and one in
the front door monitoring the entrance of people in the house. The knowledge base includes the following
definitions:

(1) Room u ¬9hasOccupant v EmptyRoom
(2) EmptyRoom ⌘ Room u ¬OccupiedRoom
(3) Room(x) ^ EmptyHome(y) ^

isInside(x,y) ! EmptyRoom(x)
(4) ¬EmptyRoom(x) ! OccupiedRoom(x)

In the example, the front door sensor asserts the entrance of one person, yet none of the room sensors
succeeds to communicate subsequently that a person is present. Due to OWL’s open world semantics, rule
(4) evaluates to true for all rooms, as it cannot be proved that they are empty. As a result the system ends
up inferring that there is at least one person present in each room.

4.4. Hybrid Reasoning with Statistical Techniques
Ontological reasoning has been mostly applied to inferring higher-level information, however it has limited

ability to process low-level sensor data like acceleration, biometrics or sound data. These sensor data are
often processed by a machine learning technique and derived to a high-level concept like “stand”, “run”,
or “talk”. Hence ontological reasoning is often integrated or paired with statistics-based techniques. In
addition, the statistics-based technique can help to reduce performance bottleneck, as dealing with a large
amount of uncertain, streaming data has been considered as the main constrain of ontological reasoning.

Not only can ontological reasoning benefit from statistical reasoning, but also the ontological knowledge
can be used to guide and constrain the learning or inference process. Riboni et al. [110] specifies the
knowledge between the domain concepts and the activities; e.g., BrushTeeth must happen in a room with a
sink. They use a statistical technique to infer the current possible activities as {(BrushTeeth 0.6), (Reading,
0.5)}. If the room derived from the current sensor data does not have a sink, then the inference result is
Reading, rather than BrushTeeth that has the higher probability. This demonstrates the earlier attempt to
use predefined knowledge to help select the inference result more accurately.

Ye et al. [155] propose a general ontological model for representing human activities and domain concepts
in a smart home environment including objects, locations and sensors. The ontological model is built on top
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of the standard knowledge base (e.g., WordNet), and has been demonstrated generic enough to be shared
and reused in di↵erent home settings. The knowledge is deeply integrated in semantic similarity measure,
clustering, and string alignment techniques to achieve unsupervised learning. This is a good example of how
to embed basic knowledge in statistical reasoning but avoid over-engineering.

4.5. Analysis
According to the above discussion, two critical observations can be made. First, the combination of ontologies
with rules is a key prerequisite for e↵ectively meeting the expressiveness requirements when modelling and
reasoning about context in the pervasive domain. However, hybrid reasoning schemes that either only lead
to poor interaction between the two components or that fail to take into account the particularities of
the co-existence of closed and open world semantics, may easily lead to incorrect inferences and an overall
undesirable behaviour. Secondly, the combination of open- and closed-world reasoning is desirable when
reasoning about context in the pervasive domain. The open-world semantics are closely related to the
ability of reasoning over incomplete knowledge, while closed-world semantics is needed in order to reason
over common conjectures about negative knowledge, without having to explicitly state such knowledge.

It is worth noting that ontology-based pervasive applications are not the only research domain where
there is a need to reason, keeping certain parts of the world open while closing others. Similar challenges
are confronted in the semantic understanding of visual content [36], and in general in applications that
require intensional reasoning (e.g. natural language processing). Furthermore, such seamless integration of
open and closed world semantics has been recognised as a highly challenging yet desirable capability in the
Semantic Web too, resulting in a number of promising proposals as discussed in section 2.4. Their practical
impact within the pervasive domain remains subject to future investigation.

Hybrid ontological and statistical reasoning is a must so that ontological techniques are able to deal
with low-level signal processing and achieve real-time performance. The advantages of using ontological
knowledge in statistical reasoning have also been witnessed in recent works; that is, guiding and constraining
the reasoning to reduce the reliance on the training data.

5. Streaming Sensor Data Modelling, Querying, and Reasoning

As discussed so far, SW technologies provide rich ontology languages and powerful reasoning and querying
mechanisms that meet the foundational requirements of typical pervasive systems. However, they normally
deal with static data. The need to also handle real-time streaming data has been identified within several
pervasive computing applications; characteristic examples include mobile telecommunications [82], public
health risk monitoring applications (discussed in [39]) and tra�c monitoring [62]. Temporal data processing
and reasoning have been well studied in Database, Artificial Intelligence, and Formal Methods [49], and here
we focus on the joint work with ontologies in the application area of pervasive computing.

5.1. Temporal Data modelling and Indexing
Temporal extensions to RDF, all notionally based on expanding the triple model to a quad model, have been
explored in the literature. Lilis et al. [81] introduce Multidimensional RDF, an RDF extension designed to
express the temporal semantics of a collection of cultural artefacts. Time is used as a contextual specifier
to control whether or not an RDF triple should be considered to be present in a graph at a given time
point or interval. Gutierrez et al. [59] provide the semantics for temporal RDF graphs, introducing the
notion of a temporal triple, an RDF triple with a temporal label, and a temporal graph made from a set
of temporal triples. The authors present the concepts of graph slices and graph snapshots, which allow for
the description of the collection of triples that hold during or at a given interval or instant. Furthermore,
using the notion of temporally-extended RDF, Pugliese et al. [106] introduce the tGRIN index structure
that builds an index for storing temporal RDF in a relational database based on temporal as well as the
structural closeness of triples, while Tappolet et al. [137] present a method for building a meta-index for the
validity of named graphs based on Elmasari et al.’s Time Index [45].

17



5.2. Temporal Data Querying
Many extensions to RDF query languages have been proposed for working with temporal and streaming
data; this is crucial to the process of querying for and temporally correlating information from di↵erent
sensors as part of the query process. One of the earlier attempts involved attaching the temporal extent to
objects and then apply a syntactic extension to SPARQL [85, 137]. O’Connor et al. developed a lightweight
temporal model to encode data based on the valid-time dimension, upon which they develop extensions to
their SWRL-based OWL query language SQWRL [96]. Their query library supports Allen’s relations and
provides functions for grouping query results such that the filters first, first-n, last, last-n, and nth can be
applied within a query.

Beyond the above approaches on one-time-only processing, a number of SPARQL extensions have been
proposed towards a framework where queries are evaluated continuously against new data being produced,
with query results updated as new matches are discovered. The work mainly is to extend the SPARQL
grammar to support streaming data representation and continuous queries evaluation via a sliding time
window. The representative examples include Streaming SPARQL [18], C-SPARQL [9], and CQELS [78].

5.3. Temporal Data Reasoning
Moving beyond temporal extensions, the SW community has investigated hybrid frameworks that combine
ontologies with temporally-aware formalisms. For example, the ambient computing framework proposed
by [102] takes advantage of the inherent temporal reasoning capabilities of Event Calculus [77]. Rule-based
reasoning is used on top of context modelling ontologies, to infer complex contexts from raw context data. In
parallel, causality reasoning is employed to reason over pre-conditions and e↵ects of actions and events, based
on the Event Calculus theory. Compared to plain rule-based approaches, a key advantage is the inherent
notion of time in Event Calculus that allows to establish a linear time ordering and, hence, infer in which
intervals certain conclusions hold, while re-evaluating event patterns as time progresses. Batsakis et al. [10]
propose an approach to support both qualitative and quantitative temporal reasoning. Here the temporal
information is represented in 4D-fluents, allowing for representing quantitative temporal information with
specific temporal instants or intervals. Reasoning on quantitative temporal information is supported; for
example, if interval A contains interval B and point C is into interval B we can infer using the point based
representation that C is into interval A.

The situation awareness architecture presented in [5] is another example, where di↵erent formalisms and
reasoners have been combined to enable inference on data that change over time. Sensor observations are
first aggregated by means of if-then rules, and subsequently fed to the semantic interpretation layer, where
a DL reasoner is used for situation assessment. The SCEP frameworks described in section 5.3.1, coupling
the real-time reasoning capabilities of CEP engines with rich ontological semantics, are yet another example
of investigations towards the e�cient handling of temporal semantics.

A recent approach that captures reasoning with non-static data is Stream Reasoning [37], an attempt
to combine data stream and reasoning technologies towards a solution for real-time reasoning over rapidly
changing information. Stream Reasoning is defined as ‘logical reasoning in real time on gigantic and in-
evitably noisy data streams in order to support the decision process of extremely large numbers of concurrent
users’ [135]. In [39] a number of issues that need to be addressed in stream reasoning systems have been
identified. These vary from theoretical aspects such as formal models, sound and complete reasoning mech-
anisms and algorithms to adequately address the stream reasoning-specific requirements, to more technical
issues such as wrapping solutions for heterogeneous formats of dynamic data, solutions to the problems of
noisy and uncertain data and parallelisation and distribution of various tasks to di↵erent units.

Theoretical investigations have led to a number of proposals towards stream reasoning languages. Con-
struction Description Logic (cALC) is introduced to serve as a semantic type system and knowledge rep-
resentation formalism for data streams [86]. cALC is based on DLs, but its semantics are refined to a
constructive notion of truth that captures the uncertainty aspects inherent with data streams. In [62],
DyKnow, a stream-based knowledge processing middleware is introduced, which supports incremental rea-
soning with streams using Metrical Temporal Logic [99] as the underlying logical language. In [47], LarKC
is introduced, a platform for Web-scale reasoning; further implementation attempts towards LarKC have led
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to the definition of its underlying language L2 [50], a lightweight language based on the RDFS vocabulary
and a limited subset of OWL. For more temporal description logics, we refer to the survey [83].

5.3.1. Semantic Complex Event Processing
State of the art Complex Event Processing (CEP) frameworks [118] are able to e�ciently recognise complex
events based on predefined event-patterns, event-hierarchies or other event relationships (e.g. temporal).
CEP engines are capable of binding to input streams of real-time structured events generated either directly
by sensors or after low-level feature processing. The key feature is the support of temporal relationships and
aggregation operators that enable the identification of complex correlations among the generated events.

Semantic Complex Event Processing (SCEP) constitutes an e↵ort to improve CEP’s results by incor-
porating ontologies into the process of complex event detection [88]. An abstract SCEP architecture is
presented in Figure 3. Ontologies are used in this context as common vocabularies for representing knowl-
edge relevant to events. Low-level events are semantically associated with high-level domain concepts of
background ontological knowledge, improving the quality of event and activity recognition using contextual
information. Existing CEP engines or SPARQL temporal extensions can be used to process streams of
events and uncover temporal correlations.

4 Kia Teymourian, Malte Rohde, Ahmad Hasan, and Adrian Paschke

knowledge updates is not very high as the rate of the main event stream, e.g., frequency
of happening of music concerts compare to changes in a music band.

Fig. 1. High Level Architecture of Semantic-Enabled Complex Event Processing

4 Experiments and Demonstration

For our experiments, we use Prova4 as reaction rule language formalization and as a
rule-based execution which can be used as event processing engine. Prova uses reactive
messaging5, reaction groups and guards6 for complex event processing. Multiple mes-
sages can be revived using revMult(XID, Protocol, Destination, Performative, Payload)
; XID, a conversation id of the message; Protocol, message passing protocol; Destina-
tion, an endpoint; Performative, message type; Payload, the content of message. Prova
implements a new inference extension called literal guards. During the unification only
if a guard condition evaluates to true, the target rule will proceed with further evaluation.
We implemented the sparql_select built-in7 to run SPARQL queries from Prova which
can start a SPARQL query from inside Prova on an RDF file or a SPARQL endpoint.
This buit-in can use results which come from the SPARQL query and use them inside
Prova. It also provides the possibility to replace variables in SPARQL string which are
starting with $ with variables.

In our experiments we use the Prova rule engine. We use the sparql_select built-in:
the rule engine first sends the embedded SPARQL query to triple store, gets the results
back and then waits for incoming event stream to process. It processes the sequence of

4 Prova, ISO Prolog syntax with extensions http://prova.ws , July 2011
5 Prova Reactive Messaging http://www.prova.ws/confluence/display/RM/

Reactive+messaging , July 2011
6 Event Processing Using Reaction Groups http://www.prova.ws/confluence/

display/EP/Event+processing+using+reaction+groups, July 2011
7 Source codes for Semantic Web extensions in Prova 3 can be found in https:

//mandarax.svn.sourceforge.net/svnroot/mandarax/prova3/

prova-compact/branches/prova3-sw/ , July 2011

Figure 3: An abstract SCEP architecture (source: [101])

A commercial CEP engine (Coral8 11) is combined with ontology-based reasoning [138]. The platform
aims at the semantic configuration of the CEP engine using domain ontologies about events, sensors, envi-
ronments, etc. The event ontology extends SSN (see section 3.1) and it is used as a repository of complex
event definitions that users define. Complex events are described in terms of atomic events and the alerts
that should be triggered upon detection. These events are transformed into CEP streams and queries for
the configuration of the CEP engine.

Teymourian and Paschke present a framework for semantic rule-based complex events processing [140].
The ontology-based representation of event data is performed via a mapping of the attribute-value pairs
to a set of RDF triples (RDF graph) that can be used as event instances. In this way, events are repre-
sented in terms of URIs and they can be further interlinked with other ontology-based domain knowledge.
More complex events can be retrieved by executing SPARQL queries that match complex graph patterns.
The reaction rule language of Prova12 is used to implement temporal reasoning operators and to perform
reasoning on the ontological knowledge.

ETALIS [4] is a CEP engine implemented in Prolog that supports the definition and execution of EP-
SPARQL queries, as well as the use of background knowledge in a form of RDF ontologies. EP-SPARQL

11http://www.aleri.com/products/aleri-cep/coral8-engine
12http://http://prova.ws/
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is used in ETALIS as the underlying query language for detecting events within a stream of RDF triples
(low-level events). The queries are compiled into event-driven backward-chaining rules that can be mixed
with other background knowledge.

5.4. Analysis

Table 5: Di↵erent approaches in modelling, querying, and reasoning on temporal data

Functionality Techniques

Modelling Use temporal dimension as contextual information
indicating the lifetime of an RDF triple in a graph

[81]

Organise temporal triples in a graph showing pro-
gression

[59]

Querying
Extend SPARQL Syntax for querying temporal di-
mension

[137],[85], [105]

Support temporal relationships SQWRL [96, 97]

Extend SPARQL algebra to explore temporal seman-
tics

Streaming SPARQL [18],
C-SPARQL [8, 9],
CQELS [78]

Reasoning

Combine with temporally-aware formalism (e.g.
Event Calculus) to reason on static temporal data

SPARQL-ST [5, 77]

Combine with formal temporal logic (e.g. Construc-
tion Description Logic and Metrical Temporal Logic)
to reason on streaming temporal data

[86], [99]

(Semantic) Complex Event Processing [88] [138] [140] [3]

Given the general-purpose nature of the RDF model, it is no surprise that SPARQL is correspondingly
flexible in its querying capability. However, when considering the particular goal of supporting pervasive
computing, such a general purpose language has its limitations, i.e. the often verbose nature of queries
to support common idioms, such as querying for the spatial or temporal semantics of data. The research
into SPARQL extensions outlined here, although particularly focused on temporal modelling, shows a path
according to which query languages may be adapted or extended to target specific needs of the pervasive
domain. However, in order for this approach to succeed beyond the prototype stage, the widespread adoption
of modelling standards for said domains is required (e.g. representing spatial, temporal and uncertain
data) that as of writing do not yet exist. Future research in this area is, therefore, tightly bound with the
development, evolution and adoption of conceptual models. In terms of reasoning on streaming data, despite
the aforementioned e↵orts there is still a gap between the research on advanced reasoning techniques [39].
Some first steps have been made towards the needs identified in [38] for innovation in foundational theories
specific to Stream Reasoning, as well as Stream Reasoning Engineering, but further developments are yet
to be addressed [9].

Additionally, this section introduced the notion of semantic complex event processing (SCEP), an e↵ort to
combine SW technologies with traditional complex event processing frameworks. The underlying motivation
is to enrich the pattern-based complex event detection capabilities of SCEP with reasoning over ontology-
based event models and background knowledge. In this way, complex events can be detected and interpreted
based on their hierarchical or temporal relationships to other events, as well as on their correlations with
other relevant concepts of the domain. Currently, the existing complex event ontologies do not scale well,
especially with multiple parallel queries [74]. With certain optimised implementation mechanisms (e.g.
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caching and indexing intermediate query results), some SCEP engines such as CQELS [79] can perform
well with growing static data. However, there is still room for improvement regarding the performance and
scalability of SCEP engines in continuously querying over streaming sensor data. Table 5 summarises the
section.

6. Uncertainty Handling

Because components of a pervasive computing environment deal with the real world, they may face certain
caveats: sensors in the field may report inaccurately due to hardware fault or because they come up against
an unusual phenomenon; i.e. one for which they have not been designed. Moreover, data are inherently
imperfect and inaccuracies may easily arise, due to erroneous or missing sensor readings. Furthermore,
when data comes from multiple sources and modalities, ambiguities and conflicts may arise. Under these
circumstances, modelling and reasoning need to provide the means to cope with such imperfections and
allow to detect possible errors, handle gracefully missing values, derive plausible conclusions, and assess the
validity of the retrieved sensor data. Since these issues must be taken into consideration when dealing with
pervasive systems, it should be possible to describe the concepts of accuracy, uncertainty, and provenance
with respect to sensed data and represent them as part of the ontological description. With these descriptions
in place, particular reasoning mechanisms on ontologies need to be designed to support e�cient and precise
reasoning on the data.

6.1. Imperfect Knowledge
Gaia, an early representative, tries to make sense of the imprecise and conflicting uncertainty inherent in
dealing with real-world data [107]. An uncertainty model is developed based on a predicate-based represen-
tation of contexts and associated confidence values. To reason about uncertainty, Gaia employs probabilistic
logic, fuzzy logic, and Bayesian networks, each of which o↵ers certain advantages under di↵erent circum-
stances. The networks are trained with real data so as to get more accurate probability distributions for
their event nodes.

This type of approach uses ontologies syntactically as a vocabulary for exchanging knowledge specified in
a probabilistic model. Responding to the need of modelling imperfect knowledge in the Semantic Web, much
research has been devoted to extending existing formalisms and reasoning services for handling uncertain
and vague information. Representative examples include fuzzy extensions of DLs [132], OWL [17] and SWRL
[151], and probabilistic extensions such as PR-OWL [24] and BayesOWL [40]. For an extensive overview the
reader is referred to [133]. Further relevant proposals include the pattern-based approach for representing
and reasoning with fuzzy knowledge [145], and the generic, formalised approach for managing uncertainty
proposed by Helaoui et al. [63] use log-linear DLs to develop a probabilistic ontological framework to
hierarchically recognise multi-user complex activities. Recent works have started exploring the applicability
of such initiatives in the domain of pervasive applications; an example is the approach presented in [114],
where fuzzy ontologies are applied to human activity recognition to deal with sensor unreliability and activity
specification imprecision.

6.2. Missing Data
Missing data is another source of uncertainty when reasoning about context: a missed (or inaccurate)
detection of low-level context information may easily lead to irrecoverable failures in the inference of higher-
level context abstractions. One possible solution is to model the interpretation of perceptual data as inference
to the best explanation using abductive reasoning [103, 122]. Romero et al. [53] investigate this idea in
the context of an ontology-based surveillance application. A set of ontologies are used to capture context
at increasing levels of abstractions, including tracking knowledge, scene objects and activities. Once the
low-level context acquired from visual sensors is translated into ABox assertions, abductive rules are applied
to derive missing facts and trigger the derivation of higher-level context descriptions. No information is
provided about the computational framework used to implement the abductive reasoning, or about the
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preference criteria used to select explanations. As abduction is acknowledged as a mode of reasoning that
is inherent in various tasks, much research has been devoted to understanding it.

Bikakis et al. [14] propose a formal model based on defeasible logic to support reasoning with im-
perfect context in ambient computing environments. Extending the Multi-Context Systems model with
non-monotonic features, the proposed framework supports reasoning in cases of missing context knowledge.
Potential inconsistencies are resolved by means of: (a) an argumentation framework that exploits context,
and, (b) preference information that expresses confidence on the contexts considered. The propositional rep-
resentation of context knowledge may not allow a direct integration with ontology-based context reasoning
frameworks; yet possibilities for interesting hybrid architectures emerge where contextual assertions can be
selectively translated into equivalent grounded formulas.

6.3. Analysis
At present, most ontology-based models in the pervasive computing community are still at the stage of using
semantic annotations to tag di↵erent quality measures. One of the future directions in dealing with uncer-
tainty is to use the ontologies that are tightly integrated with probabilistic or fuzzy reasoning. Abductive
reasoning is worth further investigation, as it can help detect errors (e.g. missing or inaccurate data) that
can be used as a feedback to re-tune the system. Also performance is still the main obstacle of ontological
uncertainty reasoning, while the possible solution would be to combine data-driven techniques with fuzzy
ontologies [114].

Table 6: Di↵erent approaches in modelling and reasoning on uncertain data

Functionality Techniques
Representing uncertain data with probabilities Gaia [107]
Reasoning on uncertain data PROWL [24, 34], BayesOWL [40], [29,

41, 114, 145] based on Fuzzy logic
Dealing with missing data [103, 122] based on abductive reasoning
Resolving inconsistent data [14] based on defeasible logic

7. Challenges and Open Areas

The previous sections have discussed the key requirements in pervasive computing and have analysed the
benefits and potentials of using SW technologies, along with future research inquiries and directions. The
discussion has been structured along the four key requirements, as identified in the Introduction: (a) concep-
tual modelling (ranging from raw sensor data to higher-level context and event abstractions), (b) reasoning,
(c) temporal data modelling, querying and reasoning, and, (d) handling uncertainty. Besides outlining the
strengths and weaknesses of the proposed approaches, the sections also presents the relevant results within
the SW community, which have not yet been explored in the context of pervasive systems, sketching possible
directions for further investigations.

Table 7 summarises the main observations. The use of SW technologies induces a number of straight-
forward benefits, as a direct result of the advocated explicit semantics and well-defined reasoning services.
Issues open to further investigation are to a large extent inherited by challenges that remain open in SW
research, too. Scalability and performance are crucial, as the need to draw inferences from millions or bil-
lions of pieces of information in real-time is not restricted in the domain of pervasive systems alone. With
this concern in mind, d’Aquin et al. [35] conduct a series of experiments on assessing the performance of
existing semantic tools including Jena, Sesame and Mulgara on resource-constrained devices (e.g., a netbook
with 900 MHz CPU and 512 MB RAM). The evaluation metrics contain not only the size of data and the
response time, but also the device specifications such as the memory and disk space, and the nature of data
such as the distribution of entities in classes, properties and individuals. The results show that these tools
are able to cope reasonably well with small-scale ontologies on such devices. However, when faced with
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Table 7: Overview of Semantic Web technologies use in pervasive applications with respect to key requirements.

Requirement SW-empowered ap-
proach

Added value Further research inquiries

Conceptual
modelling

ontologies for de-
scribing sensor data,
who/where/what/when
information, events; rules
for higher relational
expressiveness

facilitating knowledge
sharing, reuse and
exchange; rich expres-
siveness for capturing
complex semantic rela-
tions

upper ontologies; compara-
tive assessment of existing on-
tologies

Reasoning DLs reasoning services;
rule-based reasoning; rea-
soning with ontologies and
rules

inferring implicit knowl-
edge; consistency checking

scalability; combining open-
and closed-world reasoning;
reasoning under inconsis-
tency

Temporal se-
mantics

OWL-Time, Semantic
CEP, RDF/SPARQL
extensions, hybrid frame-
works (e.g. ontologies and
Event Calculus)

SPARQL and its exten-
sions to support temporal
and stream queries

highly flexible and general
purpose query language sup-
porting the inspection of
static and streaming data;
further development of do-
main specific constructs to
simplify querying; highly de-
pendent on standardisation
and adoption of conceptual
models; temporal/real-time
reasoning; hybrid reasoning
frameworks

Uncertainty
handling

extensions for fuzzy /
probabilistic semantics
(e.g. Fuzzy DLs, PR-
OWL); non-standard
inference (e.g. abduction
in DLs ABox)

reasoning over impre-
cise/vague knowledge;
reasoning to hypotheses

scalability; seamless integra-
tion of uncertainty; unified
handling of di↵erent types of
uncertainty
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millions or billions of triples as mentioned above, we consider the future work should focus on designing
a fully distributed approach for coordinating and integrating the reasoning capabilities on low-end devices
(especially sensors and mobile devices) to enhance performance.

The seamless integration of open- and closed-world reasoning is another highly desirable feature and
subject of active research, and the same holds for investigations into the practical management of imper-
fect (uncertain, vague, missing, noisy) knowledge. Last but not least, throughout the study of SW-based
pervasive frameworks, it is evident that relevant insights often permeate only partially, and in a fragmented
manner, the borders between the two research communities. In the following, we will discuss open re-
search issues relevant to temporal features, dynamism, provenance, and programming that need also to be
investigated towards the seamless integration of SW technologies and pervasive computing.

7.1. Temporal Features
The role of temporal information in the modelling of sensed data is often simplified in the design of data
models, software and application APIs. Typically, sensor values are recorded in conjunction with a time-
stamp. The use of timestamps may provide a basis in addressing the need to establish temporal relations to
correlate information from di↵erent sensors for querying. However, despite its universality as a modelling
concept, the use of timestamps in isolation implicitly restricts a data model to representing only the current
state. That is, a timestamp has an implicit dual meaning: it is both the time at which a statement was
asserted in the model and the time at which the statement should be interpreted as being true. This
distinction may often seem unimportant, however, the ability to separately annotate data with temporal
extent, i.e. a time interval, caters explicitly for the latter case. Furthermore, the use of both an update
time-stamp and temporal extent in concert provides a useful facility for modelling both historical and
predictive state. This is often useful; for example, summarising a high volume of sensor readings over a
period of time is preferable to removing it entirely in the case where data will later be analysed o↵-line.
modelling time as an orthogonal concern allows such cases to be handled without requiring special indicators
in a data model to indicate that information has been treated.

Despite strong vocabulary support for representing temporal features, as discussed in section 3.2.1,
the triple-based nature of the RDF model is ill-suited to the representation of data’s temporal properties,
where the requirement is to annotate sets of triples. At least three possible strategies for overcoming
this limitation are available to data modellers: using RDF’s reification vocabulary, externally generating
identifiers for statements, or using a non-standard extension to the RDF model. To utilise RDF’s reification
vocabulary, each triple is expanded as a ‘reification quad ’13, with the resulting statement identifier associated
with temporal information. Generating a statement identifier externally follows similarly, but avoids the
introduction of redundant information into the model at the expense of requiring non-standard tooling to
generate and resolve such identifiers.

Section 5.3 discussed temporal extensions to SW technologies and reasoning mechanisms on temporal and
streaming data. However, there is still a gap between the currently available SW technologies and the need
for native temporal data modelling and reasoning. Relevant prototype suggestions exist, but considerable
e↵ort is required before reaching standardised solutions that will in turn ensure the required tool support
for e�cient reasoning over temporal data and management of temporal queries. How to correlate sensor
data collected from various sources in terms of their temporal relations to support queries is also worthy
of investigation. Towards this quest, the combination of di↵erent formalisms and reasoners within hybrid
frameworks can lead to extended representational and reasoning capabilities. On the other hand, the seamless
and scalable integration of the heterogeneous modules inevitably poses new challenges.

7.2. Data Dynamics
Distinct from the need to model the temporal features of dynamic data are the challenges related to storing,
reasoning over, and accessing large volumes of highly-dynamic, distributed information. As the volume

13The term ‘reification quad’ refers to a set of 4 triples that associate an identifier with the type rdf:Statement, and three
properties, rdf:subject, rdf:predicate, and rdf:object with values corresponding to the original triple.
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of sensor data increases, it becomes infeasible to store a permanent record of generated states. A typical
solution might be to discard the oldest data from memory when the maximum capacity is reached. However,
the oldest data stored is not necessarily the least useful. An alternative solution is to modify the data model
for capturing properties describing data dynamics. This may lead to defining policies for prioritising the
removal of data that is asserted frequently but has a slow rate of change (e.g. ambient temperature) over
data that is frequently asserted but changes rapidly (e.g. a user’s coordinate location) or pseudo-static data
that is infrequently asserted (e.g. building layouts) [130].

Data dynamics also play a role in determining the types of reasoning strategies that should be adopted.
There is a need to track derivations in order to determine when an inference no longer holds due to mod-
ifications to (or invalidation of) the data upon which it is predicated. Structuring the data model in such
a way that data is temporally qualified (and inferences likewise) forms part of a solution to this issue, and
requires incorporating appropriate temporal semantics with existing reasoning technologies.

The process of reasoning over a large data model can be a performance bottleneck. However, knowledge
about the dynamics of data can inform an appropriate reasoning strategy. For example, one might choose to
reason on static data as it is generated and at the same time perform reasoning on highly dynamic data only
when an application query is executed. In this way reasoning would be restricted to the smallest amount of
volatile data that will produce a correct answer. Based solely on the temporal properties of data, it may be
possible to devise a general scheme to partition, reason on, and integrate data over several stages, so as to
optimise reasoning.

7.3. Provenance
Many of the issues above can be subsumed under the notion of provenance, i.e. capturing, representing and
manipulating knowledge relevant to data creation, ownership, transformation and other ‘life-cycle’ issues.
Provenance appears in many guises. The Dublin Core vocabulary is perhaps the most well-known paradigm,
providing terms for asserting authorship and other property rights over digital objects. More recently, a
task group of the World Wide Web Consortium has been standardising the Open Provenance Model [87]
for asserting more general provenance metadata. Sensor-driven systems are more directly a↵ected by data
provenance than programs in many other domains. A sensor system must make decisions using input
data that is known to be inherently noisy, imprecise, inaccurate, untimely and infrequent. An immediate
consequence is that sensor-driven systems cannot be directly connected (or respond directly) to their input
data streams. Stating it di↵erently, individual data elements are evidence of fact rather than being facts
themselves, and must be fused with other data (from the same or di↵erent sources) to build a consensus of
the state of the environment being sensed. Chowdhurry et al. [28] propose a context composition graph to
represent the hierarchical process by which high-level contextual inferences are made by composing low-level
sensor-generated data samples. It also allows to track the temporal history of contextual states along the
hierarchy.

While sensor fusion is commonplace in engineering, many of the approaches make strong assumptions
about the nature of the data streams; for example, they assume that data comes from homogeneous sensors
looking at the same phenomenon and with well-known sampling frequencies. However, such assumptions
do not generalise well to semantically-enriched systems with highly heterogeneous data sources processed
using symbolic reasoning. Note that this issue also applies to many other aspects other than provenance,
such as querying and reasoning. Conversely, homogeneous data can be easily handled by reasoners, allowing
the semantic technology to encompass many sensor fusion tasks. Moreover, reasoning over sensor data is
a↵ected by a number of provenance-related factors. A trivial example is that the reliability of a temperature
reading retrieved from data that is several hours old may be assumed to be less than that inferred from
data collected within the previous minute. Sensor types (and even individual sensors) give rise to data with
given provenance in terms of the observation frequency, precision etc., which can be captured generically or
via special-purpose markup languages (see section 3.1). The provenance here is associated with the sensor
but is attached to the data produced by the sensor.

More generally, a system may be interested in the entire lifecycle of a data stream, including the trans-
formations that have been applied to it. Suppose that a stream of temperature values is received, which
will be used in some decision process. It may matter whether those values are ‘raw’ (and subject to raw
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sensor noise), they have been processed to remove outliers, or they have been smoothed using an a priori
or learned smoothing function. Thus, it is vital to manipulate and maintain provenance along the data
pathway. For many systems the statistical properties of a data stream are as important as the data itself.
Extensive in-system processing of data is not necessarily a problem, if it is clear to the end-user that such
processing has occurred and to what e↵ect.

Provenance is increasingly recognised as a crucial element of the Semantic Web, as it enables inferences
to be drawn conditional to whether information should be trusted and how it should be reused and inte-
grated with other diverse information sources. The lack of a standard model for capturing, interchanging
and reasoning over provenance metadata is a significant impediment to realising applications where the
trustworthiness and the quality of the statements is an issue. The Provenance Working Group14 has re-
cently concluded the standardisation of an interchange core language (PROV Ontology15) for publishing
and accessing provenance metadata, drawing on existing vocabularies and ontologies. In parallel, recent
studies have proposed approaches that enable the handling of provenance in open and collaborative environ-
ments [98, 141]. Also Riboni and Bettini have proposed the first provenance framework for representing and
reasoning on context provenance with a focus on uncertainty and temporal aspects in ambient intelligent
systems [113].

7.4. Programming
Lastly we come to the practicalities of programming. Semantic structures like RDF allow rich data encod-
ings. Coupled with OWL, SPARQL, ontological and other reasoners, complex queries can be answered by
traversing the knowledge graph. In this context, the emergence of standard, re-usable reasoners significantly
simplifies the use of semantic technologies within programs.

On the practical side, however, the integration of these tools remains superficial. From a programming
perspective, a knowledge graph is simply a collection of edges labeled with strings and URIs, possibly
with some additional XML Schema typing at the endpoints, and with some structure on the relationships
provided by the accompanying ontologies (if any). This often leads programmers to attempt to syntactically
and structurally access knowledge graphs, using well-known and established parsing tools, but ignoring
the underlying semantics. In this quest, developers are typically forced to manually provide any needed
additional mechanisms without the assistance of compilers, type systems or other tooling, which constitute
common practice while building complex software systems outside the Semantic Web [128]. In an e↵ort to
simplify the integration of SW technologies into existing software architectures and languages, various APIs
for working with RDF/OWL ontologies have been developed, such as Jena16, OWL API [66], dotNetRDF 17,
RDFReactor [148] and Sesame18. Moreover, Janowicz et al. [70] developed a promising approach based on
the Linked Data model and a RESTful proxy to publish sensor data on the Web (see section 3.1.2).

Furthermore, the use of semantic technologies requires considerable familiarity with XML tools that
obscure rather than illuminate the underlying information being encoded. Data encoded in this manner is
not held in this form in memory and must be translated for storage and exchange, which is a non-trivial
process. State of the art ontology editors, such as Protégé [95], TopBraid Composer19 and NeOn Toolkit20

o↵er comprehensive support for developing and validating RDF/OWL ontologies. Moreover, scalable and
query e�cient RDF repositories, such as OWLIM [15], AllegroGraph21 and OpenLink Virtuoso [46], as well
as database-to-RDF mapping tools such as D2RQ [44], enable data to be exposed and shared on the Web
according to the principles of Linked Data.

Entities represented within a knowledge graph may be classified by the ontology according to the infor-
mation related to them; e.g. classifying a person as an employee given the presence of an employee number.

14http://wiki.knoesis.org/index.php/Provenir_Ontology
15http://www.w3.org/TR/prov-o/
16http://jena.apache.org/
17http://www.dotnetrdf.org/
18http://www.openrdf.org/
19http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
20http://neon-toolkit.org
21http://www.franz.com/agraph/allegrograph/
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This is roughly the same as a programming language type system, with the di↵erence that an entity’s class
may change unpredictably through other agents’ actions on the knowledge graph, and it can be hard to
predict precisely which such changes will have such an e↵ect. This destabilises a program’s view of the
knowledge in the graph.

The use of a reasoner sits outside the programming language, in the same way that SQL does when
accessing a database. A SPARQL query is a string that returns arrays of other strings and is not type-checked
or manipulated using dedicated programming constructs. This complicates the formation and checking of
complex queries, again due to a lack of supporting tooling. However, some of the aforementioned ontology
editors do provide limited support for advanced query formulation, e.g. type-checking.

Finally, the Semantic Web may pose steep learning and commitment curves, particularly for practitioners
coming from other research areas. In order to perform even simple tasks, developers must master a wide
range of potentially unfamiliar technologies. Moreover, an organisation must commit to these technologies
and the respective costs ahead of time. This raises the risk that a system may not generate the expected
benefits while incurring a substantial up-front cost and thus, raises a significant barrier to deployment.

Consequently, as with any technology, the decision to adopt SW technologies, does not come without a
price, and one needs to ascertain su�cient value on its advantages – open, standards-based representation,
easy exchange and integration – to make it worthwhile. It is undoubtedly attractive to be able to define a
structure for knowledge that exactly matches a chosen sub-domain, to describe the richness of this structure,
and to have it integrate e�ciently with other such descriptions of complementary sub-domains defined
independently – and to be able to share all this knowledge with anyone on the Web. But this flexibility
comes with a cost and (often) no apparent immediate, high-value benefits. In many ways, these issues are an
inevitable consequence of the di↵erences in the application domains of semantic technology and programming
languages. The former addresses the open, extensible, scalable, distributed mark-up of data. The latter
addresses almost the opposite issues, focusing on close specification of algorithms and data structures to
share common data and functionality.

Since these issues apply to all programming with semantic structures, sensor-driven systems add few, if
any, specific points to this general discussion. Sensor-driven systems impose the necessity to embrace the
noise and errors inherent in data streams, and to make decisions that propagate this uncertainty through-
out the system. Mainstream programming languages do not provide structures for resolving these issues.
Combining programming with uncertainty and with data that adhere to an ontological structure seems to
be two new frontiers in systems design, driven by semantically-enriched sensor-driven systems.

Perhaps the chief impediment to such designs comes from the challenged nature of the platforms them-
selves. Sensor-driven systems place a significant degree of their functionality on devices with extremely
constrained memory, computation and communication capabilities, which are not straightforwardly subject
to Moore’s-law-driven improvements in performance. A näıve deployment of SW technologies to such plat-
forms is doomed to failure, but there seems to be no a priori reason why versions optimised for restricted
domains might not be possible, and might not inter-operate easily with the wider universe of web-enabled
components.

8. Discussion and Concluding Remarks

This article reviewed the landscape of the applications of SW technologies in the domain of pervasive,
adaptive and sensor-driven systems. Many of the features underpinning the Semantic Web, and particularly
the ability to formally capture and reason over rich, semantic interconnections among data items in an
open and extensible way, are well-suited to pervasive computing. On the other hand, a number of other
important aspects, such as the lack of native support for representing and reasoning over temporal or
imperfect knowledge, remain highly under-articulated.

In terms of modelling and reasoning about context, the key benefits of SW technologies are straightfor-
ward. As mentioned previously, ontologies have been proposed for describing the four Ws (when, where,
what, who) that characterise contextual knowledge, complex events and sensor data. This facilitates the
unambiguous sharing and understanding of knowledge across heterogeneous and distributed platforms, de-
vices and services. The modelling, reasoning, and uncertainty management issues among the five challenges
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identified by Corcho and Carćıa-Castro [33] have been resolved to di↵erent degrees. Acknowledging the
diverse views that di↵erent ontologies inevitably serve, what still remains unaddressed is the definition of
commonly-agreed (possibly upper) ontologies that would enable the standardised description of pertinent
context aspects; the conceptual overlaps between the proposed ontologies further underline this need. More-
over, since not all of the provided modelling capabilities have been directly applied in pervasive applications
(e.g. modelling of composite events and their dependencies that many of the event ontologies support), it is
time to systematically assess their applicability, the potential for their combined use or (partial) alignment,
as well as aspects that require a more elaborate coverage.

In parallel, the deployment of SW technologies has demonstrated the intrinsic relation between automated
reasoning and the high-level interpretation of context data, where the integration of structured domain
knowledge is a prerequisite. Besides useful insights on the need to combine ontologies with rules, the
reviewed literature sketches a number of desirable, yet highly challenging questions. These include the
need to provide native support for representing and reasoning over temporal knowledge, incorporating
provenance into reasoning, and managing uncertainty. Underlying all the aforementioned research directions,
an indispensable requirement is computational e�ciency. Ensuring reasoning e�ciency is crucial, as the need
to draw real-time inferences from millions or billions of information items in an open pervasive environment
already challenges existing reasoning engines. And one should note that only deductive inference over crisp,
consistent knowledge bases is considered.

Subject to further investigation is also the overall integration of SW technologies within programming
frameworks suitable for software engineering in-the-large. The Semantic Web at present is essentially a
collection of fragments lacking a whole. This is perhaps an inevitable consequence of an architecture designed
for such a broad spectrum of application domains, but it nevertheless increases the risks and costs associated
with applying the technologies to pervasive systems. This is especially the case when the target platforms
for much of the functionality are challenged in terms of their capabilities in memory, computation and
communications. However, it is important to remember that the SW is essentially a tool for modelling
and exchange and not that much a tool for implementation: compact representations of information and
reasoning that comply to the underlying meta-model of the SW seem eminently possible and deserve future
exploration.

Summing up, the ability to exchange models and data, to reason openly, to capture an extending set of
data and metadata, and to interact with other web-enabled elements, all encourages the view that building
future pervasive and sensor-driven systems around these technologies would lead to significant improvements
in interoperability and semantic clarity. The essential prerequisite is, though, that the disparate elements
can be integrated into a framework appropriate for system developers. Such an integration would allow in-
novation to proceed more rapidly and soundly, bringing significantly closer the vision of pervasive computing
for seamless, integrated pervasive and sensor systems.
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